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54 Chapter 8. Conclusions and Future Work

of diagnosis. In addition, as we re�ne the notion of integrated FDIR for real-
time and operative applications, we need to consider introducing a notion
of time into our algorithms. We would also like to explore the connections
between our work and Friedrich's therapeutic approach [18]; our intuition is
that Friedrich's notions can be interpreted as a special case of our approach,
but this conjecture clearly requires substantial justi�cation. Finally, we
would like to use one or more existing diagnosis systems to continue ex-
perimental evaluation of the use of diagnostic engines for recon�guration;
our initial attempt to use an existing diagnosis system to mechanize the
light bulb example discussed in Chapter 5 was successful [24], suggesting
the utility of further experimental e�orts.
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fault discrimination is intimately related to those of recovery and recon�gu-
ration. It follows that both problems are probably best handled by uniform
and integrated techniques.

A further reason for preferring an integrated approach to FDIR over
separate techniques for each of its component problems concerns the trust-
worthiness of the resulting system. The proper measure of the trustworthi-
ness of FDIR is the extent to which it recovers from faults and enables the
mission to proceed in safety. The e�ectiveness of solutions to the subsidiary
problems of diagnosis, isolation/identi�cation and recon�guration are signif-
icant only in terms of their contribution to the overall goal. A highly capable
diagnostic system is of little use if it is harnessed to a poor recovery algo-
rithm; the importance of occasional misdiagnoses can be evaluated only in
terms of their consequences on overall system behavior. We believe that by
concentrating on the total FDIR problem it will become possible to develop
trustworthy systems for FDIR that can take proper account of the potential
consequences of misdiagnosed faults and incorrect recovery actions.

We do not want to overstate our case; we are not claiming that integrated
FDIR is the only option. It is certainly possible to view FDIR as a sequence
of independent processes, possibly with enough communication to allow the
constraints of one or more processes to inuence the outcome of another. Yet
it is hard to see how to achieve the e�ectiveness of an integrated approach
within the sequential paradigm without signi�cant duplication of e�ort or
information. A further disadvantage of the sequential approach to FDIR is
that it tends to impose a static de�nition of the problem. Conversely, one of
the advantages of integrated FDIR is that it allows the distinction between
fault detection, identi�cation, and recon�guration to be blurred, and, in the
extreme, eliminated altogether. Thus, an integrated approach to FDIR also
provides a more fertile context for new ideas in FDIR.

8.2 Future Work

As the preceding comments suggest, there are several interesting directions
for future research. We have provided a foundation for integrated FDIR
and have begun exploring strategies for integrating diagnosis and recon�g-
uration. In the future we would like to carry out a more detailed study of
algorithms for integrated FDIR, based on the approach presented here but
extended to accommodate recent collaboration by de Kleer, Mackworth, and
Reiter [10], that extends and in some cases corrects Reiter's characterization
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discrimination problem. Typically there will be several candidate diagnoses
for a given set of symptoms; techniques for discriminating among them form
a major theme for much of the work in model-based diagnosis. However,
if all candidates require the same recovery action, then there is no need to
discriminate among them. In general, it is only necessary to discriminate
among diagnoses to the extent that they require di�erent recovery actions.
Typically, the available recovery actions are rather limited, certainly fewer
than the number of possible malfunctions, so discriminating on the basis
of recovery action will generally be a simpler task than discriminating on
the basis of additional testing or reevaluating criteria available at diagnosis
time.

While a comprehensive approach would not have been viable a decade or
so ago before the �eld of model-based diagnosis had matured, we feel that
it is now de�nitely time to take an integrated view of FDIR, especially in
applications where operating constraints imposed by physical systems in use
mandate a balanced response to malfunction, i.e., the response most likely
to allow the system to continue to function in a speci�ably safe mode. The
characteristics of air- and spacecraft provide a perspective on the diagnosis
problem that di�ers from those employed in the traditional AI literature.
Aside from the fact that we are dealing with machinery in operation, i.e.,
with operative diagnosis [1,2], we are also dealing with systems that typically
provide considerable redundancy. The major characteristics of operative di-
agnosis is that faults must be diagnosed while the system is in operation, not
on the test bench. Thus, failures may be masked by compensating control
inputs, faults may be propagating while diagnosis is being performed, and
it may be necessary to get the system into a safe state without necessarily
having a solid diagnosis of the cause of the problem. The presence of re-
dundancy, and the absence of opportunities for direct intervention, change
the nature of the fault discrimination process. In the traditional domains of
fault diagnosis, i.e., human physiology and electric circuits, discrimination
among diagnoses is performed through serial tests and measurements. Much
work has been done on techniques for minimizing the number of tests and
on �nding optimum probe points for measurements in circuits. On board a
spacecraft, however, there is no opportunity to obtain new measurements;
we are limited to the data provided by the in-place sensors. Instead, dis-
crimination is performed by changing operating parameters (e.g., does the
problem go away at reduced levels of thrust?) and by exploiting redundancy
(e.g., does the problem go away when we switch to a backup unit?). Since
redundancy also provides the main means for fault recovery, the problem of
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We have proposed a characterization of recon�guration as an extension of
Reiter's theory of model-based diagnosis. Our contribution has been to
recognize and exploit the analogy between the problem of model-based di-
agnosis and that of model-based recon�guration, yielding a uni�ed basis for
FDIR and a well de�ned context for integrated FDIR algorithms. We now
look more closely at the implications of these developments.

8.1 Concluding Remarks

In the course of this report we have argued that previous work on automated
fault diagnosis has focused almost exclusively on diagnosis, and that an in-
tegrated approach to FDIR is an essential next step if automated diagnosis
is to address the requirements of practical applications such as air and space
missions. What is the expected payo� of foundational work in recon�gura-
tion and integrated FDIR such as that described here? We feel that once
the focus is expanded from diagnosis1 to FDIR, we can begin to realize and
then to optimize the results of a comprehensive approach, in which the var-
ious facets of the task|diagnosis, identi�cation, recon�guration|mutually
reinforce and constrain the outcome. An example of the type of bene�t that
can follow from an integrated approach to FDIR is a reduction in the fault

1Some of the work on diagnosis arguably includes fault identi�cation as well. We are less
interested in the precise delineation of the components of FDIR, than in a comprehensive
approach to the problem.

51



50 Chapter 7. Limitations of the Model and Limits of the Analogy

The reason that the bike example fails to have the superset property is
because we have the axiom

:rcfg(front) _:rcfg(back) (7:1)

that explicitly rules it out. If we remove this axiom, we have a system
description that satis�es a condition called LKAB [11] that is su�cient to
ensure the superset property. We can therefore safely use Reiter's algorithm
to generate all minimal recon�gurations relative to this revised system de-
scription. When we come to evaluate the candidate recon�gurations, we
�rst �lter them by condition (7.1).

We suspect that this technique may be quite widely applicable. For the
(admittedly very few) examples we have considered so far, the system de-
scription can be encoded in axioms satisfying the LKAB condition, plus a
few additional axioms that describe inadmissible combinations of recon�g-
urations that can be used as �lters.

We believe that the issue of consistency versus entailment can be re-
solved by a postpass �lter in a similar way. The point here is that by our
de�nition, a satisfactory recon�guration (relative to a diagnosis) is one that
is consistent with the given model, the diagnosis, and the requirements. But
is this an adequate characterization? Surely we want to know that the pro-
posed recon�guration is not merely consistent with the requirements, but
will actually achieve (i.e., entail) them. We are sympathetic to this point of
view but do not have a good way to satisfy it directly. However, assuming
our logical system is sound, we can verify entailment by proving the theorem

sd0 [ fab(c)jc 2 �g [ f:ab(c)jc 2 comps��g

[ frcfg(c)jc 2 <�g [ f:rcfg(c)jc 2 comps0 �<�g

` reqs (7.2)

Thus, (7.2) can be added to superset constraints such as (7.1) as a further
�lter on acceptable recon�gurations. Note that if (7.2) is not a theorem,
then the sd is surely rather weak, since it fails to adequately constrain the
behavior of the system. A topic for further investigation is to determine
whether constraints on the forms of axioms comprising the sd can be found
that are su�cient to ensure entailment of requirements.
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7.2 Limits of the Analogy: Minimality, Consis-

tency, Entailment

Not surprisingly, the analogy we have pursued thus far has its limits. In this
section we look at two particular points in the theory where the parallels
between the problem of diagnosis and that of recon�guration appear to
weaken: the role of minimality in diagnosis and in recon�guration, and the
issue of consistency versus entailment.

As noted by [11], most earlier work in model-based diagnosis assumed a
\superset property": any superset �0 of a diagnosis � is also a diagnosis.
The set of diagnoses can then be parsimoniously represented by the set of
minimal diagnoses|those with no proper subsets that are also diagnoses.
The algorithms of [40] and most early systems for consistency-based diagno-
sis construct only the minimal diagnoses and therefore rely on the superset
property to ensure that they capture all diagnoses. The superset property
can fail, however, with approaches that incorporate models of faulty, as well
as correct, behavior.

Two approaches have been suggested for overcoming the inadequacy of
minimal diagnoses in these cases [11]: one replaces the notion of minimal
diagnosis with that of \kernel" diagnosis, the other places restrictions on
the axioms that may appear in the system description so that the notion of
minimal diagnosis remains adequate.

Our formulation of recon�guration is similar to diagnosis with fault mod-
els in that the system description contains axioms describing behavior when
a component is recon�gured, as well as when it is not. Thus, it is not surpris-
ing that recon�gurations do not have the superset property: for example, it
is not acceptable to recon�gure (i.e., put the spare tire on) both the front
and back wheels in our bike example.

The question then is: does loss of the superset property matter? Prag-
matically, we do not think it does, for we surely prefer to recon�gure as
few components as possible and will be satis�ed if we can generate the mini-
mal recon�gurations, without worrying about their supersets. Theoretically,
though, the problem is more serious because the correctness arguments for
Reiter's algorithm [40, pp. 67-68,77] and for the similar algorithm for re-
con�guration depend on the superset property. While we do not yet have a
de�nitive resolution for this di�culty, the following seems plausible.
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and Limits of the Analogy

In this chapter we explore the limitations of our work, focusing on the sim-
plicity of our model and the limits of the suggested analogy between diag-
nosis and recon�guration.

