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TIMELINE SCHEDULING

SPACE EXPERIMENT SCHEDULING

;

The Mission Planning Division of the Mission'Operations Laboratory at

NASA's Marshall Space Flight Center is responsible for scheduling experiment

activities for space missions controlled at MSFC. In order to draw statistically

relevant conclusions, all experiments must be scheduled at least once and may

have repeated performances during the mission. An experiment consists of a

series of steps which, when performed, provide results pertinent to the

experiment's functional objective. Since these experiments require a set of

resources such as crew and power, the task of creating a timeline of experiment

activities for the mission is one of resource constrained scheduling.

For each experiment, a computer model with detailed information of the

steps involved in running the experiment, including crew requirements, processing

times, and resource requirements is created. These models are then loaded into

the Experiment Scheduling Program (ESP) which attempts to create a schedule

which satisfies all resource constraints. ESP uses a depth-first search technique

to place each experiment into a time interval, and a scoring function to evaluate

the schedule. The mission planners generate several schedules and choose one

with a high value of the scoring function to send through the approval process.

The process of approving a mission timeline can take several months. Each

timeline must meet the requirements of the scientists, the crew, and various
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engineering departments as well as enforce all resource restrictions. No single

objective is considered in creating a timeline. ...:

The Experiment Scheduling Problem is:

Given a set of experiments, place each experi'ment along the mission timeline so

that all resource requirements and temporal consti-alnts are met and the timeline

is acceptable to all who must approve it.

Specific characteristics of the problem are:

1. There is a limit on the available time for processing experiments, namely

the mission duration.

2. Each model (experiment) may need to be run multiple times. Each

execution of a model is called a performance.

Models require a set of resources of varying types. There are two sets of

renewable resources, called nondepletables and equipment. Consumable

resources and crew are also included in the set of resources.

The resource requirements of a model can vary over the processing time of

the model. Each change in resource requirements constitutes a new step of

the model.

The processing times of a model may vary. A minimum duration and a

maximum duration are specified for each step of a model.

Some models allow (or require) delays between execution of the steps. Each

model step has a minimum and maximum step delay associated with it.

There is a requirement for some models with step delays that partial

r--esource usage must be carried through the delay.

.
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.....c-oncurrency relationship is satisfied.

A model may require that its execution be performed during certain

intervals in the mission. These are called performance windows and a

model can have as many as ten windows specified.

A model may require that adjacent performances be separated by a certain
/.

length of time. Both a minimum and maximum performance separation can

be specified.

The purpose or functional objective of some models require that the

spacecraft be at certain positions in its orbit. This constitutes temporal

constraints on the execution of the model. These available time windows

are called orbit opportunities.

There can be three categories of orbit opportunities associated with a model.

If a model requires a set of intersected orbit opportunities, all opportunities

in the set must be available for the model to be scheduled, whereas selected

orbit opportunities require that at least one be "open" or available for the

performance. Avoided opportunities represent those which cannot be open

during the execution of the performance.

A model may include the requirement that one or more of its steps must be

run either simultaneously, before or after one or more steps of another

model. These concurrency and sequencing relationships represent another

type of temporal constraint on the execution of the model.

Concurrency can occur in one of three ways. Mandatory concurrency means

that the model and its concurrent model cannot be scheduled unless the

Necessary concurrence is one-way. A
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model requiring necessary concurrence cannot be scheduled without the

concurrent model but this other model is not affected. The third type is

desired concurrence; ESP attempts to satisfy this constraint but if that is

not possible, the program schedules both models without concurrency.

Models can be designed with more than one_way to execute the experiment.

These alternatives, called scenarios, are defined by a sequence of steps.

Each model scenario has a priority.

As an alternative to scenarios, a model may require a different set of steps

for the first and last execution or performance of the model during the

mission. These steps are called startup and shutdown steps.

Crew requirements for a model occur in several ways. Some models require

specific crew members because, for example, they have special talents.

These constraints are "rigid". Others specify a number of crew members

from any of those available and are therefore "flexible" constraints. Any

combination of rigid and flexible requirements is possible, such as a request

for one crew member from a selection list of three and another crew

member from a different selection list. In addition, some models have

desired crew resources that are not mandatory for a performance to be

scheduled.

Other constraints imposed on the mission timeline are flexible, or desired

but not required. A feasible mission timeline is one that meets all rigid

requirements or constraints but not necessarily these desired constraints. A good
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schedule will meet many flexible constraints as well. Since approving a timeline

involves different groups of people with different objectives, defininl_ a good

timeline is difficult. The following is a list of characteristics of a good mission

timeline.
i'

1. All requested performances of each model are scheduled.

2. The highest weight scenario is used for each performance of each model.

3. Sot_ constraints are met, such as desired concurrence, selected orbit

opportunities, and crew monitoring.

4. One performance of each model is scheduled early in the mission.

5. There is a time separation between the first and second performances of

each model to allow the scientist who created the experiment to perform

validation of the results and make any necessa W changes to the

experiment's procedure.

6. The performances are ordered in such a way as to minimize the amount of

crew information (eg performance procedure manuals) transferred between

ground control and the spacecraft computer. The procedures are stored on

the computer aboard the spacecraft, which must be purged periodically due

to limited space. These transfers can be viewed as sequence dependent set-

up times because no transfer is necessary if the procedure is already in the

spacecraft's data base.

7. Resource usage is level.

The next section contains the results of an extensive literature search and

review_to investigate proposed formulations and solution methods that are
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pertinent to the experiment scheduling problem. It begins with a general

discussion of scheduling, followed by a discussion of relevant litera.thre of a

general nature. We conclude the section with a discussion of research on

scheduling space related activities.
]-'

LITERATURE REVIEW

Background

Scheduling is allocating a set of limited resources to a set of tasks to be

performed. The solution consists of a task sequence and a timetable of task start

and completion times. Scheduling is a required task in a variety of environments

including the construction, manufacturing and computer science industries. The

primary resource in a scheduling problem can be time, as in project scheduling, or

machines, as in processor scheduling.

Often the objective of processor scheduling is to determine the schedule or

schedules that optimize the allocation of resources to tasks with regard to the

completion times of the tasks. Examples of this type of objective include

completing the processing of the set of jobs as quickly as possible or minimizing

the time a processor is idle. Objectives which are dependent on the completion

times of the scheduled tasks are called regular measures. Particularly

characteristic of manufacturing applications is the assignment of release dates and
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due dates to jobs, complicating the search for a feasible schedule and introducing

other types of objectives such as minimizing job tardiness. .:

Although efficient algorithms exist for optimally solving several scheduling

with regard to regular measures, in many cases:small changes in the problem
,-t

assumptions may make the problem very difficult. Resource-constrained

scheduling has proven to be a difficult area of schedul'mg. In these problems the

jobs to be processed have a set of additional resource requirements associated with

them. In addition, there is a limit on the amount of each resource that is

available. Resources can be divided into three categories. A renewable resource is

one whose total usage is constrained at a given time. In this situation the

resource is "returned" at the completion of the job requiring it. A resource is

referred to as non-renewable if total consumption is constrained, i.e., if jobs

consume amounts of the resource during processing and there exists a finite

amount of the resource at the beginning of the schedule. Finally, a doubly

constrained resource is one in which both total usage and consumption are

limited.

A different type of scheduling problem is referred to as activity or project

scheduling. These problems are encountered often in the construction industry

where time is the primary resource and the tasks are the activities required to

complete the project. The activities are related by a series of precedence

constraints and this structure enables the project to be depicted as a network.

Critical path techniques are used to define early and late start times for each

activitff to ensure completion of the project by a specified due date. Often these
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problems are compounded by the addition of limited resources required by the

activities. For this reason, these problems are also referred to as re'source

constrained scheduling problems.

As noted earlier, some scheduling problems include jobs with release date

,or

and due date parameters. For a particular job, these times describe an interval of

in which processing for that job must take place. Some scheduling problems have

a similar constraint for the machine or processor. In these problems there are

"windows" of available processing time, ie., time intervals in which processing can

take place. One example of this situation is a machine in a manufacturing facility

that requires routine maintenance. Processing can take place when no

maintenance tasks are scheduled. Another occurs in the air transportation

industr3:_ where safety regulations prohibit the use of .airplanes when a limit on the

number of flight hours without maintenance is reached. Most procedures used to

solve such problems treat these constraints implicitly. For example, in the

machine maintenance problem, the task of maintenance can be treated as another

job with a release date to insure that it is done after a certain number of

processing time units.

An algorithm that can determine the optimal schedule in time bounded by a

polynomial in the size of the problem, is called an efficient algorithm. There are

many scheduling problems for which efficient algorithms are unknown; whether

efficient algorithm.s exist for these problems is unknown. There is a class of

problems, called NP-hard, that are provably the most difficult scheduling problems

to sol_e_ That is, an efficient algorithm for any NP-hard problem can be converted
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into an efficient algorithm for any other scheduling problem. There are thousands

of scheduling problems that are known to be NP-hard. For hundreds of years,

many researchers have been trying to develop efficient algorithms for some NP-

hard problems without success. This does not prove efficient algorithms do not

,-o

exist for NP-hard problems, but the circumstantial evidence strongly suggests it is

unlikely efficient algorithms will be found for NP-hard problems. If efficient

algorithms cannot be found, non-polynomial (eg enumerative) algorithms must be

used to find optimal schedules. The combinatorial nature of scheduling problems

makes this approach too time consuming, even on the fastest computers, for all

but very small problems. The other approach is to use heuristics to generate

schedules that, while not optimal, perform well with respect to the measure of

performance. ..-

Resource Constrained and Related Scheduling Problems

Research conducted in the area of resource constrained scheduling can be

divided project scheduling and processor scheduling. Project scheduling is

characterized by a set of activities which are linked by precedence constraints.

The project is often depicted as a network. Critical path methods are used to

determine start times for the activities to insure project completion by the

specified due date. This method is inadequate when the resources required to

complete the project are constrained. For this reason, much research has been

conducted in the area of resource constrained project scheduling.
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Processor scheduling is characterized by a set of processors or machines

which are the primary resources required to process a set of tasks. 'The machines

may have identical or similar capabilities, as in the case of parallel processing, or

they may vary in the type of processing of which they are capable, as in flow shop,

job shop, or open shop environments. Processor scheduling with precedence

constraints can be thought of as resource constrained project scheduling with the

machines as resources. Some processor scheduling problems with additional

resource constraints can be reformulated by viewing the resource as another

machine.

