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Abstract

A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High

Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end
bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball

bearing package wlfich has been the primary life lintiting coml_,nent in the turbopump. The design
and predicted perfi_rmance of the turbopump are reviewed. Results are presented for measured

pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine
located at Marshall Space Flight Center, Alabama. The most significant results were obtained from

proximity probes located in the bearing bore which revealed large subsynchronous precession at

Ion percent of shaft speed during engine start which subsided prior to mainstage power levels and
reappeared during engine shutdown at equivaient rn_wer levels below 65% of nominal. This

phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also
reveaied the location of the bearing in the bore fi_r different operating speeds. Pump vibralion
characteristics were improved as compared to pumps tested with ball bearings. After seven starts

and more than 700 seconds of testing, the pump showed no signs of perfi_rmance degradation.

Introduction

Annular seals were developed and used as leakage control devices and in that capacity were

designed for optimum pump efficiency. Lomakin _ pointed out that annular seals develop
significant direct stiffness while in the centered, zero-eccentricity position and can influence lhe

rotordynanfics of a pump. Later, Black", Jenssen _, and Black and Jenssen _._ investigaled and

explained the influence of seal h_rces on the rotordynamic behavior of pumps.

The term damper seal was conceived to describe an annular seal which has been intentionallv

roughened. Tiffs definition grew out of the work by von Pragenau ¢'who analytically predicted tht_t

roughness in an annular seal would increase damping and reduce leakage. This was subsequently
supported by the test data and analysis of Childs and Kim 7,X,9,Clfilds and Garcia _°, and Kim and
Childs t_. Clfilds tested many different roughness patlerns including hole, post, sawtoolh, knurl.

helically grtxwed, and circumferentially grooved. The test results showed that rough seals
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producedmoredampingthansmoothsealsandthattheholepatternsealcouldbeoptimizedt2)r

maxinmm damping.

The first intentional implementation of damping seal technology was in the SSME Phase II

HPOTP shown in Figure 1. Wear ring labyrinth seals on the Phase I preburner pump impeller

were replaced with dtunping seals. The knurl pattern and process were developed at Rocketdyne

specifically for this purpose and were subsequently tested by Childs and KJm 7. Significant

reductions in pump dynamic loads and ilnprovemenl in rotor stability resulted.

During SSME testing, ball bearing wear has been a recurring life limiting issue. Primarily, the
wear of the pump end bearings has limited the life of the turbopump and has necessitated periodic
refurbishment. Recently, there have been several events during the testing of the SSME HPOTP

wl'fich resulted in reduced ball bearing stiffness indicating that the turbopump could operate safely

on the damping seal "a.ione. A subsequent review of component measurement and test data from

previous testing showed that the turbopump had operated safely on the damping seal alone a
minimum of six different times without significant degradation in performance. Based on this

evidence, redesign of the turbopump without pump end b'a.IIbearings seemed feasible.

The design concept chosen is illustrated in Figure 2 (Scharrer et ai.t2). The figure shows that the

pump end bearings could be eliminated in favor of a single damping seal located at approximately
the same axial plane. Since the damping seal will now be the primary load carrying element, it
has been renamed an annular hydrostatic bearing. This paper presents the predicted and

experimentally measured performance of the bearing design. In addition, the rotordynamic and

hydrodynmnic perlk_rmance of the hydrostatic bearing supported turbopump will be compared with
that of the current ball bearing supported pump.

Requirements

The bearing design required substantial parametric evaluation before arriving at the current fully

tapered, fully roughened annular hydrostatic bearing design. Parametric studies of geometry and

configuration were considered to optimize the design in order to meet the hydrodynamic and
rotordynamic requirements of the pump end bearing for the SSME HPOTP. Details of the design
ct_nsidcrations are presented in Scharrrer et al, _. The final design is similar to the current Phase

II SSME HPOTP preburner pump damping seal and its well documented perfi_rmance in flight

cL_nfiguration SSME pumps.

