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SUMMARY

Adaptive composite structures using actuation materials, such as piezoelectric fibers were assessed

probabilistically utilizing intraply hybrid composite mechanics in conjunction with probabilistic composite

structural analysis. Uncertainties associated with the actuation material as well as the uncertainties in the

regular (traditional) composite material properties were quantified and considered in the assessment. Static

and buckling analyses were performed for rectangular panels with various boundary conditions and different

control arrangements. The probability density functions of the structural behavior, such as maximum displace-

ment and critical buckling load, were computationally simulated. The results of the assessment indicate that

improved design and reliability can be achieved with actuation material.

INTRODUCTION

Aerospace structures are complex assemblages of structural components that operate under severe and

often uncertain service environments. These types of structures require durability, high reliability, light

weight, high performance, and affordable cost. Composite materials are attractive potential candidates that

meet these requirements because they possess outstanding mechanical properties derived from a wide variety

of variables such as constituent material properties and laminate characteristics (fiber and void volume ratios,

ply orientation, and ply thickness). These variables are statistical in nature and can be represented by cumula-

tive distribution functions (CDF). To deal with these uncertainties the current design practice enforces a

knockdown factor for each unknown. With such an exercise, the advantages of using composite materials for

structural designs disappear. Therefore, to properly use composite materials, a probabilistic assessment of

composite structures is needed to quantify their uncertain structural behavior (ref. 1).

Future structures for aerospace applications require performance characteristics beyond the capability of

those currently being used. Adaptive structures using actuation materials such as piezoelectric fibers have

shown great potential to enhance structural performance (ref. 2). Present piezoelectric technology has been

successfully applied to small-scale and low-stress structures. However, there are inevitable difficulties when

this technology is applied to large-scale and high-stress composite structures. These difficulties can be

alleviated if the special fiber with the actuation capability is combined with a regular high-strength, high-

modulus fiber to form the adaptive intraply hybrid composite (ref. 1).



Theintegrationof traditionalcompositesandactuationmaterialsintothecompositestructuraldesign
makesit possibleto ascertainwhetherthecompositestructurewill operatein thedesign-specifiedrange.At
NASALewisResearchCenter,theintraplyhybridcompositeconceptisadoptedin thecomputercodeICAN
(ref. 3).Theadaptivecompositescomprise(1)regularpliesconsistingoftraditionalcompositematerialsonly
and(2)controlpliesconsistingof stripsof traditionalcompositematerialsandinterspersedcontrol(hybridiz-
ingactuation)stripsof mixedactuationandtraditionalmaterialsfor structuralcontrol(seefig. 1).Actuation
materialssuchaspiezoelectricceramicsandfibersareusedto control the behavior of the composite structure

by expanding or contracting the actuation strips to achieve the requisite design and operational goals. How-
ever, the strains induced by the actuator are affected by several factors and their respective uncertainties

which can only be quantified probabilistically: (1) inaccurate measurements made by the sensors, (2) uncer-

tain material properties for the actuation materials including an uncertain relationship between actuation strain

and electric field strength, (3) deviation from intended electric field strength, and (4) uncertain placement of
the actuation materials. Because of these factors, the use of control devices increases the uncertainty in the

already uncertain composite structural behavior. To properly quantify the effects, a comprehensive probabilis-
tic assessment is needed.

A methodology for the probabilistic assessment of composite structures was developed at the NASA

Lewis Research Center (ref. 4).The physical representation of the methodology is depicted in figure 2. The

methodology, which integrates the composite mechanics, structural mechanics, and probability theory, is

incorporated into a single integrated computer code IPACS (Integrated Probabilistic Assessment of Compos-
ite Structures) (ref. 4).

The objective of the computational simulation presented in this report was to use IPACS to assess hybrid

composite panels made with activation material under various loads, boundary conditions and different

control arrangements. Critical structural behavior represented in terms of probability density functions (pdf) is
simulated with and without actuation strains. The benefit and reliability enhancements using adaptive hybrid

composites are investigated. Results from this assessment provide valuable information for reliability-based

designs of adaptive composite structures.