Formulations

The task of processor or project scheduling under resource constraints can

be accomplished by ignoring the resource constraints to obtain an initial schedule

and then resolving resource conflicts where they occur by inserting idle time into

the schedule. This method is adequate for obtaining a feasible schedule but

essentially ignores the objective. Mathematical programming formulations of

resource constrained scheduling problems explicitly consider an objective function.

One of the most common methods of modeling scheduling problems

mathematically is the use of zero-one decision variables to indicate placement of

tasks in the schedule. These indicator variables can be of the form x_j equals one

if job i assigned to machine j, if job i is in process during time interval j, if job i

starts at time j, or if job i completes in time interval j. Pritsker, Wafters, and

Wolfe (1969) introduce a zero-one programming formulation of the latter type for

res0ii_c-e constrained project scheduling. Baker (1974) simplifies the notation in
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his presentation of their model which allows constraints for resources, precedence

relations, due dates, and concurrency. The resource constraints re:e: of the form

N t+pj-i

£ rki £ Xiu < R k

i=i u=t
/

where rki is the amount of resource k required by job i, N is the number of jobs, 1_

is the amount of resource k available, and pi is the processing time for job i. This

constraint uses the fact that

t+pj-i

Xi u

u=t

will equal 1 if job i is in process at time t. The formulation requires one

constraint for every interval t from 1 to Wm_, the last interval to be considered.

The model of Christofides et al. (1987) uses a variable x_j which equals one if job i

starts at time j. This formulation is similar to that of Pritsker et al. except that

the decision variable is summed over the interval [(t-p_+l),t] in the resource

constraints.

Baker (1973) proposes another 0-1 formulation for processor scheduling

where x_j is equal to one if job i is assigned to processor j. Mazzola and Neebe

(1986) formulate a resource constrained scheduling problem as an assignment

problem with side constraints. Their formulation makes use of a 0-1 decision

variable which can have a variety of interpretations, including assignment of job
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to machine. The side constraints in this model represent a limit on the

availabilities of depletable resources. .:

Other mathematical formulations of scheduling problems include the work

of Manne (1960) (x i is the start time of job i) and Baker (1974), Talbot and

.-t

Patterson (1978), and Kasahara et al. (1988) (a decision variable is the completion

time.) Baker's model is for job shop scheduling and includes an additional

decision variable, Yipk, which is equal to one if job i precedes job p on machine k.

Blazewicz et al. (1993) uses the decision variable x_j to represent the number of

jobs of class i assigned to processor j in his model of a parallel processor

environment with resource constraints. Here, classes represent groups of jobs

with equivalent processing times and resource requirements. Patterson (1984)

compares three different formulations including one developed by Davis and
°-_

Heidorn (1971) in which jobs are divided into sub-jobs of unit duration "tied"

together with precedence constraints. The other two are by Stinson (1976) and

Talbot (1976). The focus of the article is on solution methods and therefore

Patterson does not include these formulations.

As noted above, projects can be modeled using network diagrams. This

method is used in the work of Davis and Patterson (1975) and Ohmae et al.

(1992).

Exact Solution Methods

The mathematical models of Pritsker et.al (1969), Baker (1974) and Manne

(1960) can be solved using any integer linear programming technique, but no

speei'flc-algorithms were suggested in this literature. Mazzola and Neebe (1986)



Auburn IE NASA Report April 10, 1994 Page 13

use a Lagrangian Relaxation of the side constraints and solve the resulting

assignment problem optimally to determine a lower bound on make'pan for the

original problem. This lower bound is used in a branch and bound enumeration

scheme for determining the optimal solutionto the original problem.

Two references use dynamic programming tL_chniques to solve scheduling

problems with resources. Blazewicz et al. (1993) presents an algorithm for solving

the problem of parallel machine scheduling with resource constraints to minimize

makespan. Jobs are divided into classes, each class having identical processing

time and resource requirements. All feasible assignments of job class to machine

are identified and backward pass dynamic programming is used to find the

optimal assignments. The bounded enumeration procedure of Davis and Heidorn

(1971) shown in Patterson (1984) uses dynamic programming to find the shortest

route in a network of partial solutions, thus identifying the minimum length

schedule.

Two of the algorithms discussed by Patterson (1984) are a branch and

bound method (Stinson, 1976) and an implicit enumeration method (Talbot, 1976).

They work by relaxing constraints to solve a related problem and then adding the

constraints back to the problem step by step, forming a tree of partial solutions.

Christefides et al. (1987) use a branch and bound method to build a feasible

schedule. Nodes are fathomed by comparing schedule length to four lower bounds.

One bound is created from the precedence constraints and two from relaxations of

an integer programming formulation of the problem. The fourth bound is based

on thi_-idea of disjunctive arcs between jobs which cannot be processed



Auburn IE NASA Report April 10, 1994 Page 14

simultaneously due to resource conflicts. Each arc implies a different precedence

constraint and therefore a different integer programming problem.v_ith relaxed

resource constraints. Talbot and Patterson (1978) suggest an enumeration

procedure using a project numbering scheme and compact arrays of resource
j'

requirements and availabilities. Their procedure uses less computer storage than

other enumeration schemes because of the network cuts they use to fathom nodes

representing partial schedules.

All of the example problems used to test the algorithms are limited to less

than 100 jobs and three or fewer different resources. Computer time is generally

less than one minute for problems of this size but grows exponentially as the

number of jobs and/or the number of resources increase.

Heuristics

It is important to consider the complexity of problems and algorithms when

searching for efficient solution methods for the resource constrained scheduling

problem. Some specific resource constrained scheduling problems have been

shown to be solvable in polynomial time whereas their generalizations are NP-

Hard. For example, Blazewicz et al. (1993) present an algorithm by Garey and

Johnson (1975) for optimally solving the two-parallel-machine problem with unit

processing times and arbitrary resource constraints. This algorithm consists of

creating a graph with nodes representing jobs and arcs representing resource

feasibility between pairs of jobs. A maximum matching identifies the pairs of jobs

which should be processed simultaneously in the optimal schedule. Efficient

algb-_tl_ms exist for solving maximal matching problems. However, if processing
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times are not all the same, the problem is NP-hard (Jeffcoat and Bulfin, 1992).

Because the resource constrained scheduling problem is NP-hard,.l_auch of the

research in this area focuses on efficient heuristics. The enumeration schemes

suggested above all employ methods of reducing the search space so that the

,°t

optimal solution can be found in a reasonable amount of time. Still, as noted by

Talbot and Patterson (1978), "these optimizing procedures can be terminated prior

to optimality and still provide a feasible schedule". They state that this

termination is imperative when the number of jobs is greater than fifty. Baker

(1973) notes that enumeration schemes can determine optimal solutions for small

problems quickly but these procedures do nothing to identify the characteristics of

the jobs which account for the optimal behavior.

List scheduling is a general heuristic approach that involves prioritizing

jobs by their characteristics to determine the sequence of the jobs in the schedule.

These dispatching rules are very easy to implement, allowing practitioners to try

several different priority rules to find the one that works best for the objective,

and therefore identify general characteristics that are important for the objective.

In addition to their branch and bound algorithm, Mazzola and Neebe (1986)

also suggest a construction and improvement heuristic procedure for the

assignment problem with side constraints. Kasahara et al. (1988) suggest a

depth-first implicit-heuristic search that combines branch and bound techniques

with those of list scheduling. Typical depth-first search involves calculating a

bound for each of the maximum depth nodes of the tree of partial solutions and

cho6_m--g the node with the best value. Their method eliminates these calculations
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by choosing the node according to a list schedule. Davis and Patterson (1975)

compare the performance of several dispatching heuristics to the optimal solutions

for 83 multiple resource project scheduling problems. Job parameters determined

by critical path techniques such as late finish times and slack provided half of the
].

priority rules and measures of resource utilizatioffwere used in the others. They

determined that sorting the activities in non decreasing order of slack times

performed well for a variety of the problems. Ohmae et al. (1992) investigate

combining several job characteristics found from critical path analysis into one

priority measurement to determine dispatching order.

Precedence Constraints

Project scheduling implies precedence constraints but processor scheduling

problems exist in which jobs are independent. Additignal constraints added to

mathematical programming formulations of scheduling problems insure that

precedence requirements are met. Such constraints are of the form s_ + pj < sk,

where sj and sk represent start times for jobs j and k respectively and pj represents

the processing time of job j. This constraint ensures that job j is completed before

job k starts. Note that these start times could represent decision variables or a

summation of decision variables, as in the case of zero-one decision variables.

If the problem environment requires that one job be immediately preceded

by another job, the inequality could be changed to an equality. This change can be

used to model a job with variable resource requirements over the processing time

interval. The job can be divided into a set of sub-jobs with constant resource
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utilization that must be executed in order with no idle time between sub-jobs

(Willis, 1985).

In general, the complexity of a scheduling problem is increased when job

dependencies are added to it. These dependencies add more constraints to the

mathematical formulation of the problem. However, Jeffcoat (1990) notes that

when a model is time-based, as in the case of x_t equals one if job i assigned to

time interval t, these precedence constraints eliminate many partial solutions from

consideration, and may actually make the problem easier to solve.

Release Times and Deadlines

Another constraint on start times of jobs is imposed by release times and

deadlines. As in precedence relationships, these constraints increase the

complexity of scheduling problems. Even scheduling problems with two machines

and very simple resource requirements become NP-hard when different release

times are imposed (Blazewicz et al., 1993). Jeffcoat and Bulfm (1992) present a

simulated annealing algorithm for resource constrained scheduling of parallel

processors and jobs with release dates and due dates.

Related Scheduling Problems

Scheduling independent jobs with multiple resources can be formulated as a

generalized bin packing problem. Csirik and Vliet (1993) present an efficient bin

packing algorithm. Cutting stock and pallet loading problems are variations of

the bin packing problem. Many routing problems, which arise in physical

distribution, include time window constraints, resource restrictions and precedence

const,1"a_nts.
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Space Experiment Scheduling References

Previous research on scheduling scientific experiments for execution in

space includes the scheduling of observations in the unmanned satellite missions

of Voyager and Ulysses and Spacelab telescope observations. NASA has also
J

.-t

considered related scheduling problems such as pr_elaunch operations scheduling.

Many solution methods have been investigated including mathematical

programming techniques, dispatching rules and search methods such as simulated

annealing, artificial intelligence and expert systems. We present this research in

chronological order. Note that the work on ESP (e. g. Jaap and Davis, 1988, Stacy

and Jaap, 1988) is not discussed in this section.

Mathis (1981) uses the model of Pritsker, Watters and Wolfe (1969) to

formulate the Spacelab crew activity and experiment .scheduling problem. His

decision variable is xijkt which is equal to one if step k of performance j of model i

starts in time period t. The algorithm works by creating an initial schedule which

is feasible with respect to the timeline constraints and then checking resource

feasibility. Performances are moved if the algorithm detects a resource conflict.

