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for Space-Based Observatory Management*
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Introduction

The generation of executable schedules for space-based
observatories is a challenging class of problems for the

planning and scheduling community. Existing and
planned space-based observatories vary in structure

and nature, from very complex and general purpose,
like the Hubble Space Telescope (HST), to small and
targeted to a specific scientific program, like the Sub-

millimeter Wave Astronomy Satellite (SWAS). How-
ever, they all share several classes of operating con-
straints including periodic loss of target visibility, and
limited on-board resources like battery charge and data
storage.

The complexity of these problems stems from two

sources. First, the execution of astronomy observation

programs requires the solution of a classical scheduling
problem: objectives relating to overall system perfor-
mance must be optimized (e.g., maximization of return
of science data) while satisfying a diverse set of con-
straints. These constraints relate to both the obser-
vation programs to be executed (e.g., precedence and

temporal separation among observations) and observa-

tory capacity limitations (e.g., observations requiring
different targets cannot be executed simultaneously).
Second, a safe mission requires the detailed descrip-
tion of all transitions and intermediate states that sup-
port the achievement of observing goals. Such descrip-
tion must guarantee consistency with respect to the
detailed dynamics of the observatory; this constitutes
a classical planning problem.

Another characteristic of the problem is its large
scale. The size of the pool of observations to be per-
formed on a yearly horizon can range from thousands
to even tens of thousands. Large observatories can con-

sist of several tens of interacting system components
with complex interacting dynamics. To effectively deal
with problems of this size, it is essential to employ
problem and model decomposition techniques. In cer-
tain cases, this requires an ability to represent and ex-

ploit the available static structure of the problem (e.g.,
interacting system components). In other cases an ex-
plicit structure is not immediately evident (e.g., inter-
action among large numbers of temporal and capac-
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ity constraints); therefore the problem solver should
be able to dynamically focus on different parts of the

problem, exploiting the structure that emerges during
the problem solving process itself.

In this paper, we report on our progress toward
the development of effective, practical solutions to
space-based observatory scheduling problems within
the HSTS scheduling framework. HSTS was devel-
oped and originally applied in the context of the HST
short-term observation scheduling problem. Our work
was motivated by the limitations of the current solu-
tion and, more generally, by the insufficiency of clas-

sical planning and scheduling approaches in this prob-
lem context. HSTS has subsequently been used to de-
velop improved heuristic solution techniques in related
scheduling domains, and is currently being applied
to develop a scheduling tool for the upcoming SWAS
mission. We first summarize the salient architectural

characteristics of HSTS and their relationship to pre-
vious scheduling and AI planning research. Then,
we describe some key problem decomposition tech-
niques underlying our integrated planning and schedul-
ing approach to the HST problem; research results

indicate that that these technique provide leverage
in solving space-based observatory scheduling prob-
lems. Finally, we summarize more recently developed
constraint-posting scheduling procedures and our cur-
rent SWAS application focus.

Planning and Scheduling for
Space-Based Observatories

The management of the scientific operations of the
Hubble Space Telescope is a formidable task. Its solu-

tion is the unique concern of an entire organization,
the Space Telescope Science Institute (STScI). The
work of several hundred people is supported by sev-
eral software tools, organized in the Science Opera-
tions Ground System (SOGS). At the heart of SOGS is
a FORTRAN-based software scheduling system, SPSS.
The original task of SPSS was to take astronomer view-

ing programs for a yearly period as input and produce
executable spacecraft instructions as output, with min-
imal intervention from human operators. SPSS has

had a somewhat checkered history [Wa189], due in part
to the complexity of the scheduling problem and in
part to the difficulty of developing a solution via tradi-
tional software engineering practices and conventional
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programming languages. To confront SPSS's compu-
tational problems, STScI has developed a separate,
knowledge-based tool for long term scheduling called
SPIKE [Joh90]. SPIKE accepts programs approved
for execution in the current year and partitions obser-

vations into weekly time buckets. Each bucket consti-
tutes a smaller, more tractable, short-term scheduling
problem. Detailed weekly schedules are then generated
through the efforts of a sizable group of operations as-
tronomers, who interactively utilize SPSS to place ob-
servations on the time line.

In the FISTS project we have addressed the short
term problem in the FIST domain, i.e., the problem of
efficiently generating detailed schedules that account
for the major operational constraints of the telescope
and for the domain's optimization objectives. The ba-

sic assumption is to treat resource allocation (schedul-

ing) and auxiliary task expansion (planning) as com-
plementary aspects of a more general process of con-
structing behaviors of a dynamical system. [Mus90].