The design objective was It increase the rotordynamic criticai speed and stability margins a.s

shown in Figure 3 as well as address the remaining turbine end bearings loads. It was also of

particular interest to ensure the implementation of the pump end hydrostatic bearing did not result
in detrimental loads on the remaining rolling element bearings. Based on these requirements the

pump end bearing targets were 175 MN/m (1.0 E6 lbf/in) direct stiffness and 61.2 KN-s/m (350
Ibf-s/in) direct damping. The geometry and clearance tolerances were optimized to meet this

requirement. The rotordynanfic coefficients of the bearing as a function of shaft speed and
eccentricity were provided for the rotordynamic analysis. The analyses included coefficients for
minimum, n_._minal,and maximum conditions resulting from potential variability of tolerances and

pump operatine, conditions. Slability of the bearing was consistently go(_ throughout the speed

paramclric as evidenced by the whirl frequency ratio (WFR) being conslanl al 0.30. The WFR
is a ratio of the deslahili/ing I_rces, crt_ss-coul_lcd stiffness, twer the stabilizing fotctzs, damping

limes synchronous speed.
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Theimpactof thepumpendhydrostaticbearingon theturbineendball bearingloadswas
evaluatedwith transientnon-linearrotordynamicanalysesperforn_edover the entirepump
operatingspeedrange.Theresultsof the_analysesforfilenominalpredictedhydrostaticbearing
coefficientsareshownin Figure4. It is evidentfrom thisdatathatthedynamicloadsare
significantlyreducedforpumpspeedsabove27,001)RPM,wlfichis theprimaryoperatingrange
of thispump.Thesereductionsin "alternating loads are a result of tile increased critical speed

margins on the second mode as well as the additional damping derived from the optimized bearing

configuration. Alternating load reductions in excess of 30% are predicted for FPL operatic,n,
30,000 RPM, and nominal hydrostatic bearing coefficients.

An additional important consideration was the start transient and the potential 6_r substantial wear.

Several configurations were considered wifich attempted to provide for b¢)d_ hydrt)dynamic

pertormance during the start transient and hydrostatic performance at Full Power Level (FPL}.

The configurations cott,_idered were straight, tapered, partially tapered, rough, and partially rough.

Although the configurations studied, as discussed in Scharrer et al) 2, did show some slight
advantages to having a partially roughened or partially tapered configuration, the benefits were
not substantial enough to justify the added complexity and cost.

In addition to the load impact issue, the transient analysis was utilized to predict rotor deflections

for "all pump operating conditions. The deflection at the hydrostatic bearing was identified as a

control point for the design. Specifically, a 0.0254 mm (.001 in.) margin against rubbing, between

the rotor and stator at the hydrostatic bearing location, was the guideline for all bearing design

ranges. This guideline ensured adequate rub margins at all other axial locations along the rt)tt_r.
The maximum deflection of the rotor, fixed and alternating deflections combined, was used to

identify this margin as shown in the sample rotor orbit prediction of Figure 5.

TTB Test Facility

The Technology Test Bed (TTB) lacility at the Marshall Space Flight Center 4.MSFC) was

designated choice fi_r testing the axially ted hydrostatic bearing. The l:acility was deveh_ped to

serve as an accessible platform with capability lbr testing new technology in large liquid n_cket
engines. The test stand, formally used for the first stage of the Saturn V, was reactivated in It)XX

as a SSME facility. With run tank capacities of 89,000 liters (23,50111gailons) ¢_f liquid oxygen
(LOX) and 284,000 liters (75,000 gallons) of liquid hydrogen, the T'rB facility can operate an

SSME over 200 seconds per test depending on the desired tluust profile. 'Iq"B can operate the
SSME from the engine's upper limit of I 1I% of rated power level (RPL) to 80% of RPL wlfile

independently controlling the engine LOX and fuel inlet pressures. The facility can vary the LOX

and fuel engine inlet net positive suction pressures (NPSP) over the acceptable range for the

SSME. The facility actually operates from 137.9 to 1,034.2 KPa (20 to 150 psi) ullage pressure

fi_r LOX and 55.2 to 344.7 Kpa (8 to 50 psi) ullage pressure for fuel. Because of its technoh_gy
advancement role, the data collection system has 750 digital channels, 50 sanlples per second, and

216 analog channels to measure pressure, temperature, vibrations, speed, proximity, and more.

