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assemblages are predicted to contain abundant Fe-, Mn-, and AI-

hydroxides in addition to the dolomite, chalcedony, and kaolinite.

Subsequent evaporation of the groundwaters after reaction with

basalt is predicted to form, with progressive evaporation, dolomite,

MgCO3*3H20, apatite (or other phosphate minerals), calcite, daw-

sonite, and gypsum. Halite and sylvite are not predicted to form,

even with ex!ens!ve evaporation. Reactions of the regolith with

groundwaters near 0°C are predicted to result in acidic waters and

alteration assemblages containing abundant Fe- and Al-hydroxides

(or smectites), Mn-hydroxides, and kaolinite.

The portion of the project in which we model sub-zero brine-

regolith interactions has required extensive modifications to the

We have attempted to model the observed seasonal pressure

variations with an energy balance model that incorporates dynami-

cal factors from a large number of general circulation model runs in

which the atmospheric dust opacity and seasonal date were system-

atically varied [2,3]. The energy balance model takes account of the

following processes in determining the rates of CO 2 condensation

and sublimation at each longitudinal and latitudinal grid point: solar

radiation, infrared radiation from the atmosphere and surface, sub-

surface heat conduction, and atmospheric heat advection. Conden-

sation rates are calculated both at the surface and in the atmosphere.
In addition, the energy balance model also incorporates information

from the GCM runs on seasonal redistribution of surface pressure

computer programs that carry out the reaction-path calculations and across the globe, a process that has very little effect on CO 2conden-

the thermodynamic database that serves as the basis for the calcula- _ sati0n and sublimation per se, but which can alias surface pressure

tions. Modeling calculations below 0°C are still in progress, measurements at local sites.

Summary: Although the chemical reaction-path calculations

carried out to date do not define the exact mineralogical evolution

of the martian surface over time, they do place valuable geochemical

constraints on the types of minerals that formed from an aqueous

phase under various surficial and geochemically complex conditions.

Based on these results, we believe that further chemical reaction-

path modeling efforts are needed as new remote sensing data and

otherlinesofevidence are acquired on possible surficial mineralogies.

By integrating such geochemical modeling calculations with remote

sensing studies, more realistic and geochemically valid models for

the evolution of the martian surface through time can be developed.
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The meteorology experiment on the Viking landers carried out

accurate measurements of the surface pressure over the course of

several martian years [I]. These data show substantial variations in

pressure on seasonal timescales that are characterized by two local

minima and two local maxima. These variations have widely been

attributed to the seasonal condensation and sublimation of CO 2 in

the two polar regions. It has been somewhat of a surprise that the

amplitude of the minimum and maximum that is dominated by the

CO 2 cycle in the north was much weaker than the corresponding

amplitude of the south-dominated extrema. Another surprise was

that the seasonal pressure cycle during years 2 and 3 of the Viking

mission was so similar to that for year I, despite the occurrence of two

global dust storms during year I and none during years 2 and 3.

Numerical experiments with the energy balance model show

that the following factors make important contributions to the sea-

sonal pressure variations measured at local sites: albedo and emis-

sivity of the seasonal CO: polar caps, topography of the polar

regions, atmospheric heat advection, and seasonal redistribution of

the surface pressure. The last factor contains contributions from

seasonal variations in atmospheric dynamics and from scale height

changes in the presence of topography. The model-derived values of

cap emissivity may contain an influence from CO 2ice clouds that are

particularly prevalent in the north during its fall and winter seasons

[4]. Atmospheric dust influences each of the above factors, albeit in

different ways. For example, atmospheric heat transport to the poles

rapidly increases as the dust opacity increases from O to l, but then

tends to approach an asymptotic value. We suggest that the similar-

ity of the seasonal CO 2cycle between years with and without global

dust storms may reflect this type of saturation effect. Indeed, runs

with the energy balance model performed using Viking-lander-

measured opacities during years I and 2 [5] tend to substantiate this

hypothesis.

We have used estimates of the surface temperature of the sea-

sonal CO 2 caps [4] to define the infrared radiative losses from the

seasonal polar caps. This information implicitly incorporates sur-

face topography, a quantity that is poorly known in the polar regions.

We have been able to closely reproduce the seasonal pressure

;¢ar|atirns measured ai theViking lander sites. Our best models are

characterized by a lower cap emissivity in the north than in the

south. We attribute this difference to the influence of CO 2 ice clouds

[4]. According to our calculations the reduced amplitude of the

north-cap-influenced pressure extrema, when compared to that of"

the south-cap-influenced extrema, are due to the following: lower

cap emissivity in the north (due to a greater frequency of CO 2 ice

clouds in the north), greater heat advection during northern winter

when the dust opacity is elevated, and a larger amplitude to the

seasonal pressure redistribution during northern winter when the

dust opacity is higher. Opposing these factors is a lower CO 2 ice

temperature in the south due to its higher elevation.
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