7.1 Limitations of the Model

The model of recon�guration suggested in this report is very simple. A se-
rious account of FDIR must factor in several dimensions including the level
of redundancy, the level of acceptable functionality, and the granularity of
the diagnosis versus that of the recon�guration. Diagnosis associates ab-
normality with components, whereas recon�guration potentially associates
malfunction with a range of system units, the smallest of which is the di-
agnosable component. Representing the recon�guration switches in the sd0,
as illustrated in some of the examples in Chapter 5, appears to be one way
to accommodate the range of possibilities in a single general theory. Note
that complete redundancy (i.e., standby sparing for all diagnosable com-
ponents), granularity of recon�guration identical to that of diagnosis, and
requirements equivalent to original system functionality reduce FDIR to FD.
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were critical, it might be acceptable to interrupt the diagnosis process im-
mediately upon generation either of a nonempty set of recon�gurations, or
of a set of one or more recon�gurations satisfying a minimal functionality
requirement. These scenarios suggest a wide range of possible approaches
to integrating diagnosis and recon�guration. Clearly the less conservative
approaches allow more substantive integration and thus more opportunity
for recon�guration factors to constrain diagnosis. It also seems reasonable
to suspect that the bene�ts of general algorithms for integrating FDIR are
ultimately limited; real optimization must also take into account the strate-
gies of a particular diagnosis/recon�guration engine. In any case, although
the details of integrating diagnosis and recovery may vary, the bene�ts of
integrated FDIR should now be clear. The rudimentary algorithms sug-
gested in this chapter clearly represent directions for future work; e�ective
algorithms which fully exploit the theoretical foundation presented in this
report remain an interesting challenge.
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6.2 Algorithms for Integrated FDIR

An ideal algorithm for integrated FDIR would simultaneously compute di-
agnoses and recon�gurations. There appear to be several reasons why this
ideal is currently unobtainable. First, it would require a di�erent charac-
terization of recon�guration than the one given above; if recon�gurations
are de�ned relative to given diagnoses as we have speci�ed, resulting strate-
gies for integrated FDIR are inherently sequential because recon�guration
assumes an extant diagnosis. More generally, there is the question of how to
handle the potentially conicting nature of observations (obs) and require-
ments (reqs) in a consistency-based approach.

Nevertheless there are e�ective alternatives. One obvious approach is
massive iteration: for each diagnosis and for each requirement, generate
all possible recon�gurations. As an example of this approach, we modify
Reiter's algorithm [40, p. 77] as follows. Instead of generating a pruned
HS-tree as described, then returning the set of all minimal hitting sets (i.e.,
the set of all diagnoses), we perform the following steps each time we gen-
erate a minimal hitting set (i.e., a diagnosis �) and store a list of recon-
�gurations with respect to requirements for each diagnosis generated. Let
RQ = freqs1; : : : ; reqsng be the set of all recon�guration requirements for
the given system, and R be an initially empty set used to accumulate the
current set of recon�gurations.

1. Let RQ0 := RQ, R := ;:

2. If there are no remaining requirements (RQ0 = ;) then return R to
the diagnosis algorithm; else choose an element REQS of RQ0 and set
RQ0 := RQ0 �REQS.

3. Generate the set R0 of recon�gurations for the given � and REQS.
Set R := R [ R0. Go to 2.

There are several variations on this algorithm. A conservative approach
would be to allow the integrated diagnosis/recon�guration algorithm to ter-
minate, then to sort the resulting list of recon�gurations with respect to
desired criteria. For example, given the information returned, we could
identify the class of diagnoses equivalent with respect to recon�guration.
Alternately, we could order the diagnoses with respect to cost of recover-
ability, for some measure of cost, and so on. Under certain circumstances
a less conservative approach would be appropriate. For example, if time



6.1. Mapping from Diagnosis to Recon�guration 45

We de�ne E to comprise satisfactory explanations relative to M and B just
in case for all � 2 E;

M [B [ fP (c)jc 2 �g [ f:P (c)jc 2 C ��g

is consistent.1

The transformation necessary to map a diagnosis engine to a recon�g-
uration engine can be viewed as the interpretations that instantiate the
general formulation, as given in Figure 6.1. Here sd and sd0 are the sys-

Interpretation M B P E

Diagnosis sd obs ab f�1; : : : ;�ng
Recon�guration sd0 reqs rcfg f<�1

; : : ;<�ng

Figure 6.1: Interpretations of the mapping speci�cation

tem descriptions for diagnosis and recon�guration, respectively, obs is the
observed behavior, and reqs is the required or acceptable behavior. �i is a
diagnosis, and <�i

is a recon�guration.
Under the interpretation for diagnosis, the predicate P is the familiar

abnormality predicate ab, which is used with negative polarity to express
the normality assumptions, e.g., :ab(m1) denotes that the componentm1 is
behaving normally. Similarly, under the interpretation for recon�guration,
the normal assumption is that a component is not reconfigured, denoted by
:rcfg.

Note that if we consider a particular diagnosis engine, we can further
specify the transformation as the composition or relative product of the
operations for conict generation and candidate recognition. In any case,
given the simplicity of this mapping, it should in theory be possible to use an
existing diagnosis engine for recon�guration. We have of course said nothing
about the degree of di�culty of such an enterprise; it seems reasonable to
suspect that the more specialized the diagnosis engine, the harder the task.
On the other hand, our analysis suggests the possibility of a general tool
accommodating both diagnosis and recon�guration in a single uni�ed engine.
In the next section we discuss algorithms for this approach.

1The characterization of satisfactory explanations by logical consistency is the crucial
notion in the approach to diagnosis exploited here; for this reason, model-based diagnosis
is often (and arguably more appropriately) referred to as \consistency-based" diagnosis.
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As previously noted, viewing the problem of recon�guration as a close ana-
logue of the problem of diagnosis suggests the possiblity of exploiting di-
agnosis algorithms for recon�guration, and of providing a uni�ed basis for
integrating the components of FDIR. In this chapter we explore the con-
text for this integration and sketch algorithms to achieve it. We look �rst
at a formal correspondence between diagnosis and recon�guration, then at
appropriate algorithms.

6.1 Mapping from Diagnosis to Recon�guration

We have suggested that an e�cient strategy for computing all recon�gura-
tions is precisely that for computing all diagnoses, implying that a general
diagnosis engine can be used for recon�guration. To support this conjec-
ture we specify an abstract engine and show how the speci�cation can be
interpreted to provide either a diagnosis or a recon�guration engine, predict-
ing that the transformation necessary to map a black box from a diagnosis
engine to a recon�guration engine is straightforward.

LetM be a domain model, including \normality" assumptions expressed
in terms of a distinguished predicate P on components C, and let B be a
speci�ed (observed or desired) behavior. M and B are sets of �rst order
formulas, and an explanation E is a set of subsets of C. Intuitively, E
generalizes the notions of diagnosis and recon�guration; the members of E
\explain" the discrepancy, if any, between the model M and behavior B.

44
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reducing the number of diagnoses considered. The sd0 for recon�guration of
the circuit in Figure 5.3 would thus include the formula:

ab(d3)^ (ab(d1) _ ab(d2)): (17)

On the other hand, if we choose to interleave diagnosis and recon�guration
and opt �rst to recon�gure relative to the diagnosis fd1, d3g, we would
generate a viable recovery, namely recon�gure components d1 and d3, before
generating the second diagnosis. In applications where one recovery option
is adequate or even preferred, this is potentially a signi�cant saving. A
further di�erence between our approach and that proposed by Friedrich et
al. is that we have chosen to follow Reiter's strategy of working from �rst
principles, whereas Friedrich et al. assume feedback from the real world.
Our assumption has been that in application areas such as air and space
missions, it is unrealistic to assume that feedback is always available.

The examples cited in this chapter have illustrated our approach to FDIR
and hopefully suggested the bene�ts of the analogy noted throughout this
report between the problem of diagnosis and that of recon�guration. We
next explore strategies which exploit this parallel to provide an integrated
approach to FDIR.
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4. If all causes of the given diagnosis have been validated, perform a
treatment: repair or eliminate the actual components corresponding
to a nonempty subset d0 of the diagnosis set; selection of the subset is
based on criteria such as cost, feasibility, etc.

5. If the malfunction(s) is(are) still observed, remove the subset d0 corre-
sponding to the components repaired or eliminated in step 4 from the
set C of possible causes and go to step 1, else stop.

By way of illustration, a possible therapy scenario suggested in [18, p. 77]
would play as follows.1 Let fd1, d3g be the �rst diagnosis generated. This
diagnosis is veri�ed (step 2 above) and the component d1 is selected for
treatment. After eliminating this component, the malfunction persists, i.e.,
the bulb remains unlit. At this point, rather than treat the component
corresponding to the one remaining cause of the diagnosis, d3, the algorithm
speci�es that we generate a new diagnosis, fd2, d3g. The diagnosis is again
veri�ed and this time component d3 is selected for treatment. The therapy
is successful and the observation invalidated, i.e., the light is now on. The
successful therapy involved two components: d1 and d3.

There are several things to note about the standard therapeutic ap-
proach. First, this approach eliminates or repairs only those components
whose treatment entails the disappearance of the observed symptoms; there
is apparently no attempt to reconcile a given treatment with the speci�ed
functionality of the system. Second, given the strategy of interleaving di-
agnosis and therapy, there is no way to identify minimal or parsimonious
therapies. Third, a new diagnosis is generated before the causes of the pre-
vious diagnosis are exhausted; in the scenario above, we generated a new
diagnosis after treating d1 rather than treating d3, which in this case would
have alleviated the symptom (bulb unlit). If the cost of generating diagnoses
is high, as one would suspect, this strategy may be unnecessarily expensive,
especially in the context of therapy, which speci�es relief of symptoms rather
than recovery of speci�ed functionality.

Our approach to FDIR is somewhat more exible; we have the option of
either interleaving diagnosis and recovery, or generating a set of diagnoses
followed by a corresponding set of recon�gurations. In the latter case, we
may potentially simplify the recon�guration step. For example, if diagnoses
overlap, as in this example, we can reect this fact in the sd0, thereby

1We think there may be problems with the therapy algorithm and scenario as stated
in [18], and cite their example merely to illustrate the approach.
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power source(ps) ^ bulb(b) ^ resistance(R) ^ electrical device(d1) ^ : : :
^electrical device(d4) ^ switch(r1) ^ : : :^ switch(r3) (1)

:ab(ps) ^:ab(b) ^ :ab(R) (2)

:rcfg(r1) ^ :rcfg(r2) ^ :rcfg(r3) (3)

electrical device(d1) ^ :ab(d1) � voltage(a; b) > 0 (4)

electrical device(d10) ^ :ab(d10) ^ rcfg(r1) � voltage(a; b) > 0 (5)

electrical device(d2) ^ :ab(d2) � voltage(a; b) > 0 (6)

electrical device(d20) ^ :ab(d20) ^ rcfg(r2) � voltage(a; b) > 0 (7)

electrical device(d3) ^ :ab(d3) � voltage(b; c) > 0 (8)

electrical device(d30) ^ :ab(d30) ^ rcfg(r3) � voltage(b; c) > 0 (9)

electrical device(d4) ^ :ab(d4) � voltage(a; d) > 0 (10)

voltage(a; b) > 0 _ voltage(b; c) > 0 � voltage(a; c) > 0 (11)

voltage(a; d) > 0 _ voltage(d; c) > 0 � voltage(a; c) > 0 (12)

voltage(a; b) = 0 ^ voltage(b; c) = 0 � voltage(a; c) = 0 (13)

voltage(a; c) > 0 � lit(b) (14)

voltage(a; c) = 0 � :lit(b) (15)

Given the observation that the bulb is not lit, i.e.,

:lit(b); (16)

there are two diagnoses for this system: fd1, d3g and fd2, d3g. The algorithm
for the standard therapeutic approach [18, p. 75], which interleaves diagnosis
and therapy, can be summarized as given below. We have restated the
algorithm to avoid introducing new vocabulary, but have otherwise tried to
faithfully reproduce the standard therapeutic approach. Let a \potential
cause" refer to a (potentially faulty) component, and let C denote the set of
all possible causes, i.e., the set of all possibly faulty components. A diagnosis
is thus a subset of C.