The algorithm uses a dispatching rule to determine which of the offending

performances to move. The creation of a feasible schedule for the problem

requires multiple passes through the algorithm because moving performances may

result in new resource violations.

Mathis's algorithm uses only a formulation rather than any optimization

techniques implied by the formulation. The selection of the performance to move

is ttiE"6nly part of the algorithm which employs an optimization technique. His
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tests of the algorithm's performance results in the conclusion that the algorithm

requires more time and produces comparable schedules to the progrhm which

existed at MSFC at that time. This program focused on creating a feasible

schedule in the shortest amount of time by using dispatching procedures.

Grone (1982) proposes an algorithm to solve'the problem of scheduling

telescope observations for a spacelab mission. The objective of the problem is to

maximize viewing time. Because there are three telescopes which must all move

together on a single platform, the problem is formulated as a single machine

problem. Each telescope views a particular type of target and each observance is

considered the processing of a job. Slew time between targets is modeled as

sequence-dependent set-up times and the entire problem is equivalent to a

traveling salesman problem.

Temporal constraints for the problem include overall maximum time (the

end of the mission) and unavailable time windows throughout. The algorithm

uses job priorities, minimum duration times, and requested number of

observations for each target, ie. requested number of performances of each job as

input. The suggested algorithm evaluates a weight for each job based on priority,

duration, and number of performances as well as a measure of ability to "fit" the

job into the current time window and consecutive windows. These weights are

used to determine the jobs to be scheduled in the applicable time window. Part of

the selection process includes a reselection subroutine to check if inserting idle

time and performing another job would yield a better score or weight than the job

cure, n-fly in the position. The algorithm creates several partial schedules for each
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time window and choosesthe best for each to combine into one schedule. Once a

time has been found in which a particular job can be run, the algorithm schedules

the job consecutively as many times as possibl e . Although the author recognizes

that there should be a balance between the number of performances of different

types of jobs, this goal is not included in the algor[tl_n. Grone suggests manual

editing.

Guffin, Roberts and Williamson (1985) present the ASTRON algorithm for

scheduling crew and experiment activities for shuttle astronomy missions.

ASTRON chooses the next target to schedule by means of a criteria function which

is based on target window duration, observation time, slew time, target

availability time and target priority. The objective of ASTRON is to maintain

high utilization of resources.

Deuermeyer, Shannon and Underbrink (1986) devise a method of producing

dispatch lists for use in the present experiment scheduler, ESP. They first divide

all of the models into classes based on sequencing and precedence relationships.

The first two classes contain models that must be performed before other models

and these classes are ranked higher so that they will be scheduled first. They use

resource similarities to cluster the remaining models and then use a schedule and

repair algorithm to sequence the jobs in this class.

Pierce (1987) addresses the problem of scheduling horizontal payloads for

space shuttle flights. The solution consists of utilizing an "expert system" called

EMPRESS (Expert Mission Planning and Replanning Scheduling System). A "job"

con-sls-_ of assembling and installing the payload into the carrier structure,
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performing trial runs of the payload/experiment, and installing the structure into

the craft. The manual system used before EMPRESS was considered to be too

slow and inflexible. Planners also wanted to perform "what-if' type scenarios.

EMPRESS is a modular program which works by building an initial

schedule that consists of a list of all activities to be performed, then rescheduling

jobs as required to meet resource constraints. EMPRESS solves to feasibility. No

mention is made of an objective function. There are no time windows in the

problem.

Three references by Kurtzman (1988, 1989, 1990) address the problem of

scheduling crew activities on the space station with emphasis on producing real-

time schedules by the crew members themselves. The system is called the MFIVE

system. The objective is to create a schedule which will complete all activities in

the shortest time possible.

Constraints such as early and late start times are written for each activity

and combined in a method called "active constraint propagation" to shrink the

time windows available for each job. This reduces the search space. Several

heuristics are examined to determine a dispatching order of the jobs. Some of

these heuristics utilize a "maximum compatibility matrix" to determine pairs of

jobs to be scheduled simultaneously.

These heuristics produce initial schedules. The method of "intelligent

perturbation" was used to find iteratively better schedules. This method involves

increasing the priorities of activities that were not scheduled successfully so that

the-n_Y_t schedule will be more likely to include them. Best results were obtained
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when a heuristic using the maximum compatibility method was used in

conjunction with the intelligent perturbation iteration technique..: :

The problem of scheduling experiments for unmanned spacecraft is

addressed in Scherer et al. (1990). The scheduling process is constrained by
]

resources, time windows and activity interdependenc]es. The objective function for

the problem is to maximize the value of science while minimizing constraint

violations. The value of science is dependent on the value of the included

experiments, the resource utilization and the schedule feasibility. Optimal

schedules are deemed impossible to obtain because of the subjectivity of this

measure and the changing of objectives over time.

The research was conducted to suggest heuristics for finding near-optimal

schedules which could be included in JPL's PLAN-IT II scheduling system.

Random hill climb and simulated annealing are the two heuristics examined. In

addition, two metaheuristics are evaluated with each heuristic. They are tabu

search and strategic oscillation. The random hill climb heuristic with tabu search

performed the best for this problem.

Scheduling unmanned activities is addressed in Thalman et al. (1991). The

problem is to schedule the activities of the SOLar-STellar Irradiance Comparison

Experiment instrument, referred to as SOLSTICE which flew on board the Upper

Atmosphere Research Satellite (UARS) in 1991. The objective is to maximize

observation time while producing minimum impact on other instruments. More

generally, it is desired to maximize contribution to science within the resources

consti_ints.
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Space application scheduling is characterized by a larger number of

activities, resources and interactions than manufacturing applicatiohs. UARS

SOLSTICE scheduling involves using data for each possible target (star) to

determine if it should be the next to be viewed. This decision is based on slew

time to the star, accessibility, and previous success rate of viewing that star with

the instrument.

Thalman et al. evaluate three common artificial intelligence techniques, but

do not considered them further. They claim neural networks perform well in

pattern recognition but not in optimization and simulated annealing and genetic

algorithms require questionable assumptions and are computationally intensive.

Also, the degree of randomness that they require deems them unsuitable for the

space scheduling problem.

The AI method of tabu search was deemed to be the best because of its

flexibility and ease of implementation. Thalman et al. do not consider tabu search

to be a metaheuristic as do Scherer et al.. This version of tabu search is

comparable to Scherer's random hill climb with tabu search.

Tabu search works by beginning with an initial schedule and generating a

set of candidate "moves", each of which would create a new schedule. Each move

is evaluated and the best one is chosen as the "current best". Moves previously

visited and rejected are kept in a tabu list to avoid revisiting them. However, if

the score for the tabu moves is high, the algorithm will override the tabu status in

hopes of a much higher score at a later move.
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A knowledge-based approach was also considered for solving the problem

which consists of writing all of the constraints and objectives as rules that the

program uses to build a schedule. The technique is not iterative, so "searching" is

not possible. Although faster than Tabu Search, the results were not as good.
]

Zoch et al. (1991) address the activity scheduling component of mission

planning and scheduling. This context is very broad; it includes planning and

scheduling at the network level, the platform and payload levels and the customer

level which includes instrument activities, spacecraft activities and ground

activities.

The suggested solution procedure involves using a language called FERN

and a system called ROSE. Both planners and scientists write requests for

activities in the FERN language and transfer them el_tronically to the ROSE

program which schedules the requests and confirms the times of execution to the

requester. ROSE selects activities to schedule next based on priority, resource

consumption, and a component of time restriction. Activities are then placed in

the schedule according to preferences and where they will fit. The selection and

placement heuristics can be specified by the user. ROSE contains a reselection

module to change the initial schedule to a feasible schedule with respect to

resource limitations. The end result from ROSE is usually a conflict-free schedule.

Manual scheduling is possible to make improvements to the resulting schedule.

No mention is made of an objective; the focus is on feasibility rather than

optimality, although some measure or score is used to determine the next job to

sched_u_re.
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Constraint-Based Scheduling is the focus of research conducted by Zweben

(1991) for the problem of Space Shuttle Ground Processing. Zwebefi describes the

GERRY system which contains an iterative algorithm for schedule and repair.

Summary and Conclusions

The following table is a taxonomy of the references pertaining to space

experiment scheduling. The characteristics are divided into groups. There are

characteristics for the jobs scheduled, the objective function used by the algorithm,

the type of algorithm suggested, the capability of the algorithm, and the

environment for which the algorithm was created. Columns labeled (1) through

(11) represent previous research in chronological order, except the first column

refers to ESP (Jaap and Davis, 1988) which is currently in use at MSFC. For

brevity, we will not discuss ESP.

Only the algorithms of Mathis and Zoch et al. address multiple steps and

step delays. The environment addressed by Zoch et al. is one of ground processing

for Spacelab missions (denoted by a G in the Spacelab row in the Environment

section of the characteristics). The ROSE system is an expert system whose

objective is only to create a feasible schedule. For these reasons, we feel this

system holds no advantages over ESP for the space experiment scheduling

problem. Mathis admits that his proposed algorithm is slow and produced

comparable schedules to a pure dispatching algorithm. Although computer

advances would surely speed this process, the quality of the schedules created

would' still compare to those of ESP.
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I Characteristic

Res. Const.

Res. Types

J Windows

O
B Steps

Step Delays

Precedence

Performances

Variable Times

Score

O
B Slew Time

J Makespan

Feasibility

A Expert System
L

G Dispatch

Search

C Real Time

A
p Manual

Capability

E Satellite

N
V Space Lab

Space Station

1. Jaap and Davis (1988)

2. Mathis (1981)

3. Grone (1982)

4. Guffin et al. (1985)

5. Deuermeyer et al. (1986)

6. Pierce (1987)

1

X

X

X

X

X

X

x

X

X

2

X

X

X

X

X

3

X X X,.'

X

X

X

X X X

X

X

X

X X

X

X

5

X

X

X

6

X

X

7 8 9

X X X

X

X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

x X

X

X

X

X

X

X X

I0

X

X

X

X

X

X

X

X

X

X

X

X X

X G

X X

7. Kurtzman (1989)

8. Scherer and Rotman (1990)

9. Thalman et al. (1991)

10. Zoch et al. (1991)

11. Zweben (1991)

ii

X

X

X

X

X

X

G

Taxonomy of Space Applications Scheduling Research



Auburn IE NASA Report April 10, 1994 Page 27

Only the models of Scherer et al. and Zoch et al. allow variable processing

times. Scherer et al. treat the duration of each job as a decision variable. This has

the disadvantage of increasing the number of decision variables and constraints by

an amount equal to the number of models. Thecomputations reported in his

paper did not allow this situation. The ROSE systom allows the user to specify a

range of values for processing times.