Two basic mechanisms provide the basis of the FISTS

approach:

1. a domain description language for modeling the
structure and dynamics of the physical system at

multiple levels of abstraction.

2. a temporal data base for representing possible evolu-
tions of the state of the system over time (i.e. sched-

ules).

In HSTS the natural approach to problem solving

isby iterativeposting of constraints,extractedeither

from the externalgoalsor from the descriptionof the

system dynamics. Consistency istestedthrough con-

straintpropagation. For more details,see [MSCD92,
Mus93b].

Three key aspects distinguish FISTS from other ap-

proaches:

1. the state of the modeled system is explicitly decom-
posed into a finite set of "state variables" evolving
over continuous time. This enables the specification

of algorithms exploiting problem decomposability,
and provides the necessary structure for optimizing
resource utilization.

2. the temporal data base permits flexibility along both
temporal and state value dimensions. The time
of occurrence of each event does not need to be

fixed but can float according to the temporal con-
straints imposed on the event by the process of goal
expansion. This flexibility contributes directly to
scheduling efficiency. Since overcommitment can be
avoided, there is a lower possibility of backtracking.

3. the constraint posting paradigm accommodates a
range of problem solving strategies (e.g. forward
simulation, back chaining, etc.). This allows the de-
velopment of algorithms that opportunistically ex-
ploit problem structure to consistently direct prob-
lem solving toward the most critical tradeoffs.

The importance of integrating these three features
within a single framework can be appreciated by con-
sidering the limitations of other approaches that ad-
dress them separately or partially.

In planning, most Artificial Intelligence research
adopts the classical representational assumption pro-
posed by the STRIPS planning system [FFIN72]. In
this view action is essentially an instantaneous tran-
sition between two world states of indeterminate du-

rations. The structural complexity of a state descrip-
tion is not limited, but the devices provided for its

description are completely unstructured, such as com-
plete first order theories or lists of predicates. Some
frameworks [Wi188, CTgl] have demonstrated the abil-

ity to address practical planning problems. Fiowever,
the classical assumption lacks balance between gen-
erality and structure; this is a major obstacle in ex-
tending classical planning into integrated planning and
scheduling. Past research has attempted partial exten-
sions in several important directions: processes evolv-

ing over continuous [AK83] and metric time [Vet83,
DFM88], parallelism [Lan88], and external events
[For89]. Fiowever, no comprehensive view has yet been

proposed to address the integration problem.
Classical scheduling research has always exploited

much stronger structuring assumptions [Bak74]. Do-
mains are decomposed into a set of resources whose
states evolve over continuous time. This facilitates the

explicit representation of resource utilization over ex-
tended periods of time. Several current scheduling sys-
tems exploit reasoning over such representations [FS84,
SOM+90, Sad91, MJPL92, ZGg0, BCgl]. Empiri-
cal studies have demonstrated the superiority of this

approach [OS88, Sad91] with respect to dispatching
scheduling [PI77], where decision making focuses only
on the immediate future. Fiowever, the scheduling view
of the world also has very strong limitations. No infor-

mation is kept about a resource state beyond its avail-
ability. Additional state information (e.g., in which di-
rection the observatory is pointing at a given time) is
crucial to maintain causal justifications and to dynami-
cally expand support activities during problem solving.

Issues in Integrating Planning and

Scheduling

Use of Abstraction

The use of abstract models has long been exploited as a
device for managing the combinatorics of planning and
scheduling. In FISTS models are expressed in terms of
interacting state variables representing different com-
ponents of the system (in our case, the space-based
observatory) and of its operating environment (e.g.,
celestial objects to be observed). An abstract model
can summarize system dynamics with state variables
that aggregate several structural components; alterna-
tively abstract models can selectively simplify system
dynamics by omitting one or more component state
variables. Given the structure of space-based observa-

tory scheduling problems, an abstract model provides
a natural basis for isolating overall optimization con-
cerns. This provides global guidance in the develop-
ment of detailed, executable schedules.