1. If there are potential causes remaining, i.e., C is nonempty, generate
a diagnosis.

2. Check the validity of each individual cause in the diagnosis against the
\real world," i.e., verify that the component is actually misbehaving.

3. If the validity of one or more of the causes can not be established,
remove the invalid cause(s) from the set C of possible causes and go
to step 1.
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resistance, and four electrical devices. The power source, bulb, and wires are
assumed to operate correctly; the electrical devices either behave normally
or produce a short circuit between their respective inputs and outputs. We
have augmented the example by introducing three recon�guration switches
and standby spares for three of the four electrical devices. The symbols
a; b; c; d in Figure 5.3 are labels identifying locations in the circuit; they
are not components.

a

power
source

bulb

c

R

d b

d4 d1 d1' d2 d2'

d3 d3'

r1 r2

r3

Figure 5.3: An example from the standard therapeutic approach

As reected in Figure 5.3, the comps of the system are fps, b, R, d1,
d10, d2, d20, d3, d30, d4, r1, r2, r3g. The speci�cation of Friedrich et al.
for the original system is written in propositional Horn clause logic and
the problem is posed as a propositional Horn clause abduction problem
[18, 35, 38]. Briey, given a logical description of a system, such as a set of
propositional Horn clauses, and a set of observations, abductive diagnostic
reasoning attempts to �nd one or more minimal sets of individual hypotheses
or diagnoses which logically imply the observations. As in the previous
examples, we specify the circuit in �rst order logic and frame the problem
in terms of the consistency of a set of �rst order formulae. Let voltage(x; y)
denote the voltage between point x and point y.
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bulb(X) ^ :ab(X) ^ powered(X) � lit(X) (1)

bulb(X) ^ :ab(X) ^ :powered(X) � :lit(X) (2)

bulb(X) ^ :ab(X) ^ lit(X) � powered(X) (3)

bulb(X) ^ :ab(X) ^ :lit(X) � :powered(X) (4)

battery(X) ^ :ab(X) � powered(X) (5)

wired(X;Y ) � powered(X) � powered(Y ) (6)

battery(b) ^ bulb(b1)^ : : :^ bulb(b4) (7)

:rcfg(s1) ^ :rcfg(s2) (8)

:rcfg(s1) ^ :rcfg(s2) (9)

wired(b; b1) � wired(b; b2) � wired(b; b3) � :rcfg(s2)
^wired(b; b4) � rcfg(s1) � rcfg(s2) (10)

Given the observation that at least two bulbs are not lit, i.e.,

9X;Y (:lit(X) ^ :lit(Y )); (11)

the diagnosis is moot and the recon�guration trivial; regardless of which
two bulbs are faulty, there is exactly one acceptable recovery, namely power-
ing on the warning light by resetting switches s1 and s2. There is of course
a third possibility: all three bulbs are out because the battery is faulty.
Interestingly, the one acceptable recon�guration also serves to con�rm or
deny this possibility. Thus this admittedly simple example illustrates the
role of recon�guration in reducing the cost of discriminating among candi-
date diagnoses, as well as the important distinction between the concept of
recon�guration and the mechanisms for achieving it. Note that although
the original system functionality is considerably di�erent under recon�gura-
tion, the granularity of recon�guration is basically that of diagnosis in this
example.

In the next section we turn to an example presented in [18] which serves
as a further illustration of our approach as well as a vehicle for comparing
Friedrich's therapeutic approach with our notion of recovery.

5.2 A Less Familiar Example: Therapy versus

Recon�guration

Figure 5.3 is a modi�ed version of an electrical circuit which appears in
[18, p. 71]. As given in [18], the example consists of a power source, bulb,
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We can use this example to illustrate two further points. First, suppose
that we have no information about which bulbs are lit; we know only that two
bulbs have failed, and we require that at least two bulbs be lit. The candidate
diagnoses are: fb1; b2g; fb1; b3g;fb2; b3g. However, a single recon�guration,
namely r3, satis�es reqs and there is no need to further discriminate the
diagnoses.

Our second point concerns remarks made in the introductory paragraphs
of this chapter, where we emphasized that the granularity of recon�guration
need not be identical to that of diagnosis and, more importantly, that re-
con�guration switches are meta-level objects which allow us to decouple the
concept of recon�guration from the mechanisms which implement it. A mi-
nor variation on our onging example illustrates this point nicely. Suppose
that instead of standby sparing for the bulbs, we provide a single ashing
yellow bulb as a warning indicator. If at least two of the three bulbs are
diagnosed as faulty, the only acceptable recon�guration is to light the yellow
warning bulb. Conceptually, this version of the circuit has two switches: one
breaks the connection between the battery and bulbs b1, b2, b3, the other
connects the warning indicator b4. The circuit and its speci�cation appear
below. As before, we assume that wires always behave correctly.

s2s1

b4 b2b1b b3

Figure 5.2: Standard circuit with SPDT switch and warning indicator

The comps of the system in Figure 5.2 are fb, b1, b2, b3, b4, s1, s2g. Note
that switches s1 and s2 could be implemented and modeled as a single ele-
ment, such as a single-pole double-throw (SPDT) switch; we have opted for
two separate switches because the distinction between concept and mecha-
nism is more explicit.
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The expected behavior is that bulbs b1; b2; b3 are lit. The observation

:lit(b1) ^ :lit(b2) ^ lit(b3) (10)

yields the following set of conict sets: ffb; b1g; fb; b2g; fb1; b3g;fb2; b3gg. To
illustrate the derivation of conict sets, we specify the conicts used in
the diagnosis in this �rst example only; bracketed numbers refer to the
corresponding sentences in the sd.

fb; b1g : powered(b) [7; 5]

:powered(b1) [7; 10; 4]

T � F [6]

fb1; b3g : :powered(b1) [7; 10; 4]

powered(b3) [7; 10; 3]

powered(b) � powered(b1) � F [9; 6]

powered(b) � powered(b3) � T [9; 6]

The derivations for fb; b2g and fb2; b3g are analogous, with the obvious
substitutions of b2 for b1. There are two hitting sets for this collection
of conicts, i.e., two candidate diagnoses: fb; b3g and fb1; b2g. This type of
example is typically used to illustrate the necessity of augmenting the correct
behavior model traditionally assumed in model-based diagnosis with some
speci�cation of incorrect behavior, e.g., fault models or physical impossibility
axioms. This aspect of the example is irrelevant to our discussion, and we
ignore the absurd diagnosis fb; b3g.

Suppose that the system requirements under recon�guration, reqs, are
somewhat weaker than the original functionality: at least two bulbs should
be lit, i.e.,

9X;Y (lit(X) ^ lit(Y )) (11)

and the candidate diagnosis is fb1; b2g: Recon�guration of this system
involves no new components, i.e., comps = comps0 and the modi�ed sys-
tem description sd0 includes the additional sentence: ab(b1) ^ ab(b2): This
gives the set of conict sets ffb4; b5; b6gg and the candidate recon�gurations
<� = fb4g _ fb5g _ fb6g: In other words, assuming b3 lit and three spare
bulbs, there are three ways to recon�gure the system satisfying the given re-
quirements. Clearly if the recon�guration requirements speci�ed the original
functionality, i.e.,

9X;Y; Z (lit(X) ^ lit(Y ) ^ lit(Z)); (12)

then the set of conict sets would be ffb4; b5; b6g; fb4; b5g;fb5; b6g;fb4; b6gg

and the candidate recon�gurations <� = fb4; b5g_ fb5; b6g _ fb4; b6g.
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5.1 A Standard Example

Our �rst set of examples is based on minor variations of a standard example
(see, for example, [19, p. 332]) consisting of a battery and a series of bulbs
connected in parallel as shown in Figure 5.1. We have added three recon�g-
uration switches (r) normally set so that the standby spares and auxiliary
bulb are wired into the circuit as indicated.

b6b3b1b b4 b2 b5

r1 r2 r3

Figure 5.1: Simple circuit with auxiliary bulb and two standby spares

We specify the comps of the system in Figure 5.1 as fb, b1, b2, b3, b4,
b5, b6, r1, r2, r3g and, using the abnormality predicate ab and the recon�g-
uration predicate rcfg, we specify the sentences that constitute the sd as
shown below; the �rst six sentences axiomatize the correct behavior of the
components and the last three describe the physical con�guration. Variables
are denoted by capital letters and are implicitly universally quanti�ed. We
assume that wires always behave correctly.

bulb(X) ^ :ab(X) ^ powered(X) � lit(X) (1)

bulb(X) ^ :ab(X) ^ :powered(X) � :lit(X) (2)

bulb(X) ^ :ab(X) ^ lit(X) � powered(X) (3)

bulb(X) ^ :ab(X) ^ :lit(X) � :powered(X) (4)

battery(X) ^ :ab(X) � powered(X) (5)

wired(X;Y ) � powered(X) � powered(Y ) (6)

battery(b) ^ bulb(b1)^ : : :^ bulb(b6) (7)

:rcfg(r1) ^ :rcfg(r2) ^ :rcfg(r3) (8)

wired(b; b1) � :rcfg(r1) ^ wired(b; b2) � :rcfg(r2) ^wired(b; b3)
^wired(b; b4) � rcfg(r1) ^wired(b; b5) � rcfg(r2) ^wired(b; b6) � rcfg(r3) (9)
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To help the reader understand these examples as illustrations of the theory
of recon�guration presented in Chapter 4, we suggest the following intuition.
Diagnosis and recon�guration can both be thought of as strategies for gen-
erating alternative designs or views of the system. If diagnosis of a system
yields three candidate diagnoses and two possible recon�gurations, we view
this outcome as three diagnosis designs and two recon�guration designs. The
recon�guration mechanisms mentioned previously can then be interpretated
as mechanisms for switching between or selecting among the recon�guration
designs. This is an important point, because we do not want to limit our-
selves to cases in which the granularity of the recon�guration is identical to
that of diagnosis. Nor do we want to limit ourselves to cases where REQS
simply speci�es the original functionality. In other words, the recon�gura-
tion design problem is in some sense much richer than the diagnosis design
problem; the recon�guration design problem has several additional param-
eters to work with, including (potentially major) changes in functionality
and structure, and this is what makes the problem of FDIR and, in partic-
ular, integrated FDIR interesting. Even in examples where the granularity
of recon�guration and diagnosis is identical, it is important to realize that
unlike the components used in diagnosis, recon�guration mechanisms rep-
resent `meta-level' elements rather than physical elements. Of course, it is
certainly possible to axiomatize the behavior of components that actually
perform recon�guration, such as switches and valves; there is nothing to pre-
clude identifying meta-level components with physical components, as long
as we recognize that this is simply one instantiation of the basic approach.

