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AN APPROXIMATE RIEMANN SOLVER FOR
MAGNETOHYDRODYNAMICS
(That Works in More than One Dimension)

Kenneth (. Powell
Department of Aerospace Engineering
The University of Michigan
Ann Arbor, MI 48109-2118

Abstract

An approximate Riemann solver is developed for the governing equations of ideal
magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure,
where seven of the waves are those used in previous work on upwind schemes for
MHD, and the eighth wave is related to the divergence of the magnetic field. The
structure of the eighth wave is not immediately obvious from the governing equations
as they are usually written, but arises from a modification of the equations that is pre-
sented in this paper. The addition of the eighth wave allows multi-dimensional MHD
problems to be solved without the use of staggered grids or a projection scheme, one or
the other of which was necessary in previous work on upwind schemes for MHD. A test
problem made up of a shock tube with rotated initial conditions is solved to show that
the two-dimensional code yields answers consistent with the one-dimensional methods
developed previously.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.






1 Introduction

The governing equations of ideal magnetohydrodynamics (MHD) describe the physics of a

conducting fluid in which the following assumptions hold:
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where p, V, 7 and L are, respectively, characteristic density, speed, time and length scales
for the problem, ¢ is the speed of light, and ¢ and o represent the dielectric constant and

conductivity of the fluid. These equations, written in conservation-law form, are
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where Tis a 3 x 3 identity matrix, p is the density, u is the velocity, p is the pressure, B is
the magnetic field, and E is the energy, defined as
p u-u BB

FE =
o T A R

(3)

Solutions of these equations can yield insight into a number of problems governed by fluid-
dynamic and electromagnetic effects.

Much of the past work in solving these equations has been based on Rusanov and Lax-
Wendroff techniques. Only recently have authors begun to work on upwind schemes for
solving these equations. In particular, Brio and Wu [2], Zachary and Colella [?], and Dai
and Woodward [7] have done some of the early development of Riemann-solver-based schemes
for the MHD equations. Their work has been based not on the system of eight conservation
laws as written in Equation 2, but instead on the closely related system that comes from
assuming B, = constant and dropping the evolution equation for B,. This yields a 7 x 7
system. The reason for their use of this modified system arises from the fact that one of the

equations governing the magnetic field is

V.-B=0, (4)



u-c ; S u+c
u-c S : : a
' [
a ' ; ’
i 3 " ’ K
Y [y M . »
) [ M v
" ; i ! : u+C
- . l. L] ¥ ’
J ¥ ] ’ - f
+ M ] 1] *+ *
. 1 ' ’ 4 4
. M M . ] ’ .
. - A . 1] ’ ¢
Y ] [] : . U 0
Y . Y H ¥ ! e
Y . ’ H ’ i »
N . ¥ v 0
. L3 ’ ’
. [} H ' ’ .
s, M [] ] ’ .
he : [ ! ’ ] ]
. Y . 0 d
) s [] . ’ ’
., . ) ] ’ *
) I v ’ 0
. . . 1 ) ’
. ) [} M ’ v ’
. . ] l R T
hd Y ¥ . ¥ » &
A . . ! ’ / ,
Y [} . ] ] » ’
. . . x T v »”
pd . . [] ’ g »
S, \ HE ’ 5
) s [] H . - .
. " [] J 0 -
% . . .. ’ P
. s Y #
. LYY [ &
S U
AN A
., v 3 e *
» Y
LU TN S
s e S e
I NWhrlra e e
sah)e e
LR DA
X TAD
RS i
L =

Figure 1: Waves in the One-Dimensional MHD Riemann Problem

which, in one dimension, becomes the constraint B, = constant.

The eigenvalues and eigenvectors of this 7 x 7 system are well known (see, for example,
the book by Jeffrey and Taniuti [3]); they correspond to:

e one entropy wave traveling with speed u;

o two Alfvén waves traveling with speed u + ¢, where

Cop = —
\/ﬁ

is the Alfvén speed;

e four magneto-acoustic waves, two “fast” and two “slow”, traveling with speed u £ ¢
and u £ ¢, respectively, where

. _1[w+B-B w+B-B\* ypB?
o= [ = [ =) —4
T2 p p p?