SYMBOLS

Efl 1

Er22

Em

Gfl2

Gf23

Grn

tp

X

Z

0p

Vfl2

vf23

Vm

O'L,T,S

fiber modulus in longitudinal direction

fiber modulus in transverse direction

matrix elastic modulus

in-plane fiber shear modulus

out-of-plane fiber shear modulus

matrix shear modulus

ply thickness

independent random variable

performance variable

ply misorientation

in-plane fiber Poisson's ratio

out-of-plane fiber Poisson' s ratio

matrix Poisson's ratio

ply stress, longitudinal, transverse, shear, respectively



FUNDAMENTALCONSIDERATIONS

Thefourfundamentalconsiderationsfortheprobabilisticassessmentof adaptivecompositestructures
describedhereinarenowdiscussed.(1)Because of the analogy between the thermally and electrically in-

duced strain in the actuation material, the induced strain is simulated with thermal strain computed from an

uncertain temperature field representing the electric field strength and from the uncertain thermal expansion

coefficients representing the actuation strain coefficients; (2) primitive variables that described composites are

identified at the micro- and macrocomposite levels; (3) the scatter in the primitive variables is represented by

specified probabilistic distributions; and (4) the uncertainties in the primitive variables are propagated through

the computational simulation methodology that consists of composite mechanics, structural mechanics, and

probability methods.

The primitive variables recognized by the computer code IPACS are (1) fiber and matrix properties at

the constituent level, (2) fabrication variables such as fiber volume ratio, void volume ratio, ply

misorientation and thickness, (3) uncertain loads, temperature/moisture fields, and geometry and boundary

conditions at the structural level, and (4) control-related uncertain variables such as the electric field strength
and the actuation strain coefficient.

PROBABILISTIC COMPUTER CODE IPACS

IPACS, a computer code used for the probabilistic analysis of composite structures, integrates several

NASA in-house computer programs developed in recent years; COBSTRAN (ref. 5), PICAN (ref. 6), and

NESSUS (ref. 7). COBSTRAN (COmposite Blade STRuctural Analysis) is a dedicated finite-element model

generator for composite structures. PICAN (Probabilistic Integrated Composite Analyzer) enables the compu-

tation of the perturbed and probabilistic composite material properties at the ply and laminate levels. NESSUS

(Numerical Evaluation of Stochastic Structures Under Stress) uses information from PICAN to determine the

perturbed and probabilistic structural response at global, laminate, and ply levels. PICAN and NESSUS share

the FPI (fast probability integrator) module (ref. 8) for the application of fast probability to obtain cumulative

distribution functions of the responses for the laminate and the structure.

The probabilistic assessment of composite structures using IPACS begins with the identification of

uncertain primitive variables. These variables are then selectively perturbed several times to create a data base

for the determination of the relationship between the desired structural response (or the desired material

property) and the primitive variables. For every given perturbed primitive variable, micromechanics is applied

to determine the corresponding perturbed mechanical properties at the ply and laminate levels. Laminate

theory (ref. 3) is then used to determine the perturbed resultant force/moment-strain/curvature relationships.

With this relationship at the laminate level, a finite-element perturbation analysis is performed to determine

the perturbed structural responses corresponding to the selectively perturbed primitive variables. This process

is repeated until enough data are generated and the appropriate relationship between structural responses and

primitive variables has been established to use FPI.

If probabilistic distributions of the primitive variables and the relationships between the structural

response and the primitive variables are assumed, then for every discrete response value, a corresponding

cumulative probability can be computed very quickly by FPI. This process is repeated until the cumulative

distribution function can be appropriately represented. The probabilistic material properties at ply and lami-

nate levels are also computed in the same way as that for the structural responses. The output information

from FPI for a given structural response includes parameters for a specific probability distribution function

and the sensitivity factors of the primitive variables to the structural response for specified probability levels.



SAMPLECASESAND DISCUSSIONS

A 20- by 10-in. hybrid composite panel with control devices is probabilistically assessed. In each control

ply, both control (hybridizing actuation) strips and traditional strips can exist. However, in this report, the

control strip is assigned throughout the control ply for computational simplicity. Also, in each control ply, a

secondary composite system volume ratio is used to define the percentage of volume for the control device.

The percentage of the actuation materials in a secondary composite system is denoted by the control volume
ratio. Because actuation materials are much more expensive than traditional materials, the control volume

ratio should be determined such that the total cost for an adaptive composite structure will be minimized and

subjected to multidesign constraints. The constraints include (1) those typical for traditional composite

structures and (2) those for actuation materials based on their particular material characteristics (such as

strain, stress, applied voltage requirements, etc.) which have not been studied. For the present analysis, the

emphasis was on the demonstration of the probabilistic assessment of adaptive composite structures using

intraply hybrid composites with actuation materials.

