
N94- 34062

A Toolbox and a Record for Scientific Model

Development

Thomas Ellman

Department of Computer Science

Hill Center for Mathematical Sciences

Rutgers University, New Brunswick, New Jersey 08903

ellman_cs.rutgers.edu

Abstract

Scientificcomputation can benefitfrom softwaretoolsthat facilitateconstruction

ofcomputational models, controlthe applicationofmodels, and aid inrevisingmodels

to handle new situations.Existingenvironments for scientificprogramming provide

only limitedmeans of handling these tasks.This paper describesa two pronged ap-

proach for handling these tasks:(1) designinga "Model Development Toolbox" that

includesa basicsetofmodel constructingoperations;(2)designinga "Model Develop-

ment Record" that isautomaticallygeneratedduringmodel construction.The record

issubsequentlyexploitedby toolsthat controlthe applicationofscientificmodels and

revisemodels to handle new situations.Our two pronged approach ismotivated by

our beliefthat the model development toolbox and recordshould be highlyinterde-

pendent. In particular,a suitablemodel development recordcan be constructedonly

when models are developed using a welldefinedset ofoperations.We expect thisre-

searchto facilitaterapid development ofnew scientificcomputational models, to help

ensure appropriateuse of such models and to facilitatesharingof such models among

working computational scientists.We are testingthisapproach by extending SIGMA,

an existingknowledge-based scientificsoftwaredesigntool.

Problem: Support for Construction, Testing, Application and

Revision of Scientific Models

Computational science presents a host of challenges for the field of knowledge-based soft-

ware design. Scientific computation models are difficult to construct. Models constructed

by one scientist are easily mis-applied by other scientists to problems for which they are not

well-suited. Finally, models constructed by one scientist are difficult for others to modify or

extend to handle new types of problems. Existing knowledge-based scientific software design

tools, such as SIGMA [Keller and Rimon, 1992], provide only limited means of overcoming

these difficulties. For example, SIGMA facilitates model construction by providing scientists

with high-level data-flow language for expressing models in domain-specific terms. Although

321

https://ntrs.nasa.gov/search.jsp?R=19940029556 2020-06-16T12:54:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42786038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SIGMA represents an advance over conventional methods of scientific programming, it sup-

ports only certain aspects of the model development process. In particular, SIGMA focuses

mainly on automating the process of assembling equations and compiling them into an ex-

ecutable program. Construction of scientific models actually involves much more than the

mechanics of building a single computational model. In the course of developing a model,

a scientist will often test a candidate model against experimental data or against a priori

expectations. Test results often lead to revisions of the model and a consequent need for

additional testing. During a single model development session, a scientist typically examines

a whole series of alternative models, each using different simplifying assumptions or mod-

eling techniques. A useful scientific software design tool must support these aspects of the

model development process as well. In particular, it should propose and carry out tests of

candidate models. It should analyze test results and identify models and parts of models

that must be changed. It should determine what types of changes can potentially cure a

given negative test result. It should organize candidate models, test data and test results
into a coherent record of the development process. Finally, it should exploit the develop-

ment record for two purposes: (1) automatically determining the applicability of a scientific

model to a given problem; (2) supporting revision of a scientific model to handle a new type

of problem. Existing knowledge-based software design tools must be extended in order to

provide these facilities.

2 Solution: A Model Development Toolbox and Record

We plan to attack this problem using two related ideas: First, we will define a "Model

Development Toolbox". The toolbox will define a set of generic model development steps that

are taken by most scientists in the course of developing scientific computationM models. The

envisioned generic steps include: (1) mapping equations onto physical situations; (2) fitting

models against experimental data; (3) sanity checking model outputs against a priori sign,

monotonicity or order of magnitude expectations; (4) testing models against experimental

data; (5) analysis of test results; and (6) modification of models in response to test results.

