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Abstract

During the last phase of the project, emphasis has changed to flexible space robotics,
by mutual agreement between Dr. R. C. Montgomery, NASA Technical Officer, and the
Principal Investigator.

Significant advances have been achieved over the period covered by this report. Research
has been concerned with two main subjects: 1) the maneuvering and control of freely floating
flexible space robots and 2) the development of a theory for the motion of flexible multibody
systems. Work on the first subject has resulted in two papers, both of them concerned with
planar maneuvers. The first is concerned with the maneuvering and delivery of a payload
to a certain point and in a certain orientation in space. The second is concerned with
the docking maneuver with a target whose motion is not known a priori. Both papers will
appear in the Journal of Guidance, Control, and Dynamics. The second subject is concerned
with the development of hybrid (ordinary and partial) differential equations for the three-
dimensional motion of flexible multibody systems, a subject of vital interest in flexible space
robotics. The paper will appear in the Journal of Guidance, Control and Dynamics in an
issue dedicated to the memory of Lawrence W. Taylor, Jr.

Abstracts and copies of the papers are hereby included.



1. Meirovitch, L. and Lim, S., “Maneuvering and Control of Flexible Space Robots,” NASA
Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems,
Williamsburg, VA, June 8-10, 1992. Also Journal of Guidance, Control, and Dynamics
(in press).

This paper is concerned with a flexible space robot capable of maneuvering payloads.
The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-
effector holding a payload; the robot is mounted on a rigid platform floating in space.
The equations of motion are nonlinear and of high order. Based on the assumption that
the maneuvering motions are one order of magnitude larger than the elastic vibrations, a
perturbation approach permits design of controls for the two types of motion separately. The
rigid-body maneuvering is carried out open loop, but the elastic motions are controlled closed
loop, by means of discrete-time linear quadratic regulator theory with prescribed degree of
stability. A numerical example demonstrates the approach. In the example, the controls
derived by the perturbation approach are applied to the original nonlinear system and errors

are found to be relatively small.

2. Chen, Y. and Meirovitch, L., “Control of a Flexible Space Robot Executing a Docking
Maneuver,” AAS/AIAA Astrodynamics Conference, Victoria, B.C., Canada, August 16-

19, 1993. Also Journal of Guidance, Control, and Dynamics (to appear).

This paper is concerned with a flexible space robot executing a docking maneuver with a
target whose motion is not known a priori. The dynamical equations of the space robot are
first derived by means of Lagrange’s equations and then separated into two sets of equations
suitable for rigid-body maneuver and vibration suppression control. For the rigid-body
maneuver, on-line feedback tracking control is carried out by means of an algorithm based
on Liapunov-like methodology and using on-line measurements of the target motion. For the
vibration suppression, LQR feedback control in conjunction with disturbance compensation
is carried out by means of piezoelectric sensor/actuator pairs dispersed along the flexible
arms. Problems related to the digital implementation of the control algorithms, such as
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the bursting phenomenon and system instability, are discussed and a modified discrete-time
control scheme is developed. A numerical example demonstrates the control algorithms.

3. Meirovitch, L. and Stemple, T. “Hybrid Equations of Motion for Flexible Multibody
Systems Using Quasi-Coordinates,” AJAA Guidance, Navigation, and Control
Conference, Monterey, CA, August 9-11, 1993. Also Journal of Guidance, Control, and
dynamics - Issue dedicated to L. W. Taylor, Jr. (to appear).

A variety of engineering systems, such as automobiles, aircraft, rotorcraft, robots,
spacecraft, etc., can be modeled as flexible multibody systems. The individual flexible bodies
are in general characterized by distributed parameters. In most earlier investigations they
were approximated by some spatial discretization procedure, such as the classical Rayleigh-
Ritz method or the finite element method. This paper presents a mathematical formulation
for distributed-parameter multibody systems consisting of a set of hybrid (ordinary and
partial) differential equations of motion in terms of quasi-coordinates. Moreover, the
equations for the elastic motions include rotatory inertia and shear deformation effects.

The hybrid set is cast in state form, thus making it suitable for control design.



MANEUVERING AND CONTROL OF FLEXIBLE SPACE ROBOTS!

Leonard Meirovitch* and Seungchul Lim**
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT

This paper is concerned with a flexible space robot capable of maneuvering payloads.
The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector
holding a payload; the robot is mounted on a rigid platform floating in space. The equations
of motion are nonlinear and of high order. Based on the assumption that the maneuvering
motions are one order of magnitude larger than the elastic vibrations, a perturbation ap-
proach permits design of controls for the two types of motion separately. The rigid-body
maneuvering is carried out open loop, but the elastic motions are controlled closed loop, by
means of discrete-time linear quadratic regulator theory with prescribed degree of stability.
A numerical example demonstrates the approach. In the example, the controls derived by
the perturbation approach are applied to the original nonlinear system and errors are found

to be relatively small.

1. INTRODUCTION

A variety of space missions can be carried out effectively by space robots. These mis-
sions include the collection of space debris, recovery of spacecraft stranded in a useless orbit,
repair of malfunctioning spacecraft, construction of a space station in orbit and servicing the
space station while in operation. To maximize the usefulness of the space robot, the manip-
ulator arms should be reasonably long. On the other hand, because of weight limitations,

they must be relatively light. To satisfy both requirements, the manipulator arms must be
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highly flexible. Hence, space robots share some of the dynamics and control technology with

articulated space structures.

Robotics has been an active research area for the past few decades, but applications
have been concerned primarily with industrial robots, which are ground based and tend to
be very stiff and bulky. In contrast, space robots are based on a floating platform and tend
to be highly flexible. Hence, whereas industrial and space robots have a number of things
in common, the differences are significant. More recent investigations have been concerned
with flexible industrial robots.!™* On the other hand, some investigations are concerned
with space robots consisting of rigid links.>~7 Research on flexible space robots has come
to light only recently.®®

This paper is concerned with a flexible space robot capable of maneuvering payloads.
The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector
holding a payload; the robot is mounted on a rigid platform floating in space (Fig. 1). The
platform is capable of translations and rotations, the flexible arms are capable of rotations
and elastic deformations and the end-effector/payload can undergo rotations relative to the
connecting flexible arm. Based on a consistent kinematical synthesis, the motions of one body
in the chain takes into consideration the motions of the preceding body in the chain. This
permits the derivation of the equations of motion without the imposition of constraints. The
equations of motion are derived by the Lagrangian approach. The equations are nonlinear
and of relatively high order.

Ideally, the maneuvering of payloads should be carried out without exciting elastic vi-
bration, which is not possible in general. However, the elastic motions tend to be small
compared to the rigid-body maneuvering motions. Under such circumstances, a perturba-
tion approach permits separation of the problem into a zero-order problem (in a perturbation
theory sense) for the rigid-body maneuvering of the space robot and a first-order problem
for the control of the elastic motions and the perturbations from the rigid-body motions.
The maneuvering can be carried out open loop, but the elastic and rigid-body perturbations
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are controlled closed loop.

The robot mission consists of carrying a payload over a prescribed trajectory and plac-
ing it in a certain orientation relative to the inertial space. For planar motion, the end-
effector/payload configuration is defined by three variables, two translations and one rota-
tion. At the end of the mission, the vibration should be damped out, so that the robot can
be regarded as rigid at that time. Still, the rigid robot possesses six degrees of freedom,
two translations of the platform and one rotation of each of the four bodies, including the
platform. This implies that a kinematic redundancy exists. This redundancy can be used to
optimize the robot trajectory!® in the context of trajectory planning. A simpler approach is
to remove the redundancy by imposing certain constraints on the robot trajectory, such as
prescribing the motion of the platform.!! Then, for a given end-effector/payload trajectory,
the rigid-body maneuvering configuration of the robot can be obtained by means of inverse
kinematics. Finally, the forces and torques required for the robot trajectory realization are
obtained from the zero-order equations by means of inverse dynamics.

The first-order equations for the elastic motions and the perturbations in the rigid-body
maneuvering motions are linear, but of high order, time-varying and they are subjected
to persistent disturbances. The persistent disturbances arise from the zero-order solution,
and hence are known; they are treated by means of feedforward control. All other distur-
bances are controlled closed loop, with the feedback control being designed by means of
discrete-time linear quadratic regulator (LQR) theory with prescribed degree of stability. A
numerical example demonstrates the approach. In the example, the controls derived by the
perturbation approach are applied to the original nonlinear system and the errors in the end
effector/payload configuration were found to be relatively small during the maneuver and to

vanish soon after the termination of the maneuver.

2. A CONSISTENT KINEMATICAL SYNTHESIS

To describe the motion of the space robot, it is convenient to adopt a consistent kine-
matical synthesis whereby the system is regarded as a chain of articulated flexible bodies and
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the motion of one body is defined with due consideration to the motion of the preceeding
body in the chain. Figure 1 shows the mathematical model of a planar space robot. The
robot consists of a rigid platform (Body 1), two hinge-connected flexible arms (Bodies 2 and
3) and a rigid end-effector holding the payload (Body 4). The various motions are referred
to a set of inertial axes and sets of body axes to be defined shortly.

The object is to derive the system equations of motion, which can be done by means of
Lagrange’s equations in terms of quasi-coordinates.!? Because in the case at hand the motion
is planar, it is more expedient to use the standard Lagrange’s equations. This requires the
kinetic energy, potential energy and virtual work. The kinetic energy, in turn, requires the
velocity of a typical point in each of the bodies.

The position of a nominal point on the platform is given by
Ri=Ro+n (1)

where Ry = [X Y]T is the position vector of the origin O of the body axes z;,y; (Fig. 1)
relative to the inertial axes X,Y and in terms of X,Y components and r; = [z yl]T is the
position vector of the nominal point on the platform relative to the body axes z;,y; and in
terms of z1,y; components. The velocity vector of a point on the platform can be expressed

in terms of z,,y; components as follows:

V= 01R0 + @1y (2)
where
_ 691 801
C]' - [—801 691] (3)
is a matrix of direction cosines between axes r1,y1, and X,Y, in which s6; = siné,, cf; =
cos 01,
. . 3T
Ry = [X Y] (4)

is the velocity vector of O; in terms of X,Y components and

a=(p 3 )
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The second body is flexible, so that we must resolve the question of body axes. We
define the body axes z3,y; as a set of axes with the origin at the hinge O3 and embedded in
the undeformed body such that z; is tangent to the body at Oz (Fig. 2). Then, we define
the motioq of axes Z3,y; a3 the rigid-body motion of Body 2 and measure the elastic motion
relative to z2,y;. Hence, the velocity of a point on Body 2 (first flexible arm) in terms of

z3,Yy2 components is
V3 =C2-1V1(02) + @2 (rz2 + uz) + Uyl
=C3Ro + Co—10111 (02) + &2 (r3 + uz) + U, (6)
where C;_1 and C; are matrices similar to Cp, Eq. (3), except that 4, is replaced by §;—6; and
84, respectively, &, has the same structure as &; but with 8, replacing 91, r1(02) = [dy hl]T,
r; = [z2 O]T, uz = [0 ug]T and 4, = [0 3], in which up = uz(z3,t) and 4 = i3 (z2,t)
are the elastic displacement and velocity, respectively.

Using the analogy with Body 2, the velocity of a point on Body 3 (second flexible arm)

in terms of z3,y3; components can be shown to be

Vi =C3-2V3 (L2) + @3 (r3 + u3) + Uypg
=C3Rq + C3_18111 (O2) + C-a {2 [r2 (L2) + 2 (L2, 8)] + Gyp) (L2, 1)}
+ @3 (r3 +u3) + Uy (7)
The fourth body consists of the end-effector and payload combined, and is treated as
rigid. Following the established pattern, the velocity of a point on Body 4 in terms of z4,y4
components is
Vy =Cy—3V3(L3) + dyry
=CyRq + C4_18111 (02) + Cuma {@2 [r2 (L2) + vz (L2,8)] + tiype (L2,1)}
+ Cucs {@3 [rs (Ls) + 3 (L3, )] + tyre] (L3, )} + Dary 8)
The consistent kinematical synthesis just described permits the formulation of the equa-

tions of motion for the whole system without invoking constraint equations. Such constraint
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equations must be used to eliminate redundant coordinates in a formulation in which equa-

tions of motion are derived separately for each body.

3. SPATIAL DISCRETIZATION OF THE FLEXIBLE ARMS

The velocity expressions derived in Sec. 2 involved rigid-body motions depending on
time alone and elastic motions depending on the spatial position and time. Equations of
motion based on such formulations are hybrid, in the sense that the equations for the rigid-
body motions are ordinary differential equations and the ones for the elastic motions are
partial differential equations. Designing maneuvers and controls on the basis of hybrid
differential equations is likely to cause serious difficulties, so that the only viable alternative
is to transform the hybrid system into one consisting of ordinary differential equations alone.
This amounts to discretization in space of the elastic displacements, which can be done by
means of series expansions. Assuming that the flexible arms act as beams in bending, the
elastic displacements can be expanded in the series

n;
ui (2i,t) = 21 dij (zi)mij (1) = & (@) mi (1), i=2,3 (9)
j=
where @;; (z;) are admissible functions, often referred to as shape functions, and n;; (t)
are generalized coordinates (i = 2,3; j = 1,2,...,n;); ¢; and 7, are corresponding n;-
dimensional vectors.

The question arises as to the nature of the admissible functions. Clearly, the object is to
approximate the displacements with as few terms in the series as possible. This is not a new
problem in structural dynamics, and the very same subject has been investigated recently in
Ref. 13, in which a new class of functions, referred to as quasi-comparison functions, has been
introduced. Quasi-comparison functions are defined as linear combinations of admissible
functions capable of satisfying the boundary conditions of the elastic member. As shown in
Fig. 2, the beam is tangent to axis z; at O; (i = 2,3). Hence, the admissible functions must
be zero and their slope must be zero at z; = 0. At z; = L;, the displacement, slope, bending
moment and shearing force are generally nonzero. Quasi-comparison functions are linear
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combinations of functions possessing these characteristics. Admissible functions from a single
family of functions do not possess the characteristics, but admissible functions from several
suitable families can be combined to obtain them. In the case at hand, quasi-comparison
functions can be obtained in the form of suitable linear combinations of clamped-free and

clamped-clamped shape functions.

4. LAGRANGE’S EQUATIONS

Before we can derive Lagrange’s equations, we must produce expressions for the ki-
netic energy, potential energy and virtual work. To this end, and following the spa-
tial discretization indicated by Eqs. (9), we introduce the configuration vector q(t) =
[(X(t) Y(t) 01() 62(2) 63(t) 85(t) m3 (2) n{(t)]T so that the velocity vectors, Egs. (2), (6)-

(8), can be written in the compact form

Vi=D;q, :=1,2,3,4 (10)
where
cy s6, —-y1 0 ... oOF
Dl—[—301 c#; z, 0 ... 0T

by 30, dis(fz—6y)—hic(63—061) —éin, 0 0 0o oF
D2 = T T (11)
—36; by dlc(az - 91) + hys (02 - 01) ) 0 0 ¢2 0

..............................................

