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.... --=:_ ' -/'_ _- T'iaZee_ethod for Transition Prediction/LFC Design

The eN method involves computation of the total amplification of the various instability modes and cor-

relating the transition onset with the most amplified mode.

The general conclusion from various applications of the eN method is that when fundamental physical ef-

fects are properly accounted for, then N -- O(9-11) is a good predictor of transition for low background

disturbances.

The method can also be used to study the effect of various parameters (such as Mach number, pressure

gradient, wall heat and mass transfer, etc.) have on transition. However, note the comments on the next

page.

THE e N METHOD FOR TRANSITION PREDICTION/LFC DESIGN

• IN LOW DISTURBANCE ENVIRONMENT, THE eN METHOD CAN BE

USED TO PARAMETERIZE THE EFFECT ON TRANSITION:

B
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MACH NUMBER
PRESSURE GRADIENT
WALL TEMPERATURE
WALL MASS TRANSFER

SWEEP
FLOW HISTORY
BODY/STREAMLINE CURVATURE
BODY ROTATION/DYNAMICS
BLUNTNESS
FLOW CHEMISTRY
ANGLE OF ATTACK
REYNOLDS NUMBER(S)
SHOCK WAVES



Linear Stability Theory

There are four different instability mechanisms which are important in the stability of boundary layers.

These include TS/first mode, second mode, crossflow and Goertler. The second mode is relevant only at

Mach numbers above about 4. The first mode further consists of two different mechanisms, namely vis-

cous (such as TS waves) and inviscid instability clue to the presence of generalized inflection points in
compressible boundary layers or in flows with adverse pressure gradients.

LINEAR STABILITY THEORY

FOUR DIFFERENT INSTABILITY MECHANISMS

FIRST MODE

- VISCOUS (TS TYPE)

- INVISCID RAYLEIGH (DUE TO GENERALIZED INFLECTIONPOINT)

SECOND MODE

- INVISCID INSTABILITY DUE TO SUPERSONIC MEAN FLOW
RELATIVE TO DISTURBANCE PHASE VELOCITY ( I U - C I/a > 1)

CROSSFLOW

- INFLECTIONAL INSTABILITY OF THE CROSSFLOW VELOCITYPROFILE

- PRESENT IN 3-D FLOWS (BODIES AT ANGLE OF ATTACK, ETC.)

GORTLER

CENTRIFUGAL INSTABILITY DUE TO CONCAVE CURVATURE
(BODY/STREAMLINE)
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Transition Process

Transition is a multi-step process involving receptivity (generation of instability waves), linear stability and non-

linear breakdown to turbulence. Ideally, one needs to include all three stages in the transition prediction methodol-

ogy. In this paper, however, we study some aspects of the linear growth of disturbances in both low and high speed
boundary layers. In low disturbance environments, results of linear stability theory may be used to correlate the
onset of transition with a wide range of parameters such as pressure gradient, Mach number, curvature, nose blunt-

ness and wall temperature.

TRANSITION PROCESS
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eN Method--Caution

One always has to keep in mind the limitations that the method is subject to. Since the method is based

upon linear stability theory, it obviously cannot account for situations where transition is strongly in-

fluenced by factors such as elevated levels of external disturbances, distributed roughness and other non-

linear interactions. Furthermore, the effects of parameters such as wall cooling on the secondary

instability may be different than on the primary instability and, therefore, the effect on transition of a cer-

tain parameter may not be the same as on linear stability.

If good experimental data are available, then it is possible to parameterize these effects in the form of cor-

relations. An example is the correlation developed by Mack [1] for low speed flows to account for the ef-
fect of turbulence level on the N-factor at transition.

e N METHOD - CAUTION

TRANSITION INFLUENCED BY

- ELEVATED STREAM/WALL DISTURBANCE FIELDS (INCL.

PARTICULATES)

- DISTRIBUTED ROUGHNESS

- COMBINATION OF NON-LINEAR DISTURBANCE MODES

ORGANIZED MEAN VORTICITY (VORTICES)

SHOCK WAVES (EMBEDDED/IMPINGING)

eN METHOD CANNOT ACCOUNT FOR THESE EFFECTS

EMPIRICAL CORRELATIONS POSSIBLE (E.G. N = -8.43 - 2.4 in Tu,

Tu IS TURBULENCE LEVEL, MACK (1977))
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Crossflow Reynolds Number Criteria for High-Speed Flows

The value of the crossflow Reynolds number at transition for high-speed flows may be much higher than

the upper limit of about 200 for incompressible flows. The value of 200 comes from the correlation of

low-speed data, it is necessary to account for the compressibility effect in order to collapse the data from

different Mach number flows. This may be achieved in various ways; for example, by defining an effec-

tive kinematic viscosity or by computing an effective length scale. Based upon some preliminary studies,
we have found that an effective way to account for the compressibility effect is to rescale the charac-

teristic length. Since the boundary-layer thickness 8 varies (for adiabatic wall flows) with Mach number

as;