Uncertainties in traditional material properties are identified at all composite levels as now described. At

the constituent level, the material properties for the fiber and matrix are modeled as uncertain variables. Their

respective probability distribution type and associated parameters are assumed and are listed in table I. At the

ply level, the fabrication variables (fiber volume ratio, void volume ratio, ply orientation and thickness) are
also treated as random variables. Their statistics are listed in table II. Also considered in the analysis and

presented in table III are the uncertainties associated with the control devices: secondary composite system
volume ratio, control volume ratio, control material properties (including strain coefficient), and electric field

strength.

Various boundary conditions are assumed for static and buckling analyses. The ply orientations used in

this paper are depicted in figure 3. The composite structures are also examined for control devices at different
locations as described and discussed in the following. The probabilistic assessment also provides sensitivity

factors (ref. 8). The commonly used sensitivity in a deterministic analysis is the performance sensitivity

OZ/OXi, which measures the change in the performance Z due to the change in the design parameter Xi. This

concept is extended to the probabilistic analysis to define the probabilistic sensitivity which measures the

change in the probability and/or reliability relative to the change in each random variable. Probabilistic

sensitivity factors are products from the probabilistic assessment of smart composite structures. These factors

provide quantifiable information about the design parameters that the smart composite structure is most

sensitive to. Subsequently, these design parameters can be manufacturing controlled and adjusted to obtain
the best benefit with minimum alteration.

STATIC ANALYSIS

In structural design, the displacements at critical locations are tightly monitored. To understand the
behavior of the structures with and without control devices, probabilistic static analyses are performed. Two

boundary conditions are used: (1) all four sides are simply supported and (2) one side is clamped along the
width and the other three sides are free (cantilever plate). To control the displacement, for example, a com-

pressive strain is induced at the upper ply with a given ply orientation. An extension strain is induced at the
lower ply with the same orientation as shown in figure 4. By this process, moment is induced to counteract the

bending moment caused by the external loads.
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Case1:All FourSidesSimplySupported

A panelwitha[+45/-45/0/90]scompositeconfigurationsubjectedtoalateralloadof 500lb isshownin
figure5.Thecontroldevicesareinstalledatoneof twolocations:atthe0° plypairor atthe45° plypair.

Control using the 0 ° plies.--A static analysis was performed with control devices installed in the 0 °

plies. The deterministic ply stresses were investigated and are shown in table IV. The induced stresses had a

sign the opposite of the stresses due to the external force in every ply except for the plies with actuation

material. Therefore, the maximum ply stresses in the outermost plies are reduced and the ply stresses are only

increased in noncritical regions.

The probabilistic displacements at the center of the panel are simulated with and without the actuation

strains as shown in figure 6. The displacement without actuation-induced strain is scattered between 0.59 and

0.99 in. When the strain is induced through the control devices, the displacement is reduced and its scatter is

shifted to lower values (between 0.43 and 0.78 in.). Therefore, the requisite design tolerance can be satisfied.

Sensitivity factors at a 0.999-probability level for the probabilistic displacement with actuation-induced

strain in 0° plies (fig. 7) indicate that the laminate thickness is the most important variable with a sensitivity

factor of 0.68, followed by a primary fiber volume ratio of 0.50 and a primary fiber modulus of 0.46. Also

shown in figure 7 are the sensitivity factors of the control devices. The sensitivity factors of these devices

range from 0.07 to 0.18 and the amount of actuation material (secondary composite system volume ratio) is

the most critical one among the control-related variables.

Control using the 45 ° plies.---The control devices are installed in the 45 ° plies. The probabilistic dis-

placements with and without the actuation-induced strain are shown in figure 8. The displacement can be

reduced from a range of 0.71 to 1.08 in. without actuation-induced strain to a range of-0.39 to +2.4 in. with
actuation strain.

The sensitivity factors for the probabilistic displacement are shown in figure 9. For this case, the control-

related uncertainties in the 0 ° plies are the most dominant. The highest is the amount of actuation material

(secondary composite system volume ratio, 0.49), followed by the control volume ratio (0.43) in the actuation

material, the actuation strain coefficient (0.40), the laminate thickness (0.37), and the electric field strength

(0.33). However, it was also found that the deterministic ply stresses at the 45 ° plies (control plies) are

increased as shown in table V. Therefore, if the stress is also a major concern for a design, plies at the outer

most locations (45 ° ply) may not be desirable locations for control devices.