Then, the kinetic energy is simply

4
T = 12 Vividm,; = quMq (12)
2 = Jm, 2
where
4
M =Y | DIDidm; (13)
=1

is the mass matrix. Typical entries in the mass matrix are

my =m, myg =0, myz = — (mg + m3 + my) (h1cb; + dys6;)
mi4 = — [$§ +(m3 +my) $7 (L2)] 2682 — [S2 + (M3 + my) L] 6,
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..............................................

—T
s = ~ 87 + mad] (La)] o6
maz = m, moy = — (ma + m3 + my) (k1361 — dich) (14)

..............................................

..............................................

mas = [y 5 $1954ms + sy (L) 85 (L)
in which
4 —
m=3"mi, &= [ ¢dmi, i=23, S; =/ zidmg, i =1,2,3,4 (15)
=1 mi m;

The potential energy, assumed to be entirely due to bending, has the form
4 L 2 L
V= E‘/(; 2E12 [u" (.’Bz,t)] dmz + %/0 ? EI3 [u'3' (.’Bg,t)]z d.'1:3 = %qTKq (16)
=1
in which EI; (i = 2,3) are bending stiffnesses and primes denote spatial derivatives. More-

over,

K = block-diag [0 K7 K3 (17)

is the stiffness matrix, where
L n T .
Kg:/; EL! ¢! Tdz;, i =2,3 (18)

are stiffness matrices for the flexible arms.

Next, we propose to derive the virtual work expression. To this end, we must specify first
the actuators to be used. There are three actuators acting on the platform, two thrusters
F;) and Fy; acting at O; in directions aligned with the body axes and a torquer M;. Three
other torquers My, M3 and M, are located at the hinges O3, O3 and Oy, respectively, the first
acting on the platform and first arm, the second acting on the first and second arm and the
third acting on the second arm and end-effector. Moreover, there are torquers Ms, Mg, My
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and Mj acting at z3 = L3/3, z2 = 2L2/3, z3 = L3/3 and z4 = 2L3/3, respectively. In view

of this, the virtual work can be written as follows:

W =Fz1 (co8 616X + 8in 618Y) + Fy1 (—sin 616X + cos 6,8Y) + M,66,
+ M8 (62— 01) + MsSbs + MySpy + M3 (62 + ¢F (L2/3) my)
+ Ms6 [62 + 67 (2L2/3) o] + M6 [65 + 6 (Ls/3) ]

+ Mg [63 + ¢ (2L3/3) m5) (19)

where §X,6Y,... are virtual displacements. Moreover, denoting the angles between the two

arms and between the second arm and the end-effector by

ou
o=y = 62— 22| =0s—0— o7 (La)my
Ju
s =04 — 03 — B—zz pymly ~ 04— 03— &7 (Ls)ms (20)
we can write
by = 603 — 602 — @ (L2) 6my, s — 663 — 5 (L3) 673 (21)

Inserting Eqgs. (21) into Eq. (19), we can express the virtual work in terms of generalized

forces and generalized virtual displacements in the form

§W = QTsq (22)

where Q = [Fx Fy ©, ©; 03 9, NT N{]T is the generalized force vector, in which

Fx = Fyico860y — Fy18in8;, Fy = F;z18in6; + Fy1 cos 4,

01 =M - M;, O =M; — Mz + M3+ Ms + Ms

O3 =M; — My+ M7+ Mg, O, =M, (23)
No = —M35 (L2) + Msdy (La/3) + Msdy (2L2/3)

N3 = —My¢3 (L3) + Mgy (L3/3) + Msoy (2L3/3)
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T
and éq = [EX §Y 68, 66, 605 604 67){ 611%‘ is the generalized virtual displacement vector.
Equations (23) express the generalized forces and torques in terms of the actual actuator

forces and torques and can be written in the compact form
Q=EF (24)

where F = [Fy; Fpy Mi M, ... Mg]T is the actual control vector and

E=E(8)=
[c; —31 0 O 0 0 0 0 0 0

s1 ¢ 0 O 0 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 0 0 1 -1 0 1 1 0 0

0 0 0 O 1 -1 0 0 1 1

0 0 0 O 0 1 0 0 0 0

0 0 0 0 -gm) o &(2) (X o 0

0 0 0 0 0 —g) O o & (2) a(B)

(25)

where 31 = sinf, ¢; = cos§;. Note that F is a time-varying coeflicient matrix, because 4,
varies with time.

Lagrange’s equations can be expressed in the general symbolic vector form
d (0T or ov
=)=y = 26
(5) =% 29

Observing that M = M (q), we can write

oT . d (0T . X
i =4 5 (5) - Ma o
oT _1.70M. 8V _

= —=K 27

Inserting Eqs. (27) into Eq. (26), we obtain Lagrange’s equations in the more explicit form

. e 1.p0MY .
M M- —qf =— +Kq=Q 28
4 ( 24 aq)q d (28)
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in which

a7 oM /dq;
. 6+2n aM aM T@M 6
M= oM gt | 4 /0q2 29
4T OM[3gs+2n

5. A PERTURBATION APPROACH TO THE CONTROL DESIGN

Equation (29) represents a high-order system of nonlinear differential equations, and is
not very suitable for control design. Hence, an approach capable of coping with the problems
of high-dimensionality and nonlinearity is highly desirable. Such an approach must be based
on the physics of the problem. The ideal maneuver is that in which the robot acts as if
its arms were rigid. In reality, the arms are flexible, so that some elastic vibration is likely
to take place. It is reasonable to assume, however, that the elastic motions are one order
of magnitude smaller that the maneuvering motions. This permits treatment of the elastic
motions as perturbations on the maneuvering motions. In turn, the elastic perturbations give
rise to perturbations in the “rigid-body” maneuvering motions. This suggests a perturbation
approach, whereby the problem is separated into a zero-order problem for the “rigid-body”
maneuvering of the payload and a first-order problem for the control of the elastic motions
and the perturbations in the rigid-body maneuvering motions. The zero-order problem is
nonlinear, albeit of relatively low dimension. It can be solved independently and the control
can be open loop. On the other hand, the first-order problem is linear, but of relatively high
dimension. It is affected by the solution to the zero-order problem, where the effect is in the
form of time-varying coefficients and persistent disturbances. The control for the first-order
problem is to be closed loop.

We consider a first-order perturbation solution characterized by

q=qo+4q;, Q=Qo+Q (30)

where the subscripts 0 and 1 denote zero-order and first-order quantities, with the zero-order
quantities being one order of magnitude larger than the first-order ones. Inserting Eqgs. (30)
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into Eq. (28), separating quantities of different orders of magnitude and ignoring terms of

order two and higher, we obtain the equation for the zero-order problem
. 1 .
Moqo + (Mv - §M$) Qo = Qo = EoFy (31)

T
| ace

T
where qo = [Xo Yy 610 630 830 840 O OT] , Qo = [Fxo Fyg ©19 Oz B39 B4 0T 07
zero-order displacement and generalized control vectors, Eq = E (f19) is the matrix F,

Eq. (25), evaluated at 01 = 910, Fo = [on Fyg Mm Mgo e Mgo]T and

oM. oM. oM ]l (320, b)
q=qp

o= ), o= Gilen Gl - 50

Moreover, we obtain the equation for the first-order problem
.. . 1
M0q1 + (Mu + M - Mf) q + (Ma + My — §M;u+ K) q = Ql +Qd (33)

T T

where q; = [Xl Y1 611 821 631 641 M3 Tlg] , Q1 = [FX1 Fy; 611 ©21 ©31 64 NT Ng]
T

are first-order displacement and generalized control vectors, Qg = [O 000000 F?;Z F{S]

is a persistent disturbance vector and

oM oM oM
M= | a0 Py ... 5 | 34a
* [6QI W Gy B 3‘16+2an] a=qo (34a)
6+2n
M = ail— qojy (346)
i=1 94 la=qg
6+2n 642n aZM
Moo = ' k40 Go 34c
6+2n 82M
M,aq =&l } ¥ 34d
oAl = 4 k; B0t lacq, T (34d)
From Eqgs. (24) and (25), however, we can write
Q; = EgF; + E1Fo = EoF; + Foaqu (35)
where
0F
Ei = — ) 36
1= 50, loymay (36)
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Moreover, the matrix Fy has the entries
F31y = — (Fziosin 810 + Fy10 cos byp)
Fya1 = Fryg cosf10 — Fy1o8in 1o (37)

F‘;l;j=0’ £=3,4,..., y + n2 + n3; j=2,3,“_’6+n2+n3

In view of this, the equation for the first-order problem, can be rewritten as

- . 1
Mods + (Mo + M’ — MT) &y + (My + Moo - Mo+ K~ Fi )i = EoF1 +Qu (39)

8. TRAJECTORY PLANNING

The mission consists of delivering the payload to a certain point in space and placing it in
a certain orientation. For planar motion, the final payload configuration is defined by three
variables, two translations and one rotation. The trajectory planning, designed to realize this
final configuration, will be carried out as if the robot system were rigid, with the expectation
that all elastic motions and perturbations in the rigid-body maneuvering motions will be
annihilated by the end of the maneuver. The rigid-body motion of the robot is described by
the zero-order problem and it consists of six components, two translations of the platform and
one rotation of each of the four bodies. This implies that a kinematical redundancy exists, as
there is an infinity of ways a six-dimensional configuration can generate a three-dimensional
trajectory. This redundancy can be removed by controlling surplus variables, perhaps in an
optimal fashion. In this study, we prescribe three of the configuration variables, such as the
translations and rotation of the platform. Undér these circumstances, the rigid space robot
can be treated as a nonredundant manipulator.
Next, we denote the end-effector configuration by Xg, so that from kinematics we can
write
X =f(q) (39)
where f is a three-dimensional vector function. Differentiating Eq. (39) with respect to time,
we obtain
Xp=J(q) 4o (40)
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where
J (qo) = [6f/8q0] (41)

is the 3 x 6 Jacobian matrix. Introducing the notation
' T
q = [q? | qﬂ] (42)

where q5 = [Xo Yo 010]T and qu = [f20 030 040]T are the controlled platform configura-
tion vector and the open-loop controlled manipulator configuration vector, respectively, and

partitioning the Jacobian matrix accordingly, or

4

J=[JX | JM] (43)

Eq. (40) can be rewritten as
Xe=Jigs + Jyuau (44)
Then, on the assumption that qg is prescribed and for a given end-effector trajectory Xpg,

we can determine the manipulator velocity vector from
. _- -1 y .
am = Jy' (Xg - Jsds) (45)

The end-effector trajectory was taken in the form of a sinusoidal function so as to prevent
excessive vibration. Finally, with qo given, we can obtain the required open-loop control Fg
by inverse dynamics, which amounts to using Eq. (31).
7. FEEDBACK CONTROL OF THE ELASTIC MOTIONS AND RIGID-BODY
PERTURBATIONS

The elastic motions and the perturbations in the rigid-body maneuvering motions are
governed by the equation defining the first-order problem, Eq. (38). The persistent distur-
bances are controlled open loop and all other disturbances are controlled closed loop. To

this end, we express the control vector in the form

F, =Fi.+Fic (46)
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where the subscripts o and ¢ indicate open loop and closed loop, respectively. Recognizing

that Ey is a rectangular matrix, the open-loop control can be written as
F1o = E{Qu (47)
in which
Ej = (ETE0) ™ BT (48)
is the psuedo-inverse of Ej.
For the closed-loop control, we consider LQR. control, which requires recasting the equa-

tions of motion in state form. Adjoining the identity ¢ = q;, the state equations can be

expressed as
x(t) = A(t)x(t) + B(t)Eou.(t) + B(t)Dd(t) (49)
T
where x = [q{ qﬂ is the state vector, u. = F;. is the control vector, d = Qg is the

disturbance vector and

A= 0 ! (50a)
=My (Mo + My — ML, + K - F3) Mt (M, + M' - M) ¢

0
B= [ Mo_l] , D= (I- EE}) (508, )

are coefficient matrices. It should be noted here that, if the matrix Ey is not square, the
matrix D is not zero, so that the open-loop control does not annihilate the persistent distur-
bances completely. As the number of actuators approaches the number of degrees of freedom
of the system, the matrix Ey tends to become square. When the number of actuators co-
incides with the number of degrees of freedom the matrix Ej is square, in which case the
pseudo-inverse becomes an exact inverse and the matrix D reduces to zero.

The state equations, Eq. (49), possess time-varying coeflicients and are subject to residual
persistent disturbances. Due to difficulties in treating such systems in continuous time, we
‘propose to discretize the state equations in time. Following the usual steps,!* the state

equations in discrete time can be shown to be

Xg+1 = Pxxx + TeEoruck + TiDrdg, £ =0,1,... (51)

15



where

xg =x (kT), uck = uc (kT), de =d (kT), k=0.1,...
®; =exp AiT, Ty = (exp AT - I) A,:lBk, k=0,1,... (52)

Eox =Eo (kT), Dy = D (kT), k=10,1,...
in which T is the sampling period and
Ay = A(kT), By = B(kT) (53)

In view of the above discussion, we assume that the effect of the persistent disturbances has
been reduced drastically by the feedforward control, and design the feedback control in its
absence. This design is according to a discrete-time LQR with prescribed degree of stability.
To this end, we consider the performance measure
N-1
J = xyPyxy + kz:o g2k (x{Qkxk + uZ;Rkuck) (54)
where Py and @ are symmetric positive semidefinite matrices, Ry is a symmetric positive
definite matrix, o is a nonnegative constant defining the degree of stability and NT is the
final sampling time.
The optimization process using the performance measure given by Eq. (54) can be re-

duced to a standard discrete-time LQR form by means of the transformation
Xi = eakxk, Qe = eakuck, PN = e-ZaNPN (55a,b,c)

Multiplying Eqs. (51) through by e(¥+1) yging Eqs. (55a,b) and ignoring the small perturbing

term, we obtain the new state equations
X1 = e (BrXp + e Bortick), k=0,1,... ,N-1 (56)

Similarly, inserting Eqgs. (55) into Eq. (54), we obtain the new performance measure

N-1
J =35 Pyky + 3 (% QiR + 05 Ratic) (57)
k=0
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It can be shown that the optimal control law has the form!*
U = Gexi, k=0,1,...,N-1 (58)
where G are gain matrices obtained from the discrete-time Riccati equations

a -1 a
Gy-i=—("*ELy_iT R iPni1-TN-iBoN—i+BRN_i) €Ef N _TN_iPN+1-i@N—i,

i=12,....N; P=e2¥py  (5%)

- T .
Py_; = (‘I’N-.' + I’N-.'Eo,N-eGN—.') Pyi1-i (‘I’N—i + FN—lEO.N—iGN—i)

+ G%—S'RN—I;GN—W. + QN—l" 1= 1»27 s )N; PN = e‘zaNPN (59b)

Equations (59a) and (59b) are evaluated alternately for Gy_1, Py_1, Gn_3, Py_2,...,Gq,
given the final value of Py.

