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MDC HSCT ENGINEERING SUMMARY

Current activities on the HSCT at Douglas Aircraft are focused on

baseline vehicle development at Mach 1.6 and 2.4. Parallel design

activities incorporating the latest technologies in

structures/material_ propulsion/noise and aerodynamics are also being

conducted and incorporated into the baseline to establish

performance, economic viability and environmental compliance.

Studies are also being conducted to establish the feasibility of

incorporating laminar flow control and minimized sonic boom concepts

into the baseline. A decision point on these last two technologies

is targeted prior to the start of the NASA HSR Phase II program in

1993. The activities summarized in Figure i.

All actions are focused on the timely initiation of the NASA HSR

Phase II program in 1993.
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?ASSENGER AIRCRAFT

CAPACITY/SUPPLY FORECAST

The available passenger traffic growth through the year 2000 is shown

in Figure 2. The retirement of the current fleet and current new

orders do not meet the projected demand. The short fall will be

filled by HSCT and new subsonic aircraft. HSCT market capture and

world fleet split between supersonic and subsonic aircraft will

depend on HSCT's operating economics and on the level of fare premium

that may be charged to it's passengers.
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HSCT FLEET PROJECTIONS BASED ON TRAFFIC DEMAND

Based on traffic demands, supersonic fleet projections for Mach 2.2

may exceed 3000 aircraft by year 2030. These fleet projections show

a substantial decline as fare premium levels increase. As fare

premium levels get higher, the supersonic fleet size may fall short

of the commercially viable quantity that attracts the aircraft

manufacturers to assume the financial risk of launching HSCT.
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DESIGN FEATURES AND KEY TECHNOLOGIES

FOR OPERATIONAL AND ECONOMIC VIABILITY

The DAC HSCT features numerous advanced technology features as

illustrated in Figure 4. Highlights include synthetic visions for

the pilot, a fly-by-lite/power-by-wire flight control system,

lightweight advanced structural materials, high-lift devices_high

airflow augmentation engine nozzle ejectors for Stage 3 noise

compliance)and conventional Jet-A fuel.
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CURRENT PERFORMANCE STATUS

The Mach 1.6 and 2.4 vehicle performance is summarized on Figure 5.

The performance shown below is currently based on lightweight

airframe materials without cost considerations. DAC trade studies

discussed in Session ii and summarized later in this presentation

describe ongoing studies of the structural/material concepts. The

selected mission is based on a fleet average basis using 250 city

pairs and reasonable re-routing.

o 5500 NM RANGE/25% SUBSONIC OVERLAND

o 300 SEATS

o 10,600FTTOFL

o UGHTWEIGHTAIRFRAME MATERIALS (AIMMC)

o TURBINE BYPASS ENGINE CYCLE

MTOGW(!:,)

OEW(b)

BLOCK FUEL(lb)

WING AREA (ft2)

THRUST (SLS bEng)
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MACH 1 . 6 BASELINE

The Mach 1.6 aircraft planform and maj_

Figure 6.

imensions are shown on

4_: 7_5 f-T.

r _ L_ F'_----.... L.;_5 []...... '='-'

S?_u

Figure 6

367



MACH 2 . 4 BASELINE

The Mach 2.4 baseline planform and major dimensions are shown in

Figure 7.
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ENVIRONMENTALTOPICS TO BE DTS'r....,S'SD

The status in the three areas shown in Figure B will be discussed.

1) ATMOSPHERIC EMISSIONS

2) JET NOISE

3) SONIC BOOM

Figure 8
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TOTAL CHANGE IN COLUMN OZONE CONCENTRATION

The results of a parametric analysis conducted to determine the total

column change in ozone as a function of mean cruise altitude/cruise

Mach number and NOx emissions is shown in Figure 9. Superimposed on

this parametric analysis are the emissions for a two levels of

annual-seat-miles (ASM) and their corresponding fleet size.
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It is generally agreed within the industry that a total ozone column

change of more than i percent would not meet the environmental

acceptance goal. With this ozone change as an upper boundary, the

results shown on Figure 9 indicate that the lower altitude/Mach

conditions will accommodate larger fleet sizes. These studies have

been used as one factor for DAC continuing the Mach 1.6 baseline

studies.
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STAGE 3 NOISE STATUS AT MACH 2.2

Stage 3 noise limits may be met with advanced high augmentation

suppressors as shown in Figure 10. Range has a very small effect on

this conclusion but at 6,500 nmi and 883,000 ibs. the HSCT may not be

economically viable.
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CURRENT TECHNOLOGY HIGH LIFT PERFORMANCE

RANGE TOGW SLST
NMI 10001bs. 1000 Ibs.