We plan to implement this toolbox in a scientific model development environment that

guides scientist-users through the model development process. Second, we plan to design

a "Model Development Record". The record will contain machine readable documentation

of the entire model development process. To begin with, the record should describe the

goals the model is intended to fulfill. For example, this might include a representation of

the questions the model is (and is not) intended to answer The record should also describe

the sequence of candidate models that were constructed in the course of developing the

final model. For each candidate model, the record should describe: (1) the model itself; (i.e.,

equations and dataflow graphs), (2) assumptions underlying the model; (3) fitting techniques

used to instantiate free parameters of the model; (4) sanity checks that were performed; and

(5) tests against empirical data that were performed. The record should also describe (6)

the temporal sequence of candidate models as well as (7) logical dependencies between test

results on early models and modeling choices made in constructing subsequent, more refined

models.

Tools for checking applicability of scientific models to new problems will rely heavily

on the model development record. Important applicability checks include: determining

322



whether a proposed use of a model is consistent with the goals the model was originally

intended to fulfill; determining if a new problem lies within the range of input parameter

values for which the model was tested; and testing assumptions underlying the equations that

were incorporated into the model. Each of these checks requires access to various aspects

of the model development record. Likewise, tools that support model revision will also

rely heavily on the model development record. Important types of model revision include:

extending/modifying the model to handle a wider/different range of input parameters; re-

fitting free parameters of the model to new empirical data; changing the assumptions used

to model a physical process; adding/deleting physical processes to/from the model; and

changing the overall purpose of the model. A model revision tool should automatically
determine when a revision is needed (e.g., by determining that a new problem falls outside

the range of problems handled by the original model, or by detecting discrepancies between

empirical data and outputs of the model). It should suggest changes to the model that

have the potential to cure the problem (e.g., by reasoning about sensitivities of outputs with

respect to changes in intermediate results, or by reasoning about the effects of potential

changes in assumptions on the outputs of the model). Finally the system should assist in

re-validating the new model, (e.g., by suggesting new tests of validity, and carrying out

and evaluating such tests.) In many cases, models may be revised by "replaying" a portion

of the development record that led to the original model. Replay will require access to

logical dependencies among test results and modeling choices found in the development

record, using techniques similar to derivational analogy [Mostow, 1989] and transformational

implementation [Balzer, 1985].

3 Model Development System Architecture

The overall architecture of our envisioned system is shown in Figure 1. The model develop-

ment toolbox will serve as a front end to the whole system. The toolbox can interact with

a human user to build an initial model in some scientific domain. It can also interact with

a user in order to revise an existing model to handle a new situation. Finally, the toolbox

also includes facilities for controlling the application of scientific models. As the toolbox

guides the user through a series of model building, testing and revision steps, it interacts

with several data bases. The model fragment data base contains the basic building blocks of

scientific models. The toolbox uses techniques embodied in the SIGMA system to combine

model fragments into one or more "current working models". As working models are con-

structed, they are tested against test data drawn from a test data base. Likewise, as tests are

run, results are incorporated back into the test data base. As the initial model development

process unfolds, the toolbox leaves a structured trace of the process in the model develop-

ment record. When operating in replay mode, the toolbox is guided by a model development

record constructed previously. Some portions of our system have already been implemented

in SIGMA: These include the model fragment data base, the test data base and a framework

for representing working models. Nevertheless, we expect that the representations used in

SIGMA for these modules will need to be enhanced. A rudimentary version of the toolbox

has also been implemented in SIGMA; however, most of our toolbox remains to be designed

and build. The model development record is entirely new.

323



/ \

Model

Development

Toolbox

x.._ J

Model

Fragment

Data Base

Current

Working

Models

Test

Data

Base

Model Development Record

Figure 1: Model Development System Architecture

4 An Illustrative Example

As an illustration of the envisioned system, consider the following example of building a

scientific model of the atmosphere of Saturn's moon Titan x The model takes as input a

set of measurements of the refractivity of the atmosphere at various altitudes. The model

is intended to compute atmospheric temperature and pressure at these altitudes. As the

toolbox guides the human scientist through the model building process, it presents him with

various modeling choices. For example he must decide which gases are to be included in

the model. Let's suppose he chooses to include methane and nitrogen. He must also choose

whether to use the ideal gas law, or a non-ideal gas law, to compute temperature from density

and pressure. Let's suppose he chooses to use the ideal gas law. As the model is built, the

user might declare certain expected properties of the output, e.g., that temperature and

pressure are both positive numbers and are monotonically decreasing functions of altitude.