Three of the more applicable references (Mathis, Deuermeyer et al.,

Kurtzman) tried to minimize makespan. Many of the characteristics of a good

mission timeline are met if makespan is minimized. However, there are other

objectives to consider as well. A model that weights the early time intervals more

heavily than later ones would create better schedules than one which attempts

only to minimize makespan.

Because of the complexity of the problem and the enormity of the problem

size, we feel that measures should be made to eliminate the less important

characteristics of the problem before scheduling occurs. Deuermeyer et al. and

Kurtzman do this by creating temporal constraints to reduce the placement

possibilities of each performance. Other clustering methods and constraint

propagation techniques can be created to simplify the detailed scheduling task.



Auburn IE NASA Report April 10, 1994 Page 28

MULTICRITERIA SCHEDULING

Much work has been done on multicriteria decision making (MCDM). We

will discuss basic concepts of MCDM as they relate to multicriteria scheduling.
[,

Complete details on MCDM can be found in Goicoechea et al. (1982) or Steuer

(1986). For ease of discussion, we will restrict ourselves to two criteria, although

the results can be easily extended to more than two criteria. As we discuss

schedules, we will assume that the schedules are feasible, i. e. they satisfy crew,

resource, equipment, orbit opportunity and performance window restrictions.

When there are two criteria, schedules which perform well with respect to

one criterion will often perform poorly with respect to the other. One schedule

dominates another if it performs strictly better on one criterion, and no worse on

the other. A schedule not dominated by any other schedule is called

nondominated, emcient or Pareto-optimal. Most "real" scheduling problems have

many nondominated schedules. Clearly, dominated schedules are undesirable.

The three schedules in the following table illustrate. Let percent of

performances scheduled and overtime costs be two criteria to evaluate a schedule.

Schedule $2 is preferred to schedule $1 since it schedules a greater percentage of

performances and requires less overtime. We say that $2 dominates $1.

Alternatively, we may say $1 is dominated by or inferior to $2, or $1 is inefficient.

Since $1 is dominated we can ignore it. Note that $3 does not dominate $1 and, if

$2 is unknown, $1 can not be discarded.
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Criterion

Percent performances scheduled

Overtime cost ($100,000)

$1

79

10.75

Schedule

$2

83

10.10

$3

78

8.15

Examining $2 and $3 shows that $2 schedules a greater percentage of

performances, but $3 has lower overtime cost. $2 does not dominate $3, nor does

$3 dominate $2. Based on the three schedules given in the table, $2 and $3

comprise the nondominated set.

When choosing a schedule, it is clear that we prefer a nondominated

schedule, How do we generate a nondominated schedule? We must solve some

sort of optimization problem; there are two general approaches we may take. The

first is a hierarchical approach while the second requires optimizing a weighting

or scoring function.

Hierarchical Approach

The hierarchical approach is to order the criteria by importance, and solve a

single criterion problem with the more important criterion as the objective. Then

a single criterion problem with the secondary criterion is solved, but with the

constraint that the primary criterion does not get worse than the value obtained

in solving the first problem. With two criteria, this is called a secondary criterion
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problem, and is essentially finding the best possible solution for the secondary

criterion among all optimal solutions for the primary criterion.

For our example, we might choose percentage of performances scheduled as

the primary criterion and overtime cost as the secondary criterion. First we would

find a schedule that maximizes the percentage of pe]_ormances scheduled. Then

we would find a schedule that minimizes overtime cost while keeping the

percentage of performances scheduled at the maximal value. If there were more

than two criteria, we would try to find the best schedule for the third criterion

while maintaining the levels of the first and second criteria.

The hierarchical approach works well when there is a clear ordering of the

criteria, there are many alternative optima for the primary criterion, and it is

relatively easy to find the best schedule for a secondary criterion when holding the

value of a primary criterion fixed. Discussion of previous work using this

approach can be found in Smith (1956), Heck and Roberts (1972), Emmons (1975a,

1975b), Burns (1976), Bansal (1980), Shanthikumar and Buzzacott (1982),

Shanthikumar (1983), Potts and Van Wassenhove (1983), Posner (1985), Bagchi

and Ahmadi (1987), and Chen and Bulfin (1994). None of this work seems

extendible to the NASA timelining problem, since it only considers two criteria, a

single "machine" and no resources. As the number of criteria considered increase,

the problem quickly becomes intractable. Due to the number of criteria and the

fact that solving a timeline problem for one criterion is difficult, this approach will

not be considered further.
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Tradeoff Approach

Another approach is to have the decision maker (DM) expresses a tradeoff

between criteria through a utility function, which, once specified, allows the

problem to be treated as a single criterion problem. The DM must express

weights for each criteria so they can be combined into a single value. If the

criteria are truly conflicting, finding these "conversion" units is very hard. Typical

utility functions are additive, multiplicative, or exponential; other forms are

possible. Additive utility functions are the most prevalent, since, as Morris (1977)

points out, the increased effort to develop a non-additive utility function is rarely

worth the effort. A schedule which optimizes the value of the utility function, is

nondominated.

We demonstrate an additive utility function using $1, $2 and $3 from the

previous example. First we determine the relative importance of the percent of

performances scheduled versus overtime. For exposition, suppose we feel that

performances scheduled are four times more important than overtime cost. Since

the two criteria are in different units, we must somehow normalize them. The

easiest way is to somehow make overtime costs a percentage, but a percentage of

what? Suppose we can estimate a maximum acceptable overtime cost, for the

example, say 15. Then the ratio of actual overtime for a given timeline to the

maximum desirable overtime is a percentage. For $2, it would be .67 and for $3,

.54. This percentage is large for a "bad" schedule, while the percentage of

performances scheduled is large for a "good" schedule. To make them compatible,

we use the complement of the overtime ratio, i. e., one minus the percentage. This
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gives a value of .33 for $2 and .46 for $3.

criteria, the utility of $2 is

while $3 has utility

Using weights of 4 and I for the two

4(.78) + 1(.46) = 3.58

and hence $2 is preferred over $3 given the stated utility function.

Note that if the actual overtime is larger than the maximum desirable, the

resulting percentage is negative. Since we are assuming an additive function, this

will decrease the utility value, making the schedule less desirable.

Little work has been done in scheduling with utility functions. Except for

two or three special situations, these problems are all NP-hard (Chen & Bulfin,

1993a, 1993b). Huckert et al. (1980) and Kao (1980) have proposed general

solution schemes using this approach. These papers make an important

contribution to the philosophy and modeling of multicriteria scheduling problems.

However, both authors point out that it appears unlikely that problems with more

than about twenty jobs could be solved using their algorithms. For most

scheduling problems this approach has not been attractive for two reasons; it is

difficult for the DM to state an explicit utility function, and there are no efficient

scheduling algorithms available for general objective functions.

A utility function must possess certain properties; see the classic work of

Keeney and Raiffa (1976). It is usually difficult for a DM to develop a utility

function that truly reflects the appropriate tradeoffs. Often, a scoring function is

used as a proxy for a utility function. All utility functions are scoring functions,

4(.83) + 1(.33) = 3.65
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but not all scoring functions are utility functions. Optimizing a utility function

guarantees a nondominated solution under certain convexity assumptions, while

even if convexity assumptions hold, a scoring function may not produce a

nondominated solution. However, for discrete problems, such as scheduling,
]

.°t

convexity does not hold, so even if we optimize a utility function it is possible the

schedule generated is not nondominated. Therefore, ensuring a scoring function is

a utility function is not as critical.

Using either of these two approaches generates a (hopefully) nondominated

schedule. If the DM is happy with the hierarchical ordering of criteria or the

utility/scoring function used, the schedule can be implemented. However, it is

oi_n better to let the DM explicitly tradeoff between several nondominated

schedules.
o..

We could generate all nondominated (efficient) schedules for the problem,

and allow the DM to choose one of them. This approach has been used on

scheduling problems by Van Wasserthove and Gelders (1978), John and Sadowski

(1984), Sen and Gupta (1983), Nelson et al. (1986) and Van Wassenhove and

Baker (1982). Chen and Bulfin (1993a, 1993b) have shown that except for

maximum tardiness and flowtime on a single machine, generating the

nondominated set of schedules is NP-hard. One drawback is the effort required to

generate a single nondominated schedule may be immense. For the timelining

problem, generating a single nondominated solution is NP-hard. Even if each

nondominated schedule could be generated efficiently, there may be a very large

number of nondominated schedules. As the number of criteria increase, the
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number of nondominated schedules will also increase, likely nonpolynomially. For

the NASA timelining problem, the number of nondominated schedules is vast.

Also, generating a single guaranteed nondominated schedule is difficult of itself.

As one part of the multicriteria facet of timelining, we recommend the
i

continued use of a weighted additive scoring function with a heuristic scheduler.

If the weights are nonnegative, this scoring function is a utility function, and the

probability of generating a nondominated schedule is higher. Also, it is much less

difficult for the DM to develop an additive function than multiplicative or

exponential functions. We also propose generating more than one solution.

Rather than generate the entire nondominated set, we recommend generating a

small subset of schedules which are, hopefully, nondominated. The problem is

that unless all schedules are evaluated (either implicitly or explicitly) we do not

know if a schedule is truly nondominated. Of course since we cannot generate one

guaranteed nondominated schedule in polynomial time, this is not so critical.

What we suggest is to generate a relatively small number of "good" schedules and

use star plots to choose one to implement. Star plots will be discussed more fully

in the evaluation section.

EVALUATION OF A TIMELINE

Performance Measures

The following is a list of possible evaluation measures for the space

experiment scheduling problem. The measures are used in two evaluation

techniques: scoring functions and star plots. These measures are divided into
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four categories: scientist measures, crew measures, resource measures, and cost

measures. For the purpose of consistency, we define each measurement so that its

value is between zero and one and we desire to maximize it. Each evaluation

measure is divided into two performance measures. The first is an extreme or
f.

worst case measurement, a minimum in our case, aric1 the second is an average

measurement.

Let

n

Pi

D

Tll

T2i

V

Vq

CWq

CYq

Y.