Case 2: One Side Clamped Along the Width and the Other Three Sides Free

The cantilever panel with a [+45/-45/0/9012s composite configuration is subjected to a lateral load of

50 lb at location A of the free end as shown in figure 10. The control devices are installed at the four locations

shown in figure 11. For all cases, the mean actuation strain on the lower half of the panel is -0.005 in./in.

(contraction) and the mean actuation strain in the upper half of the panel is +0.005 in./in. (extension).



Theprobabilitydensityfunctionsof thelateraldisplacementatthefreeendwithandwithoutactuation
strainareshownin figure12.Themaximumdisplacementreductioncanbeachievedwithcontroldevicesin
the45° plies.However,theeffectwithcontrolin the0° pliesisalmostthesameasthatwithcontrolin the45°
plies.Withrespecttolateraldisplacementatthefreeend,theeffectfromthecontrolin -45° pliesisonlyone
thirdtheeffectfromcontroldevicesin the0° or45° plies.Withthecontroldevicesin the90° plies,the
displacementactuallyincreases.However,thisincreaseisnegligibleevenif thesignsof theactuationstrain
arechanged(contractionin topplyandextensioninbottomply).

Thesensitivityfactorsof the uncertain variables which affect the probabilistic lateral displacement at the

0.999-probability level are shown in table VI. The results indicate that the control devices should be in the 0 °

plies to minimize both the free-end displacement and the high stresses in the outermost plies.

BUCKLING ANALYSIS

For some types of structures, buckling occurs at low load levels. Therefore, it is important to design a

structure with a design load smaller than the buckling load at a high reliability level. To quantify the scatter of

the buckling load with and without the actuation strain, probabilistic buckling analyses are performed. Simply

supported boundary conditions along the widths and clamped boundary conditions along the lengths are
assumed for axial buckling analyses. Two different cases were evaluated: actuation material in (1) the 90 °

plies and (2) the 0 ° plies.

Case 1: Control in 90 ° Plies

The actuation material (control) is in the 90 ° plies with an actuation strain of-2 percent, as shown in

figure 13. The composite structure is stiffened by this arrangement, which results in an in-plane tension in the
Y-direction at the laminate level.

Figure 14 shows the probability density functions of the buckling loads with and without the actuation

strain. A significant increase in the buckling load is obtained with this arrangement. The scatter of the buck-

ling load before the application of the actuation strain ranges from 6200 to 10 600 lb. With the actuation
strain, the scatter of the buckling load is shifted to higher values ranging from 12 300 to 18 800 lb. The

corresponding sensitivity factors in figure 15 show that the laminate thickness has the highest effect (0.61),

followed by the primary fiber volume ratio (0.47) and the primary fiber modulus (0.42). The uncertainties
associated with the control devices tend to increase the scatter in the probabilistic buckling load.

Case 2: Control in 0 ° Plies

For the case of the control in the 0 ° plies (fig. 16), positive strains (2 percent) are applied to cause a
tension in the Y-direction due to a Poisson effect at the laminate level. The control gain in this case is less

than that in the 90 ° case as shown in figure 17. The sensitivity analysis shows that the sensitivity factors with

the control devices in the 0° plies (fig. 18) are similar to those for the 90 ° case. However, the secondary

composite system volume ratio has the least influence on the buckling load.

Investigating the buckling shape shown in figure 19 reveals that the panels without actuation strain
buckle at two half sine waves. Panels with actuation strain in the 0 ° and 90 ° plies buckle at three and four half

sine waves, respectively. This result indicates that the actuation strains activate higher buckling modes and,

therefore, increase buckling loads.



SUMMARY

Adaptivecompositestructuresusingactuationmaterials,suchaspiezoelectricfiberswereassessed
probabilisticallyusingintraplyhybridcompositemechanicsinconjunctionwithprobabilisticcomposite
structuralanalysis.Uncertaintiesassociatedwiththeactuationmaterialaswellastheuncertaintiesin thehost
compositematerialpropertieswerequantifiedandevaluatedin theassessment.Staticandbucklinganalyses
wereperformedforrectangularpanelswithvariousboundaryconditionsandvariousactuationmaterialspatial
locations.Theprobabilitydensityfunctionofthestructuralbehavior,suchasmaximumdisplacementand
criticalbucklingload,werecomputationallysimulated.Thefollowingresultsoftheassessmentindicatethat
theactuationmaterialcanbelocatedto obtaindesignswithimprovedreliability:

1.Thedisplacementmeanandscatterrangearereducedbyabout30percent.