I =,

one way to scale out the Mach number effect is to reduce the crossflow characteristic length scale be a fac-

tor 1 + ((y- 1)/2 M 2. Thus the effective crossflow Reynolds number may be deemed as:

Reec/=Rc//( 1+ y-1 M:) (1)
2

The table below shows the values of Re# along the transition onset trajectory for the Mach 8 flow over a

7o half angle cone at 2° incidence. It can be seen that the maximum value of the scaled crossflow
Reynolds number is of O(200), i.e., the same as for incompressible flows.

Experiments performed in the NASA Langley Mach 3.5 quiet tunnel show that the unscaled maximum

crossflow Reynolds number at transition could be as high as 500-600. However, the scaled Re_[ from Eq.

(1) would be of 0(200). Similar results have been obtained for transition in supersonic flow past swept

wings. Therefore, for compressible, adiabatic wall flows, it appears that Eq. (1) provide__sa reasonable

upper limit for crossflow Reynolds number. Of course, transition may occur at lower Recf due to the in-

fluence of other instability mechanisms. The fact that Re_! is much higher for supersonic flows also im-

plies that compressibility has a stabilizing influence on crossflow instability.
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Crossflow Reynolds number criteria
for high speed flows

Rect =
Un (_o.1

"Me

!=1 At low speeds correlations show that Red

represents an upper limit for laminar flow

= 2O0

Icl boundary layer thickness varies as:

8c_1+ Y-1 _o
2

Red =

scale out effect of Mach number by defining"

Recr

1 + Y- 1/#fe
2

A range of data up to Mach 8 correlates with Rec_= 200

Mach 8 Flow Past a 7° Sharp Cone at 2° Incidence
Re/ft= 1 million

Values of Certain Parameters at the Estimated (N=10) Transition Location

0 ° x (ft) Recf Recf f(KHZ)

0 8 0 0 80

48 6 1382 144 40

68 4.7 1690 172 35

110 3.8 2220 213 30

132 3.8 2440 228 20
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Linear Stability Calculations for 3-D Boundary Layers

The ability to predict, using analytical tools, the location of boundary-layer transition over aircraft-type

configurations is of great importance to designers interested in laminar flow control (LFC). The dv

method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of

transition for simple geometries in low disturbance environments. This method provides a correlation be-
tween the most amplified single normal mode and the experimental location of the onset of transition.

Studies indicate that values of N between 8 and 10 correlate well with the onset of transition.

For most previous calculations, the mean flows have been restricted to two-dimensional or axisymmetric

cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or

tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and

for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow

fields is required.

In the remainder of this paper we discuss results obtained for the linear stability of fully three-dimensional

boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed

flows. When possible, transition estimates from the dv method are compared to experimentally deter-

mined locations.

The stability calculations are made using a modified version of the linear stability code COSAL. Mean

flows have been computed using both Navier-Stokes and boundary-layer codes.
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Linear stability calculations

3D Boundary layers

Low speed flows

Ellipsoid of revolution of fineness ratio 6:1

Mach number = 0.13

Reynolds number = 6.6 x 106

Angle of attack = 10 degrees

Boundary-layer was computed using analytic metric
coefficients and edge velocity conditions

Cessna Fuselage

Re/ft= 1.3 million

Mach number = 0.27

Comparison with experimental of data of Vijgen.

Flat plate/cylinder configuration

Re/ft = 800,000

U. = 125.4 ft/sec

Effects of both adverse and favorable pressure gradients

TS and crossflow instability
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Linear stability calculations

3D boundary layers

High speed flows

I=I Analytic Forebody

Mach number = 2.0

Angle of attack = 2 degrees

Boundary layer edge conditions computed using space

marching Euler option of CFD code GASP

F16XL Laminar Flow Control Glove

Mach number = 1.6

Mean flow computed by V. lyer using Navier-Stokes

code CFL3D

Dagenhart model for NASA Langley "quiet tunnel"

Mach number = 3.5

Mean flow computed by V. lyer using Navier-Stokes

code CFL3D.
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Geometry and Coordinate System for Prolate Spheroid

The linear stability of the fully three-dimensional boundary-layer formed over a 6:1 prolate spheroid at

10° is investigated using the linear stability code COSAL. For this case, both Tollmien-Schlichting (TS)

and crossflow disturbances are relevant in the transition process. The predicted location of the onset of

transition using the eN method compares favorably with experimental results of Meier and Kreplin [2].

Using a value of N= 10, the predicted transition location is approximately 10% upstream of the experimen-

tally determined location. Results also indicate that the direction of disturbance propagation is dependent
on the type of disturbance, and consequently, on dimensional frequency. Results also indicate that
Reef= 180 represents the upper limit for laminar flow (based on N=10).