Inserting the control law, Egs. (58), into Eqs. (56), we obtain the closed-loop transformed
state equations

Xee1 = ¥ (Px + T EoxGi) Xk, £k =0,1,... (60)

Then, recalling Eq. (55a) and restoring the persistent disturbance term, the closed-loop state

equations for the original system can be written in the form

Xk+1 = (P + TxEorGi) x¢ + TiDidy, k=10,1,... (61)

8. NUMERICAL EXAMFPLE

The example involves the flexible space robot shown in Fig. 1. Numerical values for the

system parameters are as follows:

L1 =1 rn,d1 =0.5 m,Lz = L3 = 5m, L4 = 1.66m
my = 10 kg, mo =m3 = lkg, my = 0.1 kg
Ji = 20 kgm?, Jy = 3 kgm?, EI; = EI; = 122.28 Nm®
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The quasi-comparison functions for the flexible arm were chosen as a linear combination of
clamped-free and clamped-clamped shape functions. Both families of shape functions have

the functional form
$i = -\/1—.L_[cosh/\.-x/L —cos M\iz/L — o (sinh \;z/L — sin \jz/L)], t =1,2,...,n

The values of A; and o; for each family are given in Table 1. They correspond to two
clamped-free and three clamped-clamped shape functions, for a total of n = 5 for each
flexible arm.

The initial and final end-effector positions are defined by

X;=975Tm, Y; =1914 m, 64 =0 rad

Xf=5.000m, Yy =1914 m, b4y = —7/2 rad

and we note that the path from the initial to the final position represents a straight-line
translation, while the orientation undergoes a 90° change. In terms of time, the translational
and rotational accelerations represent one-cycle sinusoidal curves.

The maneuver time is t; = 2.5 s. The zero-order actuator forces and torques to carry
out the maneuver are shown in Fig. 3.

The control of the elastic motions and the perturbations in the rigid-body motions was
extended to t = 4 s. Note that for 2.5 s < t < 4 s the system is time-invariant, during
which time the control gains can be regarded as constant. The weighting matrices in the

performance measure are

Q}; = 10], Rk = I, PN = IOI

The degree of stability constant is @ = 0.1. Moreover, the samping period is T = 0.01 s and
the number of time increments is N = 350.

Time-lapse pictures of the uncontrolled and controlled robot configuration are shown
in Figs. 4a and 4b, respectively, at the instants 0, 1, 1.5 and 2.5 s. Figures 5 and 6 show
time histories of the errors in the end-effector position. The discrete-time open-loop and
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closed-loop poles for a = 0.01 are given in Tables 2 and 3. For comparison, Fig. 7 shows the
time history of the errors and Table 4 gives the closed-loop poles for a = 1.
It should be pointed out that the actuator dynamics was also included in the computer

simulation, but the effect turned out to be small.}!

9. CONCLUSIONS

An orderly kinematic synthesis in conjunction with the Lagrangian approach permits
the derivation of the equations of motion for an articulated multibody system, such as
those describing the dynamical behavior of a flexible space robot, without the imposition
of constraints. The equations are nonlinear and of relatively high order. A perturbation
approach permits the separation of the problem into a zero-order problem (in a perturbation
sense) for the rigid-body maneuvering of the space robot and a first-order problem for the
control of the elastic motions and the perturbations from the rigid-body motions. The
robot mission consists of carrying a payload over a prescribed trajectory and placing it in
a certain orientation relative to the inertial space. This represents the zero-order problem
and the control can be carried out open loop. The first-order equations defining the first-
order problem (in a perturbation sense) are linear, time-varying, of high-order and subject
to persistent disturbances. The persistent disturbances are treated by means of feedforward
control. All other disturbances are controlled closed loop, with the feedback control being
designed by means of discrete-time LQR theory with prescribed degree of stability. In a
numerical example, the controls derived by the perturbation approach are found to work

satisfactorily when applied to the original nonlinear system.
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Table 1. Shape Function Coefficients

Ai oi
1.8751 0.7341
4.6941 1.0185
7.8548 0.9992

10.9955 1.0000
14.1372 1.0000

o oo ]| -

Table 2. Discrete-Time Open-Loop Poles

No. Pole Location | Mag. | No. | Pole Location | Mag.
1,2 —0.840 £ 0.543i | 1.000 | 17,18 | 0.991 £ 0.1351 | 1.000
34 —0.778 £ 0.629i | 1.000 | 19,20 | 0.994 + 0.107i | 1.000

5,6 —0.700 £ 0.7141 | 1.000 | 21,22 1.000 1.000
7,8 —0.690 £ 0.7241 | 1.000 | 23,24 1.000 1.000
9,10 0.586 + 0.810i1 | 1.000 | 25,26 1.000 1.000
11,12 0.629 £ 0.778i | 1.000 | 27,28 1.000 1.000
13,14 0.902 + 0.431i | 1.000 { 29,30 1.000 1.000

15,16 0.921 £ 0.390i | 1.000 | 31,32 1.000 1.000
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Table 3. Discrete-Time Closed-Loop Poles for a = 0.1

No. Pole Location Mag. | No. Pole Location Mag.
1,2 —0.169 + 0.546i 0.572 | 18,19 | 0.803 +0.976 x 10~1i | 0.809
3 0.493 x 102 0.005 | 20 0.805 0.805

4 0.120 x 10~1 0.012 | 21 0.807 0.807

5 0.125 0.125 | 22,23 | 0.814 +£0.362 x 10~% | 0.814

6 0.204 0.204 | 24,25 0.817 0.817
7,8 0.302 £+ 0.148i 0.336 | 26 0.817 0.817
9,10 0.454 + 0.493i 0.670 | 27 0.819 0.819
11,12 0.468 £ 0.3231 0.569 | 28,29 | 0.821 £ 0.366 x 10~% | 0.821
12,13 0.536 £ 0.500i 0.733 | 30 0.822 0.822
15,16 | 0.749 +£0.860 x 10~'i | 0.754 | 31 0.822 0.822
17 0.792 0.792 | 32 0.827 0.827

Table 4. Discrete-Time Closed-Loop Poles for & = 1

No. Pole Location Mag. | No. Pole Location Mag.
1 —0.566 0.566 | 17,18 | 0.139 £+ 0.844 x 10~3j | 0.139
2,3 —0.160 £ 0.1861 0.246 | 19,20 0.150 + 0.022i 0.152
4,5 —0.109 £ 0.2751 0.296 | 21,22 0.187 £ 0.145i 0.236
6,7 0.062 + 0.088i 0.108 | 23,24 | 0.198 + 0.288 x 10~1j | 0.200
8 —0.177 x 10~1 0.018 | 25 0.251 0.251
9,10 |0.779 x 10~2 £ 0.209¢ | 0.209 | 26,27 0.252 £+ 0.180i 0.310
11,12 0.072 £+ 0.088i 0.114 | 28,29 0.279 + 0.490i 0.564
13,14 0.118 +£0.016i 0.119 | 30,31 0.328 £ 0.148i 0.360
15,16 |0.132+0.920 x 10~% | 0.132 | 32 0.430 0.430
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CONTROL OF A FLEXIBLE SPACE ROBOT
EXECUTING A DOCKING MANEUVER!

Y. Chen* and L. Meirovitch**
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

ABSTRACT

This paper is concerned with a flexible space robot execufing a docking maneuver with a
target whose motion is not known a priori. The dynamical equations of the space robot are
first derived by means of Lagrange’s equations and then separated into two sets of equations
suitable for rigid-body maneuver and vibration suppression control. For the rigid-body
maneuver, on-line feedback tracking control is carried out by means of an algorithm based
on Liapunov-like methodology and using on-line measurements of the target motion. For the
vibration suppression, LQR feedback control in conjunction with disturbance compensation
is carried out by means of piezoelectric sensor/actuator pairs dispersed along the flexible
arms. Problems related to the digital implementation of the control algorithms, such as
the bursting phenomenon and system instability, are discussed and a modified discrete-time

control scheme is developed. A numerical example demonstrates the control algorithms.

1. INTRODUCTION

One of the functions of a space robot is to deliver payloads accurately and smoothly to a
moving target. An example of such a space robot is shown in Fig. 1. The robot consists of a
rigid base, two flexible arms attached to the base in series and an end-effector/payload. To
carry out the mission described, the space robot must have its own control system enabling
the platform to translate and rotate and its arms to rotate. In this paper, the target motion

is assumed not to be known a priori, so that the control permitting the space robot to execute

t Supported by the AFOSR Research Grant F49620-89-C-0045 monitored by Spencer
T. Wu and by the NASA Research Grant NAG-1-225 monitored by Raymond C.
Montgomery.

* Graduate Research Assistant.

** University Distinguished Professor, Fellow AIAA.
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the docking maneuver must be based on on-line measurements.
The equations governing the behavior of space robots are nonlinear and can be expressed

in the general form of the state equation
x = f (x,u) (1a)

and the output equation
y =g(x) (16)

where x is the state vector, u is the control force vector and y is the output vector, usually
defined as the position and orientation variables of the end-effector. The target output vector
y: is defined as the position and orientation variables of the target. We can then define the

error vector as
e=yr—y (2)

The problem reduces to that of designing a control law u(t) so that e and its time derivative
e are driven to zero.

There are two significant differences between industrial robots in current use and space
robots considered here. In the first place, industrial robots are mounted on a fixed base,
whereas space robots are mounted on space platforms capable of translations and rotations.
The second significant difference is that space robots must be very light, and hence very
flexible, unlike industrial robots characterized by very bulky and stiff arms. The flexibility
of the robot arms causes elastic vibration, which tends to affect adversely the performance of
the end-effector. Both a floating platform and flexibility are being considered in this paper.

In the case of space-based robots, research has been carried out on the assumption that
the platform floats freely,!~® i.e., that there are no external forces and torques acting on the
system, which implies that the system linear and angular momentum are conserved. For
a space robot tracking a moving target, it is unrealistic to make such an assumption, so
that algorithms concerned with free-floating space robots are not applicable to the problem

considered here.



The most commonly used approach to robotics can be described as follows: first, inverse
kinematics is performed to obtain the desired robot configuration trajectory qq(t) from the
desired end-effector trajectory y4(t). Then, using the system equations of motion, inverse
dynamics is performed to obtain the control force realizing qq(t). If the target motion is
known a priori, the end-effector’s trajectory, as well as the robot trajectory, can be deter-
mined by an off-line planning algorithm. For a kinematically- redundant robot, such as the

one considered here, the robot redundancy can be used to achieve optimality.”

If the target motion is not known a priori, planning is impossible. Even when the target
motion is known, it is very likely that some unexpected disturbance can cause errors. In view
of this, on-line feedback control for the tracking problem, whereby the control decision is
based on measurements of the current output error, appears more attractive. The technical
literature on this subject is not very abundant. For tracking control, the Liapunov stability
concept appears quite useful. Wang® used it to design a guidance law for a spacecraft docking
with another spacecraft. The two docking objects are assumed to be three-dimensional rigid
bodies and to have their own control system on board. Another assumption used in Ref. 8
is that the motion of the target decays to zero with time. Recently, Novakovic? presented
a technique using Liapunov-like methodology for robot tracking control problem. In this
paper, the algorithm presented in Ref. 9 is adopted and modified for the tracking control of

flexible space robots.

In the case of flexible space structures, maneuvering motions excite vibration of the
flexible members. There are two major control schemes for flexible manipulators. The first
is based on linearized models derived from the nonlinear equations of motion of the flexible
manipulator on the assumption that maneuver motions are much larger than elastic motions.
Such a perturbation approach was developed by Meirovitch and Quinn!®1! and applied by
Meirovitch and Kwak!>!3 to the maneuvering and control of articulated flexible spacecraft
and by Modi and Chang!* and Meirovitch and Lim!® to the maneuvering and control of
flexible robots. The second is the adaptive control,'® which does not need dynamical models.
Instead, an auto-regressive-moving average (ARMA) model of system identification is used.
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A control law for flexible manipulators based on the Liapunov method was proposed
by Bang and Junkins.!” It represents proportional and derivative control and includes a
boundary force as a feedback force. This control scheme is valid only for problems in which
the system approaches an equilibrium point in the state space.

References .15 and 18 are concerned with flexible space robo‘ts of the type considered
here, but the mission is more modest in scope. Indeed, in Ref. 15 the mission is to place a
payload in a certain position and orientation in space and in Ref. 18 the objective is to dock
with a target whose motion is known a priori.

In this paper, a control scheme permitting a flexible space robot to track and dock
with a moving target whose motion is not known a priori is presented. For the robot
maneuver, on-line feedback tracking control is carried out by means of an algorithm based
on Liapunov-like methodology and using on-line measurements of the target motion. For
the vibration suppression, linear quadratic regulator (LQR) control in conjunction with
disturbance compensation is carried out by means of sensor/actuator pairs dispersed along
the flexible arms. A modified discrete-time control scheme is developed, and problems related
to the digital implementation of the control algorithms are discussed. The control algorithms

are demonstrated by means of a numerical example.

2. EQUATIONS OF MOTION

The flexible space robot and the coordinate systems are shown in Fig. 2. Body 0 repre-
sents the robot base, assumed to be rigid. Bodies 1 and 2 are the robot manipulator arms
attached in series to Body 0 and they are flexible. Body 3 is the end-effector/payload, also
assumed to rigid. For planar motion, the robot base is capable of two translations, zo and
Yo, and one rotation, 8y; the two flexible arms are capable of the rotations §; and 6, and the
elastic vibrations u; and u; and the end-effector is capable of the rotation 83. Referring to
Fig. 2, the displacement vector Uy and velocity vector Vj for a typical point in Body 0 are

as follows:
Uy=R+ CgRo (30.)
Vo =R+ ClaRye (3b)
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Similarly, for Body 1

U1=R+C§Lo+0f(r1+u1)

V= R + Cg‘J)oLo + C’lrd')l (l‘] + u1) + C'Tul
for Body 2

U, =R+ CTLo+CT (L1 +ui2) + CT (ry + uz)
V= R-i- Cg‘LDoLo + Cchz)l (L1 + u12) + C;r\'lm

+ Cgéz (r2 + ug) + Cg‘l'.lg
and for Body 3

Us = R+ CTLo + Cf (L1 +unz) + CT (Ly +uz3) + Ci
V3= R+ ng’.’oLo + C'f"ol (L +u12) + C'{\.lu
+ Cg‘t:)z (La + ug3) + C;fm;; + C;Cb,r;;
where
[ cos g; sinb; .
C‘—[—sin&- coso.-] i=0,1,2,3

are matrices of direction cosines,

5 = [gl '}f‘] i=01,2,3

are skew symmetric angular velocity matrices,

R = [z0 wll, rn=lz of, ry=[z2 07

are position vectors and

u =0 u]?, uz=[0 ua)”

are elastic displacement vectors. Moreover,

uz2 = u1‘1:1=L1) u3 = u2|z;=L2

5

(4a)
(40)

(5a)

(5b)

(6a)

(6b)

(M)

(8)

9)

(10)
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The elastic displacements are discretized as follows:
Uy (ziat) = QIT("I:t) 5-‘ (t)) t1=1,2 (12)

where ®;(z) are vectors of quasi-comparison functions!? and §; (t) are vectors of general-
ized displacements. Regarding the robot arms as beams in bending, the quasi-comparison

functions can be chosen as linear combination of the admissible functions

ArT AT ) )\k_x . AZ _
[ T8 T Ok (smh A k=1,2,... (13)

which represent the eigenfunctions of a clamped-free beam for k odd and clamped-clamped

¢r = cosh

beam for k even, where A\; and o} are nondimensional parameters.
Using Eqs. (3)-(13), the kinetic energy of the system can be written as

3 1 3
r=yT=iy)

1
VTVdD; = ¥ M¢ 14
2 i=O/Body‘.p; i VidDi = 59" Mq (14)
T .
where q = RT 4, 6, 9, 85 5{ 55] is the configuration vector and M is the mass matrix
with entries given in Appendix A.