2.Themeanstressesin thecriticallystressedpliesarereducedbyabout30percent.

3.Theactuationmaterialshouldbeplacedin the0° pliesfor themaximumbenefitin enddisplacements.

4.Theactuationmaterialin the90° pliesincreasesthebucklingloadby 100percentandincreasesits
scatterby 30percent.

5.Theactuationmaterialin the90° pliesforcesthestructuretobuckleathigherbucklingmodes,there-
foreincreasingthebucklingload.

6.Thedisplacementandstressaremostsensitivetothehostcompositevolumeratio,thehostcomposite
fibermodules,andthelaminatethickness.

7. Thebucklingloadismostsensitiveto laminatethickness,thehostcompositefibervolumeratio,and
thehostcompositefibermodules.
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TABLE I.--STATISTICS OF CONSTITUENT

MATERIAL PROPERTIES (GRAPHITFdEPOXY)

[Assumed distribution type, normal; assumed uncertainty

range, +5 percent.]

Property Assumed mean

Fiber modulus direction, Mpsi

Longitudinal, F41 l

Transverse, El22

Fiber shear modulus, Mpsi

In-plane, Gfl 2

Out-of-plane, Gf23

Fiber Poisson's ratio

In-plane, 1)f12

Out-of-plane, 1)23

Matrix

Elastic modulus, Eta, Mpsi

Shear modulus, Gin, Mpsi

Poisson's ratio, I'm

31.0

2.0

2.0

1.0

.25

.5

.185

.35

TABLE II.--STATISTICS OF FABRICATION

VARIABLES

[Assumed distribution type, normal; assumed uncertainty

range, _+.5percent.]

Variable Assumed mean

Volume ratio

Fiber

Void

Ply

Misorientation, Op, a deg

Thickness, tp, in.

0.60

.02

0

.015

aAssumed coefficient of variation, 0.90 (stdv).



TABLE III.--STATISTICS OF CONTROL-RELATED

PARAMETERS

[Assumed distribution type, normal; assumed uncertainty

range, +5 percent.[

Variable Assumed mean

Secondary composite system
volume ratio

Control

Volume ratio

Modulus, Mpsi

Strain coefficient, in./V

Electric field strength, V/in.

0.50

.6O

12.4

2.0×10-8

1.0X 106

TABLE IV.---PREDICTED MEAN PLY STRESSES WITH CONTROL IN 0 ° PLIES

Source

Extemai

force

Actuation

strain

Combined

effect

8.2

-53.6

+45 ° 90 °

O'T (iS O'L O'T

-5.3 -1.1 -49.1 -3.6

0.6 0.5 5.7 0.4

-4.7 -0.6 -43.4 -3.2

Ply

-45 ° 0 o

Mean ply stress, ksi

O" S O" L O" T

0.8 -15.1 -3.1

-0.4 -76.4 -12.5

0.4 -91.5 -15.8

(3" S

0.1

0.1

2.3

-9.3

(I T

-0.6

-0.6

(IS

0

TABLE V. PREDICTED MEAN PLY STRESSES WITH CONTROL IN 45 ° PLIES

Source Ply

+45 ° -45 ° 0 o 90 °

External

force

Actuation

strain

Combined

effect

Mean ply stress, ksi

O'L O'T O'S O'L O'T (IS O'L OFT

-51.7 -7.3 -1.4 -53.8 -4.1 0.9 -23.2 -2.9

(IS (IL (IT (IS

0 -13.3 -0.7 0

-44.6 4.6 2.1 33.1 2.5 -1.4 6.5 2.1 0 10.8 0.3 0

-96.4 -15.9 0.7 -20.7 -1.6 -0.5 -16.7 -0.8 0 -2.5 -0.4 0



TABLE VI.--SENSITIVITY FACTORS a FOR LATERAL DISPLACEMENT AT FREE

END b WITH AND WITHOUT CONTROL

Variable

Primary fiber
Modulus

Volume ratio

Ply misorientation

Laminate thickness

Secondary composite system

Control

Volume ratio

Modulus

Strain coefficient

Electrical field strength

Without Control location

control

90 ° 0°I-45°145°

Sensitivity factor

0.57

.65

.13

.46

0

.01

0

0

0.55 0.12 0.52 0.26

.65 .16 .59 .28

.13 .06 ,19 ,14

.47 .47 .49 .39

.02 .36 .16 .41

.03 .41 .14

.07 .42 ,09

.07 .39 .09

.02 .28 .10

;_l'bese factors are nondimensional and denote relative significance.

bLocation A in figure 10.