In the case of FIST, a two-level model has proved
sufficient. At the abstract level, telescope dynamics is
summarized in terms of a single state variable, indicat-
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ing, at any point in time, whether the telescope (as a
whole) is taking a picture, undergoing reconfiguration,
or sitting idle. At this level reconfiguration transitions
have duration constraints that estimate the time re-

quired by the actual reconfiguration activities implied
by the detailed model (e.g., instrument warmup and
cool-down, data communication, telescope repointing).
Execution of an observation at the abstract level re-

quires only satisfaction of this abstract reconfiguration
constraint, target visibility constraints, and any user

specified temporal constraints. Thus, the description
at the abstract level looks much like a classic scheduling
problem: a set of user requests that must be sequenced
on a single resource subject to specified constraints and
allocation objectives.

Planning on a fully detailed model ensures the via-
bility of any sequencing decisions made at the abstract

level. This corresponds to generating and coordinating
required supporting system activities. The degree of
coupling between reasoning at different levels depends
in large part on the accuracy of the abstraction. In
the case of HST, decision-making at abstract levels is
tightly coupled; each time a new observation is inserted

into the sequence at the abstract level, control passes to
the detailed level to develop detailed segments of sys-
tem behavior necessary to achieve the new goal. Given
the imprecision in the abstract model, goals posted
for detailed planning cannot be rigidly constrained; in-
stead only preferences are specified (e.g., "execute as
soon as possible after obsl"). The results of each de-
tailed planning stage are propagated at the abstract

level to provide more precise constraints for subsequent
abstract level decision-making.

Model Decomposability and Incremental
Scaling

To approach large problems it is typically necessary
to decompose them into smaller sub-problems, solve
each sub-problem separately, and then assemble the
sub-solutions. We can judge how the problem solv-

ing framework supports modularity and scalability if
it displays the following two features:

• the search procedure for the entire problem can be
assembled by combining heuristics independently de-
veloped for each sub-problem, with little or no mod-
ification of the heuristics;

• the computational effort needed to solve the com-

plete problem does not increase with respect to the
sum of the efforts needed to solve each component
sub-problem.

We conducted an experiment with three increasingly
complex and realistic models of the HST, in order to
evaluate the support that HSTS provides towards the

realization of these features (issues relating to opti-
mization of the overall mission performance criteria

will be discussed in the following sections).
We identify the three models as SMALL, MEDIUM,

and LARGE. All share the same abstract level repre-
sentation. At the detail level the three models include
state variables for different telescope functionalities.

The SMALL model has a state variable for the visibility

Tape
R_..order

HST
Pointing

Figure 1: The SMALL, MEDIUM and LARGE HST mod-
els.

of each target of interest, a state variable for the point-
ing state of the telescope, and three state variables to

describe a single instrument, the Wide Field/Planetary
Camera (WFPC). The MEDIUM model includes SMALL

and two state variables for an additional instrument,
the Faint Object Spectrograph (FOS). Finally, the
LARGE model extends MEDIUM with eight state vari-
ables accounting for data communication. The LARGE

model is representative of the major operating con-
straints of the domain. Figure 1 shows the relations
among the various models.

For each model we use the same pattern of inter-
action between problem solving at the abstract and
at the detail leveL. At the abstract level observations
are selected and dispatched using a greedy heuristic to
minimize expected reconfiguration time. The last dis-

patched observation is refined into the corresponding
detail level problem; then control is passed to plan-
ning/scheduling at the detail level. This cycle is re-

peated until the abstract level sequence is complete.
The detail planner/scheduler for SMALL is driven by

heuristics which deal with the interactions among its
system components. A first group ensures the cor-

rect synchronization of the WFPC components; one
of them, for example, states that, when planning to
turn on the WF detector, preference should be given
to synchronization with a PC behavior segment al-
ready constrained to be off. A second group deals with
the pointing of HST; for example, one of them selects
an appropriate target visibility window to execute the
locking operation. A final group manages the interac-

tion between the state of WFPC and target pointing;
an example from this group states a preference to ob-

serve while the telescope is already scheduled to point
at the required target. To solve problems in the con-
text of MEDIUM, additional heuristics must deal with
the interactions within FOS components, between FOS
and HST pointing state, and between FOS and WFPC.
However, the nature of these additional interactions is

very similar to those found in SMALL. Consequently,
it is sufficient to extend the domain of applicability of
SMALL's heuristics to obtain a complete set of heuris-

tics for MEDIUM. For example, the heuristic excluding
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Model SMALL

Stale Va_ables
Tokens

Time Points

Temporal Constraints

CPU Time / Observation

CPU Time / Compatibility
Total CPU time

Total Elapsed Time

Schedule Horizo_

MEDIUM LARGE

4 6 13

587 604 843
588 605 716

1296 1328 1474

11.62 12.25 21.74

0.29 0.29 0.33
9:41.00 10:!1.50 18:07.00

1:08:36.00 1:13:16.00 2:34:07,00

41:37:20.00 54:25:46.00 52:44:41.00

Table 1: Performance results. The times are reported
in hours, minutes, seconds, and fractions of second

WF and PC from being in operation simultaneously
can be easily modified to ensure the same condition

among the two FOS detectors. Finally, for LARGE we
include the heuristics used in MEDIUM with no change,
plus heuristics that address data communication and
interaction among instruments and data communica-
tion; an example of these prevents scheduling an ob-
servation on an instrument if data from the previous
observation has not yet been read out of its data buffer.