The potential energy for the system is due entirely to the elasticity of the robot arms

and can be written in the form

V= é s6T K = zd"Kq (15)
where
K = block-diag [0 K1 K (16)
in which
K; = /OL‘ EL®! (@’{)de,v, i=1,2 (17)

are the stiffness matrices for Bodies i, in which EJ; denotes bending stiffnesses. Note that the
gravitational potential is ignored here on the assumption that it represents a second-order
effect.

The control forces acting on the robot system include the horizontal and vertical thrusts
F; and F, acting at the base center, the external torque Mp acting on the base, the internal
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joint torques M1, M2 and M; acting at the joints and the distributed internal moments r;
and 7, generated by piezoelectric actuators on links 1 and 2. We define the control force

vectoras F = |F; F, My My M; M, T T Then, the virtual work of the system
1 72 y

can be written in the form

W =F,bzq + Fy5y0 + Myéby + M, (691 - 590)
+ M, (86, ~ 66, — T (L1) 6¢,) + M; (665 — 665 — @ (Ls) 6€,)

mi m2
+ 3T (z1) 86 + 3 mi®y7 (22:) 66, = QT éq (18)

=1 =1

where Q is a generalized force vector defined as
Q=GF (19)

The entries of the matrix G are given in Appendix A.

Lagrange’s equations for the system can be expressed in the symbolic vector form

i(BT) oT a_v _q 20)

3a) " dq "
Inserting Eqs. (15), (16) and (19) into Eq. (20), we obtain the system equations in the matrix

form

M(q)g+C(q,9)a+Kq=Q (21)

The entries of the matrix C are also given in Appendix A.

Equation (21) represents the equation governing the motion of the flexible space robot. It
is used for computer simulation of the dynamical system. For the purpose of control design,
Eq. (21) is conveniently separated into two sets of equations, rigid-body motion equations
and elastic vibration equations. To this end, we write q = [q? qﬂT and Q = [QT QT]T
where q, = {20 yo 6o 01 6; 03] is a rigid-body displacement vector, q, = [51 & ]
an elastic displacement vector and Q, and Q. are corresponding generalized force vectors.

Then Eq. (21) can be written in the partitioned matrix form

vt el allelb flla]=la] e
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After some algebraic manipulations, and ignoring higher-order terms in the elastic displace-

ments, Eq. (22) can be separated into

M, (ar) & + Cr (qr,4r) §r + de (9,9,8) = Qr (23)

and

M. (qr) G + Ce (ar, 4r) Ge + Ke (9r,4r,Gr) Qe + dr (Qr, dr,ar) = Qe (24)

where M, is the rigid-body part of the mass matrix M,, and C, is the rigid-body part of
Crr. Moreover, M, = M., C. = C.., K. consists of the stiffness matrix K and the part
due to elasticity in the matrices M,, and C,. and d, and d, are disturbance vectors. The
entries of the various matrices are given in Appendix B. The term d. in Eq. (23) is a linear
combination of q., . and q.. It can be regarded as a disturbance due to the flexibility of
the robot arms. The term d, in Eq. (24) is a function of q,, g, and §,. It can be regarded
as a disturbance due to the rigid-body maneuvering of the robot. Equations (23) and (24)
are coupled. The coupling between rigid-body motions and flexible vibration is provided
in Eq. (24) by the persistent disturbance d, from the rigid-body motion, which causes the
elastic motion q., . and §.. In turn, the elastic motion disturbs the rigid body motion
through d. in Eq. (23). Equation (23) is used for the design of the maneuver control for

tracking a moving target and Eq. (24) is used for design of control for vibration suppression.

3. TRACKING CONTROL ALGORITHM USING LIAPUNOV-LIKE
METHODOLOGY

In this section, the general idea of Liapunov-like methodology for tracking control devel-
oped for rigid robots® is introduced.

The dynamical equation of a rigid robot is given by
M(q)G+C(q9,9)9=Q (25)

and the kinematic relation between the robot configuration vector q and robot output vector
Y. is given by
ye=1f(q) (26)
8



so that
ye=J(q)q (27)
and
ye=J(@)a+J(q,4)4 | (28)
where J (q) = [0f/0q] is the Jacobian matrix.
Because tracking is carried out by the end-effector, the tracking problem consists of
driving the error e = y; — y. and its time derivative é to zero. To this end, a Liapunov

function is defined by
7'z (29a)

DO —

where

z = (é + fe) (290)

in which B is a positive scalar. If the control is designed in such a way that
/=—-0V, o=l (-‘go-) [ts (30a, b)

where ¢ is an arbitrarily small positive scalar and V} is the initial value of V, it is guaranteed
that the function V remains in the e-neighborhood of zero for t > t,, no matter how the
target motion changes. This ensures that the error e and its derivative é are also very close
to zero.

We consider the nonlinear control law
Q=M(q)ur+C(q,9)q (31)

where u, is chosen in the form

__hi+hy
up =W (32)

in which w is an arbitrarily chosen vector and
hy=2T (y1 - Ja+Be), hy=050z"2=0V (33a,b)

It can be shown that the control algorithm described above yields the desired result, i.e.,
Egs. (30a,b).



The control algorithm possesses the following advantages:

1) The control decision is made using on-line information of the current robot state (q,q)
and target state (e,é and y;). The feedback control can automatically counteract ad-
verse disturbances in space and achieve the final docking in an accurate and smooth
way.

2) The on-line calculation is relatively simple, as it involves neither inverse kinematics nor

matrix inversions.

3) Stability is always guaranteed by Liapunov stability theorem, as can be seen from

Eqs. (30), no matter how the target motion changes.

However, after applying the above algorithm directly to our space robot system and sim-
ulating the system in both continuous time and discrete time, the results from discrete-time
system exhibited some undesirable phenomenon, although the performance of the continuous
system was good. As shown in Fig. 3, in which the solid line denotes continuous-time results
and the dashed line denotes discrete-time results, the control force in discrete time exhibits
periods of oscillatory behavior. Further numerical simulations show that the magnitude of
the control force during chattering is bounded, although very large, and its mean value is
close to the results of the corresponding continuous time system. Moreover, the occurence
of the oscillating period is random, and the length of the oscillating periods and the length
of the “good performance” periods are both unpredictable. This phenomenon is similar to
the so-called “bursting”, which appears frequently in discrete-time adaptive systems and has
been reported for almost a decade.?? It is important to keep the control force from bursting.
Otherwise the possibility exists that the control cannot be realized. To this end, a modified
version of the above algorithm is presented, which also takes into account the flexibility of

the robot arms.

4. MODIFIED TRACKING CONTROL ALGORITHM FOR FLEXIBLE
SPACE ROBOTS

To apply Liapunov-like methodology to flexible space robots, we first extend the kine-

10
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matical relation given by Eq. (26) to flexible space robots as follows:

z, =zq— Losinfy + Ly cosby + Lycos by + L3 cosd;3 — upp8in 0 — ug3sin b,
Ve = Yo + Locos by + Ly sin 6, + Ly8in 8, + L3 sin 83 + ujz cosdy + ug3 cos 0, (34)

0e=03

T
For kinematical analysis, we define q = [q? qﬂ , where q, was defined earlier and q4 =
[u12 uga]T. The Jacobian matrix J, obtained by differentiating Eq. (34) with respect to q,

has the form

J={(J J (35)

where

10 —Lo co8s 00 —L1 sin‘01 - %12 COS 01 —Lz sin 02 — u23 CO8 92 —Ls sin 93
J,- =0 1 —Lo sin 90 Ll cos8 91 — U112 sin 01 Lg co8 02 — us3 sin 92 L3 cos 03

0 0 0 0 0 1
(36a)
—sinf; —siné, : ,
Ju=| cosb cos f, (36b)
0 0
Hence, we can write the relations
Ye = jq (37)
Ye= -_Iq + jq (38)

The dynamical equation for the rigid-body motion of the space robot is given by Eq. (23).

We first define a nonlinear control law for Q, as follows:
Qr = M, (ar)ur + Cr (ar,ar) 4r (39)
Substituting Eq. (39) into Eq. (23), we obtain
g =u, - M7 1d, (40)

To prevent the bursting phenomenon, we propose a decoupled Liapunov function defined

by
2}, zi=é+Pe, 1=1,2,3 (41a,d)
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Taking the derivative of Eq. (41a) and using Eqs. (37), (38) and (40), we obtain
Vi = zihi -z ([Joue) - [ M) ), i=1,2,3 (42)
where [ ]; denotes the i — th element of a vector and h; are the components of the vector
b=y, - J§+ Bé - Judu (43)

Because M, is a positive definite matrix, M,”! is bounded, and we note that J, is also
bounded. Moreover, from Eq. (B.3) in Appendix B, we see that d, is a linear combination
of q¢, g and q.. We then assume that d. is bounded in accordance with our ultimate goal
of vibration suppression. Hence, we can assume that the term [J,.M," ldc]‘, is bounded and

satisfies the relation

M| < &, i=1,2,3 (44)

From Eq. (44), we have
% [ M7 < =l i=1,2,3 (45)

If we can determine a vector u, that satisfies the following conditions:

z[Jeu], = zhi + %a;z‘? + |z|6, t=1,2,3 (46)
then
V,’ = -l-a.':."-2 + J,-Mr_lde = |zi]é < —la;z? = -V, t=1,23 (47)
2 ' 2

According to the Liapunov stability theorem, Eq. (46) is the sufficient condition for our
tracking problem. We further simplify Eq. (46) by assuming z; # 0, so that

[J,u,]‘- =h; + %a;z; + sgn (z,-) &, 1=1,2,3 (48)
or
Jru,); =8, ¢=1,2,3 (49)
‘with
- S . “ 1
si=gu — [J&), + B — [Tt + soizi +5gn (z) & (50)
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Equation (49) can be expressed in the matrix form
Jru, = 8 (51)

where 8 = [37 83 s3)¥ and J, is a 3 x 6 matrix. The solution of Eq. (51) does not yield
a unique u,. This agrees with Eq. (32) in the original control scheme in which w is an
arbitrarily chosen vector. Here we can simply prescribe the redundant degrees of freedom
and then solve Eq. (51) accordingly.

As a simple example, we constrain three components of u, by taking
Up3 = Upg = Ups =0 (52)

for the entire tracking period and use Eqs. (51) to solve for the other three components of

u, on-line, with the result
up] = 81 + L3sinfyu.g
Upy = 83 — L3 cosBau,g (53)
Urg = 83

The above algorithm for u,, together with Eq. (39), represents the maneuver control for
a flexible space robot tracking a moving target whose motion is not known a priori. The
control algorithm requires that the following conditions be satisfied:
1) The output error vector e and its time derivative & can be measured on-line.
2) The target output acceleration ¥; can be measured or estimated on-line.
3) The robot rigid-body displacement vector q, and its time derivative ¢, can be measured
on-line.
4) The elastic tip displacement vector q, and its time derivatives q, and q can be measured
on-line.
5) The elastic vibration of the robot arms should be controlled so that a reasonable value
for the upper bound é; can be set.
In addition to the advantages of the original algorithm mentioned in Sec. 3, the modified
control algorithm presented here provides two extensions from the original one.? The first ex-
tension is that the flexible effect of the robot arms is incorporated into the control algorithm.

13



It is reflected in the kinematic relations expressed by Eqs. (34) and in the term sgn (2) é; in
Eq. (50) which is associated with the vibration disturbance vector d, in Eq. (23). The second
extension consists of the use of decoupled Liapunov functions, Eqs. (41), to eliminate the

bursting phenomenon (Sec. 3) when the control algorithm is implemented in discrete-time.

5. VIBRATION CONTROL

Because of coupling between the rigid-body motions and the elastic vibration, the per-
formance of the tracking control depends on how well the vibration suppression is carried
out. Without vibration control, the tracking cannot be truly realized for a flexible space
robot. Our objective is to drive the elastic motion state q., ¢, close to zero during the
tracking and docking operation. We recall that the motion of the elastic vibration of the
space robot is described by Eq. (24), which represents a linear time-varying system with a
persistent disturbance term d, due to the rigid-body motions.

We propose to control the vibration in discrete time. To this end, we separate the

generalized control force Q. into
Qe (k) = Qer (k) + Qe (k) (54)
The discrete-time control algorithm for disturbance compensation is expressed by
Qur (k) = dy (ar (8,6 (k) , & (k) (55)
If the disturbance is cancelled perfectly, Eq. (24) becomes
M. (ar)8e + Ce (ar,4r) Ge + Ke (r, Gr, Gr) Qe = Qee (56)

Letting x (k) = [qc (k)T Qe (k)T]T be the state vector and u (k) = Q.. (k) the control

vector, the discrete-time state space counterpart of Eq. (56) can be written as
x (k+1) = A(k)x (k) + B (k) u (k) (57)
where the coefficient matrices are given by

A(k) = AT B (k) = (eART) — 1) AT (kT) B (kT) (58a, b)
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in which
0 I 0
A (t) = [—M;lKe —M;lce] B (t) = [Mc_l (59a, b)

The performance index for the discrete-time LQR is given by?!

J= % f: [xT (k) Q (k) + u (k) Ru (k)] (60)
k=0
yielding the control law
u(k)=-(R+B(k) &k (k) B (k))‘1 BT (k) K (k) A (k) x (k) (61)

where K (k) satisfies the discrete-time algebraic Riccati equation

K (k)= AT (k) [K (k) - K () B() (R+ BT () K () B(R)™ BT () K (M)]A(K) +Q
(62)
Direct application of the discrete-time control algorithm described by Eqs. (55) and (61) to
our problem causes severe instability. The reason is that the discrete-time control force Q.
in Eq. (55) is not able to cancel the continuous disturbance term d, in Eq. (24) perfectly.
Hence, the LQR control design based on Eq. (56), in which the disturbance is absent, is no
longer appropriate. The error accumulates with time and it finally results in instability. To

resolve this problem, a modified vibration control algorithm is proposed in the next section.