35
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Proof of 1. Assume the contrary, i.e., comps0 � <� is a conict set for
(sd0; comps0; reqs;�). But then <� \ (comps0 � <�) = f g, contradicting
the hypothesis that <� is a hitting set for all conict sets.

Proof of 2. We prove that <� is minimal with respect to property
1 by showing that 8c 2 <�; fcg [ comps0 � <� is a conict set for
(sd0; comps0; reqs;�). Since <� is a minimal hitting set for the collection
of conict sets for (sd0; comps0; reqs;�), it follows that 8c 2 <�; 9X �
comps0 �<� such that fcg [X is a conict set for (sd0; comps0; reqs;�).
If not, 9c0 2 <� such that fcg [ fc0g [ X is a conict set, in which case
<� � fcg is a smaller hitting set than <�, contradicting the hypothesis
that <� is a minimal hitting set. Furthermore, if fcg [X is a conict set,
fcg [ comps0 � <� is a conict set. Hence <� is a minimal set such that
comps0 �<� is not a conict set. 2

Having provided a formal basis for viewing the problem of recon�gura-
tion as an analogue of that of diagnosis, we set aside formal considerations
and turn to a series of examples illustrating the application of these ideas.
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Proposition 5 <� � comps0 is a recon�guration for (sd0, comps0, reqs)
relative to � iff <� is a minimal set such that comps0�<� is not a conict
set.

Given a collection of sets, in this case a collection of conict sets, the notion
of a hitting set is de�ned as follows.

De�nition 9 A hitting set for a collection of sets C is a set H � SS2C S

such that H \ S 6= f g for each S 2 C. A hitting set for C is minimal iff

no proper subset of it is a hitting set for C [40, p. 67].

for (sd0, comps0, reqs, �).

We can now characterize the computation of a recon�guration as follows.

Theorem 3 <� � comps0 is a recon�guration for (sd0, comps0, reqs)

relative to � iff <� is a minimal hitting set for a collection of conict sets
containing at least the minimal conict sets for (sd0, comps0, reqs, �).2

proof ). From Proposition 4.2, we have that comps0 � <� is not
a conict set for (sd0; comps0; reqs;�). Therefore every conict set must
include an element of <�, which means that <� is a hitting set for the
collection of conict sets for (sd0; comps0; reqs;�). Furthermore, since <�

is a minimal set such that comps0 � <� is not a conict set,

8c 2 <�; fcg [ fcomps0 � <�g

is a conict set. Hence <� is a minimal hitting set for the conict sets for
(sd0; comps0; reqs;�).

(. Using Proposition 4.2, we prove that <� is a recon�guration for
(sd0, comps0, reqs) relative to � by proving that

1. comps0 � <� is not a conict set for (sd0; comps0; reqs;�).

2. <� is minimal with respect to property 1.

2Reiter's statement of the corresponding theorem for diagnosis is vague, specifying only
that � be a minimal hitting set \for the collection of conict sets for (sd, components,

obs)." In fact, the collection must include at least the minimal conict sets, or the
diagnosis may be erroneous. The same caveat applies to recon�guration; the relevant
collection must include at least the minimal conict sets.
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is not inconsistent.

At this point it is useful to return to the question of practicality. We
have captured the intuition that a recon�guration is a conjecture that recov-
ery can be achieved by recon�guring only certain components, but we have
not provided the basis for an e�cient mechanism for computing all recon-
�gurations. Given the proof of Proposition 4, the recon�guration analogue
to Reiter's Proposition 3.4, we could systematically generate subsets <� of
comps, starting with those of minimal cardinality, and test the consistency
of

sd0 [ fab(c)jc 2 �g [ reqs[ f:rcfg(c)jc 2 comps0 � <�g:
For systems with numerous components, this approach is clearly unaccept-
ably ine�cient. In the next section we develop a more e�ective basis for
recon�guration.

4.2 Characterizing the Computation of a Recon-

�guration

Following Reiter, we exploit the notion of conict set and hitting set to
arrive at a more e�ective computational basis.1

De�nition 8 A conict set for (sd0, comps0, reqs, �) is a set
fc1; : : : ; ckg � comps0 such that sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c1)^
: : :^:rcfg(ck)g is inconsistent. A conict set for (sd0, comps0, reqs, �) is
minimal iff no proper subset of it is a conict set for (sd0, comps0, reqs,

�).

Although this de�nition of conict set appears identical to Reiter's with the
exception of the change in names and the introduction of the context of
diagnosis, the appropriate interpretation of the de�nition is not obvious. In
diagnosis, a conict set reects the fact that if all of the components named
as elements of the conict set work, i.e., are not abnormal (:ab), the ob-
servation and the system description are inconsistent. In recon�guration,
the inconsistency arises if all of the components in the conict set are un-
recon�gured, i.e., are not recon�gured (:rcfg). Hence Proposition 4 can be
reformulated as

1The notion of a conict set was originally proposed by de Kleer and later formalized
by Reiter [40, p. 67]. The notion of a hitting set also appears in Reiter [40, p. 67].
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is consistent, and thus that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 �<�g

is consistent. Note that <� is de�ned to be minimal with respect to the �rst
property given above, but might not be minimal with respect to the second,
hence we must prove <� minimal in the context of

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 �<�g:

Since by Proposition 3, 8ci 2 <�;

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[f:rcfg(ci)g

is inconsistent, it follows that <� is a minimal set with the desired property.
(. We must show that <� is a minimal set satisfying the de�nition of

a recon�guration (De�nition 7). Given that <� is minimal, 8ci 2 <�;

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g [ f:rcfg(ci)g

is inconsistent. But, by hypothesis,

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 �<�g

is consistent and thus

sd0[reqs[fab(c)jc 2 �g[f:rcfg(c)jc 2 comps0�<�g[frcfg(c)jc 2 <�g

is consistent. Furthermore, <� is minimal, since otherwise there would be
a set <0

�
� <� such that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 �<0

�g

is consistent, contradicting the hypothesis of this proposition. 2
By proposition 4, <� is a recon�guration iff f:rcfg(c)jcomps0� <�g

is consistent with
sd0 [ reqs[ fab(c)jc 2 �g;

i.e., just in case

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jcomps0� <�g
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This is Reiter's proof essentially unchanged except for notation and the
obvious substitutions to accommodate recon�guration. Like the original, it
seems unnecessarily opaque; why bother with the disjunction over all ci, i.e.,
why not take the case of a single ci 2 <� as follows?

alternate proof Suppose that the proposition is false and 9ci 2 <�

such that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g 6j= rcfg(ci);

i.e.,

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[f:rcfg(ci)g

is consistent. But this means that <� has a strict subset <0

�
such that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <0

�g
[frcfg(c)jc 2 <0

�g

is consistent, contradicting the hypothesis that <� is a recon�guration for
(sd0, comps0, reqs) relative to �. 2
The addition of the last clause is justi�ed by the fact that

frcfg(c)jc 2 <0

�g � frcfg(c)jc 2 <�g

and <� is a recon�guration (cf. De�nition 7). From the de�nition of recon-
�guration (De�nition 7) and Proposition 3, we can establish the following.

Proposition 4 <� � comps0 is a recon�guration for (sd0, comps0, reqs)
relative to � iff <� is a minimal set such that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 �<�g

is consistent.

proof ). The result follows straightforwardly from Proposition 3 and the
de�nition of recon�guration. From De�nition 7, we have that

sd0 [ reqs[ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[frcfg(c)jc 2 <�g
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Proposition 3 If <� is a recon�guration for (sd0, comps0, reqs) relative
to �, then for each ci 2 <�,

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g j= rcfg(ci):

proof If <� is the empty set, then the proposition holds vacuously.
Let <� = fc1; : : : ; ckg and assume that the proposition is false, i.e., that

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[f:rcfg(c1) _ : : :_ :rcfg(ck)g

is consistent. Clearly,

f:rcfg(c1) _ : : :_ :rcfg(ck)g

is logically equivalent to

_
[X1(c1) ^ : : :^Xk(ck)];

where
9Xj ; 1 � j � k; Xj = :rcfg(cj)

and 8i 6= j; 1 � i � k the term Xi is either rcfg(ci) or :rcfg(ci), i.e., there
is at least one conjunct :rcfg(cj) in each of the disjunctions. It follows that

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[
_
[X1(c1) ^ : : :^Xk(ck)]

is consistent. Hence for some choice of conjunction over X1 : : :Xk,

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <�g
[fX1(c1) ^ : : :^Xk(ck)g

is consistent. But this means that <� has a strict subset <0

�
such that

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0 � <0

�
g

[frcfg(c)jc 2 <0

�g

is consistent, contradicting the hypothesis that <� is a recon�guration for
(sd0, comps0, reqs) relative to �. 2
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in the case of Propositions 1 and 2, and to view Proposition 5 as a corollary
of Proposition 4.

De�nition 7 A recon�guration for (sd0, comps0, reqs) relative to � is
a minimal set <� � comps0 such that

sd0[fab(c)jc 2 �g[reqs[frcfg(c)jc 2 <�g[f:rcfg(c)jc 2 comps0�<�g
is consistent.

De�nition 7 characterizes a recon�guration relative to a diagnosis as the
smallest set of components such that the assumption that these compo-
nents are recon�gured and that all other components are not recon�gured is
consistent with the diagnosis, the augmented system description, and the re-
quirements. Note that we do not need to add the set f:ab(c)jc 2 comps��g

to the union in this de�nition because the corresponding de�nition of diag-
nosis [40, p. 63, Def. 2.4] speci�es the consistency of

sd[ obs [ fab(c)jc 2 �g [ f:ab(c)jc 2 comps��g:
The approach to recon�guration suggested here provides insight, but ulti-
mately not much practicality, as we will see in due course. The next two
propositions follow straightforwardly from De�nition 7.

Proposition 1 A recon�guration exists for (sd0; comps0; reqs) relative to
� iff

sd0 [ fab(c)jc 2 �g [ reqs
is consistent.

Note that � may be the empty set.

Proposition 2 f g is the unique recon�guration for (sd0; comps0; reqs)
relative to � iff

sd0 [ reqs [ fab(c)jc 2 �g [ f:rcfg(c)jc 2 comps0g
is consistent, i.e., if the requirements are consistent with the system behavior
in the presence of the faults indicated by �.

Proposition 3 characterizes the relation between recon�gured and unrecon-
�gured components; the latter can be said to \logically determine" the for-
mer.
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and seek a recon�guration that is consistent with this requirement and the
system description. Clearly fbackg does the job; we should put the spare
on the back wheel.

Note that there are two phases to this approach: �rst we �x the con�gu-
ration and seek diagnoses, then we �x a diagnosis and seek a recon�guration.
In general, there will be several diagnoses and we will probably seek a re-
con�guration for each before committing to a �nal choice.

Although very simple, this example illustrates an important point: the
concept of recon�guration can be decoupled from the mechanisms for achiev-
ing it. Of course, it is also possible to equate the concept and mechanism
of recon�guration, as illustrated in the example in Section 5.1 of Chapter
5, where the recon�guration predicate is applied to switches in an electrical
circuit.