The toolbox records these expectations in the model description in a representation that

allows them to be checked automatically.

Once a preliminary model is constructed, the user may test the model on any available test

1The example is taken from [Keller and Rimon, 1992] and slightly modified. The details of example are
not intended to be entirely accurate from the standpoint of atmospheric modeling.

324



data sets. If only input test data is available, (i.e., refractivity measurements) the system

simply verifies that the outputs conform to declared expectations (i.e., the temperature

and pressure are monotonically decreasing positive functions). If previously known output

data is available, the system compares the known data to the outputs of the model and

informs the user of discrepancies. For example, such tests might indicate that the pressure

predictions are two low. The system might then suggest that the low pressure problem can

be cured by either a change in the identities of the component gases, or by an addition of

new gases into the mixture. Let's suppose the user decides to add ammonia into the mixture

of gases. The system would revise the original model to include ammonia. It would also

store the old model in the development record, along with a summary of the successful and

unsuccessful tests performed on it. The cycle of model construction, testing and revision

might be repeated several times before the user decides the model is satisfactory. The

resulting model development record would include a description of the final model along

with all the models examined along the way.

Once a satisfactory model is constructed by a human scientist, the model might be

borrowed by a scientist working on a related problem, e.g., someone modeling the atmosphere

of another satellite. The toolbox would guide such a new user through a series of steps

designed to modify and validate the model for the new application. The system would

examine the original model development record to determine what tests were performed

on the original model. It would attempt to carry out analogous tests in the new setting.

For example, the system might determine that, in the new setting, the model generates

temperature or pressure levels for which the ideal gas law is not valid. The system would

inform the user of the problem and suggest possible changes, e.g., using a non-ideal gas

law, or changing the identities of gases in the mixture. Once the user chooses among the

suggested revisions, the system would modify the model, update the record, and repeat any

previous tests whose results are no longer valid. The cycle would repeat until the model

passes all the tests suggested by the system and the user.

5 Key Research Issues

5.1 Model Development Toolbox Issues

A number of important research issues must be addressed along the way to implementing the

model development architecture described in Figure 1. Implementation of the model devel-

opment toolbox requires identifying a set of generic model building steps, and constraining

the flow of control among them. Furthermore, in order that the toolbox support revision of

scientific models, a number of distinct inference tasks must be performed. We thus expect

to address the following questions in the course of designing the model development toolbox:

What primitive operations appear during the course of model development and model

revision? Potential primitives include: Select a model fragment to be used to compute

a quantity. Replace one model fragment with another from the same class; Instantiate

a generic model fragment in a specific scenario; Fit free parameters of a model against

test data; Run a model on a set of test data; Compare test results to expected results;

Add or remove a datum from the set of inputs or outputs of a model; Change the

dimensionality of the inputs or outputs of a model.

325



• What regularities appear in the sequences of operations that occur during model devel-

opment and revision? For example: Many models are hierarchically structured, i.e.,

they contain sub-models and sub-sub-models, etc. Potential construction strategies

include: Top-down (breadth-first) and bottom-up (depth-first) or some combination.

For each sub-model, the following sequence sequence of operations may be invoked:

Select a model fragment incorporating suitable approximations; Run the model on a

set of test data; Evaluate the test results; Revise the model fragment selection; Repeat,

etc.

• How can a system automatically detect circumstances in which a model must be revised?

For example: Input data can be compared to range constraints identified through

previous tests; Output data can be checked for the expected sign, monotonicity or

order of magnitude, when such expectations have been previously associated with the

model; Outputs or intermediate results can be tested for consistency with simplifying

assumptions; Outputs can be tested against benchmark data sets.

