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ABSTRACT

A rig for testing an externally pressurized (hydrostatic), water--lubricated bearing was developed.
Applying = nonsynchronous sweep frequency, rotating perturbation force with a constant
amplitude an input, rotor vibration response data was acquired in Bode and Dynamic Stiffness
formats. Using this data, the parameters of the rotor/bearing system were identified. The
rotor/bearing model was represented by the generalized (modal) parameters of the first lateral
mode, with the rotational character of the fluid force taken into account.

1. INTRODUCTION

Experimental modal testing is a popular method for studying vibration problems of mechanical

structures. The application of modal testing to a structure containing rotating elements requires
a specialised approach [1]. The experimental testing provides data for identification of the

system parameters which can be further used in the evaluation to the stability of the system, and
in numerical modelling or engineer assist (expert system) programs. This paper presents results

of perturbation testing and parameter identification of a rotor supported in one rigid and one
externally pressurised water--lubricated bearing. The mathematical model used for the rotor

system identification was developed in references [1--11]. The method of relating the applied

input force to measured output response (henceforth known as the dynamic stiffness technique)
serves very well for the parameter identification [1]. A new tool was developed for the
experimental testing of the rotor/bearing system. This tool consists of a constant force

amplitude perturbator used to apply the force to the system under test over a frequency range of
±3000 rpm (perturbation forward and backward). The unique feature of this perturbator is that

the force has a constant amplitude, independent of frequency, unlike that of unbalance type
perturbation. This feature enables one to obtain very clean (high signal to noise ratio) data in
the low frequency range, therefore, it offers more accurate identification of the lowest modes ofrotors with fluid interaction.

2. EXPERIMENTAL TEST RIG

The experimental rotor is shown in Figure 1. The system consists of a stainless steel shaft
carrying a balanced, concentrated mass at the brass-sleeved, aluminum journal of 1.990 inch
diameter and 10 rail diametrical clearance inside the bearing. The shaft is supported on one end

by a relatively rigid, bronze (oilite) bearing, and the other by the water--lubricated, hydrostatic
bearing, This cylindrical bearing has four equally spaced, canoe-shaped pockets, as shown in

Figure 2. These pockets are fed through radial 0.135 inch diameter capillaries. The bearing
contains, also, separately controlled tangential antiswir] ports. They will not be used, however,
in the tests presented in this paper. The role of these ports is described in [12].
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Fig. 1 Ex rimental rotor rig with constant force perturbator, A) 0.5 hp electric motor, B) speed
co_etrol probe, C) Keyphasor ® probe, D) flemble coupling, E) bronse shdmg bearing, F)
sha.Ct, G) slim disk for balancing, H) spring support (with stiffness 38 lh/in), I) XY eddy
current dlsplacement probes, J) experimental pressurized bearing, K) constant force

perturbator, L) optical Keyphasor.
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Fig. 2 Externally pressurised bearing with ant_wirl ports.

The water temperature was monitored using a thermocouple that was located in a drain tube of

the hydrostatic bearing. The rot_tive energy wu derived from a 0.5 hp electric motor connected
to the rotor through a flexible coupling. A speed controller was used to control rotative speed.

The perturbation force was applied to the shaft rotating at a constant speed. Soft supporting

springs installed near the test bearing a]low for controUing journal eccentricity at rest; all tests
were run with the journal concentrically located within the bearing. To obtain the shaft/journal
lateral vibration data, one pair of XY eddy current displacement probes was mounted to
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observe the shaft, next to the journal. A computerized data acquisition and processing systemwas used in the Lests.

The right side of Figure 1 presents the system used to perturb the rotor/bearing system. The

system consists of a stiff steel shaft connected to the journal within the hydroetatic bearing, using
a sealed rolling element bearing. The shaft was supported on the other end by a bronze (oilite)
bearing. A constant force perturbator was attached to the shaft next to the journal through a
rolling element bearing (Fig. 3). The rotative energy for the perturbation was derived from a 0.5

hp bidirectional electric motor. Another speed controller was used to control perturbation speed
and acceleration. The rotor response, to the input perturbation force, was filtered to the

perturbation frequency. The response phase was measured in reference to an optical Keyphasor ®
that observed a reflective spot on the perturbator.

ADJUSTABLE ECCENTRICITY

Fig. 3 Constant force perturbator (not to scale; eccentricity _ exaggerated).