By making evident the decomposition in modules and
the structural similarities among different sub-models,
HSTS made possible the reuse of heuristics and their
extension from one model to another. We therefore

claim that HSTS displays the first feature of a modu-
lar and scalable planning/scheduling framework.

To determine the relationship between model size
and computational effort, we ran a test problem in each
of the SMALL_ MEDIUM, and LAP_GE models. Each test
problem consisted of a set of 50 observation programs;
each program consisted of a single observation with no
user-imposed time constraints. The experiments were
run on a TI Explorer II+ with 16 Mbytes of RAM
memory.

As required by the second feature of a scalable frame-
work, the results in table 1 indicate that the compu-
tational effort is indeed additive. In the table, the

measure of model size (number of state variables) ex-
cludes visibilities for targets and communication satel-
lites, since these can be considered as given data. The
temporal constraints are links between two time points
that lie on different state variables; the number of these
links gives an indication of the amount of synchroniza-
tion needed to coordinate the evolution of the state
variables in the schedule.

Since the detail level heuristics exploit the modu-
larity of the model and the locality of interactions,
the average CPU time (excluding garbage collection)
spent posting an elementary temporal relation con-
straint (compatibility) remains relatively stable. In
particular, given that the nature of the constraints in-
cluded in SMALL and MEDIUM is very similar, the time
is identical in the two cases. The total elapsed time
to generate a schedule in the case of LARGE is an
acceptable fraction of the time horizon covered by the
schedule during execution. Even if this implementa-
tion is far from optimal, it nonetheless shows the prac-
ticality of the framework for the actual HST operating
environment.

Exploiting Opportunism to Generate
Good Solutions

In space-based observatory scheduling a critical trade-
off is between: (1) maximizing the time spent col-
lecting science data; (2) satisfying absolute temporal
constraints associated with specific user requests. The
scheduling problem is typically over-subscribed, i.e.,
it will generally not be possible to accommodate all
user requests in the current short term horizon, and
some must necessarily be rejected. A lost opportunity
corresponds to the rejection of a request whose user-
imposed time windows fall inside the current schedul-
ing horizon. Observation requests without such exe-
cution constraints are not lost because the scheduler

may reattempt to honor them in subsequent schedul-
ing episodes.

The experiment described in the previous section

uses a dispatch-based strategy for sequence develop-
ment. Simulating forward in time at the abstract level,
the strategy repeatedly added to the end of the cur-
rent sequence the candidate observation estimated to

incur the minirrmm amount of wait time (due to HST
reconfiguration and target visibility constraints). This
heuristic strategy, termed "nearest neighbor with look-
ahead" (NNLA),'attends directly to the first global ob-
jective of maximizing the time spent collecting science
data.

However, forward simulation does not sufficiently
address the second global objective: the minimiza-
tion of rejections of absolutely constrained requests.
A request's window of opportunity may be gone by
the time the scheduler rates the request as the choice
with minimum dead time. Coupling forward simula-
tion with look-ahead search (i.e. evaluation of pos-
sible "next sequences" and potential rejections) can
provide protection against unnecessary request rejec-
tion. However this approach has limited effectiveness
because of combinatorics. A second sequencing strat-
egy directly attends to the minimization of the number
of rejected requests with absolute constraints: "most
temporally constrained first" (MCF). MCF's compu-
tational complexity is comparable to that of NNLA.
Under the MCF scheme, the sequence is built by re-
peatedly selecting the pending request with the tight-
est execution bounds and inserting it in the schedule.
Unlike NNLA this strategy does not build a sequence
with a simulation-based approach. Honoring the tem-
poral constraints of the selected requests will create
availability 'qaoles" over the scheduling horizon. Inci-
dentally, the MCF strategy is quite close to the algo-
rithm currently employed in the operational system at
STScI.