.38

,35

,36

.27

Finite element Component Finite element

Structural _ _" _ Structural

anal sis I DI _ _ J__E___analysi s

Laminate J--_ _ Laminate

theory _1  --Jtheo 

Composite . _ I_J Composite
micromecnanlcs

theory __ [--_ / micromechanicsNonlinear theory
material behavior

Constituent model Degraded

pmperUes _ material
properties

Figure 1.--Concept of pmbabilistic assessment of composite structures.
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Hybridizing

strip

Figure 2.--Intraply hybrid composite system.

Figure 3.--Ply orientations.

/ .s".S'.7"_ .."_.. +."J';.'-.+" i ..+i
/ .:".sY.s" .j-,,s.j"...'-J';+-;"..'.!-.+/

i., ._ ,. ¢¢ Ii (_ ¢/ ., • i s. .',. _ _ @/ .;;'.'.S'.;:".i",/'.Y...i'++"..'.;¢.;./ .,

i (_¢_--"L," L,,' L,,"

-,_ Sensor/control strips

_ Sensor/control strip expansion

_ Sensor/control strip contraction

Induced moment

Figure 4._Structural control using sensor/control materials.
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Load, Induced

500 Ib strain,

z/
t x

Figure 5.--Composite configuration ([45/-45/0/90] s) and loading con-

ditions for simply supported panel with induced strain in 0 ° plies;

a = 10 in.; b= 20 in.

8

c 6

._-_4

,'. 2
2
IL

0
--.4

Without control

_ With control

/"\

-- 4,4,1 t \%_°.. I ",._ I
0 .4 .8 1.2

Lateral displacement, in.

Figure 8.---Lateral displacement at center of panel with and without

induced strains in 45 ° plies.

BspWhcon,-', Without control

a. 0 -'"

.4 .6 .8 1

Lateral displacement, in.

Figure 6.--Lateral displacement at center of panel with and without

induced strains in 0 ° plies.

Laminate thickness
Seconda composite system

//'//'/_///////'S_'///'///////)//_ Control volume ratio

_\_\\\\\\\\_ controlmodulus(El1)
I Actuation strain coefficient

IIIIIIIIIIIII11111111111111111111111111111Bect_cr.,Id strength I
0 .2 .4 .6 .8

Sensitivity factor

Figure 9.--Sensitivity factors for probabilistic displacement at

center of panel with induced strains in 45 ° plies.

mary fiber modulus (El 1)Pdmary fiber volume ratio

Ply misorientation
__ Laminate thickness

_f_7_'_ Secondary composite system volume ratio

Control volume ratio

_._._Control modulus (Ell)

_,Actuation strain coefficient
IIIIIIIIIIIII Electric field strength I I

0 .2 .4 .6 .8

Sensitivity factor

Figure 7.---,Sensitivity factors for probabilietic displacement at

center of panel with induced strains in 0° plies.

Fixed end J

T _in. 20 in.

o24 

Figure 10.---Geometry and composite configuration

([[+45/-45/0/90]s]s) of cantilevel panel.

A

]2



J a_ J I

(a) x

Z

(c) x

(d) X

Figure 11 .---Cantilever composite panel with induced strains

in (a) 90 ° plies, (b) 0 ° plies, (c) -45 ° plies, (d) 45 ° plies.

3.6

c 2.7

._ 1.e

.D .9
2

- _-- No induced

o_ -45°-_ 416 \\ slTain

.5 1 1.5 2 2.5

Buckling load, kips

Figure 12.--Lateral displacement at free end (location A of fig.11)

for structures with induced strains in 45 °, -45 °, 0° and 90 ° plies.
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Z I J b Clamped a_ 0.12in.

 p,+d I.'/ JJJJJ/A
+orce, _" _ /_///////_ T

.x aV///// T
gl_ go

I _ _ _ _ _ L

Figure 13.--Boundary conditions and sensor/control locations (in 90 ° plies) for buckling

analysis. Actuation strain, -2 percent; a = 10 in.; b = 20 in.
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induced strains in 0 ° plies.
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Figure 18.--Sensitivity factors for probabilistic buckling load

with induced strains in 0 ° plies.
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