An (z,t) diagram of the wave interactions at a cell interface is shown in Figure 1.
Given these seven eigenvalues and corresponding right and left eigenvectors, it is pos-

sible to develop a linear approximate Riemann solver ala Roe [2, 7], or a more nonlinear

approximate Riemann solver [7]. Once some questions as to how to scale the left and right
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eigenvectors of the system are answered (for a very nice description of the problems of scaling
in the MHD eigensystem, and an elegant solution to these problems, see the paper by Roe
and Balsara [5]), a robust solver for one-dimensional unsteady problems in MHD can be
developed.

Building a code capable of solving two- or three-dimensional problems from the one-
dimensional Riemann solver building block is not, unfortunately, as straightforward as in
the case of the Euler equations. In the one-dimensional problem, no evolution equation
is necessary for the component of B normal to a cell interface, because the condition of
Equation 4 implies that B,, = B,,. However, in a two-dimensional problem, this is no
longer true. In two dimensions, the discrete constraint corresponding to Equation 4 is

Y B.ds=0, (5)

faces
and so a jump in B, is allowed across a face; it simply must be balanced by the jumps
across the other faces of the cell. Thus, a separate procedure for updating this portion of
the magnetic field must be implemented, and must be implemented in such a way as to
satisfy the constraint implied in Equation 5. It should be noted that the V- B constraint 1s a
headache not just for upwind schemes for MHD, but for solution of MHD problems in more
than one dimension by any method. Typically, one of three approaches 1s taken to satisfy

this constraint:

e a projection scheme, in which a Poisson equation must be solved to subtract off the

portion of the magnetic field that leads to a non-zero divergence;

e non-collocated variables (e.g. a staggered-grid approach), so that the constraint is met

identically;

e a vector-potential description of the magnetic field, so that the constraint is met 1den-

tically.

A very different approach is taken in the work presented here. Instead of solving a seven-
wave Riemann problem, with an added procedure to update the remaining B-field component
which assures that Equation 4 is satisfied, an eight-wave Riemann solver, in which all of the

magnetic field components are updated, is developed and tested.

2 Derivation of the Eight-Wave Riemann Solver

Given the primitive variables

W = (p,u,v,w,Bx,By,B;,p) 3 ’ (6)



Equation 2 may be rewritten in quasilinear form as

JdJW IW A% IW

—+4+A—+B,—+C,— =0, 7
g ey T Ty, (M
where, for example
i « -
U op 0 0 0 0 0 0
0 u 0 0 — B By B 1
P p P p
B B:
0 0 u 0 - -5 0 0
0 0 0 u —~ Bz 0 =2 9
A, = p ) (8)
0 0 0 0 0 0 0 0
0 B, —B; 0 —v u 0 0
0 B, 0 -8B, —w 0 u 0
0 9p O 0 (y—LHu-B 0 0 u

The Riemann solver would normally be based on the eigensystem of A4,, but it is evident
that this matrix is singular — the fifth row of the matrix is zero, leading to a zero eigenvalue.
This zero cigenvalue is clearly non-physical — the eigenvalues should appear either singly as
the x—component of the flow speed, u, or in pairs symmetric about u. It also does not bode
well numerically — the mode corresponding to this eigenvalue will be undamped.

The approach taken here is to look for a way in which to modify the governing equations
so as to make A, non-singular. The criteria that should be met by the modified matrix A,

are:

o The eigenvalues and eigenvectors corresponding to the seven waves in the one-dimensional

(B; = constant) Riemann solver remain unchanged;

o The eigenvalue corresponding to the new eighth wave is equal to u (the only physical

choice for a single eigenvalue);
o The left and right eigenvectors corresponding to the new eight wave “make sense”;

o In the case B, = constant, the eight-wave Riemann problem reduces to the seven-wave

Riemann problem.