We are now ready to discuss the formal development of the analogy
between diagnosis and recon�guration. To begin, we present the theory of
recon�guration underlying our claim that the problem of recon�guration
can be viewed as a close analogue of the problem of diagnosis, thereby
establishing a formal basis for recon�guration which closely parallels that
for diagnosis. In fact, it turns out that the generality of Reiter's theory
renders it equally applicable to recon�guration and Reiter's proofs [40] go
through virtually unchanged.

4.1 An Intuitive Characterization of Recon�gu-

ration

Let comps0 be the union of comps and any additional components such as
standby spares or auxiliaries available for recovery; sd0 be the union of sd
and any additional con�guration statements or correct behavior axioms for
the spare components; and let the requirements, reqs, be a �nite set of �rst-
order sentences specifying desired or acceptable behavior for the recon�gured
system. The predicate rcfg denotes \recon�gured." Thus for component c,
ab(c) denotes that c is not behaving normally and :rcfg(c) denotes that c is
not recon�gured. We begin with a basic de�nition of recon�guration relative
to a diagnosis. In the de�nitions and proofs which follow, it is useful once
again to point out that we are taking unions over sets of clauses, yielding
conjunctions of �rst-order sentences. To facilitate comparison between our
proofs and Reiter's, we have retained his use of the term \proposition,"
although we prefer to think of Propositions 1-4 as lemmas, trivial lemmas
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whose recon�guration yields an acceptable behavior. Note that any such
recon�guration assumes the abnormality of the components in �.

A simple example should help clarify these notions. Consider the prob-
lem of diagnosing and repairing a at on a bike equipped with a single spare
tire. To simplify the statement of the problem, we use a typed logic. Wheel
and tire are uninterpreted types, front and back are constants of type wheel ,
x is a variable of the same type, and a, b and spare are constants of type
tire. The function on has signature wheel ! tire and indicates which tire
is on which wheel, good and rcfg are predicates on wheels, and ab is a pred-
icate on tires. Intuitively, ab indicates whether or not a tire is serviceable,
rcfg(x) indicates whether the spare is to be mounted on wheel x, and good

indicates whether or not a wheel has a serviceable tire. In this and subse-
quent discussion, we make the simplifying assumption that components used
in recon�guration are not abnormal; in this case, the spare tire is assumed
serviceable. The system description is as follows.

:ab(on(x)) � good(x)

rcfg(x) � on(x) = spare

:rcfg(front) � on(front) = a

:rcfg(back) � on(back) = b

:rcfg(front)_ :rcfg(back)
:rcfg(front)^ :rcfg(back)

The last of these axioms indicates the initial con�guration|i.e., neither
wheel is recon�gured. Suppose we notice that our back tire is rapidly loosing
air, i.e.,

:good(back):
From the model, we discover there is a single diagnosis fbg, i.e., ab(b) is
consistent with the model and the observation. We now add

ab(b)^ :ab(a)^ :ab(spare)

to the system description, withdraw the initial con�guration

:rcfg(front) ^ :rcfg(back);

establish the requirement

good(front) ^ good(back);



Chapter 4

A Theory of Recon�guration

from First Principles

We are concerned with the problem of recon�guration in the context of sys-
tems designed for survivability, and therefore provided with some degree of
fault tolerance and redundancy. In this type of system, components may be
capable of operating in di�erent modes (e.g., standard or degraded mode),
may be switched o� or bypassed, and may have standby spares or other
forms of redundancy. In addition to being able to recon�gure components,
we may also be willing to accept certain behaviors other than that consid-
ered truly correct. For example, a system may be required to withstand
two component failures with no loss of capability, but may be allowed to
degrade to a safe mode on the third failure. We make no particular as-
sumptions about redundancy or degradation of performance; our theory is
general enough to accommodate the range of possibilities suggested here.
Thus a system description for any type of redundant and/or degradable sys-
tem can be given in terms of the recon�guration of its components; e.g., if
system x is recon�gured, then receiver 1 is in the circuit, otherwise receiver
2, or if system y is recon�gured then the transmitter operates at half power
otherwise full power.

By analogy with Reiter's formulation of diagnosis, the problem of re-
con�guration can be posed as follows. Given a diagnosis, i.e., a set of com-
ponents assumed abnormal, �nd a set of components whose recon�guration
yields an acceptable behavior. In particular, given a system and diagnosis,
�nd a recon�guration relative to the diagnosis �, i.e., a set of components

25



24 Chapter 3. Reiter's Theory of Diagnosis from First Principles

notably the previously mentioned work of Struss and colleagues [44] on ex-
plicit fault models, the work of Friedrich et al. [19] on physical impossibility,
and the collaboration of Reiter, de Kleer, and Mackworth [10] resulting in
a new characterization of diagnosis. We have chosen to use Reiter's original
formulation as the basis for our work because the newer characterization
has only recently become available and is not yet as widely disseminated.
This completes our review of Reiter's theory of diagnosis; we now have the
necessary background to consider extensions to the basic theory. The ex-
tension we have in mind, of course, is a complementary formalization of
recon�guration, the subject of the following chapter.
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extreme case in which all nodes except the root node would be pruned unless
the root node is relabeled when the left branch is pruned [22, p. 83].

Greiner et al. propose a revised version of Reiter's algorithm using di-
rected acyclic graphs, HS-dags, rather than HS-trees, ostensibly as an alter-
native to reusing node labels. The other di�erence between their algorithm
and Reiter's is their stipulation that the collection F be ordered, thereby
yielding a deterministic algorithm. Although Greiner et al. do not discuss
the issues, there are clearly tradeo�s. One of the advantages of Reiter's algo-
rithm is its relative simplicity of statement; the algorithm is somewhat more
perspicuous than that of Greiner et al. Additionally, Greiner and colleagues
fail to mention that their algorithm assumes that F is explicit, whereas Re-
iter makes precisely the opposite assumption. One way to o�set the expense
of explicitly generating F is to compile the set prior to its use for diagnosis.
A further advantage of this approach is that F can be prescanned for su-
persets. It seems reasonable to assume that these tradeo�s would be most
e�ectively evaluated in a particular diagnostic context. There have been
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edge from node n labeled by � along with any subtree beneath it and
relabel n5

The following theorem summarizes the preceding discussion.

Theorem 2 Let F be a collection of sets, and T a pruned HS-tree for F .
Then fH(n)jn is a node of T labeled by

pg is the collection of minimal
hitting sets for F [40, p. 72].

It should be clear that if F is the collection of conict sets for (sd,

comps, obs), the collection fH(n)j : : :g of minimal hitting sets is pre-
cisely the set of all diagnoses for (sd, comps, obs). Note that since
pruned HS-trees are generated breadth-�rst, nodes labeled by

p
at level

1 in the tree correspond to all diagnoses involving a single component,
and similarly for diagnoses of increasing cardinality [40, p. 79]. Figure
3.1 is taken from Reiter and shows a pruned HS-tree for the explicit set
F = ff2; 4; 5g; f1; 2; 3g; f1; 3; 5g; f2; 4; 6g; f2; 4g; f2; 3; 5g; f1; 6gg [40, p. 73];
\x" represents a closed branch, \

p
" the terminal node of a path correspond-

ing to a minimal hitting set, and \//" a redundant branch which has been
pruned.

Reiter's theory is general enough to capture the essence of several other
strategies, including those of Davis [7] and de Kleer and Williams [12], as-
suming certain additional constraints, such as, with respect to de Kleer and
Williams, the constraint that all conict sets are minimal.

3.2 Questions about the Speci�cation of Reiter's

Algorithm

Greiner and his colleagues have recently published a research note detailing
two problems with Reiter's algorithm [22]. The �rst di�culty arises out
of Reiter's use of nonmimimal conict sets; in particular, the closing rules
fail to take into account the possibility that a branch assumed active by a
closing rule might subsequently be pruned, thereby possibly eliminating the
path to potential hitting sets, as illustrated in Figure 3.2 [22, p. 82].

The second di�culty relates to Reiter's failure to explicitly specify node
relabeling when redundant edges are pruned. As a result, nodes which
should remain active may be closed, as in Figure 3.3 which illustrates the

5As Greiner et al. point out [22, p. 83], Reiter mentions relabeling in the discussion,
but fails to incorporate it into the algorithm.
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1. Its root is labeled by \
p
" if F is empty. Otherwise, its root is labeled

by a set in F .

2. If n is a node of T , de�ne H(n) to be the set of edge labels on the
path from T from the root node to n. If n is labeled by

p
, it has no

successor nodes in T . If n is labeled by a set � of F , then for each
� 2 �, n has a successor node in n� joined to n by an edge labeled by
�. The label for n� is a set S 2 F such that S \H(n�) = f g if such
a set S exists. Otherwise, n� is labeled by

p
.

Reiter notes the following two properties of any HS-tree for a collection of
sets. First, if n is a node of the tree labeled by

p
, then H(n) is a hitting

set for F . Second, each minimal hitting set for F is H(n) for some node
n of the tree labeled by

p
. Thus, given a set F , the HS-tree given by the

preceding de�nition includes all minimal hitting sets for F .3

Note that if the collection F of (all) conict sets is given explicitly, it is
reasonable to assume that F can be prescanned and all supersets of sets in F
removed. However Reiter's algorithm assumes that F is (only) implicitly
de�ned for a given system and observation (sd, comps, obs). As a result,
the HS-tree must be pruned during generation. Reiter's strategy assumes
that the HS-tree is always generated breadth-�rst, in left-to-right order.
Furthermore, node labels are reused wherever possible; in particular, if node
n is labeled by the set S 2 F and if n0 is a node such that H(n0)\ S = f g,
label n0 by S.4

De�nition 6 A pruning strategy for an HS-tree T is given by the fol-
lowing three steps [40, p. 72]:

1. If node n is labeled by
p
and node n0 is such that H(n) � H(n0), close

n0, i.e., do not compute a label or any successors for n0.

2. If node n has been generated and node n0 is such that H(n0) = H(n),
close n0.

3. If nodes n and n0 have been respectively labeled by sets S and S0 of
F and if S0 � S, then for each � 2 (S � S0) remove the redundant

3Although not necessarily all hitting sets for F .
4The motivation for reusing node labels follows directly from the fact that F is implicit;

access to F is in fact a call to an underlying theorem prover which returns a suitable conict
set, where \suitable" means a set S such that H(n)\S = f g if such a set exists, otherwise
the theorem prover returns

p
. Reusing node labels is one way of minimizing the expense

of invoking the theorem prover.
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is a �nite set of constants. An observation, obs, of a system is a �nite set
of �rst-order sentences. Thus (sd, comps, obs) denotes a system (sd,
comps) with observation obs [40, pp. 59, 62].

Using the predicate ab to denote abnormality, Reiter initially characterizes
a diagnosis as follows.1

De�nition 2 A diagnosis for (sd, comps, obs) is a minimal set � �
comps such that sd [ obs [ fab(c)jc 2 �g [ f:ab(c)jc 2 comps ��g is
consistent.