Geometry and coordinate system for prolate spheroid.

W_

0 -- constant line

8°

X
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Contour Plot of Constant Cp on 6:1 Prolate Spheroid

M-O.132, angle of attack=l 0°, Re=6.6xl 06

The analytic inviscid velocity distribution and metric coefficients were used in the solution of the bound-

ary-layer equations. Here we present a contour plot of the distribution of Cp over the ellipsoid. Note that

an adverse pressure gradient is encountered at approximately _ = --0.9 on the leeward symmetry line and

= 0.9 on the windward symmetry line (where -1.0 < _ < 1.0). This suggests that transition on the
leeward symmetry line may take place much sooner than transition on the windward symmetry line, since

boundary layers usually become highly unstable in regions of adverse pressure gradient.

Contour plot of constant Cp on 6:1 prolate spheroid

M=O. 132, v = 10° and Re = 6.6 × 106
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Contour Plot of Crossflow Reynolds Number

The above figure indicates the boundary-layer computational domain, and also shows contours of constant
Crossflow Reynolds numbers. The cross-hatched area has been excluded from the domain of the bound-

ary-layer calculation (due to separation). Also indicated is the location of the initial separation point. Since
transition takes place upstream of this point, the exclusion of the region is of no consequence here. The

figure indicates a rapid increase in crossflow Reynolds number as the separation point is approached. This

results from an increase in the crossflow length scale as the region of adverse pressure gradient is en-
countered near the leeward symmetry line. Note the occurence of a local minimum in the crossflow

Reynolds number just upstream of the initial separation point.

Contour plot of crossflow Reynolds number

Initial Separation Point Excluded Region
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Comparison of Theoretical (based on N---1O) and Experimentally
Determined Locations for the Onset of Transition

The transition front obtained using COSAL is compared with the experimental results of Meier and

Kreplin [2]. Transition was assumed to occur at N=10. The overall agreement between theory and experi-

ment is good. Near the windward edge (0 = 0°), where two-dimensional TS-type disturbances are respon-

sible for transition, the predicted location of transition is about 10% downtream of the experimental

results. For the flowfield at 0 > 20 °, for which instabilities are predominately of the crossflow type, the

predicted transition front occurs approximately 10% upstream of the experimental results. The present

results might be improved if the displacement thickness were taken into account when calculating the in-
viscid solution. In addition, the disturbances originating at higher values of 0 follow highly curved trajec-

tories, so that wavefront curvature effects may be important. If these effects were included, they would act

in a stabilizing manner, and thus tend to shift the computed transition front downstream.

Comparison of theoretical and experimentally determined
locations (Meier and Kreplin) for the onset of transition. Theoretical

calculations based on a value of n=lO.

180 [ /"/

180 _ / f/

140 _- lit//

120 _ COSAL

t _ Experiment.
i lO0 0

\,,
® 80 _\\

•o
20 NNN_"\

0 l l I i ', I I £--__1 i l , , ,

-- 1.00 --0.50 0 0.50 1,00
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Cessna Forebody Configuration
Typical Inviscid Grid

The linear stability of the fully three-dimensional boundary-layer formed over a general aviation fuselage

at 0° incidence is investigated. The free stream velocity was taken as 279#/_ec and the free stream tempera-

ture as T**= 472 ° R. The unit Reynolds number was 1.3 million. The location of the onset of transition

was estimated using the N-factor method. The results are compared with existing experimental data [3]
and indicate N-factors of 8.0 on the side of the fuselage and 3.0 near the top. Considerable crossflow ex-

ists along the side of the (asymmetric) fuselage, which significantly alters the unstable modes present in

the boundary layer. The value of 3.0 along the top may be due to surface waviness, as suggested in Ref

[3], where stability calculations using the axisymmetric analog method were performed.

Cessna forebody configuration.

Typical inviscid grid.

1
0.61m

0.41m

1
1.88m o-

4"- 0.62m
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Crossflow Reynolds Number Distribution

for Cessna Fuselage

N-factors computed using linear stability theory are compared with experimentally determined transition

location as given in Vijgen [3]. The contours were obtained from a series of calculations originating along

neutral curves (for specific frequencies) at successive circumferential locations. Results for the frequen-

cies which first reach N-9 are plotted. These frequencies varies from 1000 Hz in regions of relatively

high crossflow, to 1800 Hz in regions of relatively low crossflow. In addition, since the "envelope
method" is used, the disturbances which are evaluated at each successive streamwise location represent

the most unstable mode. Whether of not this corresponds to the evolution of an actual disturbance within a

boundary layer is unknow. The experimental data points, at streamwise points corresponding to transition-
al flow, are indicated on the figure. The detection of transition onset was determined through surface hot-

film anemometry [3]. We also computed a maximum value of N=3.0 at the location of the upper

experimental data point. This corresponded to a higher frequency than those which first resulted in N=9.