3., CONSTANT FORCE AMPLITUDE PERTURBATOR

In previous:experiments [1-12] the input perturbation force applied to the rotor was generated
by an unbalance. Since unbalance centrifugal force is proportional to rotative speed squared, its
amplitude becomes very small for low perturbation frequencies. A new device was designed that
provides a constant force amplitude in order to increase the data accuracy in the low frequency
range. The principle of the operation of this force perturbator is similar to the kinematic
excitation, known in vibration theory: a calibrated rotatingvector of displacement (6) is exerted
across a khown radial stiffness (K) of the elastic material within the perturbator. This creates a
known rotating force' Vector that is applied to the rotor under test. The known displacement is
obtained by adjusting the eccentricity of an inner calibrated ring, as shown in Figure 3. To

obtain the rotating force sweep frequency, the perturbation disk is rotated with very low

acceleration in a direction the same as the rotor under test (forward perturbation), or opposite
the direction (reverse perturbation). The elastic material used for the perturbator was Dow
Corning _ 3112 RTV silicon rubber. The stiffness, damping, and inertia of this material were

separately identified by the use of dynamic stiffness testing of the perturbator itself. It was
found that maximui_n inertia effect was 0.000209 lb sec2/inch and maximum damping was 0.079
lb see/inch. Using both static and dynamic testing, the perturbator radial stiffness was
evaluated to be 374 lb see/inch, as shown in Figure 4. Since the inertia and damping proved to
be small compared to the stiffness, they were eventually neglected in the input force model.
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Fig. 4 Perturbator disk radial stiffness. Results from static tests.

4. WATER DELIVERY SYSTEM

To study hydrostatic bearing/seals, a high pressure water system (I000 psi O 10 gpm) was

developed. It consists of a 50 gallon water storage drum, low-pressure feed pump (100 psi),

high--pressure multistage centrifugal pump (400 psi) driven by a 5 hp, 3 phase, 230 volt electric
motor rotating at 3450 rpm. This delivers water through a pipeline which contains 80 mesh, 25

mic:on, and 1 micron filters, and several gauges and valves. Water is returned to the 50 gallon

storage drum using a sump pump. Water temperature is openly controlled by using a
submersion heater in the storage tank, with cooling provided by a fan blowing air at the storage

tank surface.

The water is delivered to the hydrostatic bearing using three specially designed distribution

manifolds. One manifold leads to the four radial ports, and the other two to the eight antiswirl

ports of the test bearing. Each port is fed from the manifold to the port through a manually
controlled flow valve, and a high--pressure hose. Each of the high--pressure feed lines is

equipped with pressure gauges to measure the pressure drop at the bearing port. Pressure is also

monitored at the manifold.

Flow is measured using the sump pump. Th e sump holds a calibrated 2.5 gallons before

pumping, thus by timing this volume, the total flow rate is determined. Such calculation is only
valid when testing one set of ports at a time, _nd when the journal rotates concentrically within

the bearing.

5. MATHEMATICAL MODEL

The mathematical model of the fluid dynamic force and the corresponding dynamic stiffness

components of the rotor/bearing system were developed in [I,3].

The model of the considered system is as follows:

M_ + Mf(_ - 2j)d'll- A2_/2,) + D(i--j)_n,-)+ (Ks+KB+K)s = zgeJ(Wt+6) j=¢:-£
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where s = x+jy is the rotor lateral (x - horizontal, y = vertical) displacement, Ks and M are
the rotor modal stiffness and mass, Mf is the fluid inertia effect, K B and D are the fluid

radial stiffness and damping respectively, and /_ is the fluid average circumferential velocity

ratio (the rate at which the fluid damping force rotates), with w and _ being perturbation
frequency and rotative speed, respectively. K is the perturbator radiai stiffness, g and _ are

the perturbator calibrated eccentricity parameters" its value and angular orientation,

respectively. The rotor response is • - AeJ(wt+a) where A and o_ are amplitude and phase
respectively. The following relationships were further treed in the identification procedure:

Direct Dynamic Stiffness _- Ks+KB+K_Mf(w.__fl)2 -- MW 2 _ __ cos(E_--Ct) (1)

Quadrature Dynamic Stiffness = D(a_--An) Ke= _ •in(6---_) (2)

Since Eqs. (I) and (2) are simple curves with respect to the perturbation frequency, it was

possible to identify the parameters by usingbepolynomial best fitting. The coefficients of the
polynomial for these best fit curves can then equated to the corresponding coefficientsin Eqs.
(1) and (2) to determine the value of each parameter.

6. EXPERIMENTAL TEST RESULTS

The set of tests was designed to determine the effects of preuuri=ed water input through the
radial inlets to the bearing (antiswirl ports shut off). The pressure at the radial port manifold
was approximately 75 psi, and the drop across the bearing through the pocket was maintained

constant at 20 psi. The water flow through the bearing varied from 3.{} to 4.6 gai/min for four

consecutive tests. During four consecutive tests, the rotative speed was constant 0, I000, 2000,
and 3000 rpm respectively.