6. MODIFIED DISCRETE-TIME VIBRATION CONTROL ALGORITHM

An examination of the disturbance term d, in Eq. (B.14) of Appendix B, i.e., an exam-

ination of

dr = Mrz;(“lr + Cerdr (63)

reveals that &, in the first term is the major cause of the system instability. Usually g, (k)
is not available and , (k — 1) is used as an estimate of g, (k). Stable performance of the
system can be achieved only if q, (k) can be measured or estimated perfectly. Even a very
small error in §, appearing in Eq. (63) can result in failure of the LQR design. To avoid
use of §, in Eq. (63), we replace §, by u,, so that the disturbance compensation scheme
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becomes

Qer (k) =d, (Qr (k) yqQr (k) yUr (k))
=MZ (q, (k)) uy (k) + Cer (ar (k) , & (k) & (k) (64)

where u, (k) is calculated by the tracking control algorithm given by Eq. (51). We then
substitute Eqs. (63), (64) and (40) into Eq. (24) and obtain the system equation as follows:

M. (q,) Qe + C.(qr,qr) de + Ke(Qr,9r,Qr) Qe — M};Mr_ld, = Qe. (65)
As shown in Appendix B, d. can be expressed as
de = MreQe + Crede + (Kiy + KE) Qe (66)

where K§; and K& are given by Egs. (B.6) and (B.8), respectively. Substituting Eq. (66)

into Eq. (65), we obtain the modified linear time-varying system

M: (Qr) q. + C: (Qraélr) qe + K: (q”q”ﬁr) q. = Q.. (67)

where, comparing Eqs. (56) and (67), we observe that matrices M;, C; and K represent

modified coefficient matrices given by

M! =M, - MIM M, (68a)
C*=C.,—- MIM™C,. (68b)
K; = Ke - M7, M (K§; + KE) (68c)

Based on Eqs. (67) and (68), we can follow the same procedure as in Sec. 5 and obtain the
control law for Q... The simulation results using the modified control scheme showed stable
performance. Further numerical simulations showed that even in the case of a system with

only the mass matrix M, modified, i.e., a system described by

M: (Qr) 4. + Ce (QraQr) q. + K. (QR,éln Qr) qe = Q. (69)

the LQR control law is still able to produce good system performance. This is because the

first term on the right side of Eq. (66) is dominant, so that using C. and K, instead of C¢
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and K, respectively, is equivalent to dropping the second and third terms in Eq. (66), which

does not affect the system performance very much.

7. NUMERICAL EXAMPLE

We assume that the parameters for the flexible space robot shown in Fig. 1 have the
values

mo = 40.0 kg, m; =my =10.0kg, m3 =2.0 kg

Lo =25 m, L1 = Lz = 10.0 m, L3 =20m
(70)
S: =Sy =0, I, =83.333 kg m?, I, =333.333 kg m?

ElL = EI, = 10* kg m®

The target motion is not known a priori and must be measured on-line. However, for

simulation purposes, we choose an example target trajectory as follows:

. T
.’Et(t) =10.0sin (mt)

ya(t) =10.0 + 10.0sin (%t) . t€0,5.0 ] (71)
Ir
B(t) =55t

The initial conditions of the space robot are given by:

q.(0)=[0.0 —15.0 0.0 0.5 0.47757 0.257)7, §,(0) =0

(72)

q.(0) =[0.01 ... 0.01]T, 4.(0)=0

The parameters of the control synthesis design are
B=200, e=10"3 ¢,=25s, 6=20, i=1,2,3 (73)

We designate the three redundant degrees of freedom in u, as u,3, ur4 and u,s. They
are defined for two different cases as follows:
Case 1:
Urd = Upg = Uy =0, 0<t<5s (74)
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Case 2:

( 0, t<o0
4A60/t3, 0<t<ty/2
tra = —4A90/t}, tr/2 <t <ty (75a)
\ 0, t> tf
( 0, t<0
_ ) 446,/83, 0<t<ty/2
e = —4081/t3,  t/2,t < tg (755)
\ O, t > tf
0, t<0
426, /% 0<t<ts/2
= ¢ f’ - f
trs —4A02/t§, tf/2 <t<iy (75¢)
\ Y t> tf

where t; = 4.0 8, Afp = § rad, Af; = § rad, and Af = —% rad.

For a rigid space robot, Eqs. (74) and (75) represent constraints on the acceleration of
the robot configuration. In Case 1, the mission amounts to keeping the base attitude 6
and the two joint angles 6; and 6, constant while tracking a moving target. In Case 2,
the mission implies bang-bang maneuvers involving a base attitude change of A8y and arms
angle changes of Af; and Af, while tracking a moving target.

The constraints cannot be realized perfectly for a flexible space robot due to disturbance-

causing vibration. However, the performance can be improved by vibration control. Because
»the major objective here is to track the moving target, we use the constraint equations,
Eqs. (74) and (75), to eliminate the robot redundancy.

For vibration control, the LQR design parameters are chosen as

R= dlag [Inxn nxn]
(76)
Q= diag [2.0 X 10*uxn 10*Inxn 2.0 X 10*]oxa 10*7uxa

The elastic displacement for each of the two arms was modeled by means of five quasi-
comparison functions.!®
The system performance under the tracking and docking maneuver is simulated over 5 s.

To this end, the tracking control algorithm presented in Sec. 4 and the vibration control
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algorithm presented in Sec. 6 are used. The simulation is performed in discrete-time with a
sampling period T = 0.001 s.

Figures 4a and 4b show time-lapse pictures of the robot configuration for Cases 1 and 2,
respectively. For Case 2, time histories of the tracking error e and its time derivative e are
shown in Figs. 5a-5¢, time histories of the tip elastic displa.cemenﬁ of the two flexible links
are shown in Flg 6 and time histories of the control forces and torques for the rigid-body
maneuver are displayed in Figs. 7a-7c. Time histories of the control torques acting on the
flexible bodies for disturbance rejection and LQR control are shown in Fig. 8 and Fig. 9,

respectively. The results are very satisfactory, with control achieved in less than one second.

8. SUMMARY AND CONCLUSIONS

This paper is concerned with the control of a flexible space robot executing a docking
maneuver with a target whose motion is not known a priori. The control is based on on-
line measurements of the target motion. The dynamical equations of the space robot are
first derived by means of Lagrange’s equations and then separated into two coupled sets
of equations suitable for rigid-body maneuvers and vibration suppression. Controls for the
rigid-body maneuver and vibration suppression are developed and implemented in discrete
time. Problems arising from digital implementation of the control algorithms are discussed.
Then, modifications of the control algorithms so as to prevent the problems are made.

The control scheme presented can be applied to two-dimensional, as well as three-
dimensional problems. Furthermore, it has the flexibility of solving different problems by
defining appropriate output vectors other than the end-effector output vector. For example,
if the mission involves tracking and docking with an orbiting target while its base attitude is
to be kept constant, we can define the output vector as y, = [z, y. 9. GO]T and the target
output vector as y; = [z; y 0y O]T, and then the proposed tracking control algorithm can
be used to drive the error vector e = y; — y. and its time derivative e to zero.

A numerical example is used to demonstrate the control scheme. The simulation results
.ha.ve shown very good system performance in both the tracking maneuver and the vibration
suppression.
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APPENDIX A - Matrices in the Equations of Motion

The mass matrix M appearing in Eq. (14), as well as in Eq. (21), is defined as

T
( mjy mjg
T T
May mag
M, m}; m3g
T T
My, myg + by
M= r T (A1)
mg, + b3 Mg,
T T
Mgy Mgg
mjr Mme7 mi7 mag
. Mg Megg mvs mgg  J
with
[ my 0 =Sz a3 a; —8S3s3 ]
0 my —-Sgy a3 a4 S3c3
Mo = -5t —Sy Iy as as S3Los3o A2
- : (A2)
a1 a3 as 1 a7 ag
az a4 as ar Iz ag
[ —S383 S3cz S3Llgszp as ag I3
in which
a; = —=Sus; — ®L &1, a3 = —Sus; — 84L&,
=S, &7 = Sipcs — BY
a3 = Spc; — 56151, a4 = Spc 226232
as = St Los1o + 87L&, Locro, as = SiaLoszo + 85L&, Locao
T % =T
ar = SuLicyn + Su®T61501 — 85L&, L1501 + 85,6,8T,6,en (A.3)

ag = S3Licay + S3®Tr6,931, ag = S3Lycaz + Sa®Li€,83;
by = ®87,€,521, by = —B1,8%8,50

I =In + &Tmné,, L =1y + € mesé,
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and
myr = — P81, mgr=dyc, mar = Bnloswo
myr = &) + (mg + m3) L1812, msr = Sedi2cs1, mer = Sa®raca
myg = —Ppsy, mys = ey, mas = P12y, mer = S3dizen A
mys = ®oL1cp1, msg = 2+ m3laPrs, mes = SzPascar (A4
myr = A1 + (mg + m3) 8128T,, mrs = 81285 en
mag = Az + ma P23 87,

and we note that s; = sin6;, ¢; = cos 8;, s;; = sin (6; — ;) and ¢;; = cos (§; — §;). Moreover,

we have used the following definitions:
m¢=mo +m1 +mg +m3
Stz = Soz sinfy + Soy cos by + (my + mg + m3) Lo cos bg
Sty = —Soz cos + Soy sin by + (my + mg + m3) Losin by
Sa =51+ (mg+m3)L1, Sw=_S2+msly (A.5)
Ip = Ioz + Ioy + (M1 + mg + mg) L
In=h+(my+m3) L}, Io=1+mal]

&y = &) + (Mg +m3) D1z, Bz = B2+ m3Pas
in which
m; = /Body pidD; i=0,1,2,3
S; = /Bo 4y 54D Ti= /BO iy piz¥dD;, i=1,2,3
Sos = /Body 0 pozdDo,  Soy = /Body 0 poydDo
foz = /Body 0 pOdeDO’ Toy = /Body 0 poydeo (A-6)
P = /Body ‘,pi‘I’idD.', &, = /Body ‘piz."I’idDi

._ .
A.—/Bodyip.ﬁ.tb,dD., i=1,2

$; =P (z1) ®,; = P (z2)

z1=L,’ z3=L,
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The matrix G in Eq. (19) is defined as

1 00 0 0 0 of o7
010 0 0 0 of of
00 1 -1 0 0 og o;

10 0 0 1 -1 0 of o

G=10 00 o 1 -1 of oT (A.7)
0 00 O 0 1 of of
0 0 0 O -—§'1(L1) 0 Gy O
0 00 O 0 -8, (L;) 0 Gal

where primes denote spatial derivatives and

Gi=[®!(za) ... ¥ (zim)] i=1,2 (A.8)

in which m is the number of actuators on each link. Here m is equal to the number of modes

and G; are square matrices.

The coefficient matrix C in Eq. (21) is defined as

Cis Cuu Cis Cis Ci1 Cis]
Cas Cau Cas Caz Cg1 Cgs
0 Ci C3zs Ci Cizr Cas
Ca 0 Cys Cy Cur Cus (A9)
Csa 0 Css Cs1 Css '
Ces Csa Css 0 Cgr Ces
Cz3s Ciqy Cr5 Cr6 0 Crs
Csz Css Css Css Csr 0

OO0 OO OOOOO
OCO0OO0OODOOOO
&3

w

-

where

Ci3 = Siy0, Cre = (—5’:161 + ‘355181) 81, Ci5 = (_StZCZ + 656232) 8,
Cis = —S3c303, Ci7 = —2§£c191, Cis = —2&5@@2

Cas = —Sizb0, Caa = (—Sus1 — 87€1c1) 6),Cos = (~Se2sz - &1,¢,02) b
Cys = —Sa8303, Cor = —28T 510, Cos = —28%,520;

Cau = (SuLocw - ‘i’ﬂ&lLosw) 8;,Css = (StZLOCZO - i’gEzLono) 82

Css = SasLocsods, Car = 287 Locioby, Cis = 2.087; Loczobs

Ca = (—SnLocm + ‘i’ﬁ&LoSm) Bo

Cus = (—SeLisn — ®p&Lien + Su®h6icn — 856,8T)¢15m) b2
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Ce = (—SaLls:u + 53‘1’?251631) 6

Cur =267 (Al + (m2 + ma) 4’12‘1”{2) A

Cys = 2 (~Lysn @ + 81,6021 8%) 62 (A.10)
Css = (—SunLocz + 87,6, Los20) b0

Css = (SaLisn + ®5H€2Licar ~ Su®h€ 001 + 85€,9T,61m) 61

Css = (—SsLassz + S38%€5¢3,) 63, Cs7 =2 (St2921 87, + 856,00 ®T,) 0

Css = 2£] (Az +m3®238%;) 61, Cos = —S3 Locsafo

Ces = (SaL1sa1 — $38%€1¢51) 61, Cos = (S3Lyssz — S38%,€,c32) 02

Cor = 2538318563, Cos = 25353228502, Crs = B Locrobo

Cra = = (A1 + (mg + ma) 8128%) €,61, Crs = (~Susn iz - 8%¢,00191:) b,
Crs = —S3s51 81203, Crs = —281,8552182, Cas = — @12 Loczobo

Cas = (Lysndu - 85,6,c,180) 61, Cos = - (A2 + m3®y387;) €,02

Cgs = —S3332P2303, Car = 281,8T,5010,

APPENDIX B - Matrices in the Partitioned Equations of Motion

The mass matrix M, and the coefficient matrix C, in Eq. (23) are defined as

my 0 =Stz —Sus1  —Spsz —S383 ]
0 my —Sty Sae Staca Sacs
M. = —Siz =Sy Io SuLosio SizLos20 SaLosso (B.1)
T —-Sus1 Sner SuLoesio In SioL1ca1 SaLica '
—Sius2 Sucz Swleszo Sulicn I S3Lacaz
| —S3s3  S3cz3 S3Lgszo  SaLicai  Silaca I
[0 0 Stybo —Suc16, —Stcaby —S3c3by ]
0 0 —Siz00 -Sus816; —S12820 —S533363
C, = 00 0  SuLociohh SizLocb;  SsLocsoby (B.2)
0 0 —SuLocrobo 0 . —SelLisnbtz —SiLisanbs
0 0 —SwLocxbo Swlisudh 0 —S3L333203
0 0 —S3Locsofo S3Liszify  SaLzszabs 0

The disturbance vector d, in Eq. (23) is defined as

de = MreQe + CreqQe + (Kil + K&) Qe (B'3)
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where

Moreover,

in which

'ﬂ

ky1 = -85
kuz =

and

in which

me7

[ -2<I>Hc101
—2@113191
2<I>uL0c1001
0
2@1253282191
2@125383101

—<I>,1c191

—(I>¢1.5101
<I>,1L0c1001
kmr
‘1’125t282101
i ng 5383101

é 8101
Q 6191
—@tlLoslool
ke
—<I>125g2c210f
i —<P1253C3101

mis
mag
Mes
—2§t25202
—-2@123202
2§t2 Lo €20 02

—2@:211182192
0

287 535320, |

—@t26292
—(I’nszoz
o 2Loc2002
—&T 115216,
km2

@%Ss&azaz ]

@ 3292
—<I>¢2c202
—§t2L032092
—<I>,2L1C21 02
kcs

—Qg}; S3C329% J

(Cl-'L'O + 8190 — LoC1000) + o], (&282192 + 5383193)

-8} (szo + s280 — L062090) — &% L152181 + B23S353265

-

ker = BT Los1062 + 87, 512¢0103 + 87, 53¢3163

ko = &gLosgoég + 53;1;16219% + Q%Ssc;;zé%

The mass matrix M, and the coefficient matrix C, are defined as

M,=[

|

A1 + (mz + m3) 81287,

Y- YO

0
2&:2@{232191

26

1285 e ]

Az + m3®,3 8T,

0

—2@126582192 ]

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)



and the coefficient matrix K, is defined as

Ke=K+KM+KC

where
_[K1 O ]
K= [ 0 K
0 —§12§T82192]
Ku=|- . 12
M [@2@'{232101 0
and ) - .
p = (A1 + (m2 + ma) 8,,87;) 6 ~®1387,¢0:63 ]
c= ) . .
—@n@ﬁc:zlgf - (Az + m3§23§%) 0%

The disturbance vector d, is defined as
d, = M};Qr + Cerélr

where M, is given by Eq. (B.4) and

0 0 —&4Lociobo 0 — 8358010, —812538316;

C"= = = -
¢ 0 0 —®ulocaby PraLisnb 0 —P235383203
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HYBRID EQUATIONS OF MOTION FOR FLEXIBLE
MULTIBODY SYSTEMS USING QUASI-COORDINATES!