O k

The following notation is used to defme the performance measures:

be the number of models

be the number of performances requested for model i

be the number of performances scheduled for model i

be the mission duration

be the time of the first performance of model i

be the time of the second performance of model i

be the validation time required between the first two performances of a

model

be the desired percent utilization of time for crew member q

be the scheduled percent utilization of time for crew member q

be the average time between performances of the same model executed by

crew member q

be the desired time between performances of the same model executed by

crew member q

be total orbit opportunity time available for orbit opportunity k
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be total orbit opportunity time scheduled for orbit opportunity k

be the number of orbit opportunities available .

be the amount of resource _ available (nondepletable and equipment)

be the amount of resource _scheduled,(nondepletable and equipment)
/.

,-o

be the number of resources, and

be the number of crew members.

Scientist Measures

These measurements evaluate the schedule's performance to the jobs

requested. The scientists responsible for designing the timeline experiments are

the customers.

The most important measurement of a schedule's performance to a

scientist's requirements is the number of times the scientist's experiment is

executed. Each scientist requests a number of performances for his or her model

so that he or she can obtain valuable results. The first scientist measure is

therefore the percent of performances requested that were scheduled.

o Performances requested that were scheduled.

= • 11 i
S/mln mlni=l,n{-_/}

n

Slavg = _ I] i
i=_ Pi
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Other important characteristics of a good schedule from a scientist's point of

view are how early in the schedule an experiment is run and whether there is the

correct amount of time between performance one and two of an experiment. The

latter is important because of the validation.that the scientist performs to the

experiment's procedure after the first performance: We evaluate these two criteria

separately and combine them to create a measurement of the placement of initial

performances.

¢ Percentage of schedule duration remaining after performance 1 of job i

begins.

D-TIi) }xl = mini=1'n D

Yl =

(D_TIi)
i=i D

n

Deviation of the time between the first and second performances of each

model to the desired spacing. These measurements are normalized with a

linear function over the interval [O,D].

x2 = mini'1'n { I- IT2i-TIi-VI}D

72 =
n
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These four measurements are combined to form a minimum and an average

measurement as follows. .:

2. Placement of initial performances of each model.

S2mi n = min{xl, x2}
,-t

Yl +Y2

S2avg - 2

Crew Measures

These measures pertain to the time spent by spacecrai% crew members. The

crew members are the customers for these measures. The first measurement

models the satisfaction of the crew members in regard to the amount of work

required. It is based on the assumption that each crew member has an ideal

percentutilization of his or her time in a schedule.

1. Deviation from ideal crew member utilization.

Plavg = q=l
C

Another measure of crew member satisfaction pertains to the variety of

tasks that the person is scheduled to perform.

2. Deviation from ideal cycle time between repeated models for the crew

members' schedules. (This is an attempt to determine the variety of the crew

members' tasks.)
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P2min

P2avg =
q=l

:8

Resource Measures

These measures are designed to show how effectively the resources are being

utilized. These are system performance measures and have no obvious customer.

1. Available orbit opportunities that were scheduled.

• Ok
Rlmin = mlnkl _--_

"q okJ

O k

Rlav9 = _--_kk=l

2. Available resources that were used, including equipment resources.

= • _k

Rlavg =
k=l

Cost Measures

Another type of system performance measurements is cost measurements.

We are able to assign a dollar value to each. To normalize each of the two

measurements, we use the best in set of schedules that are generated (i.e., the one
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with the lowest cost for the measurement) as the denominator in a ratio of best to

actual. Note that this means that one schedule will have a perfect _core of one

and the other schedules generated will have a measurement greater than zero and

less than or equal to one. Also note that because we have defined cost measures
]

in this way, there is no minimum cost measurement for each schedule generated.

Suppose z schedules are generated.

1. The cost of ground crew overtime.

/LC1
Clmi n = min

 o1, tOTs)

.

Clavg -

The cost of data dumps required.

Z

_ LC2

C2mi n = mins.l,Z[_s }

Z

E LC2
s=1 DDs

C2 avg -
Z

Scoring Functions

The decision makers must use all of the measurements selected for explicit

consideration in choosing the best timeline. One way to view the measurements is

to combine them into one number by means of a scoring function.
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Suppose we choosea simple weighted additive scoring function to evaluate a

i

timeline. First we place a weight on each of the four types of measurements;

scientist, crew, resources and cost. Then we combine the minimums and the

averages in each category into one measurement for the minimum and one for the

.-t

average. This is done as follows.

Sml n = rain {Slmin, S2mi n}
( Slavg + S2avg)

Savg = 2

Pmin = min {Plmin' P2min}
_ (Plavf[ + P2avg)

Pavg 2

Rmi n = min {Rlmi n, R2mi n} Ravg

Cmi n = rain {Clmi n, C2min} Cavg

= (Rlavg + R2avg)

= ( Clavg + C2avg)

Finally we combine each measurement in each category into two timeline

measurements for the minimum and average value of a schedule.

MIN : { (wsxSmin) , (WpXPmin), (wzXamin), (WcXCmi n) }

AVg = { (wsxSavg) + (WpXPavg) + (WrXRavg) + (WcXCavg) }

The weighted additive model is easy to compute and understand and

therefore we consider only this type of scoring function in our evaluation

techniques.



Auburn IE NASA Report April 10, 1994 Page 42

Star Plots

Scoring functions are appealing because they condense all of _he

performance measures into one number so that there is no ambiguity in the

comparison of two or more timelines.

evaluate a timeline with one number.

However, :we lose visibility when we

.-t

For this re_ison, we propose another

evaluation technique that maintains measurement information by category and

displays the measures graphically. These graphs are called star plots.

A star plot consists of an axis for each measurement in each category. Our

definition of timeline performance measures requires eight axes, with no need for

negative numbers. Each axis starts at the center (0) and ends at one, the highest

possible value. The minimum and the average values of each measurement are

plotted on the axis of that measurement. All averagepoints and all minimum

points are connected to form two concentric polygons. Since the cost

measurements do not have minimums, the same point is used twice in the star

plot. We illustrate both scoring functions and star plots with an example.

Example

The table below illustrates results from three hypothetical timelines. We

generate scores and star plots for these timelines.
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Table 1. Timeline Measurements

Scientist Slmin

Slavg

S2min

S2_g

Crew Plmi n

Plavg

Resource

Cost

P2mia

P 2 avg

al min

R1 avg

R2min

R2avg

Clavg

C2avg

.63

.75

Timeline

II

-' .45
/.

.51

.32 .78

.55 .83

.17 .10

.23 .11

.O4

.11

.21

.28

.34

.45

III

.28

.48

.12

.19

.01

.08

.21

.30 .65 .25

.27 .43 .21

.67 .47 .45

1 .78 .62

.54 1 .53

This table contains the minimums and averages of the four categories of

measurements for each timeline.
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Timeline

!

Measure I II III

Smi n .32 .45 .28

Savg .65 ': .67 .59
,-m

P_in .04 .10 .01

Pavg .17 .23 .14

Rmin .21 .43 .21

Ravg .49 .56 .35

Ca_g .77 .89 .58

These aggregate measurements can be combined with weights to give a

single value for the timeline. To illustrate, we will use three different sets of

weights on each of our three example timelines. The weights are

Category Weight Set 1 Weight Set 2 Weight Set 3

Scientist

Crew

.25

.25

.45

.3O

.35

.15

Resource .25 .15 .35

Cost .25 .10 .15

Using thes e weights and the scoring function based on average previously

discussed, we can calculate scores for each timeline. They are
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Timeline

Weight Set I

1 .52

2 .49

3 .54

II .,III

.59 ........ .42-

,: .54 .42

.60 .44

For these weights, Timeline II is always preferred ever the other two. Different

weights might have resulted in timeline I being preferred, but timeline III is

dominated and would never be preferred. Different scoring functions, such as the

minimum rather than average could have been used, or a weighted sum of both

averages and minimums would also be possible.

Star plots can be used to show the relative differences in these three

example timelines. We give the plots below.
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Cost

C

C

R2

Resource

R1

Scientist

Crew

P1

Timeline I
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Scientist'

_ost

P_

Crew

R2

Resource

R1

Timeline 1I
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Cost

gl Scientist

C1 PI

Crew

R2

Resource

R1

Timeline HI

From these plots we can see where the timelines differ. For example, Timeline H

is better for placement of the early performances and crew variability, but

Timeline I requires less ground crew overtime and has a higher percent

performances scheduled.
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HEURISTICS ._

LIST ALGORITHMS

We now discuss possible methods for creating spacecraf_ timelines. Perhaps

the simplest type of scheduling heuristic to create and execute is a list algorithm.

A list algorithm sorts the tasks to be scheduled in some order, thus creating a list

of tasks in the suggested order of execution. A list algorithm does not consider

start and stop times of the tasks. We examine five list algorithms.

A common list algorithm creates a list schedule by sorting the tasks in

order of increasing processing time. This is the Shortest Processing Time (SPT)

algorithm. SPT guarantees optimal solutions for the single machine problem to

minimize flow time. We use it as a heuristic to solve our space experiment

scheduling problem. Reversing the order of SPT gives us a Longest Processing

Time (LPT) list which we try as well.

Our third list algorithm sorts the models by Earliest Due Date (EDD). The

due date of performance i of a model is defined as follows:

+i( bi-ail

where the interval [a_,bi] is the performance time window of performance i of the

model and Pi is the number of performances requested in the performance window

of performance i.
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The fourth algorithm (SLK) sorts the models by slack time which is defined

as the difference between late start (LS) and early start (ES) of a mbdel. The late

start of a model performance is equal to the due date of the performance minus

the minimum processing time (tmin) required to execute the performance. We
]

define the early start of a model performance to be equal to the interval start time

of the performance's time window if the performance is the first in the interval

and the due date of the previous performance if the performance is the second or a

consecutive performance. Mathematically we have

ESI = ai+(i-l)(bi-ail
kpl)

LS i = DD i-tmin i

SLK i = LS_-ES i

= DD i - tmin i -ES i

pi )

Notice that the slack of a performance is independent of the performance if the

model has only one performance time window. In this case, all of the model's

requested performances should be executed in the same interval so that [_,bi] is

independent of i.
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Our fifth list algorithm is the only one that does not consider the processing

times of the models. It is called the ResourcePrice list algorithm (RPR). We

define the price of a resource to be the Lagrangian multiplier of the following

knapsack constraint: r× _ R where r is a job-dimensional vector which

.-t

contains the jobs' requirements for the resource, R is the amount of the resource

available, and x is a job-dimensional vector of decision variables. This is a 0-1

vector where a 1 means that the corresponding job is in process.

If a resource is highly constrained, its x vector will be sparse and the

Lagrangian multiplier used for the price of the resource will be high. The opposite

is true for resources that are not tightly constrained.

