
--774-"/03,_/5

NASATechnicalMemorandum103845

NASA-TM-10384519940028400

Translatingan A!Application
FromLispto Ada- A CaseStudy
Gloria J. Davis

November 1991 _ '

' i

i

7.=':''_, -,i ;:-" ,d,.,-,_ ,...,L.._,,_,=_s! L,:,.-........
i _-_;:- ";tf rf,'£ ",_

NI_A
NationalAeronauticsand
Space Administration

https://ntrs.nasa.gov/search.jsp?R=19940028400 2020-06-16T11:57:34+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Technical Memorandum 103845

Translatingan AI Application
FromLispto Ada- A CaseStudy
Gloria J. Davis, Ames Research Center, Moffett Field, California

November 1991

I_IASA
NationalAeronauticsand
SpaceAdministration

AmesResearchCenter
MoffettField,California94035-1000

Abstract AutoCiassII Description
A set of benchmarks was developed to test the AutoClasslI is a large AI application program developed
performance of a newly designed computer executing at NASA Ames Research Center by Peter Cheeseman
both Lisp and Ada. Among these was AutoClasslI--a et al. (ref. 1).The program's function is to determine
large Artificial Intelligence (AI) application written in classes ina data set automatically. Based on a Bayesian
Common Lisp. The extraction of a representative subset approach to classification, it has been used successfully to
of this complex application was aided by a Lisp Code classify databases ranging from soybean plants and horse
Analyzer (LCA). The LCA enabled rapid analysis of the. colic to infrared astronomic spectroscopy (IRAS).
code, putting it in a concise and functionally readable Recently, AutoClasslI identified previously undetected
form. An equivalent benchmark was created in Ada classes of stars in an IRAS database, and these results
through manual translation of the Lisp version. A appear in a recently published star catalog.

comparison of the execution results of both programs AutoClasslI performs a two-phase mutual relaxation
across a variety of compiler-machine combinations algorithm based on Bayes' theorem. The program
indicate that line-by-line translation coupled with analysis searches for a specified maximum number of classes
of the initial code can produce relatively efficient and existing in a database and indicates the probability of each
reusable target code. case in the database belonging to each class found.The

program first initializes global parameters based on the

Introduction database file. Each case in the database is described by the
same number of attributes. The initial probabilities of

The Department of Defense and NASA's Space Station each case existing in each class are randomly generated.
Freedom Program Office specify that all futureopera- Class models are then calculated based on case attributes

tional software will be developed in Ada. However, there and the initial class probabilities. At this point in the
are many AI programs currently written in Lisp that are program, a classification-identifying indicator is pre-
targeted for use by these agencies. Current capabilities in sented. The model parameters and the class probabilities
automatic translation of Lisp to Ada do not as yet produce are updated each cycle of this mutual-relaxation algorithm
acceptable efficient, readable, and maintainable target using those class models and class probabilities most
code. This case study of manual translation of the newly recently calculated. This two-phase cycle is repeated until
created AutoClasslI benchmark highlights some of the the classification-identifying indicator has converged to a
surrounding issues of translating code from Lisp into Ada. specified tolerance. The result describes the classes

In 1987, the Spaceborne VHSIC Multiprocessor System discovered and the probability of each case belonging to
(SVMS) project was started at NASA Ames Research each of these classes. A more detailed description of the
Center. The goal of this project was to build a space- full system and the theory behind it are presented by
qualified multiprocessor system that would execute Lisp Cheeseman et al. (refs. 1, 2).
and Ada efficiently. To evaluate the performance of the
SVMS computer, a set of benchmarks was selected for Benchmark Creation
implementation in both languages. Among the programs
selected was AutoClasslI, a large Lisp program. The AutoClasslI program is written in Common Lisp. In

its original form, the program is not a good benchmarkTo create a benchmark from AutoClasslI, the function-
because the initialization phase contains a random proba-

ality of the program was extracted and translated to bility generator, and the program utilizes a machine-
produce an equivalent Ada version. A description of the
approach, methods, issues, and results are given in this dependent graphical interface. Therefore, both pieces of
paper. The paper begins with a description of AutoClasslI the program were eliminated leaving the input phase and

the internal classificationengine. This subset represented
' followed by several paradigms for translatingLisp pro- AutoClasslI's basic functionality.