With these criteria in mind, it becomes possible to find a modified version of A,, given

some patience and some facility with Maple’s symbolic manipulation capabilities. The mod-



ified matrix that meets the above criteria is
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The eigensystem of this matrix is composed of the following eight

waves, with their corre-

sponding eigenvalues A, left eigenvectors ¢ and right eigenvectors F:

One Entropy Wave

U
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Two Alfvén Waves
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One “Divergence” Wave
M = u
éy = (0,0,0,0,1,0,0,0)
7 = (0,0,0,0,1,0,0,0)" . (13)

It is important to note that the first seven waves yield the same eigenvectors and cigen-
values as the seven-wave Riemann problem, with the additional information that none of
them carries a change in B, (the fifth entry of each right eigenvector is zero), and none of
the wave strengths is proportional to a jump in B, (the fifth entry of each left eigenvector is
zero). The new eighth wave travels with the z—component of the flow speed (its cigenvalue
is u), and it carries a jump in B, (the only non-zero entry in the left eigenvector is the entry
corresponding to B,), and affects only the z—component of the magnetic field (the only
non-zero entry in the right eigenvector is the entry corresponding to B.).

It is clear that the eigensystem of this modified matrix has all of the desired properties.
In the case B, = constant, the strength of the eighth wave is zero, and the model reverts to
that of the seven-wave problem. The new wave simply gives a rational procedure for dealing
with non-zero jumps in B, across the cell faces, which will in general occur when problems
in two or three dimensions are being solved. The question remains, however, of what the
modification of the matrix A, (and the corresponding changes to B, and C}) has done to
the system of conservation laws.

This can be seen by collecting the source terms due to the modifications to A,, B, and
(7, and transforming to conserved variables. The new equation set, which has the eight-wave

eigensystem described above, is

p pu 0
‘ u uu+I(p+BB)_BunB B
ofmMmlie.| ” (p+B2) BB | V.-B. (14)
al B uB - Bu u

E (E-{-p—}-%)u—B(u-B) u-B

This is a noteworthy result: the source term that must be added to Equation 2 is proportional
to V - B. At the partial differential equation level, only terms that are equal to zero have
heen added to the conservative form of the governing equations. So, while technically the
equations are no longer in conservative form, the deviations from conservation will be very
small. Tt is only by writing the equations in this slightly non-conservative form that the
singularity related to ¥V - B can be removed. It has been previously noted that solving the

momentum equation in non-conservative form can remove instabilities related to non-zero
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V - B [1]; the current work hopefully reinforces this earlier result, and sheds further light on
the mechanism for stabilizing the equations, as well as applying the idea in a novel way to
develop a Riemann solver for multi-dimensional MHD.

It is interesting to note another justification of this particular choice of source term.

Rewriting Equation 2 slightly by expanding some of the terms, the following form of the

equations
dp
R v =
8t+ (pu) 0
( B B
%(pu)+V-(puu)+V(1)+—2—)—B-VB—BV-B =0
0B
W+u-VB+BV-u—B-Vu—uV~B =0
oF B-B B-B

B-V(u-B)—(u-B)V-B = 0 (15)

is obtained. The terms that are proportional to V- B have been underlined; they are exactly
the same as the source term defined above. Thus it can be seen that the addition of the
source term in Equation 14 simply acts to remove the terms proportional to V - B that
appear 11 Equation 2.

Another interesting note is what the evolution equation for V - B is for the two forms of
the governing equations. This may be seen by taking the divergence of the evolution equation
for the magnetic field in Equations 2 and 14. For the original form of the equations, the
evolution equation is

V~(%—?+u-VB+BV-u—B-Vu—uV~B> = 0

0
—(V-B) = 0. 16
(VB (16)
i From the partial differential equation point of view, this might well seem the correct result;
V -B = 0 is an initial condition, and this equation guarantees that V- B = 0 is maintained

thronghout the evolution. For the modified form of the equations, the evolution equation

for the magnetic field is

V'(d(T}?-I-u-VBwLBV-u—B-Vu) =0

I

%(V-B)Jrv-(uV-B) - 0. (17)



Thus the addition of the source term has modified the evolution equation for V - B so that
the quantity V - B/p is treated as a passive scalar. This is clearly the more numerically
stable of the two evolution equations; any local V - B that is created is convected away.
The above derivation gives all the pieces for building an ideal MHD solver that works
for two-dimensional problems, without having to resort to non-collocated variables or a
projection algorithm. Specifically, a Roe-type approximate Riemann solver has been imple-
mented, where the wave strengths and speeds are derived from the above left cigenvectors
and eigenvalues. The eigenvectors are properly normalized to avoid difficulties associated
with coinciding wave speeds [5]. The average state needed at cell interfaces is computed by a
simple average of left and right states (although a Roe average does exist for the ideal MHD
equations [4]). The source term, though small, is calculated in each cell, and added to the

residual. The resulting code is first order in space and time.