50O0 650 49.2

6500 883 66.6

SUPPRESSOR NOISE REDUCTION

11-12 EPNL

SIDELINE TAKEOFF

(A EPNdB
re STAGE3)

+3.1 +1.2

+2.9 +1.5

14-15 EPNL (ADVANCED)

SIDELINE TAKEOFF

(z_EPNdB
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Figure I0
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THE HSCT NOISE CONTOUR IS LARGER THAN

THE 747 IF THE HSCT EXACTLY MEETS THE STAGE 3 SIDELINE

CERTIFICATION LIMIT

The community noise contours for both vehicles are shown in Figure

Ii. A 1990 Mach 3.2 cruise vehicle with goal level low speed

performance has been used for the HSCT. The HSCT will have an

increased impact on the community unless the technology can be

developed to reduce the effect.
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CLIMB NOISE HSCT VS SUBSONICS

During the climb to cruise portion of the HSCT mission, the

unsuppressed jet noise at ground level will be higher than either

current stage 2 or 3 subsonic's as indicated in Figure 12. This

higher noise level is a concern and will need suppressing and further

study to establish the accuracy of these calculations and acceptable

noise levels. Additional details are discussed in Session 8.
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SONIC BOOM STATUS - SEPTEMBER 1990

The configuration shown on Figure 13 meets our sonic boom signature

goal of 90 PLdB. However, the concept shown has an unacceptably high

empty weight which results in a range short of our goal. Additional

details are discussed in Session 5.
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_EQUIREMENTSTO ACHIEVEENVIRONMENTALGOALS

Suggested technology and study topics in the 3 environmental areas
discussed is shown in Figure 14.

REQUIREMENT

"_ ATMOSPHERIC EMISSIONS

• COMBUSTOR EINOx = 5 "]

J• ATMOSPHERIC MODELS

2) JET NOISE

• HIGH AUGMENTATION =',
EJECTORS (60 TO 120%)

OR
HIGH INLET FLOW ENGINE CYCLE

• NOZZLE SUPPRESSOR OR MIXER

• LOW SPEED AERODYNAMICS =_

• ENGINE CYCLE "_

• NOZZLE SUPPRESSOR OR MIXER

• NOISE ESTIMATE VALIDATION

3) SONIC BOOM

• CONFIGURATION DEVELOPMENT ='%.
& WEIGHT REDUCTION J• WIND TUNNEL VALIDATION

=, HUMAN RESPONSE STUDIES

Figure 14
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MATERIALS AND STRUCTURAL CONCEPTS

The material systems and structural concepts being considered for the

1991 Mach 2.4 material design study are described in Figure 15.

Additional details are discussed in Session Ii.
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MDC 1991 MACH 2.4 MATERIAL STUDY DESIGN

FEATURES MULTIPLE MATERIALS

The current status of the materials concepts on various components of

the aircraft are shown on Figure 16. The configuration features an

all composite fuselage and a mixture of titanium and composites for

the wing.

LEGEND:

POLYMER COMPOSITES

TI'FANIL_M SANDWICH

[-----J TITANIUM STIFFENED SHEET

Figure 16
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PwnPUT,SION ASSESSMENT

The status of the propulsion system analysis is described in Figure
17.

• 4 ENGINE CYCLES & VARIANTS EVALUATED

- FLADE
- VCE } GE

- VSCE
- TBE } P&W

• P&W TBE AND GE FLADE ARE PREFERRED CONCEPTS

• NOISE SUPPRESSORS ARE REQUIRED TO MEET NOISE & PERFORMANCE
CONSTRAINTS - ENGINE DERATE NOT ACCEPTABLE

• KEY TECHNOLOGIES/STUDIES

- PERFORMANCE AT SUBSONIC AND SUPERSONIC CRUISE
- HIGH AIRFLOW NOISE SUPPRESSORS
. INTEGRAT-I_DCONTROL
- AIRFRAME INTEGRATION
- HIGH TEMPERATURE/LONG DURATION CRUISE
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EVALUATIONOF ENGINE CYCLESRESULTS
IN THE P&WTBE AND GE FLADE AS

THE PREFERREDCONCEPTS

Noise and performance assessments were made for the 4 basic engine

cycles listed on Figure 18. The results were obtained during DAC's
contract work in 1990 using a Mach 3.2 cruise vehicle. Based on the
results shown on the Figure, the P&WTBE and GE Flade were selected

for further study.
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MAY NO T
MEET STAGE 3

11.2% WORSE

VCE

3-5 DB OVER
STAGE 3

2.5% BETTER

FLADE

MEETS STAGE 3
BASED ON GE

DATA

0.4% WORSE

3.1% BETTER

Figure 18
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1991 HSCT ENGINE SYSTEMS STUDIES PLAN

The task and schedule that the joint P&W/GE team have agreed on for

engine cycle development is shown on Figure 19. DAC will be

supplying the necessary inputs to the engine companies for cycle

development throughout the year. The engine cycles will be available

for airframe fly-off analysis starting in October of 1991.
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IEXJtAUST NOZZLE CONCEPT

DESIGN DEFINITION

ENGINE]N OZZ1E PERFORMANCE

WEIGHT, INSTALLATION DATA

IN-HOUSE SYSTEM

FLYO FF ANALYSIS

AIRFRAME MANUFACTURER

SYSTEM FLYOFF ANALYSIS

J F M A M J J__ 1 1..... I As-o.ol I I I....J__
MFTF TBE / IF'V

_E,VCEV_F_OE_ ......P&w - MFrF,._n!_ T._S!!l__
GEAE - MFTF, VCE, FLADE

MFTF ]'BE / IFV

TBE. VCE V FLADE
P&W - AXI & 2D ?