Pump/Engine lnslrumentalion

The SSME HPOTP is equipped wilh pump and turbine end radial accelcrometers as well as

exlernal strain gages which are typically used lot high frequency data evaluation. The pump lestcd
at TI'B had live accelenmleters on both the pump end and turbine flanges as well as I'¢_urslrain

gages on the pump hc_using between the pump and turbine. The housing strain gages which are
typically used fi_r bearing generated frequency detection on Phase II HPOTPs were included on
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the hydrostatic configuration as an additional redundant point of comparison. In addition to the
standard instrumentation, the hydrostatic bearing HPOTP contained seven internal strain gages.

The_ gages are located near bearing support locations and intended for qualitative comparison

to exisdng Phase II pump data.

Proxinfity probes were installed in the bearing in order to provide data for the deternfination of

bearing liftoff/touchdown, rotor position in the bore, rotor orbit size the overall health of the

bearing. For this particular pump build, Kaman proximity probes were chosen. Two pressure and

temperature measurement taps were included directly upstream of rite bearing inlet and
downstream of the bearing exit to asses the bearings performance. Additionally, two pressure

sensors were located in the cavity downstream of the bearing to anchor overall pump performance.

Test Plan

Health monitoring of the entire turbopump was a major issue when the turbopump was tested at

TTB. Not only was the operational rubbing of the hydrostatic bearing a concern, but since the

rotor response was changed the turbine end bearing life was an issue. Therefore all available
means were taken to ensure that both the hydrostatic pump end bearing and the turbine end duplex

ball bearings were not degrading. In addition to all of the standard SSME HPOTP post test in-

spections (rotor break/run torque, and visual inspection of turbine section, main pump inducer,
number three bearing, and the preburner pump inlet) two additional measurements were included.

The normal shaft travel measurement used on a test stand was replaced with a more precise
measurement for measuring turbine bearing wear called shaft micro-travel described by Genge _3

and currently used for all flight HPOTPs. To ensure safety, the micro-travel acceptance limit was
set at the current flight limit. The second post test measurement added was a radial "micro-

wiggle" test which tletermined the muount of wear in the hydrostatic bearing. The wear guideline

imposed on this n_easuremcnt w_t,_set as the tnaxinlunl wear found on the tesl article which had

been exposed to 60 start/stop cycles in a test rig simulator reported by Scharrer et al. _4

Acceptance criteria 'also was set on all data obtained during the hot fire testing which directly
related to the operation of either the hydrostatic bearing or the turbine end ball bearings. This

included a requirement that the proximity probes show that the rotor lifts off the hydrostatic

bearing surface prior to 1.51 seconds into the test, and that they sllow the rotor maintains a .0254
mm (.001 in.) radial clearance from the wall during operation. Limits were also placed on the

minimum pressure drop across the hydrostatic bearing that would analytically show rotor stability,

the temperature rise across the bearing that would indicate operational rubbing, and the pressures

in the upstream or downstream cavities being greater than the structural analysis. The fluid exiting
the hydrostatic bearing was also required to be a liquid, not two phase or gaseous. In addition,
all of the standard SSME data limits were tnaintained for the testing of ttts turbopump. The T-I'B

facility Opticai Plume Anomaly Detector (OPAD) (Cooper et al.ts) data was reviewed with a

special emphasis on the presence of silver in the plume.

Initiaily, a four test series was planned which would characterize the perlornlance of the

hydrostatic bearing at all points in a test matrix containing four power levels and three LOX

engine inlet NPSP values. During the test series, uncertainty with the proximity probes led to the
addition of an additional lest. The profiles anti the lest matrix which shows wilich test will

evaluate thai matrix condition are sl_own in Figures 6 tlmmgh I I.