3 A Test of the Eight-Wave Riemann Solver

Brio and Wu [2] developed a test problem for one-dimensional MHD solvers based on the
shock-tube problem of Sod [6]. Two stationary plasmas are separated by a membrane which
is removed at ¢t = 0, allowing the plasmas to interact. The test problem used here for the
two-dimensional MHD solver is a rotated version of the Brio-Wu problem. The left and
right input states, and the orientation of propagation of disturbances to the grid, is shown
in Figure 2. In the Brio-Wu problem (the top figure), the boundary conditions are that the
problem is periodic along a line y = constant; in the current test problem (the bottom figure),
the boundary conditions are that the problem is periodic along a line z + y = constant.

Both the rotated and non-rotated problems were run on coarse (600 cells in ) and fine
(1200 cells in z) grids. The time step was taken as At/Ax = 0.2, which corresponds to a
C'FL number of approximately 0.8 on the non-rotated problem. The ratio of specific heats,
~, was 2.0. The number of time steps taken on the coarse and fine grids were 100 and 200,
respectively. The r—axis in the plotted results from the rotated problem was scaled by a
factor of v/2, to account for the fact that the CFL number is lower for the rotated problem
than for the non-rotated problem.

Figures 3-7 show comparisons of the results on the fine grid of the non-rotated shock-tube

problem with the (scaled) results of the rotated shock-tube problem for
3. density (p);
4. pressure (p);

5. velocity component normal to the original discontinuity (u,,);
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Figure 2: A Test Problem for Two-Dimensional MHD
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Figure 3: Density in the Rotated and Non-Rotated Shock Tubes
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Figure 4: Pressure in the Rotated and Non-Rotated Shock Tubes
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Figure 5: Normal Velocity in the Rotated and Non-Rotated Shock Tubes

10



non-rotated
_ . _rotated

—1.204

—2.00 T T T T T
—-0.10 0.30 0.70 1.10

Figure 6: Tangential Velocity in the Rotated and Non-Rotated Shock Tubes
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Figure 7: Tangential Magnetic Field in the Rotated and Non-Rotated Shock Tubes
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Figure 8: Normal Magnetic Field in the Rotated Shock Tube (Coarse and Fine)

6. velocity component tangential to the original discontinuity (u,);
7. magnetic-field component tangential to the original discontinuity (B,).

As can be seen, the agreement is quite good, with the results of the two cases nearly indis-
tinguishable for all but the normal component of velocity. The errors in u, are balanced by
errors in the magnetic-field component normal to the original discontinuity (B,). Figure 8
shows B, for the rotated shock-tube problem on the coarse and fine grids. In the non-rotated
problem, B, = 0.75 throughout the tube. As can be seen, there are errors on the order of a

few percent in B,, on the coarse grid, but the errors are reduced as the grid is refined.

4 Concluding Remarks

In some respects, this paper presents the development of only one-eighth of a Riemann solver.
Seven of the eight waves of the Riemann solver are the same as those used in previous work on
nupwind methods for MHD. The deceptively simple eighth wave that arises from the analysis,
Lowever, is of a different character than the other seven — it arises only in multi-dimensional
problems, and it is crucial for understanding and solving those problems. It plays the very
important role of stabilizing the numerical method with respect to the small amounts of
V - B generated in solving the discrete MHD equations.

Given the meteoric rise of Riemann solvers in the computation of compressible gas dy-

namics, it is not very risky to predict that schemes based on Riemann solvers will play an
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increasingly important role in the computation of compressible conducting flows. The ability
of Riemann solvers to capture strong discontinuities robustly and with minimal dissipation,
the framework that Riemann solvers provide for implementing stable boundary procedures,
and the aesthetically appealing physical basis of Riemann solvers are all strong arguments
for their use. The aim of this paper is to remove what is hopefully one of the last major
obstacles to the use of Riemann solvers in large-scale codes for computing multi-dimensional

conducting flows.
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