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Summary

This report describes the status of an on-going effort by the NASA Lewis Research Center
and Aerojet Propulsion Division to develop software capable of detecting sensor failures on

liquid rocket engines in real time, and with a high degree of confidence. This software
-~ could be used in a rocket engine controller to prevent the erroneous shutdown of an engine
due to sensor failures which would otherwise be interpreted as engine failures by the
control software.

The approach taken combines analytic redundancy with Bayesian belief networks to
provide a solution which has well-defined real-time characteristics, well-defined error rates,
and is scaleable to validate any number of engine sensors. Analytical redundancy is a
technique in which a sensor's value is predicted by using values from other, usually non-
redundant, sensors and known or empirically derived mathematical relations. For example,
given the engine plant diagram in Figure 1, fuel flow can be related to either the low
pressure pump speed or the high pressure pump speed by a pump affinity equation
(assuming constant fuel density). As shown, a set of sensors and a set relationships among
them form a network of cross-checks which can be used to periodically validate all of the
sensors in the network. Bayesian belief networks provide a mathematically sound method
of determining if each of the sensors in the network is valid, given the results of all of these

cross-checks.
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Figure 1. Example Engine Plant Diagram and
Partial Sensor Validation Network

This approach has been codified in an algorithm which has been successfully demonstrated
on a rocket engine controller in real-time on the Technology Test Bed Engine at the NASA
Marshall Space Flight Center. Current efforts are focused on extending the demonstration
system to provide a real-time validation capability for approximately 100 sensors on the
Space Shuttle Main Engine.



L_Introduction

The safety and reliability of rocket engines would be enhanced if engine controllers and
advanced safety systems could determine if sensors were supplying faulty data. This
ability, termed sensor data validation, could prevent the controller or safety system from
muaking critical decisions, such as the decision to shut an engine down, on the basis of data
from anomalous or failed sensors.

An approach to validating sensors in real-time has been developed and demonstrated on the
Technology Test Bed Engine (TTBE) at the NASA Marshall Space Flight Center (MSFC).
The demonstration system validated six channels of sensor data in real-time, running on a
state-of-the-art engine controller. ,

The current effort involves extending the demonstration system in the following ways:
« The number of sensors validated will be increased from six to approximately 97.
« The system will monitor continuously during mainstage (the first demonstration
system only operated during steady-state intervals).
+ Hard failures in control and redline sensors will be detected before the engine
controller responds.
« As an option, the system will monitor control and redline sensors during the engine
startup transient. )
The extended system will be implemented on a 486PC in the Technology Test Bed (TTB)
blockhouse which receives data in real-time during TTBE firings. The completed system
will be validated on at least 20 engine firings.

This report describes the status of an on-going effort by the NASA Lewis Research Center
(LeRC) and Acrojet Propulsion Division (APD) to develop a software solution to the
sensor data validation problem capable of running in a ground test computer or rocket
engine controller. A program plan is then presented in detail for continuation of this work
by Aerojet in FY93-FY95 on the Real-Time Sensor Data Validation task of the
Development of Life Prediction Capabilities for Ligd Propulsion Rocket Engines
contract. This project is being funded by the NASA OACT ETO program.

IL_Program Status

Efforts to develop an approach to real-time sensor data validation (SDV) for liquid rocket
engines have evolved over four years (see Figure @), from conceptual design (FY90) to
SO

are implementation and test in a rocket engine controller on the TTB test stand
(FY92). More recent efforts have focused on scaling up the capability demonstrated on
TTB to validate the majority of control and health monitoring sensors on the Space Shutde

Main Engine (SSME).

IL1. System Architecture Study

In FY90 a System Architecture Study of SDV was performed by Aerojet which reviewed
common sensor failure modes on the SSME, the data validation process used by SSME
data analysts at MSFC, and a number of alternative approaches to automating SDV for

post-test/post-flight data analysis.!

The approaches to SDV reviewed included range and rate limit checking2.3, various
pattern-matching techniques4'9, and analytical redundancylo'n. The conclusion of this
study was that no single algorithmic method should be used for SDV; rather several
methods should be used to analyze sensor data and the results integrated or “fused” into a
final conclusion regarding the integrity of each sensor. Several approaches to information
fusion were also reviewed for their applicability to SDV, including binary logic, ad-hoc
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Figure 2. Real-Time Sensor Data Validation Program History

certainty factors!3, Dempster-Shafer theory!4, and Bayesian belief networks15,
Bayesian belief networks were selected as the best strategy, since they were believed to be
the most mathematically sound approach to information fusion.

IL2. Probabilistic Approach to Analytical Redundancy

Real-time sensor data validation was targeted as a demonstration application for APD’s
Advanced Rocket Engine Controller (AREC), developed on APD's Integrated Controls and
Health Management IR&D in FY91 (Project AMP91-03). The approach taken combined
analytical redundancy with Bayesian information fusion techniques to achieve a solution
which has well-understood false alarm and missed detection error rates, operates within

hard time constraints, and is scaleable to validate any number of sensors.16

Analytical redundancy is a technique in which a sensor’s value is predicted by using
values from other, usually non-redundant, sensors and known or empirically derived
relations among the sensor values. For example, Figure 3 shows a relation among three
sensor values using a standard formula for fluid line resistance. Relations can also be
empirically derived using standard statistical regression techniques. The simplest form of
these empirical relations is a linear equation relating two sensor values, as shown in Figure
4. In general, a relation is used to provide validation information for all related sensors.
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Figure 4. Example Statistical Relation

A group of sensors and a set of relations among them define a network. Figure 5 showsa
very simple example of a sensor validation network for three parameters on the SSME.

The difference between a value predicted using a relation and a directly sensed value is
called a residual, and is a measure of the quality of the relation, given that the sensors
involved are known to be working properly. In the approach taken in this work, one or
more algebraic relations are defined for every sensor in the network which relate its value 1o
the values of one or more other sensors inel;ic network. The mean and standard deviation
of the relation residuals (evaluated on normal engine test firing data) are also computed.
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Figure 5. Example Sensor Validation Network



Given this information, a validation algorithm could sample sensor values every controller
cycle during an engine firing and determine if each of the relations holds or not by
thresholding on a particular residual, such as three standard deviations. Once the status of
every relation in the network has been determined to either “hold” or “not hold”, the
validation algorithm makes a conclusion about the validity of each sensor in the network
(the one-cycle decision problem). Conclusions made during several consecutive controller
cycles may be fused together in order to disqualify a sensor (the multi-cycle decision
problem). Figure 6 summarizes this overall approach.
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Figure 6. Overall Approach to Real-Time Sensor Data Validation

Before this general approach could be implemented, several questions needed to be
answered:

» How many relations are needed to validate a sensor?

« How many of a sensor's relations need to hold in order to validate the sensor during
one controller cycle?

» What threshold should be used on the individual relation residual tests?

* Should sensor value averaging or other multi-cycle strategies be used?

» Can a scaleable approach to validation be developed which will work with any
number of sensors?

» Do all relations need to be evaluated every cycle to validate all sensors?

Bayesian Analysis

Bayesian probability theory provides a formal framework within which the questions posed
above can be answered. Bayesian probability theory provides a mathematically sound
approach to the problem of information fusion — the combination of evidence from



several sources into a single, consistent model. In information fusion, uncertainties in the
sources of evidence (i.e., inaccuracies in the sensors or uncertainties in the fault detection
algorithms themselves) are explicitly modeled and accounted for.

A Bayesian Belief Network is a %raphical representation of a joint probability distribution
of a set of random variables. 15, 7,18 As an example, the validation network shown in
Figure 5 can be represented as the Belief Network shown in Figure 7. In this network, the
nodes S1, S2, and S3 represent the status of the respective sensors (i.e. whether they are
working or not), while the nodes R1, R2, and R3 represent whether an analytical
redundancy relationship currently holds between the sensors or not. Connections in the
network represent influences between variables. In Figure 5, for example, a failure in
sensor S1 would influence the expected probability distribution on the status of relation

R1.
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Ra R2
, (Holds or Not)
(Holds or Not) R1
(Holds or Not) S3
(Valid or Invalid)
S4 R3
(Valid or Invalid) (Holds or Not)

s2
(Valid or Invalid)

Figure 7. Example Sensor Validation Network Cast into a Bayesian Belief
Network for Analysis

Given the Belief Network shown in Figure 7, the probability of each sensor being valid
given the current status of all relations can be derived. These equations can then be used to
answer the questions posed above, and to develop a mathematically sound approach to
sensor data validation.

The following assumptions were made in the FY91 activity in order to conduct the
Bayesian analysis:

+ Although several sensors may fail during a firing, two sensors cannot fail during a
single controller cycle. The likelihood of two or more sensors initiating a failure at
the same instant in time is very remote, and it would greatly complicate the validation
system to accommodate such simultaneous multiple-point failures.

« Once a sensor is determined to have failed, it will stay failed and will not be used
again in any future calculations.

« The reliability of a sensor can be determined from its Mean Time Between Failure
%TBF). This measure is assumed to be constant for the duration of a single engine

ng.

» When a sensor fails it emits random values. This is a very conservative assumption,
and is a more difficult failure mode to detect than a hard failure (i.e., if the algorithm
is able detect the random failure mode with a high degree of confidence, it will also be
able to detect hard and drift failures). This is an admission that a failed sensor has



some small probability of emitting a value which is within the realm of
“reasonableness” for the parameter being measured.

The conditional probabilities required to fully define the Belief Network shown in Figure 7
were derived from the assumptions given above. The following derivations assume that
~ all relations are binary (i.e., integrate information from two sensors).

The probability of a sensor failing on a particular controller cycle is given by

Equation 1. P(Sensor Invalid) = CycleTime / MTBF."

Thus, the probability of a sensor with a MTBF of 30 minutes failing during a 40ms sample
is 0.0000222, while for a sensor with a MTBF of 20 hours this probability is 0.000000é.

The probability of a relation holding, given that all of the related sensors are working, is
determined by the threshold level placed on the relation. Thus,

Equation 2. P(RelationHolds | SensorjValid, SensoraValid) =K

where K is a quantile of the normal distribution (e.g., for a 3 standard deviation relation
threshold, K = 0.997).

Since a failed sensor emits random values, there is still some probability, P, that a given
reading may fall within the normal range of values for the sensor, causing the relation to
continue to hold. (Note that for hard sensor failures Pp = 0.) If this normal range is taken
to be 3 standard deviations, then

. 2 x 3 x Standard Deviation
Equation 3. Pp = Range of Sensor

For SSME sensors, Pn has been empiricall{ determined to be have an average value of
0.22 (although it is slightly different for each sensor). The probability of a binary relation
holding given that one of its sensors has failed is thus

Equation 4. P(RelationHolds | Sensor]Invalid,Sensor2 Valid) = Pp
Equation 5. P(RelationHolds | Sensor] Valid, Sensor2Invalid) = Pp

?ﬂgly' the probability of a binary relation holding given that both of its sensors have

Egquation 6. P(RelationHolds | SensoriInvalid, Sensor2Invalid) = P X Pp

The probabilities given above yield the following joint probability distribution for the
network shown in Figure 7.

Equation7. P(51,52,53,54,R1,R2,R3,R4) =
P(S1) x P(S2) x P(S3) x P(54) x
P(R1IS1,S2) x P(R21S1,53) x P(R31S2,53) x P(R4IS1,54)

* “P(A)” can be read as “the probability of A being true™. “P(A,B)” can be read as the “the probability of A
and B being true.” “P(A | B)” can be read as “the probability of A being true given that B is true”. “P(A |
B,C)” can be read as the “the probability of A being true given that B and C are true”.



Given the joint distribution, the goal is to determine the probability of any one sensor
working given the status of all relations in the network (this is the basis for the real-time,
one-cycle decision problem). This can be achieved by using Bayes' rule. For example,
after measurements for S1, S$2, S3, and $4 have been taken, and relations R1, R2, R3, and
R4 have been evaluated to determine whether they hold or not, the probability of sensor S1
working can be determined as follows.

P(S1,R1,R2,R3,R4)

Equation 9. P(S1IR1,R2,R3,R4) = B(R1,R2,.R3.R4) Baye's Rule
Where,
Equation 10. P(S1,R1,R2,R3,R4) =

P(S1,52=Valid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1,52=Valid,S3=Invalid,S4=Valid, R1,R2,R3,R4) +
P(S1,S2=Invalid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1,S2=Invalid,S3=Invalid,S4=Valid,R1,R2,R3,R4) +
P(S1,S2=Valid,S3=Valid,S4=Invalid,R1,R2,R3,R4) +
P(S1,52=Valid,S3=Invalid,S4=Invalid,R1,R2,R3,R4) +
P(S1,S2=Invalid,S3=Valid,S4=Invalid,R1,R2,R3,R4) +
P(S1,S2=Invalid,S3=Invalid,S4=Invalid,R1,R2,R3,R4)

Equation 11. P(R1,R2,R3,R4) =
P(S1=Valid,S2=Valid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1=Valid,S2=Valid,S3=Invalid,S4=Valid,R1,R2,R3,R4) +
P(S1=Valid,S2=Invalid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1=Valid,S2=Invalid,S3=Invalid,S4=Valid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Valid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Valid,S3=Invalid,S4=Valid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Invalid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Invalid,S3=Invalid,S4=Valid,R1,R2,R3,R4) +
P(S1=Valid,$2=Valid,S3=Valid,S4=Invalid,R1,R2,R3,R4) +
P(S1=Valid,S2=Valid,S3=Invalid,S4=Invalid,R1,R2,R3,R4) +
P(S1=Valid,S2=Invalid,S3=Valid,S4=Invalid R1,R2,R3,R4) +
P(S1=Valid,S2=Invalid,S3=Invalid,S4=Invalid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Valid,S3=Valid,S4=Invalid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Valid,S3=Invalid,S4=Invalid R1,R2,R3,R4) +
P(S1=Invalid,S2=Invalid,S3=Valid,S4=Invalid,R1,R2,R3,R4) +
P(S1=Invalid,S2=Invalid,S3=Invalid,S4=Invalid,R1,R2,R3,R4)

Each term of these latter two equations can be evaluated using the joint probability
distribution given in Equation 7.