As is the case with the NNLA strategy, one objective
is also emphasized at the expense of the other within
the MCF strategy. The availability holes opened by
MCF can result in considerable telescope idle time and
therefore a sequence insertion heuristic should seek to
minimize such dead time. However, its effectiveness is
largely determined by the specific characteristics and
distribution over the horizon of the initially placed re-
quests.

Both NNLA and MCF manage combinatorics by
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SequencingPctg.ConstrainedPctg.Telescope
Strategy GoalsScheduled Utilization

NNLA 72 21.59
MCF 93 17.20
MCF/NNLA 93 20.54

Table 2: Comparative Performance of NNLA, MCF
and MCF/NNLA

making specific problem decomposition assumptions
and localizing search according to them. NNLA as-

sumes an event based decomposition (considering only
the immediate future) while MCF assumes that the

problem is decomposable by degree of temporal con-
strainedness. Previous research in constraint-based

scheduling [SOM+90] has indicated the leverage of dy-
namic problem decomposition and selective use of lo-
cal scheduling perspectives. In our case, we can also
evaluate problem structure to select the appropriate
strategy between NNLA and MCF at any point dur-
ing sequence development. In particular we estimate
the current variance of the number of feasible start

times remaining for individual unscheduled requests.
If the variance is high, there is an indication that some
remaining requests might be much more constrained

than others; this prompts the use of MCF to empha-
size placement of tightly constrained goals, if the vari-

ance is low, there is an indication that all pending
requests have similar temporal flexibility; the empha-
sis can switch to minimizing dead time within current
availability "holes" using NNLA.

To test this multi-perspective approach, we solved

a set of short-term (i.e., daily) scheduling problems
using three separate strategies: NNLA, MCF and
the composite strategy just described (referred to as

MCF/NNLA). The results are given in Table 2. They
confirm our expectations as to the limitations of both

NNLA and MCF. We can also see that MCF/NNLA
produces schedules that more effectively balance the
two competing objectives. Further details on the se-
quencing strategies and the experimental may be found
in [SP92].

These results should be viewed as demonstrative
and we are not advocating MCF/NNLA as a final
solution. We can profitably exploit other aspects
of the current problem structure and employ other
decomposition perspectives. For example, the dis-

tribution of goals over the horizon implied by im-
posed temporal constraints has proved to be a cru-

cial guideline in other scheduling contexts [SOM+90,
Sad91], and we are currently investigating the use of
analogous look-ahead analysis techniques within the

problem solving framework provided by I-ISTS (see be-
low). There are also additional scheduling criteria and

preferences (e.g., priorities) in space-based observatory
domains that are currently not accounted for.

Constraint Posting Scheduling

Most constraint-based scheduling research addresses

the problem of finding a single, consistent assignment

of starttimes for each activity[BC91, Johg0, KY89,

MJPL92, SOM+90, Sad91, ZG90]. HSTS, in contrast,
advocates a problem formulation more akin to least-

commitment planning frameworks. The problem is

most naturallytreatedas one of postingsufficientad-

ditionalprecedence constraintsbetween pairsof activ-
itiesso asto ensurefeasibilitywith respectto time and

capacity constraints.Solutionsgenerated in thisway

typicallyrepresenta set of feasibleschedules (i.e.,the
setsofactivitystarttimes that remain consistentwith

posted sequencing constraints),as opposed to a single
assignment of starttimes.

While HSTS does not prohibit the use of "fixed

time" scheduling techniques,there are severalpoten-
tialadvantages to a solutionapproach that retainsso-

lutionflexibilityas problem constraintspermit. A flex-

ibleschedule providesa measure of robustnessagainst
uncertaintyduring schedule execution. The determi-

nation of actualstarttimes can be delayed untilex-

ecution and solution revisioncan be minimized. A

constraintposting approach can also provide a more

convenient search space in which to operate during
schedule development. Alternativesare not unneces-

sarilypruned by (over)committing on specificstart

times. When the need for schedule revisionbecomes

apparent,modificationscan oftenbe made much more

directlyand efficientlythrough simple adjustment of

posted constraints. Our recent research has devel-

oped and evaluated two novel algorithms for generat-
ing schedules via constraintposting that demonstrate

the previous potentialadvantages: ConflictPartition

Scheduling (CPS)[Mus92] and Precedence Constraint

Posting Scheduling (PCP)[SC93].

The CPS procedure buildson previous researchinto

techniques for estimating resource contention[MS87].