GEAE - 2D FLUID SHIELD

P&WGEAIE

. P&WGEAE

COST & MC

I
COST & MC I

I

TBE
VCE MFTF

V__V

"n3E

I
I

TBEJIFV
FLADE

TBE IFV
VCE MFXF FLADE

V V \

EXISTING FLADE

INLET / INTEG RATION_

ISSUES | t BOE|NGDOUGLAS

i

38O

Figure 19

Z



HIGH LIFT STATUS

The status of the high lift work is described in Figure 20.

Additional details are discussed in Session 12.

• AERODYNAMIC IMPACT ON PERFORMANCE AND NOISE HAS
BEEN ESTABLISHED

RECOMMEND HIGH LIFT SYSTEM SETTING CHANGE DURING
TAKE-OFF & CLIMB
NO IMPACT ON SIDELINE NOISE

• NEW PASSIVE DEVICES TESTED AT NASA DECEMBER 1990

• "PNEUMATIC" CONCEPTS TO BE TESTED AT NASA MID 1991

• IN HOUSE ANALYTICAL STUDIES INDICATE THAT THE DAC PERFORMANCE
GOAL (S-80% TRIMMED) CAN BE ACHIEVED USING PASSIVE DEVICES

KEY TECHNOLOGIES/STUDIES

VERIFICATION OF INNOVATIVE CONCEPTS
EXPERIMENTAL VERIFICATION AT HIGH
REYNOLDS NUMBER
CFD APPLICATIONS
SUBSONIC CRUISE REQUIREMENTS

Figure 20
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BENEFITS OF HIGH LIFT PERFORMANCE IMPROVEMENT

Current technology community noise contours can be significantly

improved if the high lift performance goal of 80 percent leading edge

suction (LES) can be achieved as indicated by the results shown in

Figure 21.
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SUPERSONIC LAMINAR FLOW CONTROL (SLFC)

Previous studies at DAC under contract to NASA Langley have

investigated the benefits of partial chord and full chord suction for

laminar flow control. These studies indicated that full chord was

the best system when evaluated on an economic basis. The benefits

are shown on Figure 22 accompanied by the technology issues to be

validated before these benefits can be achieved. Additional details

are descussed in Session 13.

BENEFITS FOR HSCT TECHNOLOGY ISSUES

• 8% TOGW REDUCTION •

• 12% SMALLER ENGINES

• 14% BLOCK FUEL REDUCTION

• 11% L/D IMPROVEMENT

• 4% BETTER ECONOMICS

Figure 22

CFD FOR HIGH SPEED ANALYSIS
AND DESIGN

3-D BOUNDARY LAYER STABILITY
ANALYSIS PACKAGE

PERFORATED ADVANCED
MATERIALS DEVELOPMENT

DEVELOPMENT OF SLFC
STRUCTURES AND DUCTING
USING ADVANCED MATERIALS

DEVELOPMENT AND INTEGRATION
OF LARGE SUCTION MOTORS
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FUTURE PLANS

DOUGLAS SYSTEM STUDY TASK STATUS FOR 1991

Douglas aircraft has recently been awarded an $8 million 5 year task

order contract to continue system studies to evaluate environmental

compatibility and economic viability. DAC currently is under

contract on 8 task orders as shown on Figure 23. Others are under

negotiation and 3 are listed. DAC will also be continuing their own

in house studies during the same period of time (see Figure I).

TASK NO. TITLE

1.

2.

3.

4.

5.

6.

7.

6.

9.

10.

11.

PROGRAM MANAGEMENT

LOW SONIC BOOM PERFORMANCE/ECONOMICS

STATUS
UNDER
CONTRACT

X

X

AESA SUPPORT

ATMOSPHERIC EMISSION EFFECTS

FLIGHT RESEARCH NEEDS

ECONOMIC METHODOLOGY

NOISE ASSESSMENTS

PROPULSION ASSESSMENTS

X

X

X

X

X

X

NOISE PREDICTION CODE VALIDATION (ANOPP)

LFC ECONOMIC ASSESSMENT AT MACH 1.6

SONIC BOOM MINIMIZATION

NEGOTIATING

384

Figure 23