• How can a system automatically determine which modeling choices must be revised

to cure an identified problem? A number of previously developed techniques may

be applicable when suitably extended: For example, model selection methods that

reason about the impact of choices on the sign of the error of a model's output are

reported in [Addanld et al., 1991] and [Weld, 1991]. Model selection methods that

reason about the order of magnitude of the error may be developed by extending the

techniques reported in [Raiman, 1991] and [Williams, 1991]. Likewise, model-selection

methods relying on absolute error estimates may also be useful [Ellman et aI., 1993],

[Falkenhainer, 1993] Furthermore, new techniques may be needed in order to reason

about consistency between modeling choices in separate sub-models of a single larger

model. Finally, truth-maintenance methods will likely prove useful in this portion of

the system [De Kleer, 1986].

5.2 Model Development Record Issues

In order to design a model development record, we must identify the types of information

that need to be included in the record, as well as suitable means of representing and or-

ganizing such information. The content of the record must be determined largely by the

requirements of the processes the record is intended to support, i.e., developing models, con-

trolling applicability of models and revising models. We thus expect to address the following

questions in the course of designing the model development record:

• What information about the goals of a scientific model must be represented in order to

support development, application and revision of scientific models ? Potentially relevant

information includes: A representation of the questions the model is intended to answer;

A description of the quantities or relationships the models is (and is not) designed to

compute; Desired accuracy levels; Legitimate and illegitimate uses of the outputs of

the model.

• What information about individual models and model fragments should be represented?

Aside from the models themselves, potentially relevant information includes: Restric-

326



tions on the input data; Testable simplifying assumptions that justify the approxima-

tions used in the model; Expectations regarding the sign, monotonicity or order of

magnitude of the outputs or intermediate results.

What information about tests and test data should be represented? Potentially relevant

information includes: The purpose of the test; The model and test data used; Analyses

performed on the test output data; Indications of satisfied and unsatisfied expectations.

How should the whole model development record be organized? The record should

include both the sequence of operations that led to the final model, as well as the

development paths that failed and resulted in backtracking to earlier decision points.

Thus the record needs to represent both temporal and logical relationships between

different parts of the record.

What types of logical relationships between different parts of the record should be recorded?

Potentially relevant data includes: Dependencies between modeling choices in different

parts of the model; Dependencies between goals and tests; Dependencies between test

results and subsequent decisions.

We are pursuing this research by building an extension to the SIGMA system [Keller and

Rimon, 1992] currently being developed at NASA Ames. We plan to develop the system

by rationally reconstructing the process of developing and revising one of the two scientific

models already implemented in SIGMA: a model of the atmosphere of Titan [McKay et al.,

1989], or a model of forest ecosystem processes [Running and Coughlan, 1988]. Additional

candidate testbed domains include racing yacht design and jet engine nozzle design, each of

which we have used as testbed applications for our previous work in the area of artificial-

intelligence and computer-aided design [EUman et al., 1993].

6 Summary

The model development toolbox and record is expected to support a variety of activities

that occur in the course of developing scientific computation models. These activities in-

clude construction and testing of new models; controlled application of models to specific

problems, and revision of models to handle new situations. The system is also expected

to promote rapid development of new scientific computational models, more reliable use of

scientific models among computational scientists; wider sharing of scientific models within

communities of scientists; and deeper understanding among scientists of the assumptions

and modeling techniques incorporated in the models they use.

7 Acknowledgements

The research presented in this document has benefited from discussions with Richard Keller,

Saul Amarel, ttaym Hirsh, Lou Steinberg, Andrew Gelsey, John Keane and Mark Schwabacher.

327



References

[Addanki et aI., 1991] S. Addanki, R. Cremonini, and J. Scot. Graphs of models. Artificial

Intelligence, 50, 1991.

[Balzer, 1985] R. Balzer. A 15 year perspective on automatic programming. IEEE Transac-

tions on Software Engineering, SE-11(11):1257-1268, November 1985.

[De Kleer, 1986] J. De Kleer. An assumption-based tins. Artificial Intelligence, 28:127 -

162, 1986.

[Ellman et al., 1993] T. EUman, J. Keane, and M. Schwabacher. Intelligent model selection

for hillclimbing search in computer-aided design. In Proceedings of the Eleventh National

Conference on Artificial Intelligence, Washington, D.C., 1993.