Reiter's subsequent characterization of diagnosis exploits the notion of a
conict set �rst introduced by de Kleer.2

De�nition 3 A conict set for (sd, comps, obs) is a set fc1; : : : ; ckg �
comps such that sd [ obs [ f:ab(c1); : : : ;:ab(ck)g is inconsistent. A
conict set for (sd, comps, obs) is minimal i� no proper subset of it is a
conict set for (sd, comps, obs) [40, p. 67].

The �nal de�nition characterizes a hitting set. Let C be a collection of sets.

De�nition 4 A hitting set for C is a set H � SS2C S such that H \S 6=
f g for each S 2 C. A hitting set for C is minimal i� no proper subset of
it is a hitting set for C [40, p. 67].

Given the above de�nitions, Reiter's principal characterization of diagnoses
and the basis for his algorithm are given by the following theorem.

Theorem 1 � � comps is a diagnosis for (sd, comps, obs) i� � is
a minimal hitting set for the collection of conict sets for (sd, comps,

obs) [40, p. 67].

Reiter's algorithm for computing diagnoses follows directly from this theo-
rem; the approach calls for computing the minimal hitting sets for an arbi-
trary collection of sets by generating a hitting set or HS-tree.

De�nition 5 Suppose F is a collection of sets. An edge- and node-labeled
tree T is an HS-tree for F i� it is a smallest tree with the following proper-
ties [40, p. 69]:

1Reiter's use of the ab predicate derives from McCarthy's use of an abnormality pred-
icate in his formalization of circumscription [40, p. 62].

2The original reference appeared in a 1976 MIT AI memo titled \Local Methods for
Localizing Faults in Electronic Circuits."



Chapter 3

Reiter's Theory of Diagnosis

from First Principles

Reiter's formulation of the diagnosis problem [40] can be informally de-
scribed as follows. Given a description of the design or structure of a
physical system and an observation of its behavior which di�ers from that
expected, the goal of diagnosis is to �nd a set of components whose ab-
normality explains the discrepancy between the observed and the expected
system behavior. The system description is couched in terms of the assumed
nonabnormality of its components: e.g., if a light bulb is not abnormal, and
has voltage applied, the bulb will be lit. In the simplest realizations of
this approach, the system description speci�es the behavior of nonabnormal
components only; later formulations have augmented the system description
with axioms for physical negation, i.e., physically impossible behavior [19],
and with explicit \fault models" [44].

3.1 The Formal Characterization

Reiter's formal characterization of diagnosis is stated in terms of two basic
theorems, which we reproduce below following four preliminary de�nitions.
For the de�nitions it is useful to remember that we are taking unions over
sets of clauses, yielding conjunctions of �rst-order sentences. We �rst char-
acterize a system and its observations.

De�nition 1 A system is a pair (sd, comps) where sd, the system de-
scription, is a set of �rst-order sentences and comps, the system components,

18
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adds the concepts of belief revision to capture an interleaved diagnosis and
repair process.

Provan and Poole's characterization of diagnosis proceeds, like ours, from
the idea that diagnostic reasoning must be grounded in issues of utility.
Although the general thrust of their arguments for integrating notions of
repair into the diagnosistic process is similar to ours, their approach di�ers
in that it focuses on a new characterization of the space of possible diag-
noses, based on equivalence classes of diagnoses, in which consistency-based
diagnoses constitute one such class. Provan and Poole argue that the no-
tion of use-equivalent class is both more general and more computationally
attractive.

It is precisely the dearth of published work on the foundations of recov-
ery and recon�guration and on integrated FDIR that led us to the work
discussed in this report. Our focus has been a formalization of the notion
of recon�guration/recovery in the framework of a general theory of fault
diagnosis. Our motivation was to bring to FDIR the clari�cation and the
formal basis for comparing various methods of recon�guration that Reiter's
theory has provided for fault diagnosis. In the following chapter we review
Reiter's theory of diagnosis, which provides the context for our subsequent
development of an analogous theory of recon�guration.
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2.3 Related Work

After completing the survey of knowledge-based approaches to diagnosis
summarized above, we realized that there had been little work on the foun-
dations of recovery and recon�guration, and virtually none on the problem
of integrated FDIR, although there had been some related developments.
Poole [35, p. 1310] had noted the generality of the model-based paradigm:

\Much of the discussion : : :has not been speci�c to diagnosis,
but can be applied to any recognition task, where the problem is
to determine what is in a system (or a picture) based on obser-
vations of the system. For example, one can see [27] as using the
idea of consistency-based diagnosis with faults corresponding to
plan objects."

There had also been extensions to Reiter's algorithm, such as the work of
Ng [32] to extend the algorithm to handle time-varying physical devices.

However, while Reiter's theory of diagnosis captures many of the ideas
underlying model-based diagnosis, when we began our work on the topic of
diagnosis and recovery in the fall of 1990, there were e�ectively no published
articles that dealt with issues of recon�guration or recovery. Although the
number of researchers in this area is still surprisingly few, the situation has
changed within the last few years as questions of the utility of model-based
diagnosis have brought these issues to the fore. Work in this area falls into
two broad classes: research on repair within the logic- or consistency-based
paradigm, such as that of [18,20], and research that attempts to rede�ne the
logic-or consistency-based characterization, such as that of [37]. Since our
work falls in the �rst category, we look most closely at the work of Friedrich
and his colleagues. The reader is referred to the last section of Chapter
5 for a thorough discussion of the ideas we summarize here. Friedrich and
colleagues [18] de�ne a notion of \therapy" and sketch an algorithm for \the
standard therapeutic approach," which can be characterized as a process of
interleaving diagnosis and repair to suppress \undesired symptoms." This
approach di�ers from ours in that it eliminates or repairs only those compo-
nents whose treatment causes the disappearance of the observed symptoms;
it assumes that granularity of recon�guration is precisely that of diagnosis,
i.e., the recon�gurable units are the same as the diagnosable units; and it
assumes that the level of acceptable system functionality remains constant
from diagnosis to recon�guration. More recent work by Friedrich et al. gen-
eralizes the repair algorithm using a temporal framework [20], and Nejdl [31]
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abstraction mechanisms, multiple fault classes, and incremental hypothesis
construction supported by simulation using several models of fault prop-
agation behavior. Abbott focuses on operative diagnosis, largely ignoring
real-time issues. Further examples of the reorganization/re�nement strategy
include the work of Korf on adapting classic search algorithms for real-time
problem solving [28]; studies of architectures for real-time problem solving
such as work on inference network architectures [3] and blackboard archi-
tectures [14], both of which focus on controling search to produce the best
solution possible within a �xed deadline; and agent architectures such as
the Phoenix project's agent-based system for on-line planning, scheduling,
execution, and monitoring [26].

\Compilation" has various uses in the context of knowledge-based di-
agnosis. Some of the earliest references are by Chandrasekaran and his
students in the domain of nonreal-time medical diagnosis, where the term
denotes \compiling knowledge in a form ready to be used for a class of prob-
lems of a given type," typically compiling knowledge into structures special-
ized and tuned for speci�c types of medical problem solving [5, p. 435]. By
contrast, much of the recent work appears related to automated modeling;
examples of this type of compilation strategy includes the Rule Set Pro-
cessor (RSP), a knowledge compilation system contracted by NASA which
exploits the advantages of expert systems during the development phase and
then compiles the knowledge base into a conventional program for a target
embedded microprocessor [15]. The ABE/RT system classi�ed above as a
reorganization strategy also includes an executive and model compiler which
implements the runtime functions of the ABE/RT languages and translates
the resulting model into C++ code frames suitable for prototyping [30].
The MOLTKE system, a nonreal-time expert system for diagnosing CNC
machining centers developed at the University of Kaiserslautern [39] is a
further example; MOLTKE automatically derives a causal model from tech-
nical diagrams of a device and compiles this knowledge into a rule base.
The system is interesting because it appears to be a nice synthesis of quali-
tative reasoning, model-based diagnosis, and pragmatic systems engineering.
The common theme of all of the preceding work is the notion of satis�cing
problem solving, i.e., decision methods which seek a satisfactory, or best
possible solution satisfying given time and resource constraints, rather than
an optimal solution.5

5The term \satis�cing" was introduced by H. Simon in a series of classic essays delivered
as invited lectures at MIT [43].
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to use �rst-order logic to represent systems (DART) [21], employed a reso-
lution style theorem prover to compute candidate faults and to discriminate
among competing diagnoses. Reiter [40] subsequently extended and gener-
alized some of Genesereth's results in a formal theory of diagnosis which
captures several of the previously discussed approaches to diagnosis includ-
ing de Kleer's conict sets [12], de Kleer and Williams' characterization of
diagnoses [12], Davis' candidate generation procedure [7], and Reggia, Nau,
and Wang's generalized set covering (GSC) model [38]. Reggia et al. refer
to the GSC approach to diagnosis as \abductive diagnostic inference." The
formal relation between Reiter's theory of diagnosis and abductive inference
has also been drawn by Cox and Pietrzykowski [6]. Finally, Reiter observes
that diagnostic reasoning is nonmonotonic, and relates his theory of diag-
nosis to default logic, suggesting yet another connection between diagnosis
and developments in classical and nonclassical logics.

2.2 Real-Time and Operative Diagnosis

In this section we turn to knowledge-based fault diagnosis with an emphasis
on operative and real-time diagnosis, where operative diagnosis refers to
diagnosis of physical systems in operation [2] and real-time diagnosis refers
to time-critical diagnosis. Note that the notions of operative and real-time
are disjoint, and further that the notion of real-time does not necessarily
imply a focus on time.4 Research in operative and/or real-time diagnosis can
be broadly classi�ed as reorganizing and re�ning algorithms, architectures,
and tools to explicitly accommodate real-time and operative constraints, or
as optimizing knowledge-based systems for real-time applications through
various compilation strategies.

Examples of reorganization strategies include the ABE/RT toolkit, a set
of design, development, and experimentation tools for building time-critical
intelligent systems which was initially developed for the Lockheed Pilot's
Associate application [30]. The three distinct, but interlocking languages
o�ered in the toolkit allow explicit representation of hierarchical structures,
timeliness, and resource allocation requirements. Another example is Ab-
bott's DRAPHYS system [1,2] for operative diagnosis of aircraft subsystems,
which o�ers graceful degradation in the presence of novel faults by exploiting

4For example, in a brief note Schneider questions the \implicit belief : : : that time is
fundamental to real-time programs," suggesting instead new paradigms such as synchro-
nizing asynchronous processes [41].
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2.1.3 Qualitative Physics

Qualitative Physics is a sub�eld of Arti�cial Intelligence (AI) concerned with
representing and reasoning about the physical world. Forbus identi�es the
goal of qualitative physics as an attempt to capture \: : :both the common-
sense knowledge of the person on the street and the tacit knowledge underly-
ing the quantitative knowledge used by engineers and scientists." [17, p. 11]
Diagnosis represents one of many applications of this research in qualitative
representation and reasoning. AI literature has traditionally distinguished
shallow models/reasoning, i.e., the type of reasoning/models used in expert
systems, where conclusions are drawn directly from observable or directly
represented features of the domain, from deep models/reasoning in which
the desired result is drawn from underlying mechanisms whose parameters
are not necessarily directly observable. Qualitative causal models are deep
models, but di�er from other deep models in focusing on qualitative descrip-
tions capable of representing partial knowledge of structure and behavior.
These descriptions are generated by examining the physical structure of a
device and deriving a set of constraint equations for the relevant structural
relationships. Possible behaviors of the system can be predicted by qual-
itative simulation from the constraint equations and an initial state. The
qualitative behavioral description may be used in conjunction with the qual-
itative structural description to explain a set of observations, such as the
misbehavior of a physical system. There have been three major approaches
to the derivation of constraint equations. As suggested earlier, de Kleer and
Brown [9] and Williams [45] use a device-centered ontology; physical sys-
tems are described in terms of components and connections. Approaching
the problem from the perspective of naive physics, Forbus uses a process
ontology; physical systems are described as a set of active processes [16].
Kuipers [29], on the other hand, treats the constraint equations as given,
and focuses on issues in qualitative simulation. The central inference com-
mon to all three approaches is qualitative simulation, i.e., derivation of a
description of the behavior of a system from the qualitative structural de-
scription qua constraint equations. Given our previous discussion of the
mechanisms of model-based diagnosis, the relevance of qualitative causal
models and qualitative reasoning should be clear.