Given the ability to compute the probability of a sensor being valid or not given the status
of all relations in the network (as in Equation 9), an optimum one-cycle decision strategy
can be developed by simply thresholding on this probability. Table 1 shows the validation
probabilities for sensor SI given that the MTBF of S1, S2, §3, and 54 in Figure 7 is 30
minutes, the relation residual threshold for R1, R2, R3, and R4 is 3 standard deviations,
and Pp is 0.22. From this table it can be seen that the optimum strategy, given these
assumptions, is to disqualify sensor S1 when relations R1, R2, and R4 do not hold.



P(S1=ValidiR 1=Holds,R2=Holds,R3=Holds,R4=Holds)
P(S1=ValidIR 1=Holds,R2=Holds,R3=Holds,R4=NotHold)
P(S1=ValidiR 1=Holds,R2=Holds,R3=NotHold,R4=Holds)
P(S1=Valid/R 1=Holds,R2=Holds,R 3=NotHold,R4=NotHold)
P(S1=ValidIR 1=Holds,R2=NotHold,R3=Holds,R4=Holds)
P(S1=ValidiR 1=Holds,R2=NotHold,R3=Holds,R4=NotHold)
P(S 1=ValidIR 1=Holds,R2=NotHold,R3=NotHold,R4=Holds)

997204

1

0.9

1
0.9997204
0.9997191
0.7523449
8 0998867

P(S1=ValidIR 1=Holds,R2=NotHold,R3=NotHold,R4=NotHold) .8828096
P(S1=ValidIR 1=NotHold,R2=Holds,R3=Holds,R4=Holds) 0.9997191
P(S1=ValidiR 1=NotHold,R2=Holds,R3=Holds,R4=NotHold) 0.7523449
P(S1=ValidiR1=NotHold,R2=Holds,R3=NotHold,R4=Holds) 0.9998867
P(S1=ValidIR 1=NotHold,R2=Holds,R3=NotHold,R4=NotHold) 0.8828096
P(S1=ValidIR 1=NotHold,R2=NotHold,R3=Holds,R4=Holds) 0.7515119
P(S1=ValidIR 1=NotHold,R2=NotHold,R3=Holds,R4=NotHold) 0.002574868
P(S1=ValidiR 1=NotHold,R2=NotHold,R3=NotHold,R4=Holds) 0.9227433
P(S 1=ValidIR 1=NotHold R2=NotHold,R3=NotHold,R4=NotHold) =0.0100921 6

Table 1. Example Validation Probabilities for Sensor S1

There are two measures of quality for any validation algorithm; the false alarm and missed
detection rates (equivalent to Type I and Type II errors in statistics, respectivclylg). The
false alarm rate is the probability that the validation system will disqualify a sensor, when it
is in fact working correctly. The missed detection rate is the probability that the validation
system will qualify a sensor, when it has in fact failed (this is related to the notion of
sensitivity). These rates can be computed for the one-cycle decision strategy described
above. The false alarm rate for sensor S1 is the sum of

P(S1=Valid,S2,83,54,R1,R2,R3,R4)

in all situations in which the validation system decides to disqualify S1. For the example
given above, the false alarm rate is

2.71412E-8
+ 3.27073E-10
2.74683E-8

Similarly, the missed detection rate for sensor S1 is the sum of
P(S1=Invalid,S2,53,S4,R1,R2,R3,R4)

in all situations in which the validation system decides to validate S1. For the example
given above, the missed detection rate is 1.16765E-5.

These two quality measures were used to evaluate many alternative answers to the
questions posed above. The results indicated that:

+ At least three relations involving a sensor's value are required to provide enough
information to disqualify the sensor.

+ The number of relations involving a sensor's value which must be violated in order to
disqualify the sensor varies with the number of relations. For example, in the network



shown in Figure 7 in which sensor S1 is involved in three relations, all three relations
must be found not to hold before the common sensor can be disqualified.

« A 3 standard deviation residual threshold should be used on all relations to determine if
they hold or not.

+ A multi-cycle decision strategy must be used in order to get the error rates below
acceptable levels. The best strategy evaluated was a 3-of-5 strategy, in which a sensor
must be judged bad (using the one-cycle strategy) on at least three of the last five
controller cycles before it can be conclusively disqualified.

Of the results obtained, the most significant was that only the relations directly bearing on a
sensor need to be evaluated in order to validate the sensor. For example, in the network
shown in Figure 7 only relations R1, R2, and R4 need to be considered when validating S1
(see Table 1).

Given this, and the fact that a voting table can be constructed which specifies the number of
those relations which must be violated before the sensor can be disqualified, an algorithm
can be designed which only evaluates relations for a particular sensor until it is impossible
to disqualify it. For example, when validating sensor S1 in the network shown in Figure
7, the relations R1, R2, and R4 can be examined in sequence, but as soon as one is found
to hold, the validation process for S1 can stop because it is impossible to disqualify it (i.e.,
all three relations must be violated in order to disqualify a sensor with three relations).
Thus, all relations in the network do not need to be evaluated every cycle.

The maximum number of relations which can be expected to fail per controller cycle can be
computed and translated into a hard upper bound on processing time for the validation
system. Assuming that at most one sensor can fail on a given controller cycle, the
fr.naltlximum number of relations which need to be evaluated each cycle is given by the
ollowing:

« For each of the valid sensors, the first relation always needs to be evaluated (assuming
a 3-of-3 disqualification strategy). However, we can compute the probability of a given
number of additional relations failing and pick the smallest number that gives us the
reliability we want. The probability of more than r relations out of the total R relations
in the network failing (due to noise and modelling errors) is:

R

D(R,) x PRelationHolds)Ri x P(RelationNotHold)!
i=r+1

This is a sum of binomial probabilities, which for large R and small
P(RelationNotHold) can be approximated by a sum of Poisson probabilities, with

p=R x P(RelationNotHold). If there are three unique relations for each of 115 sensors
on the SSME, then R=115*(3-1)-2=228 and P(RelationNotHold)=0.003 (for a 3-
standard-deviation threshold), making p=0.684. A table of Poisson probability

sums19 indicates that at most nine additional relations would need to be checked to
yield a very high degree of confidence.

« Assuming that one sensor did fail on a given cycle, the number of relations that need to
be evaluated to confirm the failure is simply the number of immediate relations that the
sensor has (in the worst case they would all need to be checked). For a sensor with five
relations, all five may need to be evaluated in order to disqualify the sensor.

10



Thus, for the 114 valid sensors, one relation must always be checked, and we will allow
an additional nine to be checked in the overall network to guarantee a high level of
confidence. For the one failed sensor, all three of its relations must be checked. Thus, in
the worst case, a total of 114 + 9 + 3 = 126 relations need to be evaluated on any given
cycle. The small number of relations which need to be evaluated each cycle, coupled with
the fact that only the relations directly involving a sensor need to be evaluated for
validation, allowed an algorithm to be developed which is entirely scaleable (i.e., will work
with a large number of sensors and relations).

These results are based on our assumptions about the accuracy and reliability of the sensors
on the SSME. Although studies have shown that these results are insensitive to small

changes in the assumed parameter values (corroborated by De Bruynczo), large changes
would require a new analysis (e.g., if the system were to be used to validate sensors on a
power plant). In particular, order-of-magnitude changes in sensor reliabilities would
require a re-analysis. Changes in the validation network topology in response to changes
in SSME hardware configuration will have no effect on these results.

Software Design, Development and Test

The algorithm and data structures for the core sensor validation routine which performs the
one-cycle decision making are outlined in Figure 8 and Figure 9, respectively. Every
controller cycle, each sensor is checked in sequence. A sensor check consists of evaluating
all of the relations which directly bear on the sensor until a conclusion about its validity can
be made. Typically, this will involve evaluating a very small number of relations and then
stopping when it becomes impossible to disqualify the sensor. When a sensor is
permanently disqualified, all relations which use its value are deactivated. This ensures that
the system will not try to perform validation using data from a failed sensor. Thus, the
algorithm keeps track of which relations are active and which are inactive, and will continue
to validate a sensor even when fewer relations are available.

Several additional software modules were developed to augment the core one-cycle
validation routine. These include:

 Steady-State Detection — Detects when the engine has reached one of a known set of
steady-state conditions.

OneCycleValidate (Sensor)
Passed « O
Validated & False
NumActiveRelations &«
CountActiveRelations (Sensor.Relation_List)
DO for each Relation in Sensor.Relation List UNTIL Validated
IF (Relation.Status is Active) THEN
IF (Relation.Eval_Function()) THEN
Passed ¢« Passed + 1
IF (Passed 2 PassTable [NumActiveRelations]) THEN
Validated « True

RETURN (Validated)

Figure 8. One-Cycle Sensor Validation Algorithm
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Other Related

Sefy
o~ =SS

Pt
! Status {OK or Failed) p»-| Eval Function
Relation List Status {Active or Inactive}
Sensor ith Sensor Relation

List List

Figure 9. Primary Data Structures Used in Sensor Validation Software

 Dynamic Relation Biasing — In order to get the sensitivity required to detect sensor
failures before hard limits (redlines) were exceeded, the significance of engine-to-engine
variations in operating conditions had to be understood and addressed. To handle this,
the system took several data samples as it entered each steady-state condition and biased
the relations accordingly. This biasing was limited, however, to prevent accommodating
data flrom sensors which may have failed during transients (i.e., the bias term was itself
thresholded).

» Table Compilation — Since a large portion of the development effort for this system was
spent on developing and tuning the relations used in the network, a module was
developed to facilitate the specification of the various data structures used in the system.
This module takes a text file description of the relations to be used, and compiles all of
the tables and constants required by the validation system.

The AREC-hosted SDV system software consisted of about 1,000 lines of C code. It was
developed on a Sun SPARCstation using recorded sensor data from SSME tests. The
network shown in Figure 10 was used to validate the High Pressure Fuel Turbine
Discharge Temperature (HPFT DS T) sensors using six parameters (described in Table 2)
and eleven binary empirical relations. This was a fully-connected network with the
exception of relations 93/209, 93/210, 130/209, and 130/210 which proved to be very poor
predictors and negatively impacted the sensitivity of the system.

The models used in the AREC-hosted SDV system were empirically derived, binary
models as indicated by Figure 10. In general, either linear or cubic models were derived.
Most relationships involving only pressures and/or speeds appeared linear when cross-
plotted. However, relationships involving temperatures (particularly the High Pressure
Fuel Turbine Discharge Temperatures) appeared to have a cubic relationship when cross-
plotted. The following steps were used in the derivation of these models:

1. Data for several firings were concatenated together into a large training file. For the
network shown in Figure 10 the tests used were A1618, A1612, A2492, A2497,
and B 1072, since these represent one firing from each of the different engines for
which data was available. The datasets were first stripped of all data prior to
START+7 seconds to remove the startup transient, and all data after the
SHUTDOWN command.

12



PID130

Figure 10. AREC Sensor Validation Network

PID Number Description
93 PBP Discharge Temp, Ch A
130 MCC Pressure, Ch Al
209 LPOP Discharge Pressure, Ch A
210 LPOP Discharge Pressure, Ch B
231 HPFT Discharge Temp, Ch A
232 HPFT Discharge Temp, Ch B
Control Signals
280 Vehicle Command (Engine Start/Stop)
287 MCC Pc Control Reference

Table 2. Eight Sensor Channels Used in the AREC-Hosted Sensor Data
Validation System

2. A standard linear regression routine was then used to generate both first and third-
order polynomial models on the test data for every pair of sensofs. -

3. The third-order models were converted into four first-order models by evaluating
the first derivative at each power level using average values for the sensors involved
(referred to as tangent-cubic models). Figure 11 is a graphical depiction of this
procedure. This was performed both for run-time efficiency (linear models are less
costly to evaluate than cubic ones) and because it was felt that the tangent-cubic
models would perform better under anomalous engine conditions than linear models
trained on power-level-specific data.

4. A program was run for all relations which computed the average of the residuals for
all models at each power level.

5. A subset of the relations derived in steps 2 and 3 was selected for use (in particular,

- only a )ﬁrst-order OR a tangent-cubic model was used for any given pair of
SEnsors).

6.- Initial thresholds were defined for the selected models based on the results of step 4

~ (initially set at three standard deviations).

7. The assembled SDV system was tested against the full-sample data from the
training datasets to ensure that no false alarms were issued.
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High Pressure Fuel Turbine
Discharge Temp

" 5%
Fuel PreBurner Oxidizer Valve Position

Figure 11. Tangent-Cubic Empirical Model

8. A variant of the SDV system was run to determine the sensitivity of the system in
detecting failures in each of the sensors. This was done by setting all sensors to
their mean values and then varying one sensor's value incrementally until it was
failed (the overall process was repeated for all power levels, for all sensors, and for
high and low variations). The mean values were taken from the Phase II SSME
Data Base maintained at NASA MSFC (dated 10/13/89). The primary purpose of
this test was to ensure that slow drifts in redline sensors would be detected by the
sensor validation system before the values reached redline.

9. The model residual thresholds were tuned to ensure maximum sensitivity while
ensuring that no false alarms were issued. This involved many iterations through
steps 7, 8, and 9. The final thresholds incorporated into the run-time sensor
validation system are constant, and do not change between power levels.

10. A program was run to compute the relation biases (model offsets) used on a
number of different test datasets. This information was used to set the bias limits.
Since there were not enough datasets to obtain a statistically significant sample of
biases for each sensor, the limits were empirically set to 150% of the largest bias
seen.

The sensor validation system was then tested on three additional validation datasets—
A2495, B1069, and B1071—without any false alarms being issued (these were the only
additional datasets available at the time; for increased reliability the SDV system should be
validated on a much wider range of datasets). In addition, sensitivity analyses were
successfully run on all red-line sensors to ensure that the validation system would detect
slow drift failures prior to redline exceedance. These tests were performed on the
development workstation in a non-real-time environment.

The sensor validation software was then integrated into the Advanced Rocket Engine
Controller and set up in Aerojet's Real-Time Simulation Laboratory. This facility is based
on an AD-100 multiprocessor computer, which is capable of either simulating engine
firings or replaying data from engine firings in real-time. The AD-100 was programmed to
replay recorded data from 10 SSME firings in order to test the AREC and the real-time
characteristics of the sensor validation system. The system correctly monitored nine normal
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SSME tests in real time without any false alarms being generated. The system correctly

detected a hard failure in HPFT DS T on a tenth SSME test dataset.2] Table 3 summarizes
these results.

Test Duration Results

A1619 529 No false alarms.

A2497 550 No false alarms.

A2493 550 No false alarms.

B1046 530 No false alarms.

B1064 520 No false alarms.

B1067 700 No false alarms.