L. Meirovitch* and T. Stemple**
Department of Engineering Science & Mechanics
Virginia Polytechnic Institute & State University

Blacksburg, VA 24061

Abstract

A variety of engineering systems, such as automo-
biles, aircraft, rotorcraft, robots, spacecraft, etc., can
be modeled as flexible multibody systems. The individ-
ual flexible bodies are in general characterized by dis-
tributed parameters. In most eazlier investigations they
were appraximated by some spatial discretization pro-
cedure, such as the classical Rayleigh-Ritz method or
the finite element method. This paper presents a math-
ematical formulation for distributed-parameter multi-
body systems consisting of a set of hybrid (ordinary
and partial) differential equations of motion in terms
of quasi-coordinates. Moreover, the equations for the
elastic motions include rotatory inertia and shear de-
formation effects. The hybrid set is cast in state form,
thus making it suitable for control design.

1. Introduction

A problem of current interest is the dynamics and
control of multibody systems. Indeed, a variety of en-
gineering systems, such as automobiles, aircraft, ro-
torcraft, robots, spacecraft, etc., can be modeled as
multibodies. In many engineering applications the bod-
ies can be assumed to be rigid (Refs. 1-12). In many
other applications, the flexibility effects have to be in-
cluded (Refs. 13-24). For the most part, flexible bodies
have distributed mass and stiffness properties, which
is likely to cause difficulties in producing a solution.
As a result, it is common practice to approximate dis-
tributed systems by discrete ones through spatial dis-
cretization, which can be carried out by means of the
classical Rayleigh-Ritz method or the finite element
method (Ref. 25). The discretization process amounts
to elimination of the spatial coordinates. The equations
of motion for the discretized system are derived quite
often by the standard Lagrangian approach. For more
complex motions, an approach using quasi-coordinates
seems to offer many advantages (Refs. 26-29).

t Supported by the AFOSR Research Grant F49620-
89-C-0045 monitored by Spencer T. Wu and by the
NASA Research Grant NAG-1-225 monitored by Ray-
mond C. Montgomery.

* University Distinguished Professor. Fellow AIAA.

** Graduate Research Assistant.
Copyright ©1993 by L. Meirovitch. Published by
the American Institute of Aeronautics and Astronau-
tics, Inc. with permission.

Quite recently, there has been some interest in
working with distributed models as much as possible,
thus avoiding truncation problems arising from spa-
tial discretization. Consistent with this, hybrid (ordi-
nary and partial) differential equations of motion have
been derived for flexible multibody systems in Refs. 30
and 31, using the approach of Ref. 25. Hybrid equa-
tions of motion in terms of quagi-coordinates have been
derived for the first time in Ref. 26 for a spinning rigid
body with flexible appendages and generalized later in
Ref. 32 for a flexible body undergoing rigid-body and
elagtic motions. This paper extends the general theory
developed in Ref. 32 to systems of flexible multibod-
ies. In addition, the equations for the elastic motions
include rotatory inertia and shear deformation effects.

2. Kinematics

We are concerned with structures consisting of a
chain of articulated bodies i (i = 1,2,...,N), which
implies that two adjacent bodies i — 1 and i are hinged
at O; (Fig. 1). To describe the motion of the system,
it will prove convenient to conceive of a set of body
axes z;y;z; with the origin at O; and attached to body
i in undeformed state. The bodies are assumed to be
slender, with axis z; coinciding with the long axis of
the body. As the body deforms, z; remains tangent to
the body at O;. At the same time, we consider another
set of body axes z/y!z/, referred to as intermediate axes,
with the origin at O; and attached to body i -1 so that
z/ is along the long axis. We will also find it convenient
to introduce an inertial frame of reference XY Z with
the origin at O.

We denote the position vector of point O; rela-
tive to the origin O by R = [Xoi Yu Z)T. Then, we
denote the position of a typical point P; in the unde-
formed i body relative to O; by r; and the elastic dis-
placement of P; by u;. Hence, the radius vector from
O to P; in displaced position is simply

R; =C/Roi + 1 + 1y, i=12...,N (1)
where C! is the matrix of direction cosines of axes
Ziyiz with respect to axes z;_ yi-1%-1, and note that
the vector R, is in terms of components along the body
axes Z;-1yi-1%i-1 and the vectors Ry, r; and u; are in
terms of components along the body axes z;y;z;.



We consider here bodies in the form of bars with
the long axis z; passing through O; and O;;; when
the bars are undeformed.” We are concerned with bars
undergoing torsion about axis z; and bending about
axes i and z;, as well as shearing distortion in the y;
and z directions. Then, the vectors r; and u; can be
written in the more explicit form

ri=(z 00T, wlzit) =0 u(zi,t) wi(zi,t)]"
(2a,b)
The radius vector R,; depends on the motion of the
preceding ¢ — 1 bodies in the chain. In particular, we
can write the following recursive relation:
Roi = C_ Roio1+rici(4-1) + uim1 (i1, t),
i=23,... N 3)

where £_; is the length of body i — 1. Note that
R,; = R, (t) is simply the radius vector from O to
the origin O, of the body axes of the first body in the
chain.

At this point, we propose to define the rotational
motions. In the first place, it will prove convenient to
introduce a set of body axes &;7,;(; attached to a typical
beam cross section originally in the nominal position z;
and moving with the cross section as body t deformas.
In this regud, note that 6;’—1(‘\'—1)’7.’-1(l"-l)Ci-l(e’-l)
coincide with z{y/z{. Then, denoting the angle of twist
by ¥.: and the bending rotation angles by ¢,; and ¥,;,
we conclude that axes &;n{; experience the angular
displacement

Vi(zi,t) = [Yei(Ziyt) Yyi(2iot) ¥ui(zi,t)]T  (4)

with respect to axes z;y;z;. On various occasions
throughout this paper, we encounter skew symmetric
matrices derived from vectors. As an example, if a
typical vector r has components z, y and z, then the
associated skew symmetric matrix has the form

[ 0 . : }
F=|z 0 -=z (5)
-y z 0

In view of this definition, the matrix of direction cosines
of £n:(; relative to z;y;z; can be shown to have the
expression .

Ei(zl':t) =I- ‘bi(zil t) (6)

in which I is the 3 x 3 identity matrix, and we note
that Eq. (6) follows from the assumption that the
components of ¥; are small. Next, we assume that
axes z;y;z; are obtained from axes z/yz/ through the
rotations 6;;, where j can take the values 1, or 1,2,
or 1,2,3, depending on the nature of the hinge at O;
and denote by C;(8;) the matrix of direction cosines
of z;yiz; relative to zly/z/, where 8; = [0;; 8;3 6;3]T.

Then, the matrix of direction cosines of axes f RTY
relative to axes z,_ y;_1%;— is simply

C =CGEi—1(4-1,t) (M

From kinematics, the velocity vector of the typical
point P; in displaced position in terms of the rotating
body axes z;y;z;, has the expression

Vi =V + Qei(ri + W) +vi
=V +(Fi+&)T0i+vi, i=1,2,...,N (8

where V,; is the velocity vector of the origin O;, 01,
is the angular velocity vector of axes z,y;z; relative to
axes XY Z and

vi(zi,t) = 0(z,t) (9)

18 the elastic velocity vector relative to z;y;z, all in
terms of z;y,2; components. We note that the velocity
vector of point O; can be written in the recursive form

Vo =CVio1(bi-1,t)
=G {Va.-’-x + [Fic1(fio1) + Gic1 (Go, )] By
+V¢_x(“'_1,t)}, i=2t3)"')N (10)

Moreover, introducing the notation
Nei(2,t) = ¥;(z,t), i=1,2,...,N (11)

the angular velocity vector of the cross-sectional axes
&ini¢, relative to the inertial space is simply

Q= 0 + Bui(zirt), i=1,2,...,N (12
Finally, letting w; be the angular velocity vector of
axes z;y;z; relative to axes ziy!z/, in terms of z;y;z;
components, the angular velocity vector of z;yz is
given by the recursive formula

0 =G Qo1 (bior,t) +w;
=C! O im1 + Qai-1(&i-1, )] + wi,
i=2,3,...,N (13)

where the second equality follows from Eq. (12).

3. Standard Lagrange’s Equations for Flexible
Multibody Systems

The motion of our multibody system is described
in terms of rigid-body displacements of seta of body
axes and elastic displacementa relative to these body
axes. As a resuit, the equations of motion are hybrid,
in the sense that they consist of ordinary differential
equations for the rigid-body displacements and partial
differential equations for the elastic displacements. The



equations of motion can be derived by means of the
extended Hamiltion’s primciple (Ref. 33), which can be
stated in the form

1 -
(6L +5W)dt =0,

t

6q=0, éu; =8¢, =0,

i=1,2...,.N at t=1,t (14)

where

L=T-V (15)

is the Lagrangian, in which T is the kinetic energy and
V is the potential energy, and SW is the virtual work.
Moreover, q is the rigid-body displacement vector, and
w, ¥; (i = 1,2,...,N) are the elastic displacement
vectors introduced earlier. Hence, before we can derive
equations of motion, we must derive general expressions
for T, V and §W.

Taking the z;-axis to coincide with the centroidal
axis of the undeformed beam, the kinetic energy can be
shown to consist of two parts, one due to translations
and one due to rotations (Ref. 25). Hence, using Eqgs.
(8) and (12), the kinetic energy can be expressed in the
form

N & )
T= / 1, dz, (16)
0

where
T =%(p.-V?V; + a7 Ja) = %[p«V.,TiVo;

+a%Ji0., + poaf i + 2v°T,.§,.Tn,i
+20VT i + 207500, + 0% J. 0
+ i Juth; + 20T athy]

=§[p.-vzva.- + A% S
+ poal i + 7 Juith; + 2v£§?n,.-
+ 20 V5 + 2078 + )] (A7)

is the kinetic energy density of member i, in which p;
is the mass density and

J-“- = j.' + jci (18)

is the total moment of inertia density matrix, where

Ji =palFi + &) (Fi + 60)T
uli+ud —Tiuy —Tiun
=pi | —ziuyi  zi4uk —uyu | (198)
—ZiUyg — Uyt I? + u’:i
and
Joi = diag{Jgiei Jyiyi Juini] (19b)

in which Jeigi, Jyiyi and Jyisi are cross-sectional mass
moments of inertia densities, and note that, because the
elastic deformations are relatively small, they are ap-
proxima.t_.el! equal to Jeigi, Jnini and Jeici, respectively.

Moreover, S; is obtained from
§i = pilri + W) = pifzi wyi usi)” (20)

which is recognized as the first moments of inertia
density vector.

Assuming that differential gravity effects are neg-
ligibly small, the potential energy reduces to the strain
energy. As indicated earlier, the elastic members un-
dergo torsion about z; and bending about y; and z,
as well as shearing distortions in the y; and z; direc-
tions. Referring to Fig. 2, we conclude that the rela-
tions between the bending displacements u,; and u,;,
the bending angular displacements ¢,; and ¢,; and the
shearing distortion angles fy; and S, are

Uy = Wui + Brir  Upi = —¥yi — By (21a,b)

where primes denote partial derivatives with respect to
z;. From mechanics of materials, the relation between
the twisting moment M,; and the twist angle ¥, is
simply

Mﬂ' = k:iGiIai¢;i (22)

where kg, is a factor depending on the shape of the cross
section and G, I, is the torsional rigidity, in which G; is
the shear modulus and I is the polar area moment of
inertia about axis z;. Moreover, the bending moments
are related to the bending rotational displacements by

Mv" = E.'Iy.‘d”v.', M‘.' = E.’I..'¢"" (23&,b)

in which E; is Young’s modulus and I,; and I,; are
area moments of inertia about axes parallel to y; and
z;, respectively, and passing through the center of the
cross-sectional area, and the shearing forces are related
to the shearing distortion angles according to

Qyi = kyiGiAiBsi, Q= _kiniAiﬁvi (24a,b)

~ where ky; and k,; are factors depending on the shape

of the cross sectional area, G; is the shear modulus and
A; i8 the cross-sectional area.

The strain energy can be expressed as

N (&
V=E/° U dz; (25)

=1

where, using Eqs. (21)-(24),
Vi =% (M8i¢’gi + Myi'ﬁ’y.' + Mn"ﬁ;i + Qyiﬂu‘ - Qn’ﬂyi)

1 / ! !
=5 kaiGilsi(¥e)? + Bilys(¥3)” + Bili(¥)’
+ kyiGi Ag(uls = ¥ai) + kniGi Ai(uli + ¥y0)?] (26)



is the potential energy density for member i.