[Falkenhainer, 1993] B. Falkenhainer. Ideal physical systems. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, Washington, D.C., 1993.

[Keller and Rimon, 1992] R. Keller and M. Rimon. A knowledge-based software develop-

ment environment for scientific model-building. In Proceedings of the Seventh Knowledge-

Based Software-Engineering Conference, Tysons Corner, VA, 1992.

[McKay et al., 1989] C. McKay, J. Pollack, and R. Courtin. The thermal structure of titan's

atomsphere. Icarus, 80:23 - 53, 1989.

[Mostow, 1989] J. Mostow. Design by derivationM analogy: Issues in the automated replay

of design plans. Artificial Intelligence, 40:119 - 184, 1989.

[Raiman, 1991] O. Raiman. Order of magnitude reasoning. Artificial Intelligence, 50, 1991.

[Running and Coughlan, 1988] S. Running and J. Coughlan. A general model of forest

ecosystem processes for regional applications. Ecological Modeling, 42:125 - 154, 1988.

[Weld, 1991] D. Weld. Reasoning about model accuracy. Technical Report 91-05-02, De-

partment of Computer Science and Engineering, University of Washington, Seattle, WA,

1991.

[Williams, 1991] B. Williams. A theory of interactions: Unifiying qualitative and quantita-

tive algebraic reasoning. Artificial Intelligence, 50, 1991.

328



REPORT DOCUMENTATION PAGE For.Approved
OMB No. 0704._fQQ

Public repOrting burden for this collection of informa',.on is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering-and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate o¢ any other aspect of this collection of information

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariingtonl

22202-4302, and tO the Office of Management and Budget, Paperwork Reduction Project (n704-0188)o Washington, 0¢ 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DA]'ES COVERED

4. TITLE AND SUBTITLE

6.

7.

January 1994

Seventh Annual Workshop on Space Operations Applications
and Research (SOAR '93) - Volumes I and II

AUTHOR(S)
Kumar Krishen, Editor

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lyndon ]3. Johnson Space Center

Houston, TX 77058

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546

U.S. Air Force, Washington, D.C. 23304

Conference Publication

5. FUNDI_I_I'G' N U M BERS

8. '"PERFORMING ORGANIZATION
REPORT NUMBER

S-749

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CP 3240

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available from the

NASA Center forAerospace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090

SubjectCategory: 99

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR)

Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5,1993, and held atJSC Gilruth Recreation

Center. The symposium was cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included

NASA and USAF programmatic overviews, plenary session,panel discussions,panel sessions,and exhibits. It

invitedtechnicalpapers in support ofU.S. Army, U.S. Navy, Department ofEnergy, NASA, and USAF programs in

the following areas: roboticsand telepresc_ce,automation and intelligentsystems, human factors,li£esupport, and

space maintenance and servicing.SOAR was concerned with Government-sponsored research and development

relevant toaerospace operations. More than 100 technicalpapers, 17 exhibits,a plenary session,several panel

discussions,and several keynote speeches were included inSOAR '93.These proceedings, along with comments and

suggestions made by panelistsand keynote speakers, willbe used toassess progress made injointUSAF/NASA

projectsand activitiestoidentifyfuture collaborative/jointprograms. SOAR '93was the responsibilityofthe USAF

NASA Space Technology Interdependency Group Operations Committee. Symposium proceedings include papers

presented by experts from NASA, the USAF, USA, and USN, U.S. Department ofEnergy, universities,and industry.

14. SUBJECT TERMS

17

Navigation; machine perception and exploration; ground operations teams; space

physiology; operations challenges; artificial intelligence; robotics and telepresence

research challenges; enhanced environments; medical operations; psychophysiology

SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITYCLASSIFICATION
OF REPORT OFTHISPAGE OFABSTRACT
Unclassified Unclassified Unclassified

15. NUMBEROF PAGES

839

16. PRICE CODE

20. "LIMITATION OF/_BS'rRACT

Unlimited

Standard Form 298 (Rev 2-89)

Prescribed by _,NSI Std 239-18 _
298-102