B1073 80 No false alarms.

B1075 300 No false alarms.

B1077 513 No false alarms.

Al1637 Failure occurred during power level
transient. SDV system detected failure 1.48
seconds later, following its post-transient
delay and training interval (performed
correctly).

Table 3. Simulation Laboratory False Alarm and Hard Failure Detection
Test Results

In order to evaluate the sensitivity of the system to “soft” sensor failures in a real-time
environment, a series of tests were run in which a slow drift in HPFT DS T (high or low)
was simulated by the AD-100 computer while all other sensors were held at their nominal
values (engine test data was not used for these tests). The point at which the system
disqualified the sensor was then recorded. These tests, summarized in Table 4, indicated
that the system had adequate sensitivity to soft failures.

Real-Time Validation on TTB

Following tests in APD's Real-Time Simulation Laboratory, the AREC-based sensor
validation system was installed in the Technology Test Bed blockhouse at MFSC to receive
and analyze real-time data from TTB hot-fire tests. The same validation network and sensor
%dation software configuration used in the Simulation Laboratory tests were used at

Table 5 summarizes the results of the TTB tests. The sensor validation system correctly
tracked engine start, stop, and power level transitions, performed bias training, and
monitored nominal data without issuing any false alarms. However, none of the monitored
sensors experienced failures during the test series, so the sensitivity of the system in the
TTB environment could not be established.

[L3. Empirical and CI teristic Modeli
In FY92 Aerojet undertook the task (under the Life Prediction contract) of determining the
viability of using analytical redundancy to validate the majority of the sensors used on
SSME for control and health monitoring. The basic approach was to identify and
investigate sets of engine parameters whose measurements are statistically correlated for a
nominal engine firing, or whose measurements are known to be related via first-principle
(characteristic) equations.
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PID Dnrift Power Value at Which  Criteria for Pass
Direction Level % Sensor Was (Redline)
Disqualified
231 High 65 1550 <1850
" 100 1718 "
" 104 1761 "
" 109 1842 "
Low 65 1406 None
" 100 1229 "
" 104 1361 "
| " 109 1384 "
232 High 65 1611 <1960
" 100 1716 "
" 104 1798 "
" 109 1900 "
Low 65 1400 None
" 100 1616 "
" 104 1641
109 1710

Table 4. Simulation Laboratory Tests of “Soft” Failures via Induced Drifts

Test Date Duration Notes
(seconds)
TIBO31 4/15/92 85 Nominal firing. No false alarms, no missed
detections.
TTB-032 4/28/92 205 Nominal firing. No false alarms, no missed
detections.
TTB-033 5/14/92 18 Ambient powerhead temperature redline cutoff. No
false alarms, no missed detections.
TTB-034 5/28/92 210 Nominal firing. No false alarms, no missed
N detections.
TTB-035 6/11/92 200 Nominal firing. No false alarms, no missed
, detections.

Table 5. TTB Test Results

Table 6 lists the engine parameters and the appropriate sensors investigated in this task.
Some of these parameters were selected as being critical to safely operating the engine,
including control and redline parameters and those identified for use in advanced safety
algorithms. Less critical sensors that might provide additional analytical redundancy
coverage were also included. Sensor data is captured by two different systems during an
SSME firing: the engine controller relays data from sensors with PID numbers of 300 or
less via a Command and Data Simulation (CADS) computer; while sensors with PID

numbers over 300 are caputured by the facility data recording system.
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Parameter PID PIDs Used
High Pressure Fuel Pump (HPFP) Shaft Speed 260,261,764 260,764
High Pressure Fuel Turbine (HPFT) Discharge 231,232 231,232
Tem
HPFP Discharge Pressure 52,459 52
Main Combustion Chamber (MCC) Pressure ;2695130,161,16 129
Fuel Prebumer (FPB) Chamber Pressure 58,410 58
HPFP Coolant Liner Pressure 53,54 53
Oxidizer Preburner (OPB) Chamber Pressure 480 480
FPB Oxidizer Valve Position 42,143,175 42,175
HPFP Inlet Pressure 203,204 203
Oxidizer Flow (Facility) 1212,1213 1212
Fuel Flow (Facility and Engine) 133,253,301, 133,722,
251,722,1205, 1205
1206
MCC Coolant Discharge Pressure 17 17
Low Pressure Fuel Turbine Inlet Pressure 436 436
Low Pressure Fuel Pump (LPFP) Speed 32,754 32
Low Pressure Oxidizer Pump (LPOP) Speed 30,734 30
High Pressure Oxidizer Turbine (HPOT) Discharge 233,234 233,234
Temperature
MCC Hot Gas Injection Pressure 24,371 24,371
MCC Oxidizer Injection Temperature 21,595 21
OPB Oxidizer Valve Actuator Position 40,141,176 40,176
MCC Coolant Discharge Temperature 18 18
LPOP Discharge Pressure 209,210 209
Preburner Boost Pump (PBP) Discharge Temperature 93,94 93
MCC Liner Cavity Pressure ' 1951,1956,1957 1951
HPOP Discharge Pressure 90,334 90,334
PBP Discharge Pressure 59,341 59
HPFP Discharge Temp 659 659
HPOP Inter. Seal Purge Pressure 211,212 211
HPOT Secondary Seal Cavity Pressure 91,92 91
HPFP Inlet Temp 225,226 225
HPOP Balance Cavity Pressure 327,328 327,328
HPFP Balance Cavity Pressure 457 457
HPFP Coolant Liner Temp 650 650
Engine Fuel Inlet Pressure 819,821,827 819
Engine Oxidizer Inlet Pressure 858,859,860 858
HPOP Primary Seal Drain Pressure 951,952,953 951
HPOT Primary Seal Drain Pressure 990 , 990
Engine Fuel Inlet Temp. 1021,1017,1018 1021,1017
Engine Oxidizer Inlet Temp 1058,1054,1056 1058,1054
HPOT Secondary Seal Drain Temp 1188 1188
HPOT Primary Seal Drain Temp 1190 1190
Fuel Repressure Interface Pressure 835 835

Table 6. Sensors Used in FY92 Modeling Task
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The primary objective of this task was to consider the relationships between various engine
parameters, thus redundant sensors were typically not evaluated (i.e., only one PID per
parameter was used in the analyses). Several redundant measurements were included after
an initial analytical and statistical survey identified those which showed significant
differences.

Data Preparation

The data sets used consisted of nine nominal test firings for training and two additional test
firings for verification. As shown in Table 7, these test cases included various engines
including multiple tests with the same engine, thus providing useful information on test to
test variations.

Test Firin Engine  Duration __Use
—— 50— 2206 30000 scc _ Training
A2536 2206 300.00 sec  Training
A2539 0216 530.00sec  Training
A2547 2011 42000sec - Training
A2548 2206  30000sec  Training
B1060 0213 53000 sec  Training
B1069 0213 700.00 sec Training
B1077 0213 513.00 sec  Training
B1089 0213 53000 sec  Training
B1063 0213 513.00 sec  Verification
A2537 2035 300.00 sec___Verification

Table 7. Test Firing Datasets Used in FY92 Modeling Task

The sensor measurements were initially prepared by removing the start transients (first
seven seconds after ignition) and the shutdown transients. The data was then smoothed
and reduced from approximately one-half million data points per dataset to 50,000 data
points per dataset to make the modeling procedures tractable. Only routines which
computed model coefficients were run on this reduced data; all other routines, including all
validation tests, used the original full sample data.

Empirical Model Ranki
Initially, first and third degree binary curve fits were computed between all pairs of selected
PIDs. The curve fits were ranked for each test according to minimal residual variance and
the rankings were averaged across the nine training test firings (e.g., if a model had the
third lowest residual variation in half of the tests and the fourth lowest residual variation in
the other half,, its final ranking would be 3.5). As an example, Table 8 lists the top 20
ranked linear and cubic fit parameters for the High Pressure Fuel Pump Speed, Channel A
sensor (PID 260). The “rank” column in this table is the averaged rank value described
above.
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260

rank

0.00000
1.00000
4.44444
4.88889
5.88889
7.22222
7.33333
7.44444
7.44444
8.00000
10.0000
10.8889
13.8889
14.0000
15.7778
16.6667
16.7778
16.7778
18.3333
19.6667
19.8889

rank

0.00000
1.11111
3.44444
4.33333
$.77778
6.00000
6.66667
8.33333
9.66667
9.77778
10.1111
13.0000
13.7778
15.1111
15.6667
16.8889
17.7778
17.8889
17.8889
19.6667
20.1111

RPM

n

n

Linear fit ranking.
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Cubic fit ranking.
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. 436
- [133]
722

30

53

52

name
" 260
764

[

.‘E!'

O

2

T 371
1205
- 90
. 457
328
. 334
- 1212
835
58
. 327

name
260
© 764
, 129
- 722
- [658
133
-5
[
~ 436
. 3N
" . B2
. 457
30
" 90
. 1205
32
328
1212
334
58
- 835

_ HPFP SPEED A

RPM

T2
PSIA
PSIA
GP
GPM
GM
RPM
PSIA
PSIA
GP
GM
PSIA
GP
GP
AP
GM
GP
PSIA
GP

RPM
w -
PSIA
GM
T2
GPM
PSIA
PSIA
GP
GP
PSIA
GP
RPM

- PSIA

GM

RPM

GP
GM
AP
PSIA
GP
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HPFP SPEED A
HPFP SPD NFD 4 8KRPM
HPFP DS T CH A 30/560
MCC PC A2
MCC CINT DS PR
LPFT IN PR 1
FUEL FLOW Al
ENG FL FLOW NFD 29KGPM
LPOP SPEED
HPFP CLNT INR A
HPFP- DS PR A
MCC H. G. INJ PRO/5000PS
FAC FL FLOW 1 22KGPM
HPOP DS PR A
HPFP BAL CAV PR 10K PSIS
HPOP BALCAV 2A P5K PSI
HPOP DS PR NFD 7K PSIA
FAC OX FLOW 1 8500GPM
FL PRESS INT PR 5K PSIG
FPB PC A
HPOP BALCAV 1A P5K PSI

10K PSIS

HPFP SPEED A
HPFP SPD NFD
MCC PC A2 -
ENG FL FLOW NFD 29KGPM
HPFP DS T CH A 30/560
FUEL FLOW Al
HPFP CLNT LNR A
MCC CLNT DS PR
LPFT IN PR 1 10K PSIS
MCC H. G. INJ PRO/5000PS
HPFP DS PR A
HPFP BAL CAV PR 10K PSIS
LPOP SPEED

48KRPM

" HPOP DS PR A

FAC FL FLOW 1
LPFP SPEED
HPOP BALCAV 2A PSK PSI
FAC OX FLOW 1  8500GPM
HPOP DS PR NFD 7K PSIA
FPB PC A
FL PRESS INT PR 5K PSIG

22KGPM

Table 8. Ranked Linear and Cubic Fit Parameters for PID 260



These rankings were analyzed and the top three candidate models were selected for each
parameter (e.g., the circled PIDs in Table 8). Other than removing redundancies from
consideration, parameters were selected on the basis of their ranking and knowledge of
nominal SSME operation. For example, in Table 8, PID 129 was not selected because
most parameters have a very high correlation with Main Chamber Pressure (almost all
measurements in the engine scale up and down with power level) and PID 436 was not
selected because the cubic model did not rank well, and because it is “causally remote”
from the PID 260 measurement. Attachment 1 presents the selected parameters and a brief
rationale for each, the average “rank” value described above, the order of the model
selected for use (“1” for linear and “3” for cubic) and an evaluation of the model fit with
and without bias training.

The linear and cubic fit coefficients and residual characteristics for the three selected
empirical relations for each sensor were then computed. Nine sets of coefficients were
computed for each relation by performing linear regression on each of the nine training
datasets individually. A composite, or “accumulated” model was then formed for each
relation by averaging the coefficients obtained for each training dataset. This accumulated
model was then evaluated against each of the training datasets, and the mean and standard
deviation of the residual computed. Finally, the average of these means and standard
dew;gg'géxf for the accumulated model was computed as a measure of the overall quality of
the

Tables 9 and 10 show these values for the three selected models for HPFP SPEED CH A
(PID 260) in linear and cubic form, respectively. In each of these tables, the “Mean” and
“Sigma” values are the mean and standard deviation of the model residual, and “C0”, “C1”,
etc., are the model coefficients (with “C0” being the zero-order coefficient). Note that the
dynamic range of PID 260 is 1,350 to 45,000 RPM, so that the seemingly large residual
standard deviations are actually only about 1/2% of the sensor's range.

Figures 12-16 are examples of scatter plots” (for the model relating PID 260 to PID 659)
which were generated to show how well the empirical relationships fit the data. Figures 12
and 13 are plots for test A2530 which shows how the linear and cubic models fit a single
training dataset (with the models constructed on the same dataset). Figures 14 and 15 are
scatter plots for averaged relations (i.e., with coefficients averaged over all training tests),
evaluated against all test firing data to show the effects of test to test variations. Figure 16
?a a scat(tgli lgt) for the averaged relations evaluated against a single validation test firing
taset .

Attachment 1 includes some observations from this data. Parameters were identified as
good fits if their residual standard deviation was less than 1% of the maximum parameter
value (maximum dynamic range of the sensor). Medium fit was associated with a residual
standard deviation of 1% - 2.5% of the maximum parameter value, and a poor fit was
considered when the residual deviations were in excess of 2.5%. Those parameters that
were basically not correlated were identified as unusable.

Attachment 2 presents the averaged coefficients for all selected linear and cubic models.