Figure 5 shows the rotor responses to a rotating sweep frequency perturbation force vector of

eK = 1.535 Ibs at 6 = --310". The responses to perturbation forward (+w) and backward (--_)
were filtered to the perturbation frequencies and are presented in the Bode format (Fig. 5). No-

tice that the response amplitudes in the considered range of frequencies are rather flat, not the
same as if the system was excited by an unbalance force. Note, also, that there is some distur-

bance in amplitudes and phases around the area when the perturbation and rotation frequency

are equal. This is due to an interferenceof the rotativefrequency vibrationsin the filteringsystem.

Figure 6 presents the dynamic stiffness plots that were obtained using Eqs. (I) and (2), and the

rotor response shown in Figure 5. Each plot consists of 570 data points. To identify the

system's modal parameters, the plots were beat fitted by polynomials. Interesting enough, the

coefficients of higher power than the second for the direct stiffness, and first for the quadrature

stiffness, were more than five orders smaller than those of lower powers. Therefore, a parabola

was adopted for the direct, and a straight line for the quadrature dynamic stiffness. They are
shown as solid lines in the plots of Figure 6. The coefficients of the best fit equations are
summari•ed in Table I.

Ifthe best fitcoefficientsare equated to that of the dynamic stiffnessmodel (i),(2),and con-

verted to the proper angular frequency units,the system parameters can be identified,as shownin Table 2.

When calculatingthe rotor modal mass M at rotativespeed of 0 rpm, the fluidinertiaeffect

and the mass cannot be readilyseparated (Mr + M = 7.37 x 10-3). To obtain reasonable data

for zero speed, the modal mass was obtained by averaging the values at allother rotativespeeds.
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were very similar are not shown. Response amplitude measured peak to peak,
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Rotative

Speed

_m

0

I000

2000

3O0O

Table 1. Best Fit Coefficients of the Polynomials in Fig. 6

"Direct Dynamic Stiffness ' Quadrature Dynamic

A +Bm + Cm 2 Stiffness Ew + F

A

1182

1226

1205

!22o

Bx 10 -3

2.126

49.30

1!3.6

152.0

C x 10 -5

-8.084

-8.557

-8.363

-7.707
I..

E

0.400

0.420

0.408

0.402

F

3.424

-150.5

-318.9
j,,

-530.2

Rotative

Sp, , ta

rad
rpm s--_

0 0

1000 105

2000 209

3000 314

Table 2. Identified Parameters of the Rotor/Bearing System

i I ]l'li -

D _ Mf K+Ks+KB M

Ib x so: kg Ib x see 2 kg lb __N lb x sec 2 kg
inch see - - - inch inch m inch

xl0 -3 xl03 xl0 -3

-- 3.82 669 -- 5.94"' 1.04 1182 207 1.43" 0.25i*

4.01 702 0.358 6.28 1.10 1235 216 1.52 0.267

3.90 683 0.390 6.64 1.16 1249 219 0.99 0.173

3.83 671 0.440 5.25 0.92 1320 231 1.78 0.312

*Average of the column

The average mass, Mavg = 1.43 x 10-3 lb sec2/inch (0.251 kg), was then subtracted from the

second order coefficient O, providing the fluid inertia effect value at 0 rpm.

As it was mentioned in reference [2], there is a possibility that the fluid radial damping and fluid
inertia forces rotate at different rates of )t . A method to determine the fluid inertia rotation

rate, _f, is to solve the equation resulting from equating Eq. (1) with the best fit coefficients and

solve it for Mf_f (see Table 1 and Eq. (1)):

Mf)kf -- _ (3)

where B is the first order coefficient of the direct stiffness best fit parabolas (Table 1). If the

average modal mass, Mavg, is used again, the fluid inertia effect can be calculated from the
secondorder coefficient ofthe parabola:

Mf =-[C (-_-)' + Mavg] (4)

where G is the second order coefficient of the direct dynamic stiffness best fit parabola (Table

1). The ratio )_f is calculated by dividing Eq. (3) by Eq. (4). The results are summari,.ed in
Table 3. They show that the values _ and /_f are, actually, very close (maximum difference

is 7.2%).
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Table 3. Identification of the Fluid Inertia Average Circumferential Velocity Ratio

Rotativc Spc_,a Mf,_ /_-f 2.f

rad lb x scc 2 lb x scc
rpm kg kg

s¢c inch inch

xlO-3 xlO -3

1000 105 2.25 0.394 6.37 1 12 0.353

2000 209 2.59 0.454 6.19 1.08 0.418

3000 314 2.31 0.405 5.60 0.98 0.413

Figure 7 present_ the results from another set of perturbation tests in which the rotative speed
varied, while the perturbation force was constant with Ke = 1.535 lbs and _ = --310". The

quadrature dynamic stiffness data were identified as parabolas or straight lines by best fitting
polynomial, (Table 4). The corresponding quadrature stiffness components D and _ that

were calculated from the data are summarized in Table 5. Generally, D resulting from these
tests is slightly higher, and ,_ slightly lower than obtained from the previous tests.