The primary objective of the first test was to demonslrate that the bearing had the capacity to lift
tiff. However, due to thrust balance concerns with the HPOTP with tests between 1.5 seconds and
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10seconds,the test was planned for 10 seconds (Figure 6). With the complete 10 seconds, the
immediate comparison of the predictions for 100% power level operations to results from the test
also became an objective. The subsequent tests planned in the series were intended to asses the

bearings capability at 'all power levels and engine inlet pressures available at TTB with bearing
evaluation between each test.

Test two was intended to exercise all power levels without variations in inlet pressures to is_date

any response due only to power level changes. With the confidence gained from the second test,

the third test was meant to obtain as many of the combination of power level/LOX inlet pressure
extremes a.s possible (Figure 8). From Figure 11, it can be seen that .seven of the desired steads

state conditiorts could be aclfieved. Once again, tiffs test isolated "all power level changes from

LOX inlet pressure changes to ',allow the cau_ of any potential anomaly to be more easily

understood. The fourth test profile was driven by four different factors. The main goals were tt_
complete data collection for the test matrix and to start the pump with the lowest viscosity LOX

allowed by the SSME Interface Control Document (or closest attainable by TI'B). The low

viscosity "hot LOX" would test the lift capability of the bearing in the worst possible fluid state

that the bearing could undergo. Additionally a constant power level was maintained at the

beginning of the test to evaluate proximity probe thermal characteristics. After completion of the
fourth test, a fifth test was added to allow for the thermal stabilization of the proximity probes at
all major power levels (Figure 10).

Test Run Summary

Testing began in March, 1992, with test TFB-029. In spite of a premature cut at 5.2 sec due to

the High Pressure Fuel Turbopump (HPFTP) exceed!ng its turbine discharge temperature redline,

exanfination of Ihe test data showed the primary objective was achieved. Although the engine did

not reach a steady state condition at 100% power level, rotor lifloff evaluation was possible.
Additionally, this test did show an unexpected shaft orbit at low power levels wlfich was deter-

mined to be caused by the rotating stall in the preburner pump impeller discussed later.

Because the primary objective had been achieved, it was decided to continue the series as _rigi-
nally planned. However the 'ITB-030 was 'also cut off prematurely only .32 seconds into the test.

An engine oxidizer actuator position measurement showed that the valve was opening slower than
is allowed during a normal st',u-t. Although the engine controller took action to correct the slow

opening and was recovering, and the engine shut down as progran_med.

With no objectives achieved in TI'B-030, the next test profile was a repeat. The test went the full

85 second duration following the profile in Figure 7. All of the steady state data for the nominal

engine inlet pressure were collected, and rotor stability was maintained throughout the 8t197 to
109% power level range. The next test followed the profile in Figure 8, and also went for its

planned duration. Tiffs 205 second test acquired data at 'all but one of the remaining steady stale

operating points of interest. TI'B-033 was initiaily meant to finish the series, but it was st_pped

prematurely due to a fire external to the engine not related to the pump. Post test inspections
revealed a broken line had leaked hot gas. Repairs were pertbrmed, and 'ITB-034 ran the lull 2()5

second duration as shown in Figure 9. This test successfully attained the 80% power level 827.4
KPa (120 psi) NPSP engine inlet condition, and warlner Iox was used h_r the start transienl

without a change in perfi_r|nance. The final test in the series was perfi_rmed in June, 1992.

Unfi_rtunately, the proximity probe oUlpUt became Itighly erratic befi_re the pn_bes became

thermally stable probe evaluation was not attained. Tlfis new design had pertbrmed well fi_r a total
of seven starts and 724.5 seconds.
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Bearing Performance

Bearing performance data analysis of the hydrostatic bearing on the TTB consisted of a
determination of the performance of the bearing which included a repeatability evaluation,
centered coefficient calculation, and an estimate of the dynamic load on the bearing. The

repeatability evaluation showed no appreciable difference in the pressures and temperatures across

the bearing, or the speed for 80%, 100%, 104%, and 109% power levels. This lack of
discrepancy in the operational characteristics led to the small band between the maximum and

minimum rotordynamic coefficients across the bearing. Based on orbit plots, the dynamic load

on the bearing was estimated to be between 490 to 2050 N (110 to 460 lbf) for the tests at power
levels between 80% and 109%. Data show that the bearing operated without any anomaly and

could withstand the load experienced at the bearing location. The hydrostatic bearing could be

run indefinitely without any problems provided that the operational characteristics remain within
the trends of the data that has been collected It date.