* A sirigle sample of data following the engine shutdown signal was erroneously included
in each of the empirical training datasets; these show up on the plots as single outlier data
points. It was believed that one data point out of 1200 would not affect the results.
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Linear
y-pid =

x-pid =

Test

a2530
az2536
a2539
a2547
a2548
b1060
b1069
b1077
b1089
Accum

x-pid =

Test

a2530
az2536
az2539
az2547
a2548
b1060
b1069
b1077
b1089
Accum

x-pid =

Test

a2530
a2536
az2539
az2547
a2548
b1060
b1069
b1077
b1089
Accum

Curve Fit
" 260

. 659

RPM

T2

Residual

Mean
-3 .68E-04
9,25E-04
-1.68E-04
3.17E-04
1.23E-03
4.24E-04
3.26E-03
-4 .25E-04
-2.04E-03
-1.98E+01

17

Sigma

2.18E+02
1.51E+02
1.91E+02
2.78E+02
1.88E+02
3.02E+02
2.75E+02

3.21E+02

1.75E+02
6.19E+02

PSIA

Residual

Mean
1.93E~-03
1.63E-03
1.84E-03
1.06E-03
-5.66E-04
1.23E-03
1.10E-03
-9,70E-04
-2.03E-03
-2.07E+01

& 133

Sigma

2.61E+02
1.97E+402
2.62E+02
3.33E+02
3.07E+02

3.06E+02

2.59E+02
3.18E+02
2.62E+02
4.82E+02

GPM

Residual

Mean

-1.17E-03
8.78E~-04
1.10E-03
1.37E-03
-5.27E-04
3.04E-03
5.16E-04
4.01E-04
-2.09E-04
-4 .93E+00

Sigma

2.65E+02
2.22E+02
2.40E+02
3.36E+02
2.93E+02
3.10E+02
2.59E+02
3.20E+02
2.81E+02
3.13E+02

HPFP SPEED A

HPFP DS T CHA

Cco
-6.0585E+03
-7.0018E+03
-6.6352E+03
-7.0957E+03
~-6.9675E+03
-5.7085E+03
-5.6677E+03
-5.4051E+03
-5.3045E+03
-6.2050E+03

MCC CLNT DS

co

1.3163E+04
1.3155E+04
1.3296E+04
1.3113E+04
1.3155E+04
1.2835E+04
1.2867E+04
1.3640E+04
1.2837E+04
1.3118E+04

Cl

4.3131E+02
4.3608E+02
4.4143E+02
4.4303E+02
4.3826E+02
4.2960E+02
4.2677E+02
4.2730E+02
4.0703E+02
4.3120E+02

PR

Cl

4.9021E+00
5.0277E+00
4.9604E+00
4.8169E+00
4.9314E+00
4.9736E+00
4.9860E+00
4.6331E+00
4.8696E+00
4.9001E+00

FUEL FLOW Al

Cco

1.2923E+04
1.3077E+04
1.2936E+04
1.2968E+04
1.2785E+04
1.3289E+04
1.3154E+04
1.3383E+04
1.3223E+04
1.3082E+04

Cl

1.3551E+00
1.3663E+00
1.3763E+00 .
1.3653E+00
1.3714E+00
1.3542E+00
1.3614E+00
1.3426E+00
1.3651E+00
1.3620E+00

Table 9. Linear Empirical Fit Coefficients for PID 260
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y-pid
x-pid

Test

a2530
a2536
a2539
a2547
a2548
b1060
bl069
bl1077
b1089
Accum

Test

az2530
a2536
a2539
az2b547
a2548
bl060
b1069
b1077
b1089
Accum

x-pid =

Test

a2530
az2536
a2539
a2547
a2548
bl060
b1069
bl1077
b1089
Accum

Test

a2530
a2536
a2539
az2547
a2548
b1060
b1069
b1077
1089
Accunm

260

659
Residual
Mean
-1.47E-02
-1.64E-03
5.66E-03
1.56E-02
-3.38E-03
1.23E-02
-3.16E-03
-4.89E~-03
-6.63E-03
1.35E+01

co

5.2353E+04
5.1549E+04
3.8672E+04
6.2633E+04
4.8362E+04
6.4350E+04
7.7948E+04
5.6826E+04
5.0955E+04
5.5961E+04

-~ 17
Residual
Mean
-5.24E~-03
-1.30E-03
5.31E-03
3.81E-03
-2.28E-03
-1,07E-02
5.54E~03
5.09E~03
-7.51E-03
~2.52E+01

Cco
-8.1156E+03
-2.2078E+03
-2.5454E+04
-4.4082E+04
-1.7856E+04
-4 .5246E+04
-3.9595E+04
-1.2878E+04
-6.2965E+04
-2.8711E+04

Third Order Curve Fit
HPFP SPEED A

RPM
T2

Sigma
1,53E+02
6.19E+01
1.48E+02
1.43E+02
7.00E+01
2.93E+02
2.46E+02
3.08E+02
1.19E+02
5.31E+02

Cl1
-1.8947E+03
-1.8052E+03
-1.3295E+03
-2.3689E+03
-1.6841E+03
-2.3934E+03
-2.9436E+03
-2.0473E+03
-1.7056E+03
-2.0192E+03

PSIA

Sigma

2.29E+02
1.67E+02
1.68E+02
1.40E+02
2.50E+02
2.93E+02
2.38E+02
3.06E+02
1.24E+02
5.13E+02

Cl

2.1424E+01
1.7063E+01
3.5670E+01
4.9817E+01
3.0336E+01
5.1827E+01
4.7428E+01
2.3676E+01
6.4931E+01
3.8019E+01

HPFP DS T CHA

c2

3.0175E+01
2.8182E+01
2.2643E+01
3.6800E+01
2.6777E+01
3.6885E+01
4.4085E+01
3.1907E+01
2.5870E+01
3.1481E+01

MCC CLNT DS PR

c2
-4.1676E-03
-3.0331E-03
~7.9006E-03
-1.1386E-02
~6.7359E-03
-1.2376E-02
=1.1247E-02
-4.4670E-03
-1.5588E-02
~8.5447E-03

C3
=1.2796E-01
-1.1648E-01
-9.4948E-02
-1.5701E-01
-1.1117E-01
-1.5718E-01
-1.8807E-01
=1,.3412E-01
=-1.0371E-01
=1.3229E-01

Cc3

3.4339E-07
2.4769E-07
6.6387E-07
9.3559E~-07
5.8198E-07
1.0740E-06
9.7927E-07
3.4380E-07
1.3289E-06
7.2206E-07

Table 10. Cubic Empirical Fit Coefficients for PID 260
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Third Order Curve Fit

y-pid =
x-pid =

Test

a2530
az2536
a2539
a2547
a2548
b1060
b1069
b1077
b1089
Accum

Test

a2530
a2536
a2539
a2547
a2548
b1060
bl1069
b1077
b1089
Accum

45 260

23 133
Residual
Mean
3.29E-03
1.05E-02
-4.63E-03
9.46E-03
5.91E-03
-1.51E-02
-1.11E-02
-7.02E-03
1.88E-03
-1.79E+01

Cco
-2.8979E+04
-1.8418E+04
-3.4949E+04
-5.2971E+04
~-3.2900E+04
-6.2824E+04
~-5.6651E+04

=3.2726E+04

~7.3562E+04
-4.3776E+04

RPM HPFP SPEED A

GPM FUEL FLOW Al

Sigma

2.04E+02

1.77E+02

1.20E+02

1.42E+02

2.01E+02

2.91E+02

2.29E+02

3.08E+02

1.32E+02

2.82E+02
Cl1 Cc2
1.0810E+01 -6.9746E-04
8.4511E+00 -5.1906E~04
1.2037E+01 -7.7387E-04
1.6344E+01 -1.0989E-03
1.1827E+01 -7.7853E-04
1.8687E+01 -1.2922E-03
1.7296E+01 -1.1915E-03
1.1506E+01 ~7.3309E-04
2.1184E+01 -1.4824E-03
1.4238E+01 -9.5189E-04

C3

1.6863E-08
1.2443E-08
1.8400E-08
2.6247E-08
1.8946E-08
3.1627E-08
2.9255E-08
1.7345E-08
3.6404E-08
2.3059E-08

Table 10. Cubic Empirical Fit Coefficients for PID 260, cont'd
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uation Selecti

The characteristic relations were identified through consideration of available sensors and
knowledge of engine first principles. Of those considered, the sparsity of sensors on the
SSME allowed only three types to be applied: pump flow to impeller speed, pressure rise
across a pump to the square of its speed; and line resistance (pressure drop to the flow
squared). Table 11 summarizes the characteristic equations considered. The components
referred to are: High Pressure Oxidizer Pump (HPOP); High Pressure Fuel Pump (HPFP);
Low Pressure Oxidizer Pump (LPOP); Low Pressure Fuel Pump (LPFP); Low Pressure
Fuel Turbine (LPFT); and Main Combustion Chamber (MCC). In addition, “DS P” and
“IN P” refer to discharge pressure and inlet pressure, respectively. The last three models
for line resistances are approximations because not all instrumentation required was
available for true first principle relationships.

Model # Equation Form
1,2 Fuel Flow Pump
LPEP Speed _ constant Affinity
3.4 LOX Flow Pump
LPOP Speed — “onstant Affinity
5,6 Fuel Flow Pump
_ HPFP Speed ~ constant Affinity
7.3.0 LPOPDS P - Eng LOXINP _ Pump
LPOP Speed?_______ oroant Affinity
10,11,12 HPFPIN P - Eng Fuel IN P_ Pump
LPEP Speed? = constant Affinity
13,14,15 HPEP DS P - HPFP IN P_ Pump
HPFP Speed? = constant Affinity
—16,17,18 HPOP DS P - MCC Pc _ Line
LOX Flow2 = constant Resistance
19,20,21 MCC Coolant DS P - LPFT INP _ Line
LPFP Speed? = constant Resistance
22.23.24 HPOPDS P-LPOPDS P_ Tine
LPOP Speed? = constant Resistance

Table 11. Characteristic Equations Evaluated

Characteristic Equation Fit

Attachment 3 provides details of the characteristic equations evaluated and the coefficients
derived from the training datasets. The models coefficients shown have been averaged over
all training datasets in the same manner as the “accumulated” empirical models. As an
example, Table 12 shows the derived coefficients for the characteristic equation relating
LOX Flow and LPOP Speed. In each of these tables, the “Mean” and “Sigma” values are
the mean and standard deviation of the model residual, and “C0”, “C1”, etc., are the model
coefficients. The large residual means and relatively small residual standard deviations for
these models indicate that constant offsets (a zero-order term in the equation) should always
be used, even though the first principle relations do not specify their use. Offsets for the
accumulated (averaged) characteristic models should simply be the average of the residual
means computed. - o —

Figures 17-19 are examples of the scatter plots generated during the study to show the
quality of characteristic relations when used as predictive models. Figure 17 is a plot for
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Characteristic Relation
Fac 10X Flow/ Lpop Spd = constant

PID 1212

PID 30

Fac LOX Flow
Lpop Spd

Characteristic Curve Fit
1212 = ¢cl1 * PID

PID

Test

az2s530
a2536
a2539
a2547
a2548
b1060
bl1069
b1077
b1089
Accunm

Residual

Mean Sigma

-3.16E+03 6.47E+01
-2.97E4+03 4.35E+01
-3.08E+03 3.83E+01
-3.12E+03 4.52E+01
~-2.89E+03 4.97E+01
-3.18E+03 4.30E+01
-3.21E+03 65.06E+01
-3.30E+03 4.78E+01
-3.38E+03 3.88E+01
=-3.14E+03 1.04E+02

Characteristic Curve Fit
30 = c1 * PID

PID

Test

az2530
az2536
az2b39
az2s547
az2548
b1060
bl1069
b1077
b1089
Accunm

Table 12, Characteristic Equation Coefficients for LPOP Equation #3

test A2530 which shows how the characteristic equation fits a single training dataset (with
the model constructed on the same dataset). Figure 18 is a scatter plot with model
coefficients averaged over all training tests and evaluated against all test firing data.
Figures 19 and 20 are scatter plots for the averaged model evaluated against individual

Residual

Mean

1.82E+03
1.75E+03
1.80E+03
1.76E+03
1.73E+03
1.89E+03
1.88E+03
1.90E+03
1.88E+03
1.82E+03

Sigma

3.67E+01
2.55E+01
2.21E+01
2.53E+01
2.95E+01
2.45E+01
2.89E+01
2.70E+01
2.14E+01
5.99E+01

30

Cl1

1.7572E+00
1.7047E+00
1.7262E+00
1.7812E+00
1.6816E+00
1.7374E+00
1.7414E+00
1.7637E+00
1.8136E+00
1.7452E+00

1212

Cl

5.6549E-01
5.8541E-01
5.7762E-01
5.5966E-01
5.9330E-01
5.6574E-01
5.6776E-01
5.6168E-01
5.4902E-01
5.6952E-01

Cl S.Err
4.29E-03
2.10E-03
3.16E-03
4.95E-03
3.59E-03
3.72E-03
3.74E-03
2.67E-03
4.79E-03
1.41E-03

Cl S.Err
1.38E-03
7.21E-04
1.06E-03
1.56E-03
1.27E-03
1.21E-03
1.22E-03
8.51E-04
1.45E-03
1.68E-04

validation test firings. Table 13 is an evaluation of all characteristic equations considered.

Results of Empirical Modeli
Relations were successfully developed for 33 of the 53 parameters analyzed using linear
and cubic binary models. Of the remaining 20 parameters, two were found to be
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Egn No PID Comments

1. 1205 Poor fit. Bias training will help.

2. 32 Medium fit. Bias training may help.

3. 1212 Medium fit.

4. 30 - Medium fit.

5. 1205 Good fit.

6. 260 Medium fit.

7. 209 Good to medium fit.

8. 858 hM?dmm to poor fit. Bias training may

elp.

9. 30 Poor fit. Bias training may help.

10. 203 Poor fit. Bias training may help.

11. 819 Very poor fit.

12. 32 Poor fit. Bias training may help.

13. 52 hM?dlum to good fit. Bias training may

elp.

14, 203 Poor fit, Bias training may help.

15. 260 Medium fit. Bias training may help.

16. 9%0 Good fit.

17. 129 Good fit.

18 1212 Good fit.

19 17 Good fit. Bias training will help. PID32
relation not helpful.

20. 436 Good fit. Bias training will help. PID32
relation not helpful.

21 32 Medium fit.

22 90 Medium fit. Bias training will help.

23 209 Poor fit.

30 30 Medium fit. Bias training will help.

Table 13. Characteristic Equation Observations

anomalous (PID 24 and PID 328°) and six parameters appeared amenable to multi-
parameter regression modeling (i.c., PIDs 203, 233, 234, 209, 819, and 858 appear to be
a function of more than any one other parameter). The remaining 12 PIDs (18, 1951, 211,
225, 650, 951, 1021, 1017, 1058, 1054, 1188, and 1190) essentially did not correlate well
to any other measurements. A good cxample of this set is PID 1951 (MCC LINER CAV
P). According to SSME data analysts, this measures the pressure in a cavity between the
inside of the MCC and the outer wall of the combustion chamber. The normal behavior for
this sensor is to drop during start (as the MCC heats up, the cavity pulls a vacuum and the
pressure drops) and then level off for the rest of the test. This parameter's value is thus
primarily a function of time from START. These measurements which do not correlate well
to other parameters can be dropped from the list of sensors evaluated by the SDV system,
unless they are needed for control, redline, or health monitoring purposes, in which case a
more focused modeling effort will need to be undertaken.