We use these resource prices to obtain a cost of one performance of each

model. Our resource prices are in units of cost per unit resource-time. We

multiply this cost by the number of units of the resource required by a model

times the processing time of the model (we use maximum processing times). We

do this for each resource required for the model and then sum the costs. This

gives us a cost of executing one performance of the model. We sort in order of

increasing costs.

We perform all but one of these list algorithms in two ways. First, we

consider each performance of each model to be a job and we sort all of the

performances to create a list. Because each performance has identical resource

requirements and processing times, the sort key value will be identical for all

performances of a model except for the EDD and SLK algorithms. In addition,
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since the majority of the models in our data caseshave only one performance time

window, the slack times will usually be identical as well. This erea_es a list in

which all performances of a model occur consecutively. We would expect the

schedule created from such a list to exclude some models altogether because they
i.

do not occur sooner in the list. For this reason we developed another eategory of

list algorithms.

The other method of performing the algorithms views each model as a job

and creates a job-dimension vector containing the number of performances

requested of each model. We sort the set of jobs it_ratively and decrement this

vector until all performances have been scheduled. We call these "Round-Robin"

list schedules. A round robin schedule contains one performance of each model at

the beginning of the list. This should create schedules that exclude fewer models

than the performance list counterpart.

ROC List Algorithm

Another simple type of algorithm for solving scheduling problems is a

greedy algorithm which schedules tasks based on current information only and

never changes the task's position. One disadvantage of greedy algorithms is their

inability to view the entire scheduling horizon at one time and choose the best

position for each task. Another is that there is no iterative search and

improvement method.

We now introduce a greedy algorithm that generates a list of model

performances. We call it the Resource and Opportunity Compatible List
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Algorithm, or ROC. ROC decomposes the mission timeline into disjoint intervals

and creates a list of model performances for each interval. It atten_pts to place

compatible models consecutively so that they will be scheduled simultaneously

when we create a detailed schedule from the list.

Pre-Processing

The first step in our procedure is crude pre-processing.

methods are used:

The following

1. Scenario Aggregation. We eliminate the lower weighted scenarios of each

model and consider only one scenario per model.

2. Time Window Transformation. This creates a list of jobs each with one

performance window.

3. Performance Elimination. We eliminate the performances of each model that

we know will not schedule due to time constraints.

4. Model Sequencing Transformation. We change the time windows of two models

so that they are mutually exclusive.

5. Step Delay Aggregation. We add the minimum delay between two consecutive

steps to the step duration of the first step.

6. Step Duration Aggregation. We consider processing times to be fixed at the

maximum step durations.

7. Step Detail Aggregation. We view the requirement of a resource by a model to

be the maximum requirement for that resource over all steps of the model.

We choose to aggregate step durations to maximum values. If all

performances do not fit in the mission timeline, we can aggregate using minimum
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or average processing times. In addition to these formal pre-processing

procedures, we ignore the characteristic of model concurrency.

In the next step we divide the mission timeline into a set of mutually

exclusive intervals created by the start and Stop times of the performance

windows of each model. Figure 4 is a pictorial representation of this procedure.

The four models have performance window start and stop times that create eight

endpoints on the mission timeline. These endpoints create seven intervals. We

then view the performance window of each model as the combination of one or

more sequential mutually exclusive intervals. Each interval has a set of models

which can be performed in that interval.

are shown in Table VI.

Table VI:

In the example of Figure 4, these sets

Assignment of Models to Intervals

IntervalModels 2131415162,3 1,2,3 1,2,3,4 1,3,4 1,4

7

The next step of the procedure is to divide the number of performances of

the model in proportion to the interval length. Note that a model with a large

performance window can be divided into a group of jobs with smaller windows and

fewer performances. If the processing time of job k, call it tmax k, is greater than

the interval length, the number of performances assigned to the interval for job k

is less than one.
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As shown in Table VI,

these intervals partition the

jobs into sets. ROC is

performed iteratively on each

set of jobs, i.e., each timeline

interval. The algorithm chooses

the next job to schedule based

on resource and opportunity

compatibility, and a job priority.
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Figure 4. Division of the Mission Timeline into

Mutually Exclusive Intervals

Opportunity compatibility means that the jobs involved do not require conflicting

orbit opportunities and resource compatibility means that the resources available

are not over-extended when the jobs are run simultaneously. ROC places these

compatible jobs consecutively in the list. When we create a detailed schedule from

the list, however, we desire that these compatible jobs be scheduled

simultaneously rather than consecutively. The algorithm begins a new interval

when no models are let_ to schedule in the present interval or when none of the

models can be scheduled due to lack of resources.

Algorithm Statement

We now describe the list routine. Let m be the number of mutually

exclusive intervals. Let Sij, 0<i,...,m be the sets of jobs to be scheduled

simultaneously in interval i.

greater than or equal to one.

The subscript j represents the set number and is

The total number of sets that can be scheduled in an

interval depends on the number of models that can be scheduled in the interval as
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well as the resource requirements of the models. One obvious upper bound on j is

the total number of models to schedule. The sequence (Sil,Si2, .... ) ', forms the

dispatch list for interval i. The set of sequences {(Sil,Si2,...)l 0<i,...,m} forms the

dispatch list for the entire mission timeline. Let Cbe the current set. Let P be the vector

,4Q

containing the total number of unscheduled performances'of each model. The algorithm is:

1. For each pair of jobs, determine the ability to schedule the jobs together based on orbit

opportunities. Two jobs that do not have conflicting opportunities are called

"opportunity compatible". The measure of this compatibility is inversely proportional

to the Hamming distance between the pair of opportunity vectors, as described below.

2. Begin a new interval.

3. Begin a new current set, C.

4. Score all remaining jobs to be scheduled in the current in_rval.

5. If C is empty, pick the job p with the highest score to schedule next. Go to 9.

6. If C is not empty let G be the set of jobs that are orbit opportunity compatible and

resource compatible with all jobs in C.

7. If G is empty, go to 10.

8. Choose the job from G with the highest score. Call this job p.

9. Add job p to C. Reduce P(p). If any element of P is greater than zero, go to 4.

10. Let j=j+l and set Su=C. If more performances will fit in the interval, go to 3.

11. If there are more intervals in the timeline, go to 2.

12. Stop.
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Orbit Opportunity Compatibility.

The list algorithm does not generate starting times for the jobs. The.:dxperiment

scheduling problem includes many complicated time constraints and interdependencies and an

algorithm that ignores these will surely fall to produce good results. For this reason, we

divide the mission timeline into intervals and perform the algorithm on each interval

separately. Orbit opportunities are another set of time constraints that we cannot ignore.

Orbit opportunities are aggregated to model detail by combining all requirements of the steps,

as in step detail aggregation. The result is a vector of O's, l's and -l's where each element

corresponds to a unique orbit opportunity. Call this vector OP. A one in a position in OP

means that the model requires the associated opportunity and a negative one means that the

model must avoid the associated opportunity. Some example vectors are shown in Table VII.

Table VII:

OP(1)=

OP(2)=

OP(3)=

OP(4)=

Orbit Opportunity Vector for Four Models.

DATA SOLAR1 TDRS ATM2

( 0, 1, 0, 0 )

( I, O, -I, I )

( I, O, I, 1 )

( i, I, O, 1 )

Models 2 and 3 cannot be scheduled together because of the conflicting orbit

opportunity requirement for TDRS. Their opportunity compatibility score is zero. Both

Model 1 and Model 4 can be scheduled with 3, as well as with each other but 3 and 4 are

more compatible than 3 and 1 because they have more common dements. Simultaneous

scheduling of 3 and 4 results in a better utilization of orbit opportunity resources. The

Hamming distance is a comparison between two binary vectors. The Hamming distance
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betweenvectorsx andy is denotedby H(x,y) and is equalto the numberof coordinates,i, for

which xi andyi aredifferent (Tremblay,1975). Our definition for Hamming'distancedoes

not requirethat the vectorsbe binary,sinceour orbit opportunityvectorsarenot binary. Note

that H(OP(1),OP(3))=4andH(OP(3),OP(4))=2.
/'

,-o

The Hamming distance measures the difference between two vectors. We desire a

measure of the similarity of two vectors. The obvious choice is (n-H(x,y)) where n is the

dimension of the vectors x and y. This is simply the number of coordinates, i, for which x_

and y_ are alike. We call this the Hamming score, or HS(x,y).

The Hamming score is helpful but does not provide desired results in all cases. For

example, recall that OP(1)=(1,0,1,1) and OP(3)=(0,1,0,0). These two models are opportunity

compatible but the Hamming score of their opportunity vectors is zero. Therefore, our

opportunity compatibility score is def-med as follows:

(x,y)+l , if x and y do not contain
OC (x, y) = confl ic ring oppor tuni ties

0, otherwise

Table VIII contains a summary of the three orbit vector comparisons.

The OC values are stored in a two dimensional, symmetric matrix. The algorithm

uses the matrix to determine the set of jobs that are opportunity compatible with the jobs

previously scheduled in the current set. The selection process favors the jobs that have higher

compatibility values.

Resource Feasibility
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Table VIII: H(x,y), HS(x,y) and OC(x,y) for Four Opportunity Vectors

OP(1)

OP(2)

OP(3)

OP(4)

OP(1)

H HS OC

4 0 1

4 0 1

2 2 3

OP(2)

H I HS I OC

4 0 1

1113 0' 2 2 3

OP(3) OP(4)

H Ins IOf n HS 0
C

4"0'1 2 2 3

; ' 31 I 0 2 2 3
- -.t, - 2 2 3

212'3
I I I

59

The algorithm attempts to maintain resource feasibility by examining a resource usage

array called REQ. This is an (nxr)-dimensional array where n is the number of models and r

is the number of resources. REQ(i,j) is equal to the amount of resource j required by model

i. Step 4 of the algorithm eliminates a job from the selection set if adding it to the current

set would over-utilize a resource. It does so by maintaining an r-dimensional vector R where

R(j) contains the amount of resource j used by the jobs in thecurrent set. One method to

determine resource compatibility is to reduce R by the row of REQ associated with the

candidate model. In this case, when a new job k is added to the current set, the algorithm

makes the following assignment:

R(j) = R(j) - REQ(k,j) V j , l<j<r

Note that the accuracy of the resource feasibility measure depends on the aggregation

scheme used to represent the models. We aggregate step detail to model detail by using the

maximum resource requirements over the steps of the model. This overstates the resource

requirements which means that the ROC algorithm may fail to place a model in the current

set when it would actually fit. After ROC fills a current set and saves it, it re-initializes the

available resources vector, R and empties the current set. ROC does not consider the
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processingtimes of the jobs when it makes this assignment. It does, however, consider the

processing times of the jobs to determine when to begin a new interval.