grams to Ada. A description of the Lisp Code Analyzer, a
tool developed to assist in the analysis of the original In order to produce a usable benchmark, it was necessary
program along with the specific translation effort utilized to ensure that a local change would not crcate unforeseen
in this study is then presented. Samples of the functions in alterations in other sections of the code. The code was
both languages are compared along with the execution also checked to ensure that all essential functions were
results of the .twoprograms on several machines. The included so that the benchmark would run correctly and
paper concludes with specific recommendations for future produce predictable results. Finally, all unnecessary
translation efforts, user-interface code was rcmoved. Although the excess

code may not alter the program results, the execution is the functional control flow diagram of the benchmark,
speed may be affected, shown in figure 1. This pictorial representation of the

hierarchical order of all functions was derived from the
To assist in understanding of AutoClasslI program and to LCA report. This diagram was the key to understanding
help organize the code into a readily understood form, the

the program. Using this, a functional description of the
Lisp Code Analyzer (LCA) was developed. The function Lisp benchmark was created. This document was used in
of this tool is to enable rapid understanding of a program
and to ensure that the newly created benchmark is self- a parallel effort by P. Collard. The functions are shown in

the order that they are referenced, and from which func-
contained, complete, and concise, tions they are called. The final benchmark program had
The Lisp Code Analyzer, written inCommon Lisp, was 1/3 the linesof code of the originaland was in a concise
developed specifically for this effort to aid in the static and easy-to-read form, ready for translation.
analysis of Lisp code. The LCA accepts Lisp code as
input, extracts the function names, and reports on their
static frequency of use. From this information, the func- Translation
tions that are user-defined or members of the Common A survey of automatic translators from Lisp to Ada code
Lisp primitives can be determined. This also aids in iden- yielded only two candidates. Systems Research Labora-
tifying functions that are defined but never called. Many tories, Inc (SRL) of Dayton, Ohio has a working
of the unused functions in the AutoClasslI program were translator/interpreter (ref. 3) that accepts Lisp code as
graphics-related. These were quickly identified by the input and produces Ada code as output. Though what is
report, and subsequently extracted. With all of the produced conforms to the Ada standard, it implements
unused code removed, the remaining code formed the only95 Lisp primitives, not all of which are Common
AutoClasslI Lisp benchmark. Also revealed by the LCA Lisp compatible. Another candidate, the Lisp to Ada

Main program

/ \
Read-DB real-priors Make-part I cycle]

from-data & classes

Expand Expand Make Make Real Make- Collect _
disc real data real MML class wts I r' I I d_':1priors priors base bases consts & accs

II° datollco"ectl et-,ewlI -1 II classII totalI weilhtI
L_U_lIp" sIIMMLSII .MLI ve,orI

1,4Ow,i i}c'
Figure1.Autoclassbenchmark- functionaldiagram.

2

"translator" developed by Intellimac, as referenced by translation was performed on the manipulations of the
Bughra (ref. 4), produces Ada code that resembles input data-structures.
for a list-processing interpreter, written in Ada. Neither of In the actual code translation, the two tasks that required
these efforts produce Ada code that is readable or main- the most effort were the generation of the data-structures,
tainable, because of the inherent limitation on the number their definition and type, and the reading in of the input
and types of primitives supported. As concluded by data. The AutoClasslI program is designed to handle any
Wallis (ref. 5), program translation is performed so that an of three different data types: integers, floating-point, and
investment in existing software can be preserved, but if that which is to be ignored, which could be anything.
the generated code is not readable or maintainable, the These are all handled the same way in Lisp, as symbols,
previous investment may be lost. and readily coerced into their respective type. In order for
Given the lack of usable automatic translators, the only the Ada version to process the same input, without any
alternative is manual translation. Two efforts were a priori knowledge of data type, all input data were read
subsequently pursued and accomplished to translate inone character at a time, and the strings, delimited by
AutoClasslI from Lisp to Ada. A parallel Ada version was spaces, commas, and/or parentheses, were forced into
created using the functional description created with the their true type. Thus, the data structures had to be
LCA, as reported on by P. Collard (ref. 6), and the present designed with the flexibility to handle any of the pro-
effort, a direct line-by-line translation of the Lisp version, spective types, and these types had to be determined as
was undertaken. The remainder of this paper reports on the data were read in from the database.
this second approach.