* At the completion of the analyses it was discovered that anomalous data from these two
PIDs had been included in the training datasets.

30



In summary, a large percentage of the sensors on SSME can be successfully modeled using
linear and cubic polynomial regression techniques. The remaining sensors could be
modeled using multi-parameter models, or other forms of models such as time-based
models of nominal behavior, or more advanced models such as neural networks. For
parameters which are relatively constant during a nominal engine firing and which exist
primarily to detect specific failure modes (e.g., PID 1951 exists primarily to detect MCC
burn-through), models may be developed by using data from engine anomalies or failure
simulations.

First-principle models are difficult to derive for the SSME due to the scarcity of sensors

relative to the complexity of the engine. In taking a very conservative approach, only 7

characteristic equations (with 30 parameter variations) could be fully justified as physically

sound. Only one of these 7 equations failed to provide any useful predictive models

gnodels) 10, 11, and 12, relating pressure drop across LPFP to the square of LPFP
PEED).

IL4. Summary of Work to Date

The fundamental idea of using analytical redundancy to perform sensor data validation in
real time on the SSME has been demonstrated by the work performed on this project.
However, while obtaining models for the majority of sensors used for control, redline, and
health monitoring purposes appears to be straightforward, a small set of sensors may
require extra modeling work if they are to be kept in the validation network.
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IIL_Guideli for the Devel  of SDY Model
The TTB tests of the AREC-hosted sensor validation system demonstrated the reliability of
using analytical redundancy for SDV. In addition, the SSME data analysis work performed
in FY92 demonstrated that models can be derived for most of the sensors of interest, thus
establishing that a real-time SDV system can be constructed for the SSME. This section
presents a few guidelines which help ensure the proper construction of the analytical
redundancy models and validation network used in an SDV system.

IIL1. Sensor vs. Plant Anomaly Discrimination

There should be some guarantee that when an engine experiences an anomaly or failure, the
validation system will not disqualify all of the sensors measuring the phenomenon when
they suddenly start reading grossly abnormal values; this is the essence of the sensor
versus plant anomaly discrimination problem.

The analytical redundancy approach taken in this project can correctly handle plant vs.
sensor failure discrimination as long as all relations used are guaranteed to hold across all
normal operating conditions of the engine, and the validation network is structured so that
no single engine anomaly will invalidate enough of the relations involving a particular
sensor to disqualify that sensor. If these two conditions are maintained, then the likelihood
of the SDV system disqualifying a sensor in response to an engine anomaly is extremely
low; on the same order as a simultaneous multiple-point engine failure.

For example, Figure 21 shows the sensor validation network used in previous examples.
In this network an anomaly in either pump alone (e.g., cavitation) would not cause the
SDV system to disqualify S1. An anomaly in the low pressure pump may invalidate R2,
and an anomaly in the high pressure pump may invalidate R4, but both anomalies would
need to occur simultaneously (along with a significant discrepancy between S1 and S2)
before the SDV system would disqualify S1. Such an occurrence would constitute a
“triple-point failure” in the system, which has a very remote possibility of occurrence.

Fuel Flow
Speed
R4 Flow Constant = Constant [R2
A=B
High Pressure Identity) R1
S4 Fuel Pump 83 FuelPump
Speed A Speed
52 FuelFlow s?ﬁw’d'““s‘amlas

Figure 21. Plant vs. Sensor Failure Example
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The Bayesian approach to information fusion assumes that sensor failures are independent
events. In actuality, there may be events which affect the status of several sensors,
requiring changes in the Bayesian Belief Network and subsequent analyses (e.g., 1oss of
an 1/O board). Some initial work has been performed by De Bruyne at U.C. Berkeley to
study this problc:m,9 and the results indicate that the independence assumption is justified
(i.e., that introducing events which affect several sensors into the analysis does not
significantly affect the results).

However, the statistical independence assumption can be violated by poor construction of
the validation network. Figure 22. shows a worst-case example. The network is
constructed to validate sensors S1 and S2, using relations R1, R2, and R3; cross-checking
against each other and several other sensors (S$3-S8). In this example, S1 and S2 rely
exclusively on common information for validation. In this network, if there were a failure
in either S1 or S2, it would be impossible to determine which of them had actually failed
(the current algorithm would fail one arbitrarily, and then continually validate the other,
because there would not be any information to disqualify it after R1, R2, and R3 were

invalidated).
QP
2 Rz>9
R3

Figure 22. Worst-Case Validation Network

This problem can be avoided through careful construction of the network. However, if
only binary relations are used, it is impossible to construct a network in which the
independence assumption is violated (assuming that only one relation can be used between
any pair of sensors).

IIL3. Adapting Models to New Line Replaceable Units

As with most advanced systems, the SSME is not a static design. Components are
continually being re-designed and improved, and in some cases completely replaced. In
addition, engines of the same design can behave quite differently from one to another. In
order for the sensor validation system to retain its fidelity without causing false alarms in
the face of such changes in hardware configuration, the software must be set up so that the
analytical redundancy models can be quickly tuned when data becomes available from these
new configurations.
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IIL4. Summary ,
The issues addressed in this section imply the following guidelines in developing analytical
redundancy models and in configuring the validation network:

+ Models must hold over the widest possible range of normal plant behavior. This implies
that characteristic (first principle) models should be used whenever possible, and that all
models should be trained on as many datasets as possible. Even though empirical
models often seem to fit SSME data with more fidelity than characteristic models, there
is a higher degree of confidence that characteristic models will continue to hold during
anomalous engine conditions which were not present in the training datasets used to

. derive empirical models.

» Models with minimum cardinality (i.e., which relate the minimum number of sensors)
should be preferred over those with higher cardinality. The lower the cardinality, the
greater the guarantee that the statistical independence assumption will hold, and that the
system will properly discriminate between plant and sensor failures.

* A tool should be developed which assesses the degree to which the statistical
independence assumption is violated for any validation network configuration. The tool
must verify that for any single sensor failure the system must be able to: 1) uniquely
idcntifi the failed sensor; and 2) continue validating the rest of the sensors in the
network.

» The model-building software should be developed so that all models can be quickly re-
constructed on new data following a design change or first test of a new engine.
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V. FY93-95 Task Descripti
This section briefly describes the technical goals of the FY93-95 Real-Time Sensor Data
Validation task, and the design extensions to the AREC-based software required to meet
them.

The primary goal of the FY93-95 task is to scale up the eight-channel sensor validation
system developed and tested on the AREC to validate approximately 97 channels of data
from the SSME in real-time (see Table 14.). Fundamentally, this will not require any
changes to the run-time algorithms, or to the established methodology for developing and
validating analytical redundancy models or for tuning and validating the network.

IV.2. Hard Fail Detection in Redline S
The AREC-hosted SDV system utilized a 3-of-5 multi-cycle strategy (a sensor must be
flagged on 3 out of S consecutive cycles in order to be disqualified). Unfortunately, the
SSME controller will react if a sensor is over redline on two of three consecutive cycles.
Thus, to prevent erroneous engine shutdowns the SDV system must be able to detect
“hard” sensor failures within two cycles for all redline sensors (at a minimum).

The proposed approach fo detecting hard sensor failures is to determine if a sensor’s rate-
of-change has exceeded a threshold amount over two consecutive cycles (i.e., threshold on
the magnitude on cycle 2 less the magnitude on cycle 0). If this condition holds, and the
validation network flags the sensor as anomalous during each of the two cycles, then the
sensor will be disqualified with a hard failure. For the ground test configuration, the SDV
system will still disqualify sensors with hard failures after two consecutive anomalous
readings, but since data is only available to ground test computers on alternate controller
cycles the SDV system will actually be disqualifying such sensors following four controller
cycles in which the sensor is bad. ,

IV.3. O tion During P .Level Transient
The AREC-based SDV system did not operate during engine start, shutdown, or power
level transitions. The new SDV system will operate, at a minimum, on the latter of these
transients. Thus, the system will be in continuous operation from approximately four
seconds after mainstage has been achieved until the shutdown signal is detected.

To accomplish monitoring through mainstage power level transitions, the SDV system will
utilize multiple sets of model thresholds and hard failure excursion thresholds. One set of
thresholds will be used during steady-state (as in the AREC-hosted system), while other
thresholds will be used during engine transients and during the bias training period at the
start of each steady-state interval. These transient thresholds will undoubtedly be looser
constraints on engine behavior. While the SDV system will not be as sensitive to soft
sensor failures during the transient intervals, it will still be able to catch hard failures
following two samples of anomalous data. =~

IV.4. Operation During START Transient

As options to this task, the SDV system may be extended to monitor during the engine
start-up transient. While the basic approach to SDV is still applicable during start, the
models required to successfully cross-check sensors may become extremely complex in
order to take dynamic effects into account. Thus, the bulk of these optional tasks will be in
the development, test, and integration of new models which will utilize data trends and
temporal information, as opposed to the steady-state models which constitute the bulk of
the network used for mainstage.
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Parameter PID
MCC Pressure 129,130,161,162,63
OPOQV Actuator Position 40,141,176
FPOV Actuator Position 42,143,175
CCYV Actuator Position 45,146,174
MOV Actuator Position 38,139,173
MFV Actuator Position 36,137,172
HPFP Inlet Temperature 225,226
HPFP Inlet Pressure 203,204
Engine Fuel Flow 133,253,301,251,722
HPFTP Shaft Speed 260,261,764
HPFT Discharge Temperature 231,232
HPFP Discharge Pressure 52,459
FPB Chamber Pressure 58,410
HPFP Coolant Liner Pressure 53,54
OPB Chamber Pressure 480
Facility Fuel Flow 1205,1206
Facility LOX Flow 1212,1213
MCC Coolant Discharge Pressure 17
LPFT Inlet Pressure 436
LPFP Speed 32,754
LPOP Speed 30,734
HPOT Discharge Temperature 233,234
MCC Hot Gas Injection Pressure 24,367,371
MCC LOX Injection Temperature 21,595
MCC Coolant Discharge Temperature 18
LPOP Discharge Pressure 209,210
PBP Discharge Temperature 93,94
MCC Liner Cavity Pressure 1951,1956,1957
HPOP Discharge Pressure 90,334
PBP Discharge Pressure 59,341
HPFP Discharge Temperature 659
HPOP Intermediate Seal Purge Pressure 211,212
HPOT Secondary Seal Cavity Pressure 91,92
HPOP Balance Cavity Pressure 327,328
HPFP Balance Cavity Pressure 457
HPFP Coolant Liner Temperature 650
Engine Fuel Inlet Pressure 819,821,827
Engine Oxidizer Inlet Pressure 858,859,860
HPOP Primary Seal Drain Pressure 951,952,953
HPOT Primary Seal Drain Pressure 990
Engine Fuel Inlet Temperature 1021,1017,1018
Engine Oxidizer Inlet Temperature 1058,1054,1056
Fuel Repress Interface Pressure 835
Heat Exchanger Discharge Pressure 34,878

Table 14. Preliminary List of SSME Sensors to Validate

Several groups are developing advanced models, such as neural networks, which relate

data from SSME sensors.22-25 Since these models appear to perform very well, even
during power transients, they are excellent candidates for integration into the validation
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network as long as their run-time execution is not too computationally intensive. As NASA
provides these models, APD will test and integrate them into the system where needed to
provide a more robust validation capability.

The SDV system will be ported to run on a 486 PC in the TTB blockhouse, where it will
receive data in real-time from either live engine firings, or from playbacks of previous tests.
APD will be able to run the system and assess its performance remotely from Sacramento
via a network connection. The system will have a text-based display and various
diagnostic routines to enable its performance to be thoroughly characterized.
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This section presents an expanded work breakdown structure, and a schedule for
completion of the FY93-95 SDV task.

summarizing work done to date on real-time sensor data validation tasks under the
Development of Life Prediction Capabilities program. The report will cover all important
technical results, the viability of using analytical redundancy for SDV, the adequacy of
models developed to date for performing SDV on the SSME, and results of validation tests.
The PV-Wave and C procedures used to create the models, and the schedules, milestones
and expanded work breakdown structure of planned FY93-95 activities will also be
delivered to NASA LeRC.

This task will be completed upon acceptance of this report.

Subtask 1.0 Project Plan
Aerojet shall deliver one copy-ready document to NASA LeRC for unlimited distribution,

Subtask_2.0 Generation of Requirements

Aerojet shall define the detailed requirements for the sensor data validation software. These
requirements will include: a final list of sensors to be validated (provided by NASA LeRC);
a table describing the accuracy and reliability (Mean-Time Between Failure) of each sensor
to be validated; and specification of the maximum acceptable false alarm and missed
detection rates for the system. From this information, the following will be derived and
specified: the default model residual threshold, the minimum number of relations required
per sensor, and the multi-cycle decision strategy. A list of the SSME test firings to be used
for software development and validation will be specified by NASA LeRC. These
requirements and specifications will be documented and delivered to NASA LeRC for
approval.

DLask pocument M1 5 O A ENSOrsS to De V alidated

APD will identify and document, either via in-person interviews, official documentation, or
telecons, the reliability of all SSME sensors on the final list provided by NASA LeRC.
Whenever possible the reliabilities shall reflect the operational reliabilities of the sensors,
that is, hours of SSME hot-fire time between failure (where a failure is any incident which
causes the controller to fail to receive an intended engine measurement within the stated
accuracy of the sensor involved).

Subtask 2.2 Derivation of SDV P
APD will compute the default model residual threshold, the minimum number of relations
required per sensor, and the multi-cycle decision strategy based on sensor reliability data
and design goals of 1 false alarm per 1,000 500-second firings and 1 missed detection per
100 500-second firings.

Subtask 2.3D ion of Requi
APD will deliver to NASA a document describing the reliabilities of all sensors to be
validated, the values of all SDV parameters derived in Subtask 2.2, and the list of
development and validation test firings to be used.