Starting a New Interval

The total amount of a resource available in.an interval is equal to the product of the
i.

.-4

initial availability value for that resource and the length of the interval. Similarly, the total

amount of a resource required by a model is equal to the product of the requirement, value

and the processing time of the job. We refer to these measures as resource "areas" because of

the way in which each are depicted on a Gantt chart (see Figure 5). ROC accumulates the

resource requirement areas as it schedules jobs. It begins a new interval when a resource area

is filled. If the processing time of a scheduled job is greater than the interval length, ROC

uses the interval length to compute the required resource areas for all of the applicable

resources.
¢.

The conditions that ROC uses to determine when to begin a new current set and

when to begin a new interval do not ensure that a feasible schedule can be created from the

results. ROC re-initializes R when it begins a new current set. This translates to moving to

time x in the Gantt chart of Figure 5. ROC creates new current sets repeatedly until there is

no more resource area, at which time it begins a new interval. This implies that the jobs in

consecutive current sets may overlap, as shown in Figure 6. The resource compatibility

measures in the algorithm do not consider these overlaps and therefore it can place too many

jobs in an interval. Since the aggregation scheme can create the opposite problem, and the

true processing times considered by the detailed scheduler are not fLXed, we would hope that

these problems will cancel each other.
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Figure 5. Current Sets from Set Perspective
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Figure 6. Current Sets from Interval Perspective
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Job Priorities

The essence of a list algorithm to solve general scheduling problems _s the intelligent

choice of which job to schedule next. This decision is based on a weight or priority

calculated for each job. The job with the highest priority is the next job scheduled. The list
j'.

algorithm for the experiment scheduling problem uses sueh'a measure. However, its effect is

somewhat diminished because of the opportunity compatibility measures and the resource

feasibility which the algorithm considers in the selection process as well. We include these

latter two measures to maintain feasibility. The job priority is the only measure we consider

with the purpose of finding a good schedule. We consider two priorities. They are (1) the

number of performances remaining to schedule of a model and (2) the due dates of the model

performances remaining to schedule.

Performances. One characteristic of a good schedule is equitable amount of mission

time to each of the experiments on the job list. A very simple job priority is the number of

performances that are left to schedule. This can be the number of performances remaining to

schedule in the current interval or for the remainder of the mission timeline. When the

algorithm chooses a job performance and adds it to the current set, it reevaluates the priority

for that job before it chooses the next job to add to the current set.

Due Dates. Scheduling practitioners in manufacturing often sequence jobs in order of

earliest due date. The EDD method minimizes the maximum tardiness of the jobs. We

define a due date for space experiments using the performance window of the experiment and

the number of performances required. If [a,b] is the performance window of a model and p is

the number of performances required, we create a due date for the in performance as follows:



Auburn IE NASA Report April 10, 1994 Page 63

This definition of duedateis identical to thatusedin our EDD list algorithm. We
/

incorporate the due date measure into the existing ROC algorithm so that compatible models

are scheduled together. The algorithm always chooses the model from the set, G, of

candidate models whose next unscheduled performance has the earliest due date.

Because of the intervals created by ROC, some models that can be scheduled in an

interval have no due dates that occur within that interval. We still view the due date of the

next model performance as the criteria for scheduling even if it occurs outside of the interval.

We do not, however, eliminate that due date and calculate the date of the next performance

unless it does occur in the interval.

Vqhen we use either of these scores to decide on the best job to schedule next, we only

consider those jobs that can feasibly be run simultaneously with the jobs in the current set.

In the case of orbit opportunities, if a candidate job has a compatibility score of zero with any

of the other jobs in the current set, it is removed from further consideration. By failing to

reconsider the compatibility score when choosing the best job, we are ignoring the fact that

some jobs are more opportunity compatible than others. We resolve this by choosing the job

with the highest product of score and compatibility score (OC) with the last job scheduled.

Clustering Algorithm

A good schedule of space experiments contains all requested performances of all

models. Such a schedule maintains a high level of resource utilization for the constrained
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resources. This means that model performances will overlap, i.e., will run simultaneously.

Model clustering is determining which models can be performed at the same 'time and

combining these to form a new task. We significantly reduce the number of tasks to schedule

if we predetermine model clusters. These clusters are resource compatible and if they are

good clusters then they use close to the maximum amour/t available of the more constrained

resources. A cluster with this property is said to be "full". No two full clusters are

performed simultaneously. By clustering, we transform the space experiment scheduling

problem into a scheduling problem with no resources, a problem which is much easier to

solve.

Our clustering procedure is a suboptimal algorithm which solves a linear program to

create the clusters and uses the clusters to create a list of model performances. As in the

ROC algorithm, the clustering algorithm places clustered model performances on the list

consecutively. This is done to increase the likelihood that they will be scheduled

simultaneously in the detailed schedule.

Before we create clusters, we perform pre-processing on the models similar to that

done before ROC. We use the scenario, step delay, step duration, and step detail aggregation

methods as in ROC. We ignore performance time windows, sequencing, and concurrency.

Generalized Knapsack Problem with Multiple Choice Constraints

ROC creates model clusters when it schedules compatible jobs consecutively but it

does little to create good clusters. The problem of assigning models to clusters can be

formulated as an integer programming problem and solved with a heuristic to f'md good

clusters. Our objective in developing clusters is to place all models in the fewest number of

clusters possible. Schedules created with full clusters have high resource utilization and
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complete many model performances. The model-to-cluster assignment is done so as to

maintain resource feasibility. We state the problem formally as:

I J

Max _ E Pjx_j
i=i j=l

I /

s, t. E ri_xij<Rk Vj=I .... J Vk=l ..... K --"
i=1

J

E xij<l Vi=l .... , I
j=l

xe{o,i}

where

Pj = the value of placing a model in cluster j

= S1 , if model i is assigned to cluster j
Xij Io • otherwise

rik = the requirement of model i for resource k

I = the number of models
J = the number of clusters

K = the number of resources

The objective function coefficients are defined to ensure that as many models as

possible are placed in the fewest clusters. We guarantee a feasible solution that includes all

models by letting I=J.
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This problem is a GeneralizedKnapsackProblemwith Multiple ChoiceConstraints

(GMCKP). If we obtaina solution to theproblem,we haveclustersof modelsthatcanbe

run simultaneouslywithout overextendingresources.From herewe mustexaminethenumber

of performancesrequestedfor eachof the modelsin acluster to determinehow manytimes
].

the cluster should be run in a mission schedule.

cluster have the same number of performances.

But there _s little chance that all models in a

Another problem with this formulation is the

size. Our largest data case contains 174 models. The formulation of this problem requires

1742 variables, or 30,276. This problem also contains 74 resources which equates to 174 x

74 = 12,876 resource constraints.

Generalized Knapsack Problem

Because of the formidable size of the clustering formulation as a GKPMC, we

reformulate the problem to assign models to one cluster. We then remove one performance
..o

of the assigned models from the problem and solve it again to assign models to the second

cluster. We solve the problem iteratively until it assigns all model performances to a cluster.

Because we no longer consider multiple clusters at one time, we change our objective

function. We still desire full dusters. Our choice for an objective function coefficient for

model i is the processing time of i. The interpretation is to complete as much processing in

the current cluster as the resource constraints allow. We no longer have a set of mutually

exclusive constraints and therefore our problem is a Generalized Knapsack Problem (GKP).

The new formulation is
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I

Max E (tmax) ixl
izl

I

s.t. E ri_xi_Rk Vk=l' "'''K
i=1

x {o,i)

where

tmaxi = the maximum processing time of model i

I , if model i is assigned to the clusterxl = , otherwise

rlk = the requirement of model i for resource k
I = the number of models

K = the number of resources

cluster.

creates.

E tmax_x I < T
i=i

Cluster Lengths. A full cluster is one that uses close to the maximum available

amount of the constrained resource. Another definition of a full cluster is one that does not

contain much wasted time. Large differences in the processing times of clustered models

causes wasted time. This point is best made with the illustration in Figure 7.

Cluster 1 and 2 use the same units of the resource and yet cluster 2 is dearly a fuller

Our formulation does not consider this two-dimensional nature of the cluster that it

Suppose we add one more constraint to the problem of the form

, where T changes with each execution of the problem. It starts as a
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Figure 7: The Effect of Cluster Length on Cluster Fullness

small number and gradually increases until it is equal to the mission duration. Including this

constraint forces the algorithm to search for jobs close to the same length.

Cluster List. Once we create the clusters we view each as a job to be scheduled

during the mission. The processing time of each "job" is the processing time of the longest

model performance in the cluster. We create a dispatch list for the mission in two ways. We

use the Shortest Processing Time (SPT) and the Longest Processing Time (LPT) methods to

sort the clusters. We do not concern ourselves with the ordei"of the models within each

cluster when we write the sorted clusters to the list.

COMPUTATIONAL RESULTS AND CONCLUSIONS

Results

The list, ROC and clustering algorithms were programmed using FORTRAN 77 on a

VAX platform. We used a program by Bulfin and Liu (1985) to solve the Generalized

Knapsack Problem with Mutually Exclusive Constraints in the clustering algorithm. We

created ASCII output files for both programs containing a list of model performances in the

suggested order of execution. These files were subsequently used by ESP to create a detailed

timeline for the mission.
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We use data from two previously flown Spacelab missions; ATLAS2 and SLJ.

ATLAS2 was an astronomy mission and SLJ's experiments focused on life.stiences and

microgravity. Table IX shows pertinent characteristics of these two missions.

1"

Table IX: Mission Parameters "-"

# of Models

Total # of Performances

# of Nondepletables

# of Equipment

# of Crew

# of Orbit Opportunities

Max Experiment Time (hrs)

Mission Duration (hrs)

ATLAS2

107

1844

7

39

4

SLJ

174

992

15

51

8

36 11

2235

199

3694

192

Maximum experiment time is defined as the sum of the maximum processing time of

all model performances. We use four ratios to evaluate the algorithms. The first two are the

ratio of the number of performances scheduled and the number of models scheduled to that

requested for these parameters. We call these ratios PR and MR respectively. Their values

will always be less than or equal to 100 and we desire the highest possible ratio. The last

two are the amount of crew time (CR) and the amount of experiment time (ER) scheduled

relative to the amount of each requested.

minimum processing times of the models.

ESP calculates the requested times based on the

The values for these ratios are greater than 100 if

many model performances are scheduled at their maximum processing times. We desire high

values for these measurements but not at the expense of much smaller values for PR and MR,
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sincethey aremore importantthan thetime ratios. We compareour resultsfor eachmission

to thoseobtainedfrom a randomizedlist of the modelperformancesin that mission.