All test results were not compensated for the water temperature changes, which, within each test,
varied from 0.3"F to 0.8"F within the range of 90.4"F to 96" F. The data acquisition system

was set on the average value of the proximity transducer sensitivity, 0.2 v/rail. Due to slightly
increasing temperature during the tests, the transducer output sensitivity varied from 0.198 v/mil
to 0.199 v/mil, thus the amplitude readings were 0.5% to 1% higher than the actual ones, and,
consequently, the dynaraic stiffness values became from 0.5% to 1% lower.
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Fig. 7 Quadrature dynamic stiffneu versus rotative speed for constant values of perturbation
frequency. The solid lines are best fits using second order polynomials.
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Table 4. Best Fit Coefficients for the Polynomials of the Quadrature Dynamic Stiffness From

Fig. 6 Versus Rotative Speed.

Perturbation

Speed co, rpm

Second Order Fit First Order Fit

G + HO + It_ 2 Jt'2+ L

G Hxl0 -3 lxl0 -6 Jxl0 -3 L

500 216 -136 -13 -207 287

1000 443 -123 -19 -228 543

1500 573 -I15 -17 -208 662

2000 835 -159 -13 -231... 904

2500 1097 -188 -8 -229 1137

Table 5. Identified Parameters for Quadrature Dynamic Stiffness Using Eq. (2) and

Polynomial Fits From Table 4.

Perturbation Second Order Fit

Speed, 0_ Parameters First Order Fit Parameters
,r,

D X D X

rad lb*sec kg lb*see kg
rpm

see inch see inch see

500 52 4.13 723 0.315 5,47 958 0.361

iO00 105 4.23 741 0.278 5.18 907 0.420

-1500 157 3,64 637 0.301 4,22 739 .... 0.471

2000 209 3.99 699 0,381 4.31 755 0.511

2500 262 4.19 734 0.429 4.34 760 0.504

The fluidradialdamping calculatedusingthewell--knownformula:D = z'*7r(//c)s(where *7 is

fluid dynamic viscosity, r, /_ and c are bearing radius, length, and radial clearance respective-

ly) provides the values from 3.45 Ib see/inch to 3.22 Ib see/inch for water temperatures from
90.4"F to 96.5'F and corresponding viscosities varying from 0.7577 c poise to 0.7076 c poise
through the entire set of tests. The identified values of D were, therefore, lower than the calcu-
lated ones. The proper temperature compensatlon of the results would decrease the difference.

7. CONCLUSIONS

Developed over two years ago, the high--preuure water rotor rig can be used for dynamic testing
of beaxing and seals. This paper presented test results of an externally pressurized bearing for
only one pressure value. Applying the nonsynchronous perturbation testing which has been
extensively used by the authors through the last 12 years, the fluid force parameters were
identified. The results confirm, again, the meaningfulness of the fluid circumferential average

velocity ratio as the important element of the fluid force model in lightly loaded lubricated

bearings and seals. The results also indicate the existence of the fluid inertia effect which is
relatively high, about five times larger than the rotor modal mass.
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The use of the constant force perturbator has enabled the acquisition of very clean vibration data

(higher signal, thus better signal to noise ratio) in the low frequency range, and hence clean

dynamic stiffness data was produced. This data makes the identification procedure more

accurate, and allows for advancements in adjustments of the mathematical model of the

rotor/bearing system.

NOMENCLATIIP_E

A,B,C,E,F,G,B,L_,L
A,O:

D,KB,Mf

j=q-7
Ks,M

K

z=x+jy

A

_f

n

Best fit polynomial coefficients

Rotor response amplitude and phase respectively
Fluid radial damping, radial stiffness, and inertia effect respectively

Rotor modal stiffness and mass respectively

Perturbator radial stiffness

Rotor lateral(x=horlzontal,y=vertical)displacement
Perturbator angular orientationand eccentricityrespectively

Fluid circumferentialaverage velocityratioat which fluiddamping force

rotates

Ratio of the fluidinertiaforcerotation

Perturbationfrequency

Rotative speed
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