Subtask 2.0 Deliverables
Tfl:::hcllsocument produced in Subtask 2.3 will be delivered to NASA LeRC by the completion
of this task.
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Subtask 3.0 Algorithm Devel { & Verificati
Aerojet shall perform the empirical modeling of SSME test firing data required to develop a
robust sensor validation capability as specified in the requirements (e.g., the development
of multi-parameter regression models as indicated by the FY92 Sensor Validation task).
This modeling will be performed on an as-needed basis using 50 test firings, based on the
results of Subtask 2.0 and previous modeling efforts. Advanced analytical redundancy
models, such as neural networks, will be included and evaluated as directed by NASA.
Aerojet shall integrate characteristic, empirical, and advanced models into a sensor
validation network capable of meeting the confidence level specified in the requirements.

A utility program will be written to automate fine-tuning of the residual thresholds to
provide the maximum possible sensitivity without an unacceptable false alarm rate.
Sensitivity is evaluated by running a simulation in which one sensor value is allowed to
drift while all others remain nominal, and noting the point at which the system disqualifies
the drifting sensor. The results of these sensitivity tests will be documented. Another utility
program will be written and run to compute the biases used on the above 50 datasets. This
information will then be used to set the bias limits. Bias limits for each relationship in the
sensor validation network shall be reported. Aerojet shall deliver to NASA LeRC a
complete description of each model used in the SDV network. Thresholds and bias limits
for each model shall be included as well as information regarding the data used for model
and threshold development. If different thresholds are used during mainstage and power-
level transitions, this will be noted and both will be given.

Subtask 3.1 Interface Requirements for Advanced Models

APD will document the interface requirements for advanced analytical redundancy models,
and deliver these requirements to NASA LeRC. Advanced models will have access to
sensor values from the current and up to four previous controller cycles, descriptors
specifying the current engine state (including power level and lockup status), and clock
variables indicating time since start, and time since start of the current engine state.
Advanced models supplied by NASA must conform to the interface requirements to be
integrated into the final SDV system.

0,001, A1GALION INCIWOL K AJLd L) ] AL

A utility program will be developed which reads in a textual representation of a validation
network and automatically outputs a report which describes: the degree of coverage for
each sensor in the network (i.e., the number of relations it is involved in); the degree of
overlap between every pair of sensors in the network (in terms of how many relations they
share); the ability of the system to uniquely identify single sensor failures for each sensor in
the network; ability to validate all other sensors following a single sensor failure for each
sensor in the network; and tabulations of relations by sensor and by cardinality. The
reporg;)utput by this program will be used to guide the development and refinement of the
network.

A utility program will be developed which tests the false alarm rate of the SDV system, by
running it against several nominal test firings and noting the number of times every pair of
relations validating a particular sensor fail at the same time. A second utility will be
developed to test the sensitivity of the SDV system via drift tests. Results from these
programs will be used to automate tuning of the model thresholds. Thresholds will be
derived for steady-state and transient operating modes.

Subtask 3.4 Bias Tuning Tool Impl .
A utility program will be developed which derives the bias limits for each model based on
analysis of the training test data.
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OLASK [1a] - tye 11 X . 4
A utility program will be developed which derives the maximum allowable excursion each
redline sensor can make in two consecutive samples under nominal and anomalous
operating conditions. This information will be used to set the hard-failure threshold limits.

Subtask 3.6 Data File Preparation

APD will establish a library of the 50 training and 50 test datasets required for the SDV
task. All datasets may be stored in a compressed format, and the training datasets may be
stored in a reduced format for ease of handling. Software will be implemented to facilitate
automatic access of the data by the various utility programs.

Subtask 3.7 SDV Model & Network Development

APD will utilize the utilities described above to develop a robust sensor validation capability
as specified. New models will be developed as needed in order to meet the error-rate
objectives specified in the requirements.

Subtask 3.8 Test & Integration of Advanced Models

Advanced models supplied by NASA LeRC will be evaluated for possible inclusion into
the SDV network. Evaluation shall consist of determining the added coverage to sensors in
the network, and the increase in system sensitivity possible without generating false alarms
on the training datasets. After reporting these results to NASA LeRC, APD will, at NASA
LeRC's direction, integrate the models into the final SDV system.

Subtask 3.9 Documentation

APD will document all models and associated parameters used in the final SDV network.
The performance of the final network (sensitivity and false alarm rates) will also be
documented and delivered to NASA LeRC.

Subtask 3.0 Deliverables
The document produced in Subtask 3.9, in addition to the documented source code for all
utility programs, will be delivered to NASA LeRC by the completion of this task.

After receipt of all available documentation describing the PC hardware and software
located at NASA MSFC for reading TTBE data in real-time, Aerojet shall produce and
deliver to NASA LeRC detailed ifications for the sensor validation software. After the
specifications are approved by NASA LeRC, Aerojet shall design, develop, and module
test the complete sensor validation software system to be used at the TTB site. The sensor
validation system will include a text-based user interface with real-time displays indicating
the status of the system and highlighting any failed sensors. The system will also have the
capability of archiving data including: samples from selected sensors (e.g, MCC PC); times
of sensor failures or near-failures (e.g., one-cycle failures); and selected diagnostic
information such as whether a particular model holds or not on each engine cycle. The
system will have the capability of being executed and monitored remotely from the
contractor's site.

Subtask 4,1 Software Specifications
APD shall produce and deliver to NASA LeRC software specifications for the SDV system
to be installed on the PC at the TTB site.

Subtask 4.2 Core Validation S
APD shall design, implement, and module test the core SDV system software on a PC
platform.

40



Subtask 4.3 Data Interface
APD shall design, implement, and module test routines to access data fed from the TTB
blockhouse in real time on a PC platform.

Subtask 4.4 User Interface

APD shall design, implement, and module test routines to display (via a text-based display)
and log system status and error messages on a PC platform. This software will feature real-
time displays indicating the status of the system and highlighting any failed sensors. The
software will also have the capability of archiving data including: samples from selected
sensors (e.g, MCC PC); times of sensor failures or near-failures (e.g., one-cycle failures);
and selected diagnostic information such as whether a particular model holds or not on each

engine cycle.

Subtask 4.5 Remote Operation

APD shall design, implement, and module test routines to allow personnel at APD's
Sacramento facility and at NASA LeRC to configure, run, monitor, and extract results from
the SDV system installed at the TTB facility.

Subtask 4.6 Integration
APD shall integrate all software routines into the final SDV system on a PC platform,
compatible with the 486 PC at the TTBE facility.

Subtask 4.0 Deliverables

The software specifications produced in Subtask 4.1, in addition to the documented source
code for all software developed, will be delivered to NASA LeRC by the completion of this
Subtask.

Aerojet shall install and test the sensor validation software on the PC located at the TTB
site. All functions of the software shall be tested with TTBE data playbacks. The remote
execution function shall be tested to ensure that Aerojet is able to control and evaluate

execution of the system from computers at Aerojet Propulsion Division in Sacramento,

Aerojet will support the validation of the SDV system through a combination of at least 20
playback live TTBE firings via remote operation from Sacramento.

Subtask 5,1 Installation and Standalone Tests

APD will install the SDV system on the 486 PC at the TTB facility. The software operation
will be verified through stand-alone system tests. The remote operation capability will be
tested and verified.

Subtask 5.2 TIBE Playback Tests
APD will validate the operation of the SDV through successful on-site monitoring of at
least one playback of TTB firing data at the TTB facility.

Subtask 5.3 TTBE. Validation T
Acrojet will support the validation of the SDV system through a combination of at least 20
playback or live TTBE firings via remote operation from Sacramento.

Subtask 5.0 Deliverables
APD will deliver a document summarizing the results of all live and playback TTBE tests
of the SDV system by the completion of this Subtask.
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Subtask 6.0 D tation & Deli bl
Aerojet shall deliver to NASA LeRC final specification, source code and data flow
diagrams for the delivered sensor validation system. Aerojet will also deliver a user's
manual for the system installed at TTB. A final report documenting the development
activities and functionality of the sensor validation system and the results of the validation
tests will be prepared and delivered to NASA LeRC. Presentation of these results will be
made at NASA LeRC and at NASA MSFC. Recommendations for continued sensor
validation system development, including requirements for developing a flight-capable
system, will be made and delivered based upon the demonstrated capabilities of the SDV
system.

Subtask 6.1 User's Manual

APD shall deliver to NASA LeRC a user's manual for the software installed at the TTB
site. The manual shall cover all aspects of the system's operation including remote
operation procedures.

Subtask 6.2 Software Documentation
APD shall deliver to NASA LeRC documentation for all developed software, including
documented source code, flow charts, and design documents.

Subtask 6.3 Final Report
APD shall deliver to NASA LeRC a final report describing the development activities,
results of the TTB validation tests, and suggestions for future work.

Subtask 6.4 Presentations
Presentation of the results documented in the final report will be made at NASA LeRC and
at NASA MSFC.

Subtask 6.0 Deliverables
APD shall deliver the documentation produced in Subtasks 6.1 - 6.3 to NASA LeRC by the
completion of this Subtask.

Subtask 7.0 (Option 1)

At the discretion of the NASA LeRC Task Manager, the sensor validation system will be
extended to monitor approximately 25 of the 97 sensors in Attachment A during the startup
transient. The software will be configured so as to provide continuous coverage of these 25
sensors from engine start until shutdown. Parameter models and model thresholds will be
provided to Aerojet by NASA LeRC. Aerojet shall evaluate the sensitivity of these models
with the same 50 training test firings used for mainstage model development and shall
integrate these models into the sensor validation system. The results of the sensitivity test
shall be documented and delivered. The same 50 test firings used to validate the mainstage
portion of the system will be used to validate the sensor validation system during the start
transient. System performance will be documented and delivered as previously described
for mainstage.
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Subtask 8.0 (Option 2) :

At the discretion of the NASA LeRC Task Manager, the sensor validation system will be
extended to monitor approximately 25 of the 97 sensors in Attachment A during the startup
transient. The software will be configured so as to provide continuous coverage of these 25
sensors from engine start until shutdown. Aerojet shall develop parameter models and
model thresholds using the same 50 test firings used for mainstage model development. A
complete description of each model used in the SDV network shall be delivered; as well as
information regarding the data used for model and threshold development. Aerojet shall
evaluate the sensitivity of these models with the same 50 test firings used for mainstage
model development and shall integrate these models into the sensor validation system. The
results of the sensitivity tests shall be documented and delivered. The same 50 test firings
used to validate the mainstage portion of the system will be used to validate the sensor
validation system during the start transient. System performance will be documented and
delivered as previously described for mainstage.

Y.2. Schedule & Milestones

Figure 23 outlines the projected schedule for the FY93-FY95 Real-Time SDV task.
Optional subtasks 7.0 and 8.0 were intentionally omitted from the schedule. A decision
regarding their implementation should be made by May 1, 1994, at which time tasks 3.8 -
6.4 will be delayed (into FY9S) to accommodate.
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Empirical Model Coefficients
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for FY92 Modeling Task
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.Binary relation, Linear fit coefficients.

PidX R.Mean
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.Binary relation, Linear fit coefficients. (Page 2 of 4)
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.Binary relation, Linear fit coefficients. (Page 3 of 4)

PidX R.Mean
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-5.71E+00
-1.93E+01
-1.98E+01
-4 .06E+00
1.35E-03
2.34E-02
1.34E-02
-7.66E+00
-6.05E-01
-1.47E+01
-5.80E+00
-1.22E+01
1.01E+00

5.62E+01
7.00E+01
1.03E+02
3.07E+01
2.98E+01
3.01E+01
4.55E+00
5.38E+00
4.46E+00
2.27E+01
1.98E+03
3.06E+01
7.36E+00
7.36E+00
7.36E+00
2.34E+00
4.05E+00
6.37E+00
3.06E-01
1.19E+00
6.77E-01
2.38E-01
1.23E+00
6.64E-01
2.38E+00
2.52E+00
2.78E+00
2.36E+00
2.50E+00
2.77E+00
3.35E+01
3.86E+01
3.74E+01
5.49E+01
5.75E+01
5.77E+01
6.36E+01
6.90E+01

8.47E+01

6.05E+02
4.49E+02
2.56E+02
1.35E-01
1.08E+00
1.28E+00
1.10E+02
1.86E+02
3.26E+02
1.39E+02
3.11E+02
1.97E+02

6.6748E+01
-6.1733E+01
-5.5721E+01
1.8714E+02
1.6523E+02
1.0854E+02
3.1860E+01
8.7912E+01
5.5747E+01
-1.6778E+02
-7.9473E+01
1.8579E+02
5.5833E+00
6.5431E+00
6.0043E+00
-1.8480E+01
6.3054E+01
~7.6084E+01
2.8014E+00
1.2327E+01
3.0702E+01
1.7168E+00
1.0777E+01
2.8566E+01
1.1720E+02
1.3049E+02
1.4905E+02
1.1701E+02
1.3023E+02
1.4904E+02
1.8923E+02
7.3597E+02
7.6758E+02
5.4257E+02
8.5214E+02
1.3575E+02
2.8361E+01

..4.2789E+01
4.7778E+01

-6.2031E+03
1.3093E+04
1.3057E+04
1.1699E+00
2.5494E+01
4.6224E+01
5.5275E+02

-9.2833E+03
1.1569E+02
3.8688E+02

-4 .2931E+01

-9.3276E+03

60

7.7542E-01
1.0980E+00
1.0830E+00
3.1693E-03
1.3845E+00
1.0850E-01

-4.9651E-03
-4.5901E~-02

4.6345E+00
7.2514E-01

=2.6943E+02
-1.5994E+00

4.0491E-03
1.1546E-04

-6.1257E-02

2.2000E+00
5.5542E+00
9.5423E-02
8.1476E-01
5.7721E-02
3.9803E-03
8.3921E-01
6.1194E-02
5.2249E-03
2.5016E-01
1.7063E-01
1.7657E-02
2.4935E-01
1.7014E-01
1.7275E-02
3.0263E+00

=3.6771E+00

3.2966E-01
2.7825E-01
5.4148E+00
3.7909E+00
2.0371E-01
7.3953E-01.
7.2934E-01
4.3075E+02
4.8965E+00
1.3609E+00
9.7916E-01
1.5668E-03
2.1146E-03
4.7008E+00
7.2534E-01
3.5746E+00
4.6454E+00
3.5318E+00
7.1663E-01



.Binary relation, Linear fit coefficients. (Page 4 of 4)