Data was collected to determine the repeatability in the operational characteristics of the

hydrostatic bearing from test to test. If the bearing pressures and temperatures remain Unchanged
from test to test at different operating speeds, the bearing perfi_rmance is judged m be essentially

unchanged. Typical data from the upstream and downstream pressures and temperatures are
summarized in Table I. The data reviewed indicate only the downstream pressure indicate

appreciable variance from test to test. Downstream pressures were approximately 345 KPa (50
psi) lower during low NPSH testing. However, because this difference is only a fraction of the

total pressure drop, the performance of the bearing was essentially unchanged. Resulting pressures
were below the vapor pressure of liquid oxygen but in order to vaporize the fluid must be at that

state longer than the fluid is in the bearing. The velocity of the fluid at that point is

approximately 400 m/s (1300 ft/s) for about .025 m (0.1 in.) which is approximately 6
microseconct_. Under these conditions,the fluid could be approximately 690 KPa (100 psi) below

the vapor pressure without cavitation.

Since the bearing did not experience substantial deviation in its operational characteristics, the
band between the maximum and minimum empirical rotordynamic coetficient._ of the bearing wns

small. Figures 12 contains the values for direct stiffness, cross-coupled stiffness, and the direct

damping of the bearing during the testing. These coefficients, owing to the fact that the operating
conditions were in the range of the design, compared well with the coefficients predicted during

the design phase. Load capacity versus eccentricity of the bearing is depicted in Figure 13 at each
of the power levels. The coefficients showed only small differences in the maximum and

minimum values verily the robustness of the hydrodynamic and bearing design. Although error
in the actual values of the coefficients could be a.s high as 50 %, the coefficients generally were

predicted in such a manner to provide a cott_ervative design.

Dynamic Data

The most significant dynamic data obtained from the hydrostatic bearing pump was provided by

the proximity probes monitoring the rotor position at the hydrostatic bearing. No data observing
actual rotor motion in the SSME HPOTP has previously been available. The major source of

uncertainty relative to the proximity probe data was the probes calibration sensitivity to

temperature changes. Due to the large thermal changes present when going from an ambient
environment to a liquid oxygen environment absolute values of rotor position were difficult to
tletcrminc. The most t_bvious indication of the probes temperature dependence is in the initial
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"overshoot"seenin the proximityprobedata,shownin Figure14,after the pumpreache._
mainstagespeedatapproximately4.2sec.Whilesomeof theovershootisdueto pumpthermal
stabilizationeffectson therotordymunicboundaryconditions,asignificantportionisdueto the
largetemperaturechangeexperiencedbythepn_be,approximately40°R,duringthestarttransient.

TheproximityprobedataobtainedfromOtispumpprovidedseveralinterestingnewinsightsintt_
theoperationof theSSMEHPOTP,in 'additiontoprovidingdamthatwasdirectlyco,nparablett_
therotordynamicanalyticalpredictions.Themostreadilyidentifiablyphenomenonobservedin
theproxinfftyprobedatawasa relativelylow frequencylargeprecessionof therotorduringthe
startandcutofftransients.Theprecessionisdepictedinorbitplotof testTI'B-029inFigure15
andclearlyvisiblein thefrequencydomaindataof Figure16.Originally,tiffsmotionwasthought
tobesynclu'onousshaftmotionandthateitherthehydrostaticbearingstiffnesswasmuchlessthan
predictedor the loadsweremuchgreater.However,furtheranalysisshowedthatthism_lion
actuallyoccursat 10%of synchi'onousspeedduringthestarttransientanddid nottrackspeed
wellduringtheshutdowntram_ient.Theprecessionstartedshortlyaftertheinitialpumprotations
anddroppedoutatapproximately20,000RPM.Theamplituderemainedrelativelyconstantata
levelbetween0.12and0.14mm(.005and.006in.) An investigationintopossibleexcitation
sourcesIbr thisphenomenaledto rotatingstallin eitherthepreburneror mainpump.