Next, we wish to develop an expression for the
virtual work due to nonconservative actuator forces and
torques. Using the analogy with Eqs. (8) and (12), the
virtual work can be written in the form

N
+)_M:T66;
=2

W

N &
E{ (R + ml607) da

i=l

Z{/ (€7 (R +77 @7, +6w;)

m] (60, +6v,)]dz; } +Z M:T56;

N
=Y [F;,.T §Ry,+M:Ts0;,

=1

& ad
+/ (£ 6u; +mT 6y,) dz.'] +E M;Ts6; (27)
0

i=32

in which f; and m; are distributed actuator forces and
torques acting over the domain i, M, are torque ac-
tuators located at points O; and acting on both mem-
bersi—1and i, fori=2,3,...,N, R} is the virtual
displacement vector of point P;, §@; is the virtual ro-
tation vector of axes &n(;, 66 is the virtual rotation
vector of axes z;y;z; relative to axes ziylz/, SR}, is
the virtual displacement vector of point O; and §O};
is the virtual rotation vector of axes z;y;z relative to
axes XY Z, where all of these vectors are in terms of
components along axes z;y;z;, and asterisks indicate
quasi-coordinates (Ref. 33) and associated forces and
torques. Note that the term f7 27 §@©;, was omitted
from SR} on the basis that it is second-order in mag-
nitude. Moreover,

& &
Fl = fidz;, M}, = / (F.'f,' + m.-) dz; (ZBa,b)
0 0
are, respectively, resultant forces and torques acting on
member .

Before proceeding with the derivation of La-
grange's equations by means of the extended Hamil-
ton’s principle, Eq. (14), it is advisable to identify a
set of generalized coordinates capable of describing the
motion of the system fully. From Eqs. (3), we con-
clude that the motion of only one of the points O; is
independent. We choose this point as O;, so that we
retain only R,i(t) for inclusion in the set of general-
ized coordinates. On the other hand, because O; repre-
sent hinge points, the rigid-body rotation vectors 6;(t)
(i = 1,2,...,N) are all independent. Similarly, the
nonzero components of the elastic displacement and ro-
tation vectors, u;(z;,t) and ¥;(z;,t) (i = 1,2,...,N),

respectively, are also all independent. It will prove con-
venient to introduce the rigid-body motion vector

q@t) =

so that we propose to derive a vector Lagrange ordi-
nary differential equation for q(t) and N pairs of vector
Lagrange partial differential equations for u;(z;,t) and
Y(zi,t) (i=1,2,...,N). To this end, we wish to ex-
press the Lagrangian in general functional form, and we
note that the Lagrangian contains not only q, u; and ¥;
but also time and spatial derivatives of these vectors.
Moreover, we observe from Eqs. (3), (7), (10) and (13)
that the Lagrangian contains terms involving u;(4;,t),
w4, t), ¥;(&,t) and ¥;(4,t). Such terms will con-
tribute to the dynamic boundary conditions accompa-
nying the partial differential equations for u;(z;,t) and
¥;(zi,t). In view of this, we express the Lagrangian in
the general form

() 67(1) 67(1)... 631" (29)

L =L{q,q,w, w, i, ¥;, ¥%, i, (4, 1),
ui(4,t), ¥i(&,t), ¥4, 1)) (30)

The extended Hamilton'’s principle, Eq. (14), calls
for the variation of the Lagrangian, which can be
expressed symbolically as

6L=(g—ﬁ)T6 +(‘Zﬁ) 54
+;/ [(aL') +<g‘£3;)?5u2+~
+ (gi‘) 5% }dz. +Z {[Wif.—t)] Téui(l",t)

oL 7. oL 1T
+[aaten) w0+ i) e
R T .
aFom ) wi(a,z)} (31)

where L; = T, — Vi is the Lagrangian density for
body i. Moreover, (9L/8q)T represents the row ma-
trix {8L/0q; OL/8q3---BL/8qn,), etc., where Ng is
the total number of independent rigid-body degrees of
freedom. Consistent with the generalized coordinates
used, the virtual work has the form

N 2
W =QTéq+ ) / (£F su; + m] 69;) dz;
=1 Y0

N
+ 35 [UT 6w, 1) + T 69,(&,1)]  (329)

i=1



where we write the generalised force vector Q in the
form

Q=15 M M] - MET"

and note that F; is & generalizsed force and M,,.. . My
are generalizsed torques. They can all be related to the
actuator forces and moments, but we postpone further
discussion of this subject, and the derivation of specific
formulas for U; and ®; until later.

Introducing Eqs. (31) and (32) into Eq. (14), car-
rying out the usual imtegrations by parts and recalling
that the virtual displacements vanish at ¢t = ¢y, {3, we
have

[{[%- (%) +q] s
(][ 2 (%)

T A ”
aL; d (0L
il [awe " m (37)

(32b)

8
+§<{au.(z.,t & [%]

oL
0vi(4,t)

]+\I'.} 59,4, t)>}dt 0 (33)

+U} 6u.-(e.~.t)+{

8
ot Loy, (t.,t)

Then, invoking the arbitrariness of the virtual displace-
ments, we obtain the system Lagrange’s equations of

motion
d (0L 8L
(%) =0 .
& 6\1. dz; \ Ou; au‘
i=1,2,...,N;0<z; <4 (34b)
ot \ow, ) T8z \owl ) TFe, T
i=1,2...,N;0<z; < 4 (34¢)

where u; and ¥, must be such that the equations

- \T T
8L; _ 8L
(bT:) 6“‘ - 0) (m) 6"’. =0,
;=0 £:=0
i=12,...,N (35a,b)
pulnd 3 Ui _l e :
(au( g,=d ¥ {8“ [&u‘(e‘lt)
T
—31132)” }) 6“:(&,t) =0
i=12,... ,N-1 (35c¢)
W - =|—
(81[’: £.=4; ¥ {at [ail’.'(l;,t)]
T
I CURL
i=12,...,.N-1 (35d)
dLn _
Fu, Sun (=N t) LT 0 (35¢)
8L
su Sen(En ) LT 0 (35)

must be satisfied. Recalling that the body axes z;y; 2
are embedded in the body at z; = 0, we conclude that
satisfaction of Eqs. (35) is guaranteed if

u(0,2) =0, ¥,(0,t)=0, §i=12...,N (36ab)
8 oL aL
v Uh
at[au.(e,. ] Fult)  ouf| T
i=12,...,N=-1 (36¢)
2[ 6L ]_ oL _ oLl o
8 Log(4,)] 0wl ~ B, _, T "
i=1,2...,N-1 (364)
gﬁ—,” =0, gLfJ =0 (36e,f)
N en=LIN ¢N en=EeN

Equations (34a) represent ordinary differential equa-
tions for the rigid-body motion and Eqs. (34b)
and (34c) represent partial differential equations for the
elastic motions. Moreover, Eqs. (36) are recognized as
the boundary conditions accompanying the partial dif-
ferential equations. Although Eqgs. (34a), Egs. (34b),



(36a), (36¢) and (36e) on the one hand and Eqs. (34¢),
(36b), (36d) and (36f) on the other hand have the ap-
pearance of independent #sets of equations, they are in
fact simultaneous. They constitute a hybrid (ordinary
and partial) set of differential equations governing the
motion of the multibody system shown in Fig. 1.

4. Lagrange’s Equations for Flexible Multi-
body Systems in Terms of Quasi-Coordi-
nates

Equations (34) seem very simple, but they are not.
The reason for this is that the kinetic energy is only an
implicit function of q and q and not an explicit one.
The kinetic energy is an explicit function of V,; and
w;, which are commonly known as derivatives of quasi-
coordinates (Ref. 33). Actually, the kinetic energy is an
explicit function of £3;, but £); is related directly to w;,
as can be seen from Eq. (13). As shown in Ref. 32 for
a single flexible body, hybrid Lagrange’s equations of
motion in terms of quasi-coordinates are considerably
simpler than the standard Lagrange’s equations. We
propose to show in this paper that the same is true for
multibodies.

Recalling definition (29) of the rigid-body displace-
ment vector q(t), we can rewrite Eq. (34a) in the more
detailed form

d { 8L 8L
& \3R.;) TR, 3
dt (aRol) 3R,°1 1 ( &)
d (6L oL .
dt (bﬁ) ~ 36, =M;, i=1,2,...,N (37)

The vectors R, R,1 and F; are in terms of compo-
nents along the inertial axes XY Z. Moreover, the com-
ponents of the symbolic vector 8; represent rotations
about nonorthogonal axes leading from z}y}z{ to ;%
and the components of M; are associated moments. An
example of such rotations are Euler’s angles (Ref. 33).
As the quasi-velocity counterpart of the generalized ve-
locity vector q(t), we choose

w= (V5 o wiwR]l (38)

and we note that w does not equal the time derivative
G of the displacements. We also note that every
three-dimensional vector entering into w is in terms
of the corresponding orthogonal body axes z;y;z;. The
relation between the velocity vector V,,; in terms of
body axes and the velocity vector R, in terms of
inertial axes is simply

v°1 = C;R,; (39)

where C) is the matrix of direction cosines first intro-
duced in Sec. 2, and that between the velocity vector w;

in terms of body axes and the Eulerian-type velocities
8; can be written as

wi=D8;, i=1,2,...,N (40)
where D; is a given transformation matrix (Ref. 33).
Equations (39) and (40) and their reciprocal relations
can be expressed in the compact form

w=AT(q)q, q=B(qw (41a,b)

where
A = block-diag[CT DT DT ... DY (42a)
B = block-diag[CT D' D3'-..DR'] (42b)

Equations (37) postulate a Lagrangian in terms of
generalizsed coordinates and velocities, Eq. (30), when
in fact the Lagrangian defined by Eqgs. (15), (186), (17),
(25) and (26) is in terms of generalised coordinates and
quasi-velocities. To distinguish between the two forms,
we define

L‘ =L.[q»')uivu$)ﬁ‘)¢’il¢=l$h .
u‘(‘h‘))ﬁi(‘h‘)»*‘(‘h‘))¢i(‘ht)l (43)

We propose to obtain Lagrange’s equations in
terms of quasi-coordinates by transforming Eqs. (37).
To this end, we use the chain rule for derivatives with
respect to vectors and consider Eq. (39) to obtain

8L _ 8(CiRa)T 8L* _ or 9L

8ﬁ,1 - 8R.¢1 avol ! avol (44&)
oL aL*
8Re1 ~ 0Ra (44b)

But, it is shown in the Appendix that the matrix of
direction cosines C; and quasi-velocity vector w; satisfy
the relation _

C; =aTC; (45)

gso that differentiating Eq. (44a) with respect to time,
we have

d 8L d oL*
dat (an.l) Tdt (C‘Tavu)

_ 8L d [ 8L
=Clogg-+Cl (avol) (46)

Then, inserting Eqs. (44b) and (46) into Eq. (37a)

and premultiplying by C;, we obtain the translational

Lagrange’s equations in terms of quasi-coordinates
arL* ar:

d (oL . -
dt (av.,;) tova O, =F @D




where

Fl = CIF1 (48)

is the resultant force acting on body 1 in terms of body-
axes components.

As far as the rotational motion is concerned, we
consider first the equations for body 1. Using the chain
rule for derivatives with respect to vectors once again
and using Eq. (40), we obtain

oL _ 8(D:6,)" oL _ Tav
86, 88, Ow = ‘!Ow
8L _ 8L*  8(CiR,)T 8L 8(D101)T 8L*

36, — 96, 88, 0V, 86,  dwy
(49b)

Moreover, Eq. (A-29) from the Appendix, with a re-
placed by R, yields the relation

a(ClR-cl)T -

(49a)

38, -DTv, (50)
and Eq. (A-27) shows that
) 9.\T
of = 2B, prs, (51)

86,
Hence, using Eqa. (49)-(51), we can write

i(gﬁ) OL _ | pr_ 8(D181)T | oL
dt a(91 36; ~ 06, | Bw:

o (3) ot -3

9 'oV. 86,
T aL') - 8L*  _ 8L°] 4L
—D [dt (001 VOI 8V,1 + 1601 601 (52)

Inserting Eq. (5} into Eq. (37b) and premultiplying
the result by Dy*, where the superscript —T' denotes
the inverse of t.he transposed matrix, we obtain the
rotational Lagrange’s equations for the first body in
terms of quasi-coordinates

8L°\ . oL* _ 8L* __p8L° .
(aw ) +Vogv T 956, Pt e, =M
(83)
where
M; = D;™, (54)

is the resultant torque acting on body 1 in terms of
body-axes components. The equations of motion for
the remaining bodies can be obtained in the same man-
ner, except that V,; (i = 2,3,..., N) are not indepen-
dent, as can be concluded from Eqa. (10). Hence, from
Eq. (53), the remaining rotational Lagrange’s equations
in terms of quasi-coordinates are

d (8L*\ .OL* __pdL* .
d—t(a—w)“‘a. D" e, =M

i=23,....N (55)

where
M; =D7T™M;, i=23,.. N (56)
Equations (47), (53) and (55) can be cast in a sin-
gle matrix equation. Indeed, recalling Eqs. (29), (38),
(41b) and (42b), the rigid-body Lagrange’s equations
of motion in terms of quasi-coordinates can be written
in the compact form

d (8L oL 9L .
dt(aw)+H8w -B dq =Q (57)

where the asterisk in L* was dropped for convenience.
Moreover,

Wi 0 0 0
Vor w1 0 -« 0
H=]0 0 @ - 0 (58)
0 0 0 WN

and

Q" = BTQ=[F{" M{" M;T - -MJT]"  (59)
The hybrid set of equations of motion is completed by
adjoining to Eq. (57) the partial differential equations
for the elastic motions, Eqs. (34b) and (34c), and the
associated boundary conditions, Eqs. (36).