PidX R.Mean

5.36E-01
1.30E+00
1.51E-01
-1.31E-07
-1.49E+00
5.73E-01
-1.31E-07
-1.49E+00
5.73E-01

1.68E+01
2.33E+01
2.40E+01
4.00E-06
2.63E+01
2.41E+01
4.00E-06
2.63E+01
2.41E+01

-1.1456E+02
-1.1577E+02
-1.9540E+01
8.1380E-05
3.1971E+02
-5.5152E+02
8.1380E-05
3.1971E+02
-5.5152E+02

61

1.0992E+00
2.1263E-01
9.7305E-01
1.0000E+00
7.1927E-01
1.4818E+00
1.0000E+00
7.1927E-01
1.4818E+00



~n
&

.Binary relation, cubic fit coefficients. (Page 1 of 3)

PidX R.Mean

659 1.35e+01
17 -2.52e+01
133 -1.79€+01
42 -3.02E+00
260 -1.56E+00
133 -2.33e+00
42 -3,18e+00
260 -1.14E+00
133 -2.05E+00
53 -2.18E-01
371 -8.46E-01
90 -5.46E-02
17 -4.51E+00
436 -1.70e+00
457 3.84E+00
129 1.76E-01
371 -8.226-01
52 1.10E+00
334 1.10E+00
328 1.10E+00
59 9.86E-01
480 -4.86E+00
59 -3.04E+00
52 ~1.33e+00
175 3.55E-04
T64 -2.29E-02
133 -7.68E-02
32 -4.97E-01
93 ‘.295‘03
764 -1.22E-01
334 -3.76E-01
129 9.71E-01
480 -6.29E-01
371 -6.24E+00
17 2.33E+00
764 1.56E+00
436 1.15E+00
52 1.89€+00
764 2.40E+00
17 -9.37e-01
52 7.75e-01
764 1.17E+00
764 -1.37e+01
722 -1.92E+01
436 -3.328+01
'29 '309‘5"00
59 -7.036+00
1212 -5.85E+00
.30 2.20E+00
480 -3.29£+00
40 -2.62E-01

2.82E+02
6.126+01
6.24E+01
6.07TE+01
4 .49E4+01
4 ,60E+01
& .48E+01
1.87e+01
1.46E+01
1.12E+01
1.14E+02
7.69E+01
6.23E+01
2.16E+01
2.49E+01
&.16E+01
3.30e+01
3.306+01
4.21E+01
8.296+02
8.94E+01
1.01E+02
1.33e-01
9.49€-01
1.19E+00
7.23E+00
9.686+00
9.126+00
3.54E+01
&.69E+01
4.85E+01
1.19€+02
2.66E+02
1.08E+02
3.72E+01
7.51€+01
7.69E+01
4 .30E+01
5.26E+01
5.20€+01
2.09E+02
2.2TE+(2
1.T4E+02
6.42€+01
6.29E+01
6.44E+01
&, 76E+01
5.936+01
5.07e+01

5 5961E+04
-2.8711E+04
-4 .37T6E+04
-2.3029E+03
~4.5641E+03
=5.9086E+03

1.6693E+03
~2.4493E+03
-5.8292€+03

7.8807e+01
=2.0499E+02
=5.0735E+02
1.0966€+02
=5.7425E+02
2.0724€+03
1.0433€+02
-1.6735€+02
2.3596E+03
5.1002e+02
5.1002e+02
7.3474E+02
3.3921€+01
5.32226402
6.8227e+03
1.1290£+01
=1.9457E+02
=1.7709E+02
-5.1272E+02
5.3741€+02
=5.6975E+02
=6.4374E+02
1.1416E+03
=4, 7243E+02
~4 .684TE+02
1.0984€+04
4.1221€+04
-3.6763E+02
2.9022e+02
9.1963E+03
5.6335E+02
6.9704E+02
9.2676E+03
~2.9704E+04
-3.8603E+04
=3.0802E+04
-3.9698E+03
~4.4350E+03
=1.78486+03
1.5568€+02
2.4817403 -

62

C1

-2. 019ZE+03
3.80198+01
1.4238E+01
1.2953E+02
5.51046E-01
1.6615e+00

-6.9259E+01
3.0338E-01
1.5998€+00
8.35726-01
1.2146E+00
1.4235e+00
1.3020E+00
1.8940E+00

«5.2601E-01
9.5281E-01
1.2470E+00

=1.0039E+00
6.5828E-01
6.5828€-01
3.1814E-04
1.0747E+00
&.9761E-01

=3.6992E+00
4. 7383E-01
2.4518E-02
5.4224E-02
1.4700E-01

«9,4565E+00
7.0941E-02
2.44T3E+00
5.8040€-01
1.9458€+00
5.8328E+00

=5.9509€+00

-4.1270E+00
1.3238E+00
5.3860E-01

-8.8138¢€-01
5.1630E-01
2.7727e-01

-8.8859€-01
3.8171E+00
1.1361E+01
3. 449TE+01

3.1481E+01
-8.5447€-03
-9.5189€-04
-1.5203E+00
-1.6766€-05
=1.2170E-04

1.5663E+00

«7.7762€-06

-1.1483€-04

3.8660€-05
-9.4945E-05
-2.0321€-04

-9.0520€E-06

=1.6753E-04
4 .9638€-04
4.3807E-05
~8.2800€E-05
3.3798€-04
1.7164E-04
1.7164E-04
5.7192E-05
-3.3212€-05
1.9042E-05
9.3629€-04
7.8942€-03

-7.8676E-07

-3.9676E-06
=1.0445E-05
6.5840E-02
*2.1963€-06
'3.23“5'0‘
4 .9687E-04
~2.0542€-04
~4,.1958E-04
2.7134E-03

7.7278E+00 -2.4945E-03
2.5453E+00 -3.5216E-04
& .3244E+00 -7.3584E-04
1.73286+00 -3.8315E-04
5.1930E-01 -9.7529E-05
=1.3841E+02 3.1134E+00 -

-1.3229¢€-01
7.2206€-07
2.3059€-08
6.5610e-03
1.7516E-10
2.9694E-09

-8.6506€-03
7.2032¢e-11
2.7702E-09

-6.8499¢€-09
9.4072€-
1.7799¢-
3.7503€-
1.8134€E-

<4 .4053E-

~2.56443E-09
1.0171E-08

-2.3692E-08

=1.2169€-08

=1.2169E-08
~2.L4T6E-09
2.8986E-09

-2.4454E-10

=6.1404E-08

-3.7508E-05
8.8840€-12
9.8951€E-11
2.6027E-10

-1,3233E-04
2.3413e-11
2.8947€-08

-6.1768E-08
1.2870€-08
5.1964£-08

-2.5149€-07

~1.6092€-09
7.5718E-09

-4 .2065E-09

-3.2574E-10

=1.1547€-08

-7.4839E-09

-3.2764E-10

09
08
09
08
08




-Binary relation, cubic fit coefficients. (Page 2 of 3)

PidX R.Mean

.............................................................................

659
659
659
211
21
21
91

91

14

225
225
225
327
327
327
457
457
457
650
650
650

1017

1951

1.03€+00
-3.60E+00
-1.20E+00
-5.61E+01
-5.93e+01
-5.50e+01
-2.15-02
-8.44E-02
40 1.31E-01
30 -7.89£-02
480 -1.48e-01
129 -1.19e-01
30 -8.30E-02
129 -1.26E-01
480 -1.55€-01
225 5.98e+00
2.75E+01
21 3.26e-01
327 -7.07e+00
858 -1.13e+00
34 1.90e+01
21 5.04E-02
40 2.20¢-01
30 -6.69€-02
990 -7.19€-02
91 -5.40€-02
819 -4.99-02
328 -2.81E-02
129 1.80€-02
480 -6.14E-01
480 -1.186+00
90 -4.40E-01
328 -2.636-01
764 -1.58¢-02
722 -6.156-02
52 -1.09€-01
231 -6.49€+00
232 -1.01E+00
175 -6.72E-01
990 -7.17e-02
-3.43E-01

211 6.57e-02

1017 -4.81€-01
1021

1.238'01
1.16E+00
3.17e+00
334 2.98:+00
480 4.26E+00
52 -3.43E+00
436 -4.07e+00

17 -8.30€+00
764 -1.17e+00
659 -5.72€-02
232 -2.17e+00

18
129

4.23E+01
5.30e+01
4.19e+01
1.57c+03
1.58E+03
1.57e+03
5.52€-01
1.61E+00
1.47E+00
1.18E+00
1.16E+00

- 1. 14€+00

1.16E+00
1.17e+00
1.19€+00
2.06E+01
4 .50E+01
2.01E+01
3. 12E+01
2.24E+01
4 .49E+01
7.31E-01
1.89€+00
1.82E+00
6.12E-01
6.24E-01
7.29€-01
1.39+01
1.64E+01
5.62E+01
7.31E+01
7.59€+01
7.37E+01
1.40E+00
1.74E+00
2.08E+00
1.86E+01
1.36E+01
1 .44E+01
1.00£+00
1.39e+00
2.24E+00
9.27e-01
3.90E-01
8.79¢-01
8.80e+01
8.91e+01
9.26E+01
5.33e+01
7.00E+01
1.10E+02
3.02E+01
3.04E+01
3.00E+01

=2.1335+03
9.0938E+01
2.3131E+03
-9.9506E+02
«2.2450E+03
=1.9156€E+03
=1.2234E+02
~6.0439E+02
=1.9252E+02
-2.2098E+02
-2.4065E+01
=1.2116E+02
-2.1019E+02
=1.1490E+02
~2.2246E+01
4.1932E+04
2.8680E+05
2.641TE+02
=2, 7263E+03
2.6740E+02
2.9239E+03
2.5626E+02
*1.1637E+02
«5.9377E+02
-9.5508E+00
3.6509€+00
=8.1444E+00
-2.8534E+02
1.4613E+03
~2.6407E+02
~3.2644E+02
1.2716E+03
6.6017E+02
«1.1128E+02
.1 0707‘5402
=1.2539€+03
~7.9941E+02
-8.7893€+02
9.7311E+00
‘5 o°§25£’01
*1.4748E+02
=1.1610E+04
1.4449E+03
3.28636+02

. 1.3403£+03

~1.7979€+02

9.4709£+01
=1.3671E+03
<2.0691E+03
=1.3848E+03

-=5.2188E+02

-2.0071E+02
-3.87526+02

63

5.7480€-01
-1.2527e+02
1.73556+00
3.0496€+00
5.5106€-01
3.1551E+00
5.0427€-01
1.4241E+01
1.8863E-01
5.6079€-02
2.0534€-01
1.8136€-01
1.9767E-01
5.4551€-02
-3.9638E+03
-3.09606+04
=35.0969€+00
3.7467E+00
2.2443E+00
~9.1514E+00
<4.0273E+00
9.6629e+00
5.0027e-01
-1.3007e-01

-2.7187e+00

=3.0334e-01

-4, T224E-04
-1.1620E-04
2.7935e+00
~4.2692E-04
-9.0553E-04
-3.2413€-05
-1.1912e-02
-1.0898E-04
=1.7755€-01
~4 . 4176€E-05
-1.3323e-05
-8.0574E-05
-4 .2601E-05
-7.7579-05
=1.2934€-05
1.1780€+02
1.0455€+03
6.5234E-02
.1 052325'03
-2.8867€-02
9.7130€-03
3.0824€-02
-8.6911€-02
-1.0822€-04
1.2752€-02
1.6642€-01
9.6633e-03

1.27036+00 -8.3125€-05

-7.2088¢-01
1.0769€+00
1.6632e+00
3.5198e-01
9.4140-01

7.80026-04
-6.6233E-05
=3.4177€-05

4.8387E-04

2.9921E-04

1.5649€-02 -4,6284E-07
5.3144E-02 -3,7858E-06
9.5599€-02 -1.7168€-05

3.3092£+400 -2.5026€-03

2.0214€+00 -1.3739€-03

4 .6998€+01
1.4153E-01
-3.1115e+01

=6.7726E-01
2.3244€-02
-4 .2091E+00

2.1704E+00 -9.2430€-03
1.25226403 -4.2104E+01

-1.5486E402
-3.0218£+00

-9.1808€-01
8.9507¢e-01
5.7455€-01

1.7357e+00 -2.0863E-04

5.2620E+00
9.3182¢-03
8.1771E-04
-6.1215E-06
2.9481E-05

3.0080E+00 -5.8564E-04

2.4002E+00 -4.1602E-04
6.2184E-02 -1.5675E-06

4 .0038E-08
1.0024€-08
-1.6927e-02
5.3792E-08
1.0751E-07
7.9940E-10
1.9630€-05
7.9870€-09
7.6450E-04
3.5617-09
1.1271€-09
1.0889£-08
3.4525€-09
1.0519-08
1.0977e-09
=1.1179£+00
=1.1295e+01
=1.7725€-04
2.0500e-07
1.4446E-04
.3022055'“
=5.8718¢-05
2.1987€-04
8.0011e-09
-1.6282€-04
=2.8464E-03
1.6255e-04
8.3040E-09
=9.0049€-08
3.66336-09
-2.36356-10
~4.9441€-08
'30%15'“
5.27395'12
9.3875e-11
1.1026€-09
6.3597¢-07
3.22955'07
3.3387e-03
-4 .8TS6E-04
-1.7238¢-01
1.2508€E-05
4.5327e-01
=5.6936€-02
-8.9316E-06
=1.1088€-07
-4 .3803e-09
-5.8128€-09
1.4690E-08
5.7880€E-08
4.1959€-08
1.3148¢-11

8.4735€+00 -1.4111E-02 -2.0992E-04
1.05‘75+w ’6.02855-“

1.2868€-07



.Binary relation, cubic fit coefficients. (Page 3 of 3)

PidY PidX R.Mean

990
1021
1021
1021
1017
1017
1017
1058
1058
1058
1054
1054
1054
1188
1188
1188
1190
1190
1190
835
835
835
764
764
764
175
175
175
722
722
722
1205
1205
1205
N
n
37
328
328
328
334
334
334

225
18
31
225
18
1
21
93
1190
21
93
1190
21
1951
990
233
990
93
722
436
17
659
17
133
42
764
133
371
764
17
37
17
764
129
722
53
334
480
129
328
480
12