Theidentificationof rotormotionassociatedwith therotatingstallwasconsideredasignificanl
revelation.Thisphenomenahadbeenmeasuredin thelaboratoryinwaterforboththemainpump
andpreburnerpump.However,themagnitudeanddurationof theresultingforceswereneverfully
understoodorappreciated.Thepumpspeedforthemeasuredstalllinfit forboththepreburnerand
mainpumpscorrespondto thespeedatwhichthelargemotionceasedduringstart-up.

Thediscoveryof thisphenomenonin then_tormotionhasbeenattributedto thefactthatthe
proximityprobedatawasthefirstgooddatadefiningrotororbitmotion.Asmentionedprevi_usly,
thesignificanceof thepresenceof thephenomenonin thehydrostaticbearingconfigurationled
to agreaterappreciationof itsexistence.PreviousisolatorstraingagedatawasonlyviewedlrOlll
a bearingloadstandpointwithfrequencycontentduringthetransientbeingdifficult toobserve.
Thecharacteristicsassociatedwithrotormotionduringstallwerequiteconsistentfromtesttolest.
A tabulationof severalcharacteristicsassociatedwiththeprecessionforall thetestsarelistedin
TableII.

A comparisonof data,obtainedfromPhaseII pumpisolatorstraingagedataandthehydn)slalic
bearingproxinfftyprobes,exhibitingtiffsphenomenonis showninFigures17and18.Figure17
isacomparisonof thetimeIfistorydataduringthestarttransientwhichclearlyshowsthesame
characteristicsh)r both sets of data. Figure 18 contains an estimate of the dynamic loads calculated
from both sets of data. The isolator strain gage loads were calculated with standard load reducti_)n

technique developed fi)r these gages, while the hydrostatic bearing loads were estimated from 1tie

displacement and predicted bearing stiffness. It is evident that the It)ads are comparable and d_c
deflections present are not unique to the hydrostatic bearing configuration.

Another interesting phenomenon discovered in the proximity probe data was thai tile rotor

appeared to "center" itself in the bearing when the propellants filled the pump while the engine

was being prepared lbr lest. Tiffs occurred due to propellent pressure forces lifting the rotating

assembly, which is almost vertical while attached to the engine, and bottoming the rot¢_r ¢_n an

axial stop which is perpendicular to the pump centerline resulting in the "straightening" the rotor
assembly in the pump. The most attractive feature of this phen¢_menon was that although the shafl

may n¢_thave been exactly "centered", it did not contact the journal when pump rotation began.
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With no contactpresenttherewasno indication of lifioff during the start transient. This is

significant since it indicates the rotor runs on a fluid film during the start transient and removes

the opportunity for wear during engine start. Additionally, there appeared to be little indication
of contact during the shutdown transient. No obvious indication of contact appears in the

proximity probe data until at lea,st 10 sec. 'after engine shutdown at which time the pump speed

had dropped to very low levels. These rub characteristics appeared to be relatively benign in all
tests. The time Ifistory data from a typical rub indication where the rotor deflections reach a limit

or flat spot is shown in Figure 19. Indications of rub characteristics during the shutdown transients

are tabulated in Table III.

While not as spectacular, the proximity probes also provided excellent data of rotor orbits and

synclu-onous amplitudes during mainstage operation. Although, as previously mentioned,

temperature dependant probe calibrations made it difficult to determine with great accuracy the

absolute position of the rotor, the dynamic anaplitudes, wlfich are a much sin',tiler portion of full
scale, were more easily assessed for rotor orbit size. The significant conclusion with respect to this
data is that the rotor orbits are very well behaved and comparable in magnitude for 'all maJnstage

power levels.