All runs were made using a version of ESP which reads a list and schedules it

automatically. Hand scheduling with ESP using t.he same list gave consistently better results.
/

However, for ease in generating schedules the list version ,_,'as used in all tests. The relative

differences between algorithms should be the same either way.

We f'u'st view the results from the list algorithms. We distinguish the round-robin

version of each algorithm by prefming the algorithm name with the letter "R". The random

list is identified by "RAN". Table X contains results of all the list algorithms.

As we would expect, the round robin schedules have higher MR values that the

performance-list schedules. The differences do not appear significant in the SLJ mission.

The RSPT list creates a better schedule than random but the RLPT algorithm does not

consistently perform worse as we would expect since it is the reverse of the RSPT list. We

notice similar results with SPT and LPT.

The list algorithms do not appear to be robust to changes in mission characteristics as

can be seen by the lack of consistent results over the two missions. One exception is the

resource price algorithms. In all but one ease, the ATLAS2 and SLJ measurements are

consistently higher or lower than the results from the random lists. Note also that the

resource price algorithms outperform the random lists in all but two cases but these

differences seem significant only for the ATLAS2 mission.

We look next at the ROC algorithm. Recall that we use two priorities to create two

different lists for each mission. They are the number of performances left (P) and the earliest

due date (DD). The results follow in Table XI.
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Table X: List Algorithms vs. Random List

RAN SPT RSPT LPT RLPT

PR

MR 72.5 84.9 91.9 65.7

CR 98.2 78.2 123.3

ER

ATLAS2

36.6 41.2 40.9 37.2

75.7

212.4 212.1 222.0 199,7

56.1 56.7

SLJ

56.7 58.0

32.8

75.8

129.2

225.2
,-t

s

55.2PR

MR 73.2 77.5 79.8 75.7 72.3

CR 32.6 32.5 32.9 32.5

101.9

33.5

107.193.8 114.4ER 95.9

PR

MR

CR

ER

RAN EDD RPR [ RRPR

36.6

72.5

98.2

212.4

37.2

71.7

96.2

212.7

PR 56.1 56.6

MR 73.2 75.7

CR

ER

32.6

93.8

31.2

94.4

SLK RSLK

ATLAS2

36.2 36.1

70.7 85.9

98.2 124.7

184.9 223.7

SLJ

58.3 55.0

70.5 71.7

32.5 32.1

94.5 95.4

41.5

74.8

91.6

209.3

56.2

4i .2

90.9

122.4

221.6

56.7

76.3 79.2

32.9

90.5

33.9

108.3

April 10, 1994 Page 71

The ROC(P) algorithm consistently outperforms the ROC(DD) algorithm although the

differences are only significant in the SLI mission. A randomly generated list outperforms

the ROC(DD) algorithm for the SLJ mission but does not for the ATLAS2 mission. ROC(P)

consistently outperforms the randomly generated list in all but the PR ratio but none of the

differences are significant.

Now consider the results from the clustering algorithm. Recall that our formulation

was extended to include a constraint on the length of the cluster to force the algorithm to fred

models of the same length to cluster together. Our initial results with this formulation
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Table Xl: ROC Algorithm vs. Random List
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PR

MR

CR

ER

PR

MR

CR

ER

RAND ROC(P) ROC(DD)

ATL

36.6 35.5 35.3

72.5 76.7 75.8

98.2 122.2 L21.5

212.4 222.6 192.9

SLJ

56.1 55.5 45.6

73.2 76.3 20.2

32.6 32.1 19.0

93.8 97.7 8.1

showed that the variability in the processing times of the models was too great to achieve the

desired results. The effect of this extra constraint was to create more clusters containing

fewer models. We eliminated the constraint and used the original formulation. We tried the

Shortest Processing Time rule (SPT) and the Longest ProcesSing Time rule (LPT). The

results appear in Table XII.

The results for the clustering algorithm differ between mission more than those for the

ROC algorithm. For ATLAS2, CL(SPT) performs better than CL(LPT) and the random list

for the PR and MR measures and CL(LPT) outperforms CL(SPT) and the random list for the

CR and ER measures. For SLJ, CL(SPT) and the random list are consistently better than

CL(LPT) and CL(SPT) performs better than the random list in all but the PR measure. The

numbers for SLJ exhibit less variability than those for ATLAS2. The differences between

CL(LPT) and CL(SPT) in ATLAS2 seem significant for all but the ER measure.

The ROC(P)"algorithm consistently provides better results than the CL(LPT) algorithm

but outperforms the CL(SPT) algorithm in only some cases for some measures. The
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Table XII: ClusteringAlgorithm vs.RandomList
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RAND CL(SPT) CL(LPT)
ATL

PR 36.6 40.2 29.1
MR 72.5 82.8 62.6
CR 98.2 95.6 122.0
ER 212.4 210.4 213.7

PR 56.1
MR 73.2
CR 32.6
ER 93.8

SLJ
55.8 54.2
75.7 70.5
33.0 29.8

101.2 88.9

differencesonly seemsignificantfor the ATLAS2 mission. Both clusteringalgorithmlists

outperform the ROC(DD) algorithm for the SLJ mission but exhibit mixed results for the

ATLAS2 mission. Figures 8, 9, 10 and 11 show the results of each mission separately in two

bar grapl'/s.
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Figure 8. Results of List Algorithms for ATLAS2 Mission.
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Figure 9. Results of List Algorithms for SLJ Mission.
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Figure 10: Results of ROC and Clustering Algorithms for ATLAS2 Mission.
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Figure 11. Results of ROC and Clustering Algorithms for SLJ Mission

Conclusions

The majority of the list algorithms perform better than the random list for at least half

of the performance measures. Although many of these improvements are small, because the

list algorithms are easy to execute, we suggest that the scheduler use some or all of these

algorithms and choose the one which creates the best schedule. The round robin version of

the Resource Price Algorithm is the only one that creates a schedule that is consistently better

than the randomly generated schedule for both missions.

used.

We therefore suggest that it be

Although none of the greedy algorithms dominate the others in both missions for all

performance measures, there are some differences which we feel are significant. In the

ATLAS2 mission results, note the inverse relationship between the PR and MR and the CR

and ER performance measures when the clustering algorithms are used. The performance and

model ratios are consistently better than the crew and experiment time ratios for the CL(SPT)
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vs. random list and the CL(SPT) vs. CL(LPT) comparisons. CL(SPT) places short clusters at

the beginning of the list. ESP schedules many of these short clusters before 'it reaches those

with the longer processing times. These short clusters contribute much to the number of

performances scheduled and to the number of models scheduled. The SLJ mission results are

,-t

not consistent with this observation. Perhaps this is due to the fact that SLJ has fewer

performances of models with longer processing times. There is less variability in the

processing times of the clusters in this mission.

Similarly, the CL(LPT) algorithm results in higher ratios for the CR and ER measures

in the ATLAS2 mission. In the SLJ mission, CL(SPT) is higher for all ratios. Since the

performance and model ratios are more important than the time ratios, the clustering

algorithm with SPT performs better than LPT.

Using the ROC algorithm with the priority of the number of performances remaining

to schedule provides better results than using ROC with due dates, especially for the SLJ

mission. The ROC(DD) algorithm with SLJ performed very poorly with all measures.

Perhaps this is due to the longer models in SLJ and the method of calculating and

decrementing due dates in ROC(DD). ROC(P) seems more robust to differences between

missions and we therefore suggest it over ROC(DD).

Although the RRPR, ROC(P) and the CL(SPT) algorithms provide better results than

the random list in some cases, these differences are small. From this we conclude that an

algorithm which creates a list for ESP does not provide enough detail to ESP. We must give

a start time and a stop time for each model performance to ensure that ESP follows the order

correctly. This is due to the fact that ESP places a performance in the earliest possible

position. In addition, we cannot rely on the aggregation of the models' characteristics to
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determinethesestart andstoptimes. We feel that we mustlook at specificintervalsin the

missionthat arecritical andmodelsthat requirethesecritical intervalsin orderto createa

mission schedulethat containsall modelsand asmanyof their performancesaspossible.We

feel that a betterproblemformulationwould includemoredetailof orbit opportunitiesand

performancetime windows.

Future Research

Future research should focus on aggregate timelining algorithms which

generate clusters of models to be scheduled together. These clusters satisfy,in

aggregate, the resource restrictionsimposed on experiment scheduling. Given a

cluster,a detailed timeline could be generated in a variety of ways. The simplest

way would be to use ESP. It might also be possible to allow a human to schedule

jobs within the cluster. Discussion of these steps follows.

Preprocessing

Preprocessing is examining the mission data to aggregate information (or,in

some cases, possibly eliminate it)in order to make the timeline decision more

tractable. The key is to keep criticalinformation so that the resulting timeline is

easily transformed into a feasible detailed timeline. This requires being able to

identify criticalresources for a particular mission. Since missions are often quite

different,this is a dynamic task. We will develop procedures to analyze mission

data and determine appropriate aggregations. For different models different
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aggregations result. For example, some models may aggregate steps, while for

others step integrity must be maintained. The procedure must be.c:apable of

determining good aggregations for vastly different missions.

Assignment/Clusterlng

Given an aggregation scheme, models must be grouped so that the group

satisfies resource restrictions. Two approaches will be investigated, assignment

and clustering. In assignment, time is divided into a number of 'q_uckets" and

models are assigned to a bucket. There is a "cost" to assign a particular model (or

more precisely, performance of a model) to a particular bucket. This cost would

depend on the resource usage of the model, resource availability of the bucket, the

relative time in the mission of the bucket, the number.of performances of the

model etc. Clustering is similar to assignment, except the models are grouped

together without specifying a particular bucket.

Sequencing

To transform the assignment/cluster to something more like a timeline, we

must consider sequencing. For assignment, sequencing within the bucket is

important, while for clustering, the sequence of the clusters themselves are

important. Depending on the length of the bucket, the assignment algorithm

could be used recursively to break buckets down into smaller time slices. For

sequencing clusters, standard single machine scheduling results may prove

helpful.
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Testing

Once a heuristic for timelining is developed it must be thorodghly tested.

This will ensure it is correct and effective.

Validation.

There are four subtasks.

,<

Validation ensures the heuristics are operating as designed. Internal

validation is a logical test. External validation will consist of solving small test

problems and checking the results.

Retrospective Testing.

The heuristic will be tested on several missions that have already flown.

The aggregate schedule will be turned into a detailed schedule using ESP and

results will be compared to the timelines proposed for those missions. If possible,

comparisons to