2.22€-01
1.13€-01
9051E'01
7.86E-01
-6.65€+07
1.08€+01
-7.66€-03
1.56€-02
-3.84£-02
1.95€-02
-1.26E+00
~4.71E+00
-1.226-01
-1.01e-01
-3.116-01
7.43€-02
1.28E-01
«1.92e-01
'30065.02
-3.40E-02
2.70€-01
~4.20E-02
-4-7&’02
2.64E-01
-3.316+00
-1.186+01
3.03e+00
-1.66E+01
5.31+00
3-85E'01
3.82¢-01
-4.19€+00
-6.316+00
1.46E+01
-2.25€+01
'10735’01
6.23€-05
-1.96€-02
=7.45€-02
-1.14E+01
-2.126+00
'1.“5"’00
‘7.905*00
3.35E+00
8.186-01
7.50€-01
1.99€+00
6.31€-01
3.47E-04
-2.68¢E-01
1.82E-01
3.47E-04
-2.68E-01
1.82€-01

4.60E+00
5.45E+00
7.18E+00
1.92E+01
7.47E+08
3.56E+01
7.36E+00
7.35E+00
7.39£+00
2.21E+00
3.77E+00
1. 14E+01
3.07e-01
1.13E+00
5.41E-01
1.70E-01
3.43E-01
4.38E-01
7.16E-01
7.20E-01
1.15€+00
6.98E-01
7.03e-01
1.14E+00
3.29e+01
4.04E+01
3.33e+01

6.46E+01

6.00E+01
5.86€+401
6.31E+01
6.63£401
8.02£+01
5, 12E402
&.76E+02
2.17E402
1.30€-01
9.35€-01
1.19€400
1.098+02
1.01E+02
2,69E+402
1.41E+02
2.62E402
1.11E+02
1.64E+401
2.35E401
2.426401
1.94E-04
2.24E401
2.07E+01

1.94E-04

2.24E+01
2.07E+01

co

2.4788E+02
-4.9176€E+02
-1.8709E+01
3.9170E+02
=1.7269E+05
2.4681E+03
=2.2714E+01
-1.8438E+01
7.9617€-01
-5.5124E+00

"= 1.4806E+02

-6.1933€+02
=2.4361E+03
~2.T493E+02
=2.0728€+02
=5.5525€+02
-7.1942E+01

. +1,5554E+402
' -6.6038£+02

-6.2255E+02
<4 1T44E+02
<6, 7991E+02
1<6.3731E+02

~4.2017E+02
=7.3344E+03
=3. 1135403
7.2107e+02
=3.1558€+03
7.7086E+02
4. 1896E+03
=1.0265E+03
1.5548E+02
7.3972E+02
5.8636E+04
-2.6122E+04
-4 .0964E+04
=9.2674E+00
-2.0151E+02
=1.8009€+02
9.6896E+02
4 .3345E+04
1.2425€+04
4.1626€+02
1.1941E+04
4.3395E+04
4.7155E+02
1.4643E+02
4 .8876€+02
<5.8755€-03
+4.9303E+01
1.9389€+03
-5.8755E-03
<4 .9303E+01
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c1

-1.8874E-01
1.1084E+00
-9.9403E+00
-1.6913E+00
4 .699TE+04
-1.5689€+02
3.5844E-01
2.1580€-01
-2.1525E+00
6.8782€E-01
-8.1164E+01
2.8271E+00
2.3016E+02
2.4063E+00
4.9951€-01
5.2694E+01
6.0564E-01
3.7560€-01
1.3802E+01
1.2271E+01
1.8851E+00
1.4214E+01
1.2566E+01
1.8964E+00
1.5667€+02
-1.3878€+03
3.6779E+00
1.0417E+01
1.8602€+01
-8.0644E+01
4.1715e-01
& .T7224E-01
-1.0329€-02
-2.1189€+03
3.5857+01
1.3585E+01
1.4152E+00
2.5210E-02
5.4913E-02
4.1943E+00
~4,3520E+00
«7.1589£+00
& . T066E+00
«6.8474E+00
«4 . 3449E+00
4 .4346E-01
1.5087e-01
3.9258E-01
1.0000E+00
9.1234E-01
-1.2082E+00

c2

5.1099€-05
=7.4935E-04
-3.1916€-02
-1.8672E-04
=5.3051€+03
3.2419€+00
=1.4698E-03
=6.1634E-04
=2.7240E-01
2.3851E-02
-1.1513E+01
-4 .0396€-03
«6.7423E+00
-6.0037€-03
~3.3663E-04
-1.5079€+00
-1.0323e-03
-2 o“°1E'°‘
~7.6796€E-02
-6.3666E-02
-2.0287€-03
=7.9555€-02
-6.5545€-02
~2.0444£-03
~9.9426E-01
=1.6064E+02
4 .0670E-01
-9.1398€-03
-4 .2332€-01
5.4454E-01
-1.3988€-05
1. 1799€-04
2.4156€-04
3.2695E+01
=7.9629€-03
-9.0300£-04
+6.0123E-03
-8.0957e-07
-4.0219€-06
1.9786E-04
1.6171E-04
3.0489€-03
-6.3951E-05
2.9289€-03
1.6037E-04
2.3809€-04
& .7674E-06

2.1583E-04 _

-1.5959€-09
-2.5353€-05

c

-4.6515€-09
1.5923e-07
6.9183€E-02
7.0389€-06
4.6228E+04

-2.1413e-02
2.0190E-06
5.8292e-07

-1.1562e-02
9.7821E-04

-4.9631E-01
1.8606E-06
6.3436€E-02
4.8780£-06
7.5003e-08
1.4024E-02
4 .9995€-07
5.2847e-08
1.4222E-04
1.1001E-04
7.2605e-07
1.4812E-04
1.1383e-04
7.3270-07
2.0732E-03

«6.0727E+00

=1.6595€-02
2.7125e-06
1.4197e-03

-1.1173e-03
2.9807E-10

-1.4230£-08

*2.4650E-08

-1.3719e-01
6.7069€-07
2.1857E-08
2.7398E-05
9.1205E-12
1.0026E-10

-2.4852€-08

=1.7024E-09

«2.8231€-07
1.2976E-08

~2.6961E-07

-1.6793¢-09

-2.8246E-08

-1.2077e-10

~2.6161E-08
1.5661E-13

3.7728E-10

1.0086€-03 -1.1966E-07
1.0000E+00 -1.5959€-09 1.5661E-13
9.1234E-01 -2.5353E-05 3.7728E-10
1.9389€+03 -1.2082E+00 1.0086€-03 -1,1966€-07
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characteristic Relation

Fac Fuel Flow/ Lpfp Spd = constant
PID 1205 : Fac Fuel Flow

PID 32 : Lpfp Spd

Characteristic Curve Fit

$#1. PID 1205 = cl * PID 32

$2. PID 32 = cl1 * PID 1205

Y Y L Ll g - ey - - @ G e ED T AP = - -

Characteristic Relation
Fac LOX Flow/ lpop Spd = constant

Fac 1LOX Flow
Lpop Spd

PID 1212
PID 30

characteristic Curve Fit
$3. PID 1212 = ¢l * PID 30
$4. PID 30 = cl * PID 1212

Characteristic Relation
Fac Fuel Flow/ Hpfp Spd = constant

PID 1205 : Fac Fuel Flow
PID 260 : Hpfp Spd

Chafacteristic Curve Fit
§5. PID 1205 = ¢l * PID 260
j§6. PID 260 = cl * PID 1205

characteristic Relation
(Lpop Ds P - Eng Ox In P)/ (Lpop Spd)~2 = constant

PID 209 : Lpop Ds P

PID 858 : Eng Ox In P

PID 30 : Lpop Spd

Characteristic Curve Fit

$7. PID 209 = ¢cl1 +* PID 858 + c2 * PID 3072
{§8. PID 858 = ¢l * PID 209 + c2 * PID 3042
$9. PID 3022 = ¢l * PID 209 + c2 * PID 835

Characteristic Equations (Page 1 of 3)
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characteristic Relation
(Hpfp In P - Eng Fuel In P)/ (Lpfp Spd)~2 = constant

PID 203 : Hpfp In P

PID 819 : Eng Fuel In P

PID 32 ¢ Lpfp Spd

Characteristic curve Fit :

#10. PID 203 = cl * PID 819 + c2 * PID 32~2
#11. PID 819 = cl * PID 203 + c2 * PID 3272
#12. PID 32~2 = c1 * PID 203 + c2 * PID 819

Characteristic Relation
(Hpfp Ds P - Hpfp In P)/ (Hpfp Spd)~2 = constant

PID 52 : Hpfp Ds P

PID 203 : Hpfp In P

PID 260 : Hpfp Spd

Characteristic Curve Fit

#13. PID 52 = ¢cl1 * PID 203 + c2 * PID 26072
$14. PID 203 = cl1 * PID 52 + c2 * PID 26072
$15. PID 26022 = cl1 * PID 52 + ¢c2 * PID 203

Characteristic Relation
(Hpop Ds P - Mcc Pc)/ (Fac LOX Flow)~+2 = constant

PID 90 ¢ Hpop Ds P

PID 129 : Mcc Pc

PID 1212 : Fac 10X Flow

Characteristic Curve Fit

$16. PID 90 = ¢l * PID 129 + ¢c2 * PID 121242
#17. PID 129 = ¢l * PID 90 + ¢c2 * PID 121242
$18. PID 121222 = ¢l * PID 129 + c2 * PID 90

Characteristic Equations (Page 2 of 3)
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characteristic Relation
(Mcc Cool Ds P - Lpft In P)/ (Lpfp Spd)~2 = constant

PID 17 ¢ Mcc Cool Ds P

PID 436 : Lpft In P

PID 32 : Lpfp Spd

Characteristic Curve Fit

#19. PID 17 = ¢l * PID 436 + c2 * PID 32722
$20. PID 436 = ¢l * PID 17 + ¢2 * PID 32~2
$#21. PID 3242 = ¢l * PID 17 + ¢2 * PID 436

Characteristic Relation
(Hpop Ds P - Lpop Ds P)/ (Lpop Spd)“~2 = constant

PID 90 ¢ Hpop Ds P

PID 209 : Lpop Ds P

PID 30 ¢ Lpop Spd

Characteristic Curve Fit

#22. PID 90 = c1 * PID 209 + c2 * PID 30~2
#23. PID 209 = cl1 * PID 90 + c2 * PID 3072
#24. PID 3042 = cl * PID 90 + c2 * PID 209

- Characteristic Equations (Page 3 of 3)
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Characteristic Curve Fit

PID 1205 = cl1 * PID 32
R.Mean R.Sigma C1
-2.01E+04 5.34E+02 2.2997E+00

PID 32 = cl * PID 1205
R.Mean R.Sigma c1
8.88E+03 2.36E+02 4.2643E-N1

PID 1212 = cl1 * PID 30
R.Mean R.Sigma C1
-3.14E+03 1.04E+02 1.7452E+00

PID 30 = ¢l * PID 1212
R.Mean R.Sigma C1
1.82E+03 5.99E+01 5.6952E-01

PID 1205 = cl * PID 260
R.Mean R.Sigma C1
-9.52E+03 1.77E+02 7.2141E-01

PID 260 = cl1 * PID 1205
R.Mean R.Sigma €1
1.35E+04 2.42E+02 1.3679E+00

PID 209 = ¢l * PID 858 + ¢2 * PID 3072
R.Mean R.Sigma cC1 c2
1.30E+02 4.65E+00 8.8237E-01 5.5824E-06

PID 858 = cl1 * PID 209 + c¢2 * PID 3042
R.Mean R.Sigma C1 Cc2
-1.45E+02 5.24E+00 1.1241E+00 -6.2909E-06

PID 3022 = cl1 * PID 209 + ¢c2 * PID 835
R.Mean R.Sigma C1 Cc2
-8.11E+05 8.18E+05 ~1.5730E+04 1.0035E+04

PID 203 = ¢c1 * PID 819 + c2 * PID 3242
R.Mean R.Sigma (o3 § c2
1.20E+02 5.99E+00 8.1231E-01 4.0383E-07

PID 819 = cl1 * PID 203 + c2 * PID 3242
R.Mean R.Sigma Ccl Cc2
-8.49E+01 4.86E+00 8.2134E-01 -3,.7517E-07

PID 32722 = ¢c1 * PID 203 + c2 * PID 819

R.Mean R.Sigma C1 " C2 .
-2.29E+08 1.22E+07 2.1677E+06 -1.9919E+06
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Characteristic Curve Fit

PID 52 = cl * PID 203 + ¢c2 * PID 26072
R.Mean R.Sigma C1 Cc2
-1.04E4+02 8.64E+01 3.8817E+00 4.3224E-06

PID 203 = cl1l * PID 52 + c2 * PID 26072
R.Mean R.Sigma C1 c2
1.17E4+02 1.23E401 1.1268E-01 -4.6910E-07

PID 26022 = ¢l * PID 52 + c2 * PID 203
R.Mean R.Sigma cC1 c2
-7.46E+06 1.85E+07 2.2549E+05 -6.0593E+05

PID 90 = ¢l * PID 129 + c2 * PID 1212~2
R.Mean R.Sigma C1 c2
-3.09E+02 1.46E+01 1.2849E+00 1.0587E-05

PID 129 = cl1 * PID 90 + c2 * PID 1212~2
R.Mean R.Sigma C1l c2
2.97E+02 1.15E+01 7.3620E-01 -4.9742E-06

PID 121222 = cl * PID 129 + c2 * PID 90
R.Mean R.Sigma C1 c2
-7.90E+06 5.46E+05 -2.3705E+04 2.8726E+04

PID 17 = ¢l * PID 436 + c2 * PID 32~2
R.Mean R.Sigma C1 c2
2.57E+01 4.66E+01 1.0444E+00 -6.7441E-07

PID 436 = ¢l * PID 17 + c2 * PID 3272
R.Mean R.Sigma C1 Cc2
-4.,36E+01 4.53E+01 9.3310E-01 1.169BE-06

PID 3272 = cl1 * PID 17 + c2 * PID 436
R.Mean R.Sigma C1 Cc2
4.74E4+07 5.61E+06 -2.7127E+03 4.7162E+04

PID 90 = cl1 * PID 209 + c2 * PID 30*2
R.Mean R.Sigma .C1 Cc2
-1.10E+02 8.62E+01 9.6030E-01 1.4262E-04

PID 209 = c1 *# PID 90 + c2 * PID 3072
R.Mean R.Sigma cC1 c2
1.68E+02 5.89E+01 6.7809E-01 -9.5686E-05

PID 3042 = cl1 * PID 90 + c2 * PID 209

R.Mean R.Sigma cC1 C2
8.03E+05 6.04E+05 6.9911E+03 -6.5952E+03
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