2.1.4 The Role of Logic in Model-Based Reasoning

Logic has also been used as a representation language for model-based di-
agnosis. We briey consider two of these uses. Genesereth, one of the �rst



12 Chapter 2. Survey of Diagnosis

the information theoretic approach taken in GDE [12] that uses
an evaluation function based on the notion of minimum entropy
and exploits the rich context maintained by the ATMS to try to
identify the smallest e�ective sequence of measurements.

� Testing: hypothesis discrimination via testing potentially pro-
duces new symptoms and suspects, which must be reconciled
with the existing set of candidates (typically the intersection or
set cover of the old and new suspects). Test selection must be
optimized, e.g., as a function of test cost, coverage, and speci-
�city; or, if the set of possible tests is unknown or intractably
large, test generation must be e�ectively confronted using plan-
ning or knowledge-based techniques [25, p. MA1-124] or some
other means of constraining the problem.

� Elaboration: Automated diagnosis necessarily involves a number of
control issues, sucha as whether the next step in the diagnosis should
be generation or discrimination and at what level/layer of the model
and/or in which model. Strategies for candidate elaboration in-
clude fault envisionment, using fault models to eliminate candidates
(GDE [12]); hierarchic diagnosis, reasoning at the most abstract level
in the hierarchy and descending only when necessary to check suspect
component(s) (DART [21] and HT [7]); layered models, enumerating
categories of failure and producing an ordered layering of fault types
based on a given metric, such as failure frequency, to guide candidate
generation (HT).

This discussion of diagnosis tasks has highlighted key developments and sys-
tems in the history of model-based diagnosis. One further development is
the growth of hybrid systems, i.e., systems which incorporate elements of
both symptom- and model-based strategies. Abbott [2] is an example; using
Davis' approach which exploits both physical and functional models as well
as layered models to partition the search space into a small number of dis-
joint classes, Abbott develops a notion of operative diagnosis which involves
incremental hypothesis construction and reasoning about fault propagation
in an active system. We refer again to Abbott's work in the context of
real-time and operative diagnosis in Section 2.2. Struss and colleagues [44]
supplement model-based diagnosis with explicit fault models and also exem-
plify the trend toward a synthesis of symptom- and model-based diagnosis.
We next briey consider two as yet unmentioned developments: qualitative
models and a logical perspective on model-based reasoning.
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tions. Constraint suspension was proposed by Davis and used in
HT [7].

� Conict detection uses an assumption-based truth maintenance
system (ATMS) which propagates reasons (sets of assumptions)
as well as predicted values. Observations (e.g., input, output val-
ues) have no assumptions. Values are traced through the model,
with contradictory predictions yielding a conict, a set of all as-
sumptions underlying each of the conicting predictions. When
the propagation terminates, all conicts are collected and a set of
candidates consistent with the collection of conicts generated.
Since this process is equivalent to the problem of generating set
covers, which is exponential in the worst case, only minimal con-
icts and minimal candidates are generated, where a minimal
conict/candidate is one which contains no sets which are also
conicts/candidates. This technique, which generates both sin-
gle and multiple fault candidates, was developed by de Kleer and
Williams and used in GDE [12].

� Discrimination: Discriminating among candidates involves acquiring
additional information; the issue is containing the lookahead costs.
There are basically two approaches: probing, which is noninvasive
and involves making additional observations, and testing, which is
invasive and involves perturbing the state of the device. Hamscher
and Patil [25, p. MA1-125] note that probing techniques are O(2nn2k)
for k-level lookahead with n components and that the problem of test
generation is intractable.

� Probing: probing strategies are typically variants of the guided
probe: starting at a discrepancy, the malfunction is traced up-
stream to a component whose inputs are correct, but whose out-
put is incorrect. This technique can be extended to use informa-
tion about component behavior in order to reduce the number
of probes, but still requires a linear time search. Additional in-
formation such as device topology can yield probe points which
ideally split the search space at each step, particularly in cases
where there is an obviously most informative probe. In the case
of several equally informative probes, failure probabilities can be
used. There are also more sophisticated techniques which at-
tempt to optimize probe selection, such as sequential diagnosis,
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rather than a set of alternative possibilities and associated assump-
tions (\reasons"). Hamscher and Patil [25, p. MA1-90{91] cite four
approaches used to optimize precision with respect to cost: stepwise
simulation in numeric models, event-driven simulation in discrete mod-
els, qualitative simulation, and techniques for temporal abstraction.

� Candidate Generation: At each step the number of potential candi-
dates can be large; the issue is constraining the indiscriminacy. Ideally,
the generator is complete, i.e., produces all plausible candidate hy-
potheses, nonredundant, i.e., generates each candidate only once, and
informed, i.e., produces a few, ultimately correct hypotheses. There
are several approaches to candidate generation, including those enu-
merated below.

� Upstream tracing, the simplest and least constrained strategy,
considers any component connected to and upstream of a given
location in the system to be a potential suspect. There is also a
related strategy referred to as corroboration or direct exoneration
in which anything upstream of a good value is assumed innocent.
Direct exoneration can be viewed as the dual of upstream trac-
ing and works only in the absence of masked faults, which are,
of course, tricky to rule out. Furthermore, while failing to ex-
onerate an innocent suspect can result in unnecessary testing,
mistakenly exonerating a faulty component has far more serious
consequences. However, when used judiciously, corroboration can
be a productive technique. SOPHIE [4, p. 124] uses corrobora-
tions as well as conicts (cf. below) for candidate elimination.

� Prediction-constrained tracing exploits knowledge about intended
component behaviors to expose suspect components. This ap-
proach typically assumes a simulator which propagates reasons
as well as values. SOPHIE [4] is one of the earliest examples.

� Constraint suspension checks consistency of a suspect against ob-
served behaviors as follows. The behavior of each component is
modeled as a set of constraints. The set of constraints associated
with a suspect is suspended, i.e., removed from the constraint
network, and the modi�ed network run to quiescence. If the net-
work does not encounter an inconsistency, the current suspect is
consistent with (i.e., could be responsible for) the given observa-
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Figure 2.2: Comparison of diagnosis task distinctions

Figure 2.2. The di�erences arise from the fact that Davis/Hamscher do not
explicitly identify modeling and prediction as tasks, while Hamscher/Patil
collapse the tasks of test and generation and explicitly represent the notion
of elaboration (control).

Using Hamscher and Patil's task discrimination, some of the key issues
associated with each of the tasks are summarized below.

� Modeling: Models are approximations; artifacts of a device not cap-
tured in the model may or may not have consequences for diagnosis.
This is the familiar tradeo� between completeness and complexity.
Generally accepted strategies include the use of hierarchical models
and, wherever possible, models isomorphic to the structure of the
mechanism being modeled. There are also well-known, though not uni-
versally respected dictums such as Brown, Burton and de Kleer's [4]
\no-function-in-structure".3

� Prediction: Prediction is expensive; the tradeo� here is precision ver-
sus cost. In the context of model-based diagnosis, prediction is more
than traditional simulation; numerical simulation is not suited to the
low-resolution, partial information found in diagnosis. Furthermore,
traditional simulation typically provides a single, precise projection

3\No-function-in-structure" refers to the dictum that component behaviors should be
de�ned independent of their use in a particular device. For example, a switch is de�ned in
terms of position and resistance|resistance is low when the switch is closed, high when it
is open|independent of its function in a particular circuit. A consequence is that behavior
is independent of design location.
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Figure 2.1: Characterization of model-based diagnosis

2.1.2 Model-Based Techniques

The basic paradigm of model-based diagnosis can be characterized as the
interaction of observation and prediction; the behavior of a physical device is
observed and compared with the predicted behavior of a model of the same
device. The event(s) of interest are those in which the two di�er, i.e., there
is a discrepancy between observation and prediction. Figure 2.1, reproduced
from [25], represents this paradigm schematically.

Model-based diagnosis assumes that if the model is correct, all discrep-
ancies between observation and prediction derive from and can be traced
to faults in the device. Note the comparatively comprehensive de�nition of
fault; unlike the preselected fault lists employed by traditional techniques,
model-based diagnosis de�nes a fault as any discrepancy between observed
and predicted behavior; of course, the assumption that the model is correct
is itself open to question. Modulo limitations of the model, this approach
potentially encompasses both novel and anticipated faults, and has the fur-
ther advantages that while the model, which can be produced at design time,
is obviously device speci�c, the diagnosis is handled by a general, device in-
dependent program. Davis and Hamscher [8, p. 309] identify three largely
self-explanatory tasks within the model-based framework: hypothesis gener-
ation, hypothesis testing, and hypothesis discrimination, which are generally
interleaved in system implementations, and note that model-based systems
can be distinguished with respect to the kinds and amounts of knowledge
used for each task. Hamscher and Patil [25, p. MA1-150] take a broader and
somewhat di�erent view, identifying �ve tasks: modeling, prediction, candi-
date generation, discrimination, and elaboration. The mapping between the
Davis/Hamscher task distinctions and those of Hamscher/Patil is shown in
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failures by representing the behavior of analog circuit components given out-
of-range inputs [33]. ABEL, IDS, and other relatively early, symptom-based
systems such as MYCIN [42], INTERNIST-I [36], and System D [38], con-
tributed several ideas subsequently pursued in the context of model-based
diagnosis, including techniques for reducing the number of active candidate
hypotheses, hierarchic models, approaches such as set covers for dealing with
multiple independent diseases/faults, and sequential diagnosis, a probabilis-
tic (Bayesian) method for choosing a next measurement most likely to lead
to discovery of the actual candidate with a minimum number of subsequent
measurements.