5. Explicit Hybrid Equations of Motion for
Flexible Multibody Systems

Using Eqs. (16) and (17), we can write the kinetic
energy in the form

&
=5 E ["“vTvﬂ + n Y +/ p.u?u. dz;
0

l-l

T . - - &
[T Fabides + 2VE(ST s + / pitss dzi)
0 0
L - " -
+207, / (Fiw + ) dz.-] (60)
0

and we observe that T does not depend explicitly on
the quasi-velocities V,; and w; (i = 1,2,...,N), but
on V, and 03, (i = 1,2,...,N). To resolve this
inconvenience, we make use of the discrete step function
7;, defined by

[0, ifi=~-1,-2,-3,...
7"{1, ifi=0,1,23, ... (61)



and then make repeated use of Eqs. (10) and (13) to
establish the relations

N
0 = Z Ciy [Yi-jwy + Yi-j-100;(4,t)] (62a)

j=1

N
Vo =C Vo1 + Z'Yi-j-l
j=1

Cyi (6580, +v;(4,1)]

N
=C}Vo1 + E {Fi,-wj +ij+10.5(¢,t)
j=1
Ci.jvj(li)t)}

N
. =EC“J [‘7,‘_,'&,'-0-7(_,'_19.,' (lj,t)] +dqi (63&)
j=1

+Yiej-1 (62b)

N
Vo =CiVar + 3 { Ty + Tiiafhei(4,0)

j=1
+%i-5-1Cvi (4, 1)} + dvi  (63b)
N
507, =3 Cj [160166} +Tucsorbt(4,0)]  (630)
i=1

N
6R;; =C{16R;; + E [T:66; + Tij+169;(¢,t)
j=1
+ %i-j-1C56ui(4,t)]  (63d)
in which C}; is simply the matrix of direction cosines
of axes z.y.z. with respect to axes z;y;z;, defined for

all indices i, j between 1 and N, and consequently

=J] ci, 1<i<isN (64a)
k=541
Cci=1, 1<i<N (64b)
C)T=C CuChyy=Cj 1<4,5,k<N
(64c,d)

The other quantities appearing explicitly or implicitly
in Egs. (62) and (63) are given by

et =[6 uyi(8,8) uni(&, O (65)
-1
Ty =Y ChaluCy (65b)
h=j§
N .
dai = 3 Gl [Mimjwj + %i-j-1904(&,1)]  (85¢)
j=1
=1
dvi =ChVa + ) {C’.-‘,- (63 00 + v(4,2)]
i=1
+Cy [egvs (4, + 5 day | } (85d)
¢y = (A Cyn,) G (65e)

We also note that C; depends only on 8, for
min(s,j) < k < mu(i.js, and on ¥, (4,t), for values
of k satisfying min(s, j) < k < max(i, j). Hence, using
Eqs. (A-29) and (A-30), we can derive the relations

(Ca)T
( ) (7J—i - 7|-h)D. aC" (66&)
86,
provided a does not depend on 8,, and
o(Cya)” -
o, (6,0 = (imhmt ~ -s-) Bull)G,C5 (66b)

provided a does not depend on ¥,(4,t). Some other
relations that will prove useful are as follows:

onf, _
B—R-: = 0 (67&)
T L 3
-z = Dy E('fj-h - ‘7:'-#)0;1' [‘Yt-,'wj
aoh i=1
+ 1i-j-1045 (4, IC}; (67b)
onT, _
Fanlla) ®7)
aq7, 2 i
ol d) - Ex(ta,t) ng:l(‘r:-'h-l = %i-a-1)Cij[%-3%;
+%-i-106(4, 0IC;;  (67d)
oaL 8% _
0VQ1 - Ol awh - 7‘—‘C;h (67e)f)
anz; anT,
re =0, r = Yi—k- C: 67 ’h
hk(tb,t) 0n.g(l§,t) Yi-b=1043 ( 4 )
ovL
3—3.: =0 (68&)
ov7
%— = D} [(‘h—h — %-4)Chy Va1 C}
i-1
+ E {(7J-h - 7o-h)C:l [ue’ Qpi + vi(4, ]
i=1
anT.
=T>"7ry @ .
+ DT 5t }c ] (68b)
-1
6“. (t., D = E"n (68¢)
_013.-__ = Ey(l,t) . Cc V..C
a'b.(l.,t) = Ltk = Yi-k=1Cp1 Vo110
i1 X _
+3 {(7:'-1--1 = 7i-2-1)Cy; ["‘3} 0 +vi4, f)}
j=1



+ E-l 4 t _.aiTl_ Ct 68d
f ( &)y )6¢k(l t)uq ( )
A ov7%,
V. = Clo G = =T} (68e.f)
_avh VT .
Fvatln, ) = 1% Gantn = D (688h)

Then, using the chain rule for vectors when needed, we
obtain the momenta

L .. 8L
Pvol *a‘—v.":‘ = ; 1(5{,:.' (69&)

0L _ ~{(.r 0L . AL
Puwj -E - g-.: (Fu av + %i-j Cu an ) (69b)

where

OL; &

3V =m;V, + STnn + pindz; (70a)
oL, _ & A - P

3_ﬂ,-.- —Jﬁnﬂ' + SiVoi +A (S'.'u; + Ja‘l/)) dzi (70b)

For future reference, we also indicate that
d { 9L; . -p
Jt- (6—V'_ot) =mV, +S:'rnn

&
+/ pilidz; + divi (71a)
0

d (OLi\ _, & . a&xr.
&T (Wﬂ) —Jhnﬂ"'sovat

45 - PR
+ / (et + Juithy) dzi + dui (710)
0

where
- ¢4
devi = s / piitedz; (T22)
0
&
deni = Juifdpi = Vi /; piudz; (72b)

: 4 - - - - 2T
Jei =/° Pi{ui(zial + &)T +(2i8 + B }dz.‘ (72)

and

v (%)

=1

N
E (miCLTyj

=1

i N
val+z:

j=1

+%-;CuSTCy )| &5

N TN
+ Z [Zw-,’-mlicfj] vi(4,t)

j=1 Ls=1

N[N
+2 [E (miCLili 41

j=1 Li=)

+7'-J-1clo'§TC. )] nl]'(‘i!t)

+E(C,, / piiicdz )

i=1

+Z[ v * Ol (madvs

+5Tdai + dtVi)] (73a)

i (miIT +%-;G3 %) c;l] Vo

=1

+ f: { XN: [ (""‘1‘?,- + ‘7-'-:'0.",'5-') Ti

k=1 \ s=1

+ Yi-» (1".1,‘5':1‘ + 7&—;0.-',-1:.‘) C}'.] }u'u

+ i [i%’-l-l (miI§

k=1 Li=1

+7l'—JC‘ Si) C‘h] Vh(lht)

+Z{Z [ (e + %-sC5 S0

=1

) | Y E ¥
+ Yi-k-1 (I‘.’,'-’;':" + ‘7-'-:'57,--7:&) Ce‘x] }ﬁ-h(ln.t)

+ E [/ (p.—I‘.-T,- +7%i-1Cy %) ii.-dz,-]

n-l

3L
~T

. aL T T
+%-iClj g . T [dewvi + 7i-jC.",'dtni + (miT

+‘7.‘-,‘C"','5.') dvi + (F'.I;g.r + 7i-jC'.~',-Ju) dn.}

(73b)
We also define equivalent forces and moments
éL
Pl —01 8&1 =0 (74&)
. T 6L -7 BVT 8L 893} aL )
M;; =D; =D; E ( 98; 8V,. 86; 60,
(74b)
and the remaining pertinent terms
N
oL avy  aL; (753)
du, (4, ) 8u, (l,,t) Ve



N

0L __§ OVa OL (75b)
an(lj,t) im1 Wf(‘j:t)ovd

8L =i‘:( avh oL T, 5L )
a'ﬁj(li:t) i=1 “}(‘bt) ovd 31bj(l,',t) Q.

- (75¢)

oL _”( avE oL aqz, 6L)

6ﬂ.j(lj,t) -i=l 80.,-(!,-,t) V. an.,-(l,-,t) a0,

(75d)

in which some of the partial derivatives are given by
Egs. (67). ‘

Finally, adjoining the kinematic relations ex-
pressed by Eqgs. (9), (11), (39) and (40) and inserting
Eqs. (68)-(70) into Eqgs. (34b), (34c) and (57), we obtain
the hybrid state equations in terms of quasi-coordinates

Ry =CfVy, 6;=D‘w;, i=12.. N
(76a,b)
w(2i,t) = vi(zi,t), $i(2i,t) = ei(2i,0),
i=12,...,N (76c,d)
bVal = —W1pvo1 + FI (76e)
Put = =Vo1Pvar — @1Pu1 + Mj; + M, (76f)

I')w" = —(;"pw" + M;' + M:'-’ it = 2,3, e ,N (768)
pilys + Voyi + 2ileai — taiflrgi — 20reitsi + QrsiVosi
= QroiVosi + 2iQraifleyi — (025 + Q2,0)uy
+ QryiQrsithsi] — [kyiGi Ai(uys — %)l = fii (76h)

pilbsi + Vosi = 2iSleyi + yilleai + 20reityi + QreiVoyi
= QpyiVosi + 2iCreiQrsi — (25 + Q2 )i

+ Qe yiQraitiyi] — [kaiGiAi(uyg + ¥yi)) = fai  (76)

jzi:i (ﬁni + an') - (kﬂ'Go'Iﬂ'w’n')l = Mgy (76.])

Fyiyi(Qeyi + Dryi) + kaiGuAi (1l + yi)—(Ei L))

siai(Qasi + Qesi) = kyiGiAi(uli — ¥i)—(Ei L)'
= My, (76k)

The associated boundary conditions, Eqs. (36), are
given by

w(0,t) =0, ¥;(0,t)=0, i=12,...,N (77ab)

10

oL _ (2[5 %Yoy
M 8= & 0V.‘(l“,t) Ou.(t.,t) S
i=12,....N~-1 (77¢)
8L _ { 8 [ 8L ] 8L }_ 2.
8, oimts &t |00,k t)] Swi(&,)f "
i=12...,N-1 (77d)
LN 8Ln
— = 0, - =0 (77C,Q
,N sn=LNn a’bN sn=Lin

and the generalized forces and torques are given by

N
Fi=) CLFx (76a)
i=1
N
M; =3 (TR + CiMY) (78)
i=1
N
M; =M + 3 (CRFS +%-iC5M3;)
j=1
i:z,s,...,N (78C)

N
Ui=Y y-iciCyFYy, i=12,..,N-1 (18d)
j=1

N
¥; =2 (F}:.'HF:,' +7-i-1C5My;))
i=1
i=12,..

LN=1 (78¢)

where we have made use of Eqgs. (27), (32a) and (63c,d).

6. Summary and Conclusions

In recent years, there has been an increasing interest in
deriving the equations of motion for flexible multibody
systems by treating the mass and stiffness of the bod-
ies as distributed parameters. The equations of mo-
tion are generally derived by means of the extended
Hamilton’s principle, leading to a hybrid set of equa-
tions, where hybrid is to be taken in the sense that
the rigid-body translations and rotations of the bod-
ies are described by ordinary differential equations and
the elastic motions are described by partial differential
equations with appropriate boundary conditions. In
earlier investigations, the rigid-body rotations were de-
scribed by Eulerian-type angles, which tend to compli-
cate unduly the equations of motion, unless the motion
remains planar.

This paper presents a mathematical formulation
for flexible multibodies in terms of quasi-coordinates,



which permits the derivation of the equations for gen-
eral rigid-body motions with considerably more ease
than be using Eulerian-type angles. As an added fea-
ture, the equations for the elastic motions include rota-

tory inertia and

shegy deformation effects. The equa-

tions of motion are-¢@d in state form, making them
suitable for control digiife.
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) )
Appendix n; = E(nj -ba)by = ZC'JI"’ i=123

i. Derivative rules

If A = [A;] is an m x n matrix, then we define the

partial derivative of A with respect to a scalar r to be
the m x n matrix §A/8r = [0A; /7). If A is a function
of time ¢, then the derivative of A with respect to t is
denoted by A = dA/dt = [dAy/dt]. Let B = [By] be
an M x N matrix. Then, the derivative of a matrix with
respect to a matrix, 9A/0B, is the mM x nN matrix
defined by '

k=l k=l

(A-11)
At this point we wish to establish a relation between
the body axes components of the angular velocity w
of coordinate system £;£2€3 with respect to coordinate
system 212323 and the time derivative of C;; with
respect to coordinate system z,z,zs. First, recall
(Ref. 33) that w is uniquely characterised by
(A-12)

h=wxb;, i=133

N 64 04 04 1 where in this case the “dot” requires holding n;, nj, ns
8B 0Bi 0B~ constant. Then, taking the time derivative of Eq. (A-
aa | 24 o4 04 10), using Eqe. (A-11) and (A-13), and some identity
38 = 8By, 9Bx 9Ban (A-1) involving scalar and vector products, we obtain
84 o4 oA C"u=B¢-n,;.:(wxb‘)-n,=3(b¢xn,)-w
-8By1 8B OBun - =(bs x ZC'ubn) = Ecu(b‘ x by) - w

Furthermore, let L be a scalar and f = [.fl"‘fm]T,
q= [41"'%]T, s = [31---3,.]7 be column matrices.
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A=l A=l

(A ~13)
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Now we observe that (b; x by) - w, where 5,k =1,2,3,

are merely the entries of the 3 x 3 matrix

[0 by-w -byw
[Un]S "'h.“ 0 b; w
N -b.w 0
-3
= ul]za’ (A - 14)
[ W =1 0

where (w1 w3 ws]T are the ££36s components of w,
and we have used the fact that b;, bs, by form a right-
handed set of unit vectors. Inserting Eqs. (A-14) into
Eq. (A-13), we obtain

3
Cy = Ewucu (A -18)

k=l

which can be expressed in the matrix form

C=4d"C (A -16)

The relationship between w and 8 has the form

w = D(8)8 (A-17)
We now propose to derive some relation between D
and C. In the first place, taking the partial derivative
of CCT = [ with respect to 6;, we obtain
acT &8C acT GC”‘
Coirt o cT Co t ( 80‘) =0,
i=1,23 (A-18)

from which we conclude that the 3 x 3 matrix
C(8CT /56;) is skew symmetric. We denote the ma-
trix by

8cT

Si=Cc=—, i=1,23

T (A-19)

where §; is obtained from the column matrix 8 =
[Sii Sx Su]T in the usual manner. We now calculate
the time danv;ttvedctmtbﬁonn

cT = Z —--a‘ = 6'2 (c—) 6 = CTEM

i=1 i=1

o (g s,é‘)

=1

=CT ([s1 S, 83]6) = CT(S6)
(A-20)

Comparing Eqs. (A-16), (A-17) and (A-19), we con-
clude that

=[S, 8; S3)=D (A-121)

Eéuat.ion (A-20) relates C and D in an implicit manner.
Next, we wish to derive an expression for D.
Taking the partial derivative of Eq. (A-18) with respect
to §; and replacing 5; by D;, we obtain
oD, _s8coect .  &CT _ (.8CT\T [ 6CT
%; ~ a9, 09, + C 59,88, ~ (C 36, ) (C 2 )
ol cd 3cT cT
*+Ce,00, = D7 Di+C gy 55: = ~DiDi + C g 196;
(A-22)
Interchanging ¢ and j in Eq. (A-22), we have
8D acT
#-—D;D,+C”” (A -23)
Then, subtracting Eq. (A-23) from Eq. (A-22), we can
write

8D 8Dy =2 5 _Am
Fl‘ - 7‘;‘1 = DDy - DyDs = (DiDy) (A —24)
which implies that
oD; _ dD;
- M = DD, (A -125)

This formula can be used in turn to derive an expression
for D. Firlt we recall Eq. (A-17) and write

s
: D oD, . ;
D; = 80"0, = 2 (T'-‘L., + b;DjO,!

j=l

(2:‘.1 Dm) | (En,i:)

j=l
-L-i-ﬁw- J—*‘ &TD; (A-26)
This implies ﬂn.t )
D71 _ aoayr
DT = [D"] = ~50 +D7%
D
Next, we consider the partial derivative of (Ca)T

with respect to 6, where a does not depend on 8. First,
we recall Eqs. (A-19) and (A-21) and write

T -
O(g“:) 1-00': =aTcT (c%) = (Ca)T Dy
= - (Ca)T DT = (CaD;)T = —(DiCa)T
=DT(Ca)" (A - 28)
which implies that
-D{(Ca)
”_L(g'; " - -nlf(c.)] =-D%(Ca) (A-29)
—D{(Ca)
The companion formula

8(CTa)T _
50— =

can be derived in a similar manner.

>

(A-27)

(A - 30)
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Fig. 2 - Bending Displacements
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