Great emphasis is put in the recognitionof resource

capacity bottlenecks- time periods with high pre-
dicted contention among activitiesfor the same re-

source capacity. In CPS capacity bottleneck are de-
tected through use of a stochasticsimulation tech-

nique. Afteridentifyingresourcecapacitybottlenecks,

CPS acts to lessenthe levelof contention by post-

ing ordering constraintsamong the activitiescompet-
ing for capacity at the most severe bottleneck. The

iterativeprocess continues until no capacity conflict
remains; at this point a finalschedule has been de-

termined. If the process reaches an infeasiblesolu-

tion state,the search issimply restarted. CPS has
been experimentallytestedon a set ofbenchmark con-

straintsatisfactionschedulingproblems. The perfor-

mance analysisdemonstrated superiorproblem solving
performance to two currentlydominant "fixed-times"

scheduling approaches - micro-opportunisticschedul-

ing [Sad91]and min-conflictiterativerepair[MJPL92].
The reader isreferredto [Mus92] for details. More

recent work has aimed at the evaluation of different

alternativeCPS configurations(e.g.,micro vs macro

decisionmaking, focused on capacity conflictsvs ran-

domly focused)to establishthe relativeimportance of

differentstepsof the procedure and the corresponding
performance trade-offs [Mus93a].

The PCP procedure combines two techniques: dom-
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inance conditions for incremental pruning of the set of
feasible sequencing alternatives [EV76] and a simple
look-ahead analysis of the temporal flexibility associ-
ated with different sequencing decisions. At each step
of the search, a measure of "residual temporal slack"

is computed for each sequencing decision that remains
to be made. PCP choses the decision with the smallest

residual slack as the most critical, and posts a prece-
dence constraint in the direction that retains the most

flexibility. Posting a constraint might leave other se-
quencing decisions with only a single feasible order-

ing; these unconditional decisions are taken by posting
the implied precedence before recomputing estimates
of residual slack. Unlike CPS, which posts constraints

only until all resource contention has been resolved,
PCP terminates when either all pairs of activities con-

tending for the same resource have been sequenced, or
an infeasible state has been reached. PCP has also
been tested on the same suite of constraint satisfac-

tion used in the performance analysis of CPS. PCP

has shown comparable problem solving performance
to other contention-based scheduling approaches at a
small fraction of the computational cost[SC93].

Our current research pursues the following goals: (1)
extension of both the CPS and PCP approaches to ad-

dress optimization criteria; (2) investigation of comple-
mentary techniques for exploiting solution flexibility in
reactive contexts; (3) evaluation of the effectiveness of
these techniques in the context of space-based obser-
vatory scheduling problems.

Conclusions

In this paper, we have considered the solution of space-
based observatory scheduling problems. These prob-
lems require a synthesis of the processes of resource
allocation and expansion of auxiliary activities. We"
briefly outlined the HSTS framework and contrasted it

with other scheduling and AI planning approaches. To
illustrate the adequacy of the framework, we then ex-
amined its use in solving the HST short-term schedul-
ing problem. We identified three key ingredients to the
development of an effective, practical solution: flexible
integration of decision-making at different levels of ab-
straction, use of domain structure to decompose the
planning problem and facilitate incremental solution
development/scaling, and opportunistic use of emer-
gent problem structure to effectively balance conflict-

ing scheduling objectives. The HSTS representation,
temporal data base, and constraint-posting framework
provide direct support for these mechanisms. Finally,
we summarized more recent research aimed at fur-

ther demonstration of the efficacy of constraint posting
scheduling in HSTS.

We are currently utilizing HSTS to develop a
scheduling tool for support of the upcoming Suhmil-
limeter Wave Astronomy Satellite (SWAS) mission.
This scheduling domain requires attendance to many
types of scheduling constraints similar to the the HST

domain (e.g., target visibility, power). However, the
SWAS scheduling problem also differs in character.
from the HST problem; whereas the HST problem in-
volves synchronization of sets of observations with pre-

specified targets and durations, the SWAS scheduling
requirement is to distribute viewing (or data integra-
tion) time among a prioritized set of desired targets.
We have developed and are currently experimenting
with an initial solution to the SWAS problem. This
consists of a heuristic algorithm that utilizes target
priority and dead time minimization criteria to create
and interleave individual target observations of vari-
ous durations. These results indicate the flexibility of
HSTS to accommodate different types of scheduling
problems. Current plans call for refinement and sub-
sequent transfer of this solution to the SWAS mission
team by the end of the year.
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