Symptom-based models using preenumerated fault models exhibit three
desirable properties: they work even if the exact mechanisms of a device
are not well understood; they work if the device is complex, but fails in a
small number of predictable ways; and they are e�ective at reducing a large
space of possibilities to a small set of reasonable hypotheses. Their undesir-
able properties derive from a strong device dependence; introducing a new
device/disease typically requires a new rule set, and even minor changes
to a device can invalidate an existing rule base. Furthermore, it takes a
nontrivial amount of time to acquire su�cient experience with a given de-
vice/disease to expose diagnostic patterns and build the rule base; this is
potentially a serious drawback for applications such as electronics which ex-
hibit increasingly shorter design cycles. Davis and Hamscher [8, p. 304] also
argue that rules are an inappropriate representation for diagnostic systems
because they don't readily express structural and behavioral information. A
further drawback which derives at least in part from device dependence is
the inability to deal with unanticipated faults.

Model-based techniques can be viewed as a response to these limita-
tions, where by model-based we refer speci�cally to techniques which ex-
ploit structural and behavioral models for diagnosis. Model-based diagnosis
di�ers from the previously discussed symptom-based approaches, which also
employ models, with respect to the type and use of models; model-based di-
agnosis uses general inferencing mechanisms to focus on the relation between
structural and behavioral models. Model-based diagnosis is also referred to
as \diagnosis from �rst principles," reecting precisely this emphasis on
structural and behavioral models in conjunction with general causal princi-
ples.
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2.1 The Evolution of Knowledge-Based Fault Di-

agnosis

2.1.1 Traditional Techniques

Traditional approaches to diagnosis can generally be characterized as one of
the following:

� Diagnostics: test programs typically run at the end of the manufac-
turing line to verify that a device functions \correctly"

� Prespeci�ed Fault Models: fault dictionaries or preenumerated models
of symptom-fault behavior

� Rule-Based Systems: encoded empirical association of symptoms and
faults accumulated by expert troubleshooters in a given domain

� Decision Trees: convention for recording the diagnostic process, i.e.,
the tests and conclusions required for a particular diagnostic strategy

The �rst and last approaches, traditional diagnostics and decision trees,
are included primarily for historical reasons; they have contributed only
marginally to subsequent theories of diagnosis. Davis [7, p. 360] notes that
traditional diagnostics actually do veri�cation rather than diagnosis; i.e.,
they verify that a device correctly executes all intended behaviors rather
than diagnosing its misbehavior, although they apparently have been used
for diagnosis as well as veri�cation. Decision trees are useful for codifying
diagnostic strategies, but have no explanatory power: they do not provide
explanation or insight into the diagnosis.

However, fault dictionaries and rule-based systems are e�ective diagnos-
tic techniques.1 Both preenumerated fault models and rule-based systems
are symptom based, i.e., they encode models of preselected symptom-fault
associations.2 Examples of early symptom-based systems include ABEL
which uses a behavioral model to represent the causal relation(s) between
physiological events in the body [34], and IDS which diagnoses dependent

1Davis [7, p. 361] reports that a large percentage of all faults in a digital circuit can be
detected, although not diagnosed, by using a fault model (dictionary) to check for stuck-ats
or faults in which a node in the circuit always exhibits the value 0(1).

2For example, a fault dictionary is generated by simulating the behavior of a given
set of components over a preselected list of anticipated faults. The resulting list of fault-
symptom pairs is inverted to provide a dictionary which indexes from symptoms to one
or more faults consistent with a given misbehavior.



Chapter 2

Survey of Diagnosis

Automated diagnosis is inherently interdisciplinary, both in its techniques
and its applications. A representative but by no means exhaustive list of
research problems includes mathematical modeling and simulation; logics
for and theories of causal, temporal, and qualitative reasoning; constraint
systems, truth maintenance systems, and knowledge representation; and
sensor optimization and validation. Historically, the main application do-
mains for research in automated diagnosis have been medicine/physiology
and analog/digital circuits, although there certainly exist applications or
application prototypes in a variety of other domains including power plant
diagnosis, hydraulic systems, and aircraft subsystems.

Automated diagnosis proceeds from two primary assumptions:

� The objective is to diagnose malfunctions, not design errors.

� Tests are more expensive than computation and misdiagnoses are more
expensive than tests.

Accordingly, the goal of automated diagnosis is to �nd an e�ective balance
between coverage, accuracy, speci�city, and e�ciency.

Historically, the �eld has moved from systems which exploit preenumer-
ated, device-speci�c, symptom-fault associations encoded either as rule bases
or fault dictionaries, to systems which \reason" from basic principles about
causality and from structural and behavioral device models. We briey ex-
plore this evolution below, and then turn to issues in real-time and operative
diagnosis.

5
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presenting a fairly detailed discussion of Reiter's theory of diagnosis. We
move to an account of our extensions to Reiter's theory in Chapter 4, where
we develop our characterization of recon�guration. Chapter 5 consists of
a series of examples illustrating the ideas in the two previous chapters. In
Chapter 6, we formalize the correspondence between diagnosis and recon�g-
uration, de�ning a mapping between a class of diagnosis engines and recon-
�guration engines that raises the possibility of an integrated FDIR engine.
Chapter 7 examines potential limitations of our approach, focusing primar-
ily on issues of minimality, consistency, and entailment. The �nal chapter
summarizes our work and suggests an agenda for future research.
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� A single computational engine can be used for both diagnosis and
recon�guration.

� A signi�cant reduction of the search space can be achieved: only those
diagnoses that require di�erent recon�gurations need be distinguished,
and the number of possible recon�gurations is typically much smaller
than the number of diagnoses.

� Temporary recon�gurations can be used to discriminate among com-
peting diagnoses: e.g., does the symptom disappear when we switch
to a backup system?

� Application to domains such as real-time operative systems [1] be-
comes more relevant, accommodating, for example, the requirement
to place the system in a safe state even before a solid diagnosis is
available.

� A broader context is provided for both diagnosis and recovery, in which
potential consequences of misdiagnosed faults and incorrect recovery
actions can be properly evaluated, and resources e�ectively appor-
tioned.

As noted above, our e�orts have focused primarily on de�ning an e�ec-
tive basis for integrated FDIR. The theory we develop in this paper does not
realize these bene�ts; our objective here is to propose a characterization of
recon�guration that will promote this goal of e�ective integration. Further-
more, although we have not approached the problem of FDIR in explicitly
operative terms, our approach is fundamentally operative; recon�guration
or recovery is a signi�cant component of FDIR precisely because it enables
a system to correct or compensate for abnormal behavior, i.e., to continue
operating in a speci�ably acceptable manner. Similarly, although we have
not accommodated real-time factors, the generality of our approach suggests
that it should be possible to factor in real-time constraints.

1.3 Organization

The organization of this report is as follows. Chapter 2 provides a survey
of current approaches to the problem of diagnosis, including a brief account
of research in real-time and operative diagnosis, as well as related work in
recon�guration and recovery. Chapter 3 develops the context for our work,
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1.1 The Approach

The practical motivation for our work derives from systems such as airplanes
and spacecraft, which typically possess considerable redundancy in the form
of backup systems, as well as degraded operating modes. In this paper we
present a theory of recon�guration for such systems as an analogue of Re-
iter's model-based theory of diagnosis [40]. We chose Reiter's theory as a
point of departure because it provides a formal characterization of diagnosis
shared to some extent by most of the model-based systems described in the
literature, including DART [21], GDE [12] and its descendants [13,23], and
the work of Davis [7]. Our approach follows from two basic insights: �rst,
the generality of Reiter's theory of diagnosis makes it applicable to other
domains; second, a productive analogy exists between the problem of diag-
nosis and that of recon�guration. Diagnosis is the problem of identifying
components whose abnormality is su�cient to explain an observed malfunc-
tion. Similarly, recon�guration can be viewed as the problem of identifying
components whose recon�guration is su�cient to restore acceptable behav-
ior. Two potential bene�ts result from characterizing recon�guration as an
extension of Reiter's theory of diagnosis in this way: �rst, we can exploit al-
gorithms for diagnosis as algorithms for recon�guration, and second, we have
a uni�ed framework that should facilitate the development of an integrated
theory of FDIR.

1.2 Why FDIR?

We view the limited focus of extant work on automated fault diagnosis,
whether rule-based or model-based, as a serious drawback to its practical
applicability. In many practical applications, fault diagnosis is only part of
the problem; the larger problem is FDIR. Thus classical approaches to fault
diagnosis, which simply identify the fault, solve only half the problem of au-
tomated FDIR. Recon�guration and recovery, the other half of the problem,
is typically either ignored, reduced to a set of preplanned procedures (which
are inherently at odds with the expressed intent of model-based approaches)
or handled as a planning problem distinct from the original diagnosis prob-
lem. In contrast, we believe that the most e�ective approaches will be those
that consider FDIR as an integrated problem, in which diagnosis and recov-
ery are solved in concert. Some of the potential bene�ts of an integrated
approach to FDIR are:
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Introduction

Automated diagnosis has been one of the more fruitful applications of AI,
with potential signi�cance for domains in which diagnosis of complex phys-
ical systems must proceed while the system is operative and testing oppor-
tunities are limited by operational considerations. In air- and spacecraft
applications, for example, maintaining a system in a safe operating state
during diagnosis clearly precludes certain tests and/or additional measure-
ments; it is impossible to add additional sensors to an orbiting spacecraft or
to run tests which could render the vehicle inoperative. Operative diagno-
sis (cf. Chapter 2, Section 2.2) thus di�ers from what is generally referred
to as maintenance diagnosis, where faults are diagnosed in the shop rather
than in the �eld. However, while it may be interesting and even useful to
identify the faults in a malfunctioning system in either a maintenance or
operative context, the real problem is usually to �x the system so that it
can continue its mission. Thus in many applications, diagnosis is only part
of a larger problem known as Fault Detection, Identi�cation, and Recon�g-
uration (FDIR)1. Surprisingly, despite the interest in diagnosis, there has
been relatively little work on the foundations of recovery and recon�gura-
tion, and virtually none on the problem of integrated FDIR|although the
practical bene�ts of an integrated approach could be considerable, especially
when knowledge of available recon�gurations is used to reduce the cost and
increase the accuracy and utility of diagnosis.

1FDIR can stand for Fault Detection, Identi�cation, and Recon�guration (our pre-
ferred interpretation) or Fault Diagnosis, Isolation, and Recovery, or various combinations
thereof.

1
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Abstract

We extend Reiter's general theory of model-based diagnosis to a theory
of fault detection, identi�cation, and recon�guration (FDIR). The general-
ity of Reiter's theory readily supports an extension in which the problem
of recon�guration is viewed as a close analogue of the problem of diagno-
sis. Using a recon�guration predicate rcfg analogous to the abnormality
predicate ab, we derive a strategy for recon�guration by transforming the
corresponding strategy for diagnosis. There are two obvious bene�ts of this
approach: �rst, algorithms for diagnosis can be exploited as algorithms for
recon�guration; second, we have a theoretical framework for an integrated
approach to FDIR. As a �rst step toward realizing these bene�ts, we show
that a class of diagnosis engines can be used for recon�guration and we
discuss algorithms for integrated FDIR. We argue that integrating recovery
and diagnosis is an essential next step if this technology is to be useful for
practical applications.
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