Once the overall functional behavior of the program was Data-Structures
analyzed, the translation was performed in two parts.
First, due to the lack of data-typing in Lisp, an iterative The two large record structures of AutoClasslI, shown in
process of identifying parameters and running the Lisp figure2,were defined by the defstruct construct in Lisp
program to examine them at various points was performed and linked together to be used as the primary data
to determine the type of the variables. Then a line-by-line structure. Named "Partition" and "Class," they are lists

Partition Disc-priors *Real-bases*

Superior := nil Real-Pt 0 1 2 3 4

Class-range :=*N-Classes* NulmlKnownIRealI RealIRea,I
I I I I'Uml-wt -wt -wt -sum -sqClasses :=

Array of [1..*N-Classes*] of Class *Disc-priors*

, Discrete1_

Memb'wt:=O'O _" Value-wts:= N_J [I
array [1..N-Variables] of Wt . . . I

Prlor-wt := 0.0 I

Disc-prior-wts := where_ is the value stored in
Total-mml := 0.0 array [1..N-Variables] of float .disc.var.rangeso

Wt : 0.0 ReaI-Pt
0 1 2 3 4 5

INullIKnownlReallReal-IReall Real I
sigma -Iog-

Unit-mml:= I"mmll-mini I'wt I I.term s,,maImeanarray[1..N-Variables] of

Memb-prior-wt := float
(prior probability))iscrete1 e

Memb-unit-mml := 0.0 1T-,OjkI = 1

Membership-mml := 0.0

Description-mml :=0.0

Figure 2. Partition and classes structure.

of lists. This same partition/classes structure was pro- Comparison
grammed in Ada using thediscriminant and variant record
constructs. The discriminant was used because of the The Lisp benchmark consisted of 686 lines and 22 user-
variety of types of data (onc of three) to be stored in the defined functions, whereas the Ada translationwas

1167 lines long and spanned 5 packages. This differenccrecord and thc variant was used because each type was
stored differently. Different Ada compilers handlc in size is primarily due to declarations, data typing, and
memory allocation differently. When using variant packagc specifications in Ada. Performances of the two
discriminant records, most compilers will allocate the programs varied across several different platforms, as
maximum size possible for that record. Such is the case shown in tablc 2. Three different scenarios were tested.
with thc Symbolics Ada compiler. It attempts to allocate Thcsc vary in thc number of cycles (c) through thc
sufficient memory to hold the largest possible structure, mutual-relaxation algorithm and thc number of data cases
but this can exceed the maximum amount allowed by the (n). Thc input data used was extracted from thc IRAS
compiler for a single structure. Because of this, the database, each casc described by 95 attributes of floating
partition/classes structure of the Lisp version had to be point values. Thc machines used in the tests were thosc
separated into two structures in Ada in order to eliminatc available in the Advanced Architecture Tcstbed at thc
thc memory allocation problem. Information Sciences Division at NASA Ames Research

Center. They represent a wide range of numeric and
Thc greatest programming effort of this translation was symbolic processing capabilities. A brief description of
required in thc input Sectionof thc initialization. This is each machine used is as follows:
where a basic difference in philosophy of the two lan-
guages created a major obstacle in the translationeffort, SYMBOLICS 3675 - a special purpose architecture
that of strong data-typing in Ada versus the typclessness designed for the efficient execution of Lisp. Both
of Lisp. This difficulty was primarily due to the fact that compilers used on this machine were developed by
the input to the program, without a priori knowledge of its SYMBOLICS, specifically for this architecture.

type, had to be parsed a character at a time and assigned MIPS R2000 - based on the MIPS' RISC chip, this is a
to its specific data type. In the entire AutoClasslI Lisp 32-bit numeric machine.
program, reading the input data and setting up the data-
structures was the only part that did not have a corre- Compaq 386/20e - this computer uses the i80386 chip,
sponding function that provided a direct model for transla- which is the baseline processor for the Space Station
tion. Only after this input text parser was developed was it Freedom Data Management System.

possible to perform a line-by-line direct mapping of each IIM - another special purpose Lisp machine, it also has a
function into Ada. This was accomplished by preserving floating point co-processor.
the organization of the structures used by the Lisp version.
This additional programmed parsing capability is reflected DEC 8800 - A 32-bit numeric-oriented multi-user
in the number of lines of code, presented in table 1.The minicomputerby Digital Equipment Corporation.

total size of Ada code was 58% larger due to the global As can be seen, the special-purpose Lisp machines
data-typing and the initialization phase of parsing the (Symbolics and IIM) executing the Lisp code had the best
input text a character at a time. Also, for fair comparisons, overall performance. The IIM was the most efficient
the number of lines shown in the data-typing column only because it has a math co-processor coupled with the
represent the global data-types and variables. Variables symbolic processor. The performance of the Ada version
defined for local functions are reflected in the other on the MIPS machine indicates that efficiency can be
sections. The entire translation effort was accomplished in retained ina translation effort. The slower timings are
0.5 man-year, attributed more to the compilers than the actual code. Ada

on the Symbolics machine yields poor performance,
primarily because of the mismatch between the hardware

Table 1. AutoClassll benchmark lines of code architecture and the software virtual machine.

These performance comparisons indicate that, on this
Initialization Data-typing 2-phase alg. Total particular type of AI application, translation to Ada can be

Lisp 169 61 456 686 performed efficiently, yielding acceptable results, both in
executionperformance and maintainability of the target

Ada 543 130 494 1167 code. This is attributed to a combination of the mathe-

matical nature of the program and the in-depth analysis
done as part of the translation.

4

Table 2. AutoClassII benchmark execution time (secs)

Machine Compiler c =2, n = 50 c = 1, n=531 c = 2, n=531

Symbolics 3675 SymbolicLisp 48.14 203.96 315.93
gc on, space 1 SymbolicAda
speed 1,safety 1 630.00 3867.0 N/A

MIPS R2000 Verdix Ada 36.0 210.0 340.0

Compaq 386/20e space 0, speed 3, Lucid Lisp 433.29 3136.5 5106.3
safety 1 Alsys Ada 95.57 536.4 839.98

, Integrated Inference Machine IIM Lisp 29.10 131.30 203.00
(IIM) gc on

DEC 8800 Franz Lisp 391.08 2091.53 3369.12

Telesoft Ada 75.65 497.20 657.55

Conclusions References

The paper presents the creation of a benchmark from an 1. Cheeseman, Peter; Self, Matthew; Kelly, Jim; Taylor,
AI application program written in Lisp and its successful Will; Freeman, Don; and Stutz, John: Bayesian
translation into Ada, as supported by execution results of Classification. AAAI88, Proc. Seventh National
each version on a variety of machines. The benchmark Conf. on Artificial Intelligence, St. Paul, MN,
was created with the help of a Lisp Code Analyzer, also August 1988.

developed in this effort, that performed static analysis of 2. Cheeseman, Peter; Freeman, Don; Kelly, James; Self,
the application automatically. After analysis of the result- Matthew; and Stutz, John: AutoClass: A Bayesian
ing benchmark, the translation to Ada was rapidly Classification System. Proc. Fifth International
achieved. The entire effort of benchmark creation, pro- Conf. on Machine Learning, Ann Arbor, MI, June
gram analysis and translation into Ada was accomplished 1988.
in0.5 man-years. An automatic translator producing
results comparable to this effort would require pre- 3. Systems Research Laboratories, Inc., Ada Lisp User's
translation analysis of the code. This analysis would need Manual, Revision 4, April 1988.
to be either built into the translator using heuristics or 4. Bughra, Paul; and Mudge, Trevor N.: Comparisons
provided through extensive user interaction. This interac- Between Ada and Lisp. U. Michigan, Research
tion would be with the designer of the originalcode or Report, 1985.
someone who had subsequently analyzed the sequential
functional performance of the code and could represent 5. Wallis, P. J. L.: Automatic Language Conversion and
this information in such a manner that could be processed its Place in the Translation to Ada. Proc. Ada Int.

by the translator. Conf., Paris, 1985, pp. 275-284.

The performance comparisons indicatethat although this 6. Collard,Philippe; and Goforth, Andre: Ada as a
line-by-line, function-to-function translation to Ada was Parallel Language for High Performance Com-
performed concisely, the actual program execution times puters: Experience and Results. Proc. Tri-Ada,
of the Lisp and Ada implementations still differ widely Baltimore, MD, 1990, pp. 346-351.
across different machine-compiler combinations. This
supports the notion that implementation of AI programs is
not simply a language issue, but also depends substan-
tially on the hardware and software environment in which
the program resides.

Form Approved
REPORTDOCUMENTATIONPAGE oMeNoo7o4-o188

Publicreportingburden for this collectionof informationis estimatedto average 1 hourper response,inctudingthe time for reviewinginstructions,searchingexistingdata sources,
ga hating and maintainingthe data needed, a.,_dcutupet ngand reviewingthe collectionof Information. Send commentsregardingthis burden estimateor any other aspect of this
collecton of information includng suggestionsfor reducngthisburden, to WashingtonHeadquarters Services, Directoratefor informationOperationsand Reports, 1215Jefferson
Davis Highway,Suite 1204, Arlington,VA22202-4302. andto the Off ce of Managementand Budget,PaperworkReduc on Pro act (0704-0188, Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1991 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Translating an AI Application from Lisp to Ada---ACase Study

549-03-61
6. AUTHOR(S)

Gloria J. Davis

7. PERFORMING ORGANIZATION NAME(S) ANDADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

Ames Research Center
Moffett Field, CA 94035-1000 A-91094

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronauticsand SpaceAdministration NASA TM-103845
Washington,DC 20546-0001

11. SUPPLEMENTARY NOTES

Pointof Contact:GloriaJ.Davis,AmesResearchCenter,MS244-4,MoffettField,CA94035-1000;(415)604-4858
orPTS464-4858

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-- Unlimited
Subject Category 61

13. ABSTRACT (Maximum 200 words)

A setofbenchmarkswasdevelopedtotesttheperformanceofanewlydesignedcomputerexecutingbothLispand
Ada.Amongthese wasAutoClasslI--a largeArtificialIntelligence(AI) applicationwrittenin CommonLisp.The
extractionofarepresentativesubsetof thiscomplexapplicationwasaidedbyaLispCodeAnalyzer(LCA).TheLCA
enabledrapid analysisof the code,puttingit in aconciseandfunctionallyreadableform.An equivalentbenchmark
was createdin Ada throughmanualtranslationof the Lisp version.A comparisonof the executionresultsof both
programs across a variety of compiler-machinecombinationsindicatethat line-by-linetranslationcoupledwith
analysisof the initialcodecan producerelativelyefficientand reusabletargetcode.

14. SUBJECT TERMS 15. NUMBER OF PAGES
8

Lisp, Ada, Benchmarks,Programtranslation 16. PRICECODE
A02

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACI
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
_SN 7540-O1-280-55OO Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