Synchronous RMS amplitude time histories from the proximity probe data over a test with
significant power level and inlet conditions variations contain little variation in rotor orbit

amplitude. An example of the RMS amplitude throughout a test which included operation at 80%
RPL as well as 109% RPL with minimum inlet pressure, worst case conditions, is provided in

Figure 20. The an_plitudes presented in this example include the maximum and minimum values

observed during all tests. Based on this data, the synchronous anlpliludes of the rotating a.ssembly
were between 2.5 and 7 mV RMS, w!fich corresponds to a pe_ to peak amplitude of between

t).t)05 and 0.015 mm (().()002 and 1).0(_6 in.). Due It these small ampli!udes, the potential error

in the absolute value of the orbit size, due to calibration uncerlainties, is believed to be less than

.002 mm (0.t_)01 in.). Additionally, no significant harmonics of synchronous, other than Ih¢)se

caused by blade wake t\_rces as would be expected, were present in the data.

Although the absolute rotor position was difficult to discern due to probe calibration uncertainties,
a fairly simple method was used in an attempt to anchor the rotor t_)sition with respect to the

bearing bore. The 'alternative metllod used rotor orbits believed to be indicative of rub during
shutdown as a means of locating the bearing bore and subsequently obtaining rotor positions

relative to that point. It is believed that this method produced absolute rotor orbit positions

representative of values for comparison to the analytical predictions. Using the data in this manner
rotor orbit positions at various power level and vent conditions were predicted. A typical set of
these results for test TTB-032 are shown in Figure 21.

The rot¢_r positions and orbit amplitudes obtained from the proximity probe data compared

favorably with orbit predictions from the rotordynamic analysis. To maintain tile rub margins
desired, the rotordynamic analyses predicted the fixed displacement at the hydrostatic bearing

would be less than approximately O. !()mm (0.004 in.) with peak to peak synchronous _unplitudes

in the range of approximately .025 mm ((/.i)01 in.). Based on the results sinfilar to those presented

in Figure 21, the fixed displacements were between .051 and. 10 mm (./)02 and .004 in.) with the

synchronous amplitudes solnewh_.!l less than I).025 iI|nl (.IX}I in.).

The tlala obtained froll| the slandztrd exlernal acceletOll|elers and strain gages was evalualed on

the same level as a lypical Phase 11 HPOTP hotfirc test for comparative purposes. The review

consists of frequency domain data as well as time history data. All the data reviewed compared
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favorablywithatypicalpump.Thefrequencydomaindatacontainednosignificantanomaliesor
indicationsof detrimentalconditionsoccurringduringtesting.Veryslightindicationsof thelow
frequencyprecessionphenomenon,whichisatypicalof externalinslrumentation,werepresentin
thedata.Harmonicsof synchronouspresentin tiledataare comparable to those seen in tile Phase
II configuration.

The time history data for all instrumentation reviewed was nomin',d. Synchronous amplitudes were
below 2 Grins on 'all accelerometers and below nominal Phase II pump values on a majority _f

the accelerometers. No significant amplitude changes were identified during power level

excursions or inlet condition excursions. Additionally, composite RMS values and syncluonous

harmonic values were well within the Phase II database. A typical RMS amplitude time histt_ry

of the synchronous amplitude from the accelerometer data is presented in Figure 22.

The turbine cartridge strain gages which, primarily intended for axial displacement measurements,

were also reviewed tbr high frequency characteristics. Although low amplitude internfittent bearing

cage harmonics were identified on these strain gages, this activity at a low amplitude is considered

typical for this instrumentation which is so closely coupled with the bearing carrier, and is not
considered to be detrimental. Additionally, the synchronous amplitudes were comparable tt_

previously measured data from SSME pumps The significance of this data is the confirmation that

the implementation of the hydrostatic bearing did not result in any detrimental conditions at the

turbine end bearings. This is of interest because the turbine bearing package contained separate
modifications which have been demonstrated in other development putnps to resolve turbine

bearing wear issues occasionally present in Phase I1 HPOTPS.

Plume Spectroscopy Information

The Optical Plume Anomaly Detector (OPAD) showed no conclusive evidence of silver during
any test in this series. Ht_wever, the OPAD system had not been calibrated l-'t_rsilver by plume

seeding, and the NASA SP-273 chemical equilibrium code did not contain a ct_mplete set t_f

reactants data fi_r silver. Therefi_re, the syslem was limited to using primarily statistical tnelht_ds

with comparison to data ct_llected on "I'TB tests 20 through 28, which had stanttmd HPOTP

bearing configurations. Because of this difficulty and die micro-wiggle measurements minimal
silver, if any, was believed to have been ingested by file main injector.