Crossflow Reynolds number distribution

for Cessna fuselage.

Contours levels over 200 omitted.

o

180

150

120

90

6O

30

0

0.00

Crossflow Reynolds No.

9 200.0

8 175.0

7 150.0

6 125.0

5 100.0

4 75.0

3 50.0

2 25.0

1 0.0

0.05 0.10 0.15 0.20

• Experimental data

for transition onset (Vijgen)

x/L
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Cessna Fuselage
Contours of Constant N-Factors

Re/ft=1.3 million, 0° Incidence

See discussion for previous slide.

Cessna fuselage

Re/ft=1.3 million, angle of attack = 0°
Contours of constant N-factors.

180
1

N-factor

150 9 9.00

8 8.00

7 7.00

12 0 6 6.00

__ 5 5.00

0 90 4 4.00
3 3.00

_ 2 2.0060 1 1.o0

, Experimental data for transition onset (Vijgen)

,o
0.00 0.05 0.i0 0.15 0.20

x/L
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Crossflow Reynolds Number Distribution for Analytic Forebody

The linear stability of the Mach 2.0 flow over an analytic forebody configuration [4] is investigated. In

this case, both first mode and crossflow instabilities are present in the boundary layer. Crossflow

Reynolds numbers reach values of over 1000. From the correlation presented earlier, at Mach 2.0, one

would expect Reef = 360 to represent an upper limit for possible laminar flow. N-factor calculations reveal

that along the upper portion of the body, the transition process is likely to be crossflow dominated, since
N reaches values of 10 when the crossflow Reynolds number reaches approximately 350. (Note that traces

shown in any of the remaining figures represent disturbance trajectories which begin at N=I and ter-
minate at N=10.) Over the lower portion of the body, the value of the crossflow Reynolds number is in the

range of 50-150 at the location where N=10. In this location we conclude that the most amplified distur-
bances reveal characteristics intermediate between crossflow and first mode instabilities.

Crossflow Reynolds number distribution for Analytic

Forebody. Contour levels above 1,000 omitted.

Crossflow Reynolds No.

1000

900

8OO

700

600

5OO

400

300

200

100

0

Analytic Forebody

Mach 2.0, 40,000 ft.
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N-Factor Calculations for Analytic Forebody

See discussion for previous slide.

N-factor calculations for Analytic Forebody
Mach 2.0, Altitude=40,000 ft.
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N-Factor Calculations for Swept Leading Edge Model for use in
LARC Mach 3.5 Quiet Tunnel

Stability calculations for the flow over a highly swept leading edge model to be used for transition studies

in the NASA Langley Mach 3.5 Low-disturbance Pilot Tunnel have been performed. The model is a repre-

sentation of the leading edge of a laminar flow control wing for the F16-XL aircraft [5]. The traces shown

in the figure represent disturbances of 40,000 Hz, and the wave angles and wavelengths (not shown) indi-
cate the disturbances are primary of the crossflow type. Additional calculations perfomed for stationary

disturbances resulted in maximum values of N ---6 at the end of the body.

N-factor calculations for swept leading edge model
to be utilized for transition studies in LARC Mach

3.5 Quiet Tunnel.
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N-Factor Calculations for Laminar Flow Control Glove on F16XL Aircraft

Linear stability/N-factor calculations for the laminar flow glove region for the F16XL fighter aircraft,

both with and without boundary-layer suction, have been performed. The results indicate that suction has

a stabilizing influence on the boundary layer. The Mach number was 1.6, which indicates an upper limit

on the crossflow Reynolds number of = 300. Contours of constant Reef-- 300 correlate ver.l well with

values of N= 10 from linear stability theory. To completely iaminarize the glove region, surface contour-
ing and/or additional suction will be required.

N-factor calculations for laminar flow control glove
on F16-XL aircraft.

Without___suction
__.+_.__

O

With suction

---4-'-"

--,---4

_L4
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Summary/Conclusions

Completed stability calculations for
Low Speed:
Ellipsoid at incidence
General aviation fuselage
High Speed:
Analytic forebody
Leading edge configuration
F16XL laminar flow control glove area

I=I Linear stability theory/e Nmethod offers a viable means
towards estimating the location of the onset of transition over
a wide speed range for both swept-wing and fuselage-type
configurations.

Effects of disturbance fields, surface roughness/waviness,
etc. not accounted for but may be important (i.e. low value of
N on top of Cessna fuselage).

For high-speed flows, compressibility corrections allow for the
use of a crossflow Reynolds number criterion in establishing
an upper limit for laminar flow.
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