Conclusions

The implementation of the hydrostatic bearing met or exceeded the rotordynamic requirements set
forth. The data indicated no significant wear occurred due to rubbing during the transients and the

rotor displacements were well behaved during all operating conditions. No rotordynamic issues

resulted during the testing to 109% rated power levels and minimum NPSH, and the lest pr_gram
provided new insight into the operation of tile SSME HPOTP.
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TableI: TI'B Engine 4404 LOX Bearing Tests.

Power Speed U/S Pr D/S Pr U/S Tcmp D/S Temp
Level (rpm) (psia) (psia) (R) (R)

80 23,400 4150 210 199 212

100 27,700 5450 230 212 230

104 28,500 5700 250 216 233

109 29,700 6100 250 220 237

Table II: Precession Characteristics

Test

Start

Drolx_ut

Ti me

E/S+sec

Speed

RPM

Cutoff

Resumption

Time

C/O+sec

Speed

RPM

801-029 3.05 20,400 0.5 16,8t_3

801-030 N/A

801-031 3.1 21,500 0.4 16,500

801-032 3.1 21,000 0.25 17,500

801-033 3.1 21,000 0.5 18,(_3

801-034 3.05 21,500 0.3 16,800

81)1-035 2.952 20,500 0.5 18,000

Table I!I: Rub lndicalions

Time of Rub

Test ,_./O+sec

TTB-029 11.0

TTB-030 None Obvious

TTB-031 10.7

TTB-032 15.2

q-TB-033 15.0

FTB-034 None Obvious

FI"B-035 14.0

_peeti @Rub

RPM

550

750

700

fi50

700
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Figure 1. Phase II SSME HPOTP.

PHASE I I HPOTP

HYDROSTAT|C BEARII¢G HPOTP

Figure 2. Hydrostatic Bearing Modification.

362



CRmCAL SPEEDS AND LOG DECS BASED ON NOMINAL COEFFICIENTS
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Figure 3. Rotordynamic Analysis- Critical Speeds and
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TEST 801-029 PROXIMITY PROBE DATA
F_,_'II,_AT[OF"gT_q"r ',m_u._E_rr -ALT rOACt

4

3 "

2.5 "

:1 "

IJ "

1 -

0.5 "

°i

HSB L

'n_ll[

,.,

Bearin 9 Load ComarlSon HSB vs. Phase II

Start Transient Alternat(ng Load

. , ,T.

r

J,
i,, i.,, w._ i._¢ i.o,

"V_J

Phase TT

I

I

i
Isolator Load

1_m| i.'mo , _.mg ,_I, w.'wQ

t_

Figure 18. Ball bearing vs. hydrostatic bearing loads as a function of time during tile start
Iransient

369



,,,, ....... .,,,°,-.,,,................
_1_| _nd|, |e. zel.alee s|_ KITe liee,e
lkNI_l, lWe I_f|_ |f2¢1. nl Lovable lt4ti_L rzLrin _prL;ip _T |leo me

Proximity Probe Output

I

lllnor Rub Indicatio

r 1 r

T 11'1[ (IlCl

llli |11 IeI

Fil_ure 19. l_'oxhnily probe rub indications.

• ui _.

IIIml I

• |LII )

iiil

4t*.

m Ill

l*Fi!(Illl

IIIt
Ill

...... I

-il

'[ST 8el
ll- --

*--_ , T i t

-II t

_,

_Oltll|l lirobii 5 n(hrQbl

II R_ _ ,I llll tk-lk

/

/

II ilt it • Ill iii Ill ii| Ill
Illi I!1¢i

i_e_sm,,_ _._',_ _w:_o_u!;

II li 11 Illl Ill ill tll Ill imi

Fil_ure 20. Proximity probe synchronous amplitudes.

370



TEST TTB-OB2 PROXIUITY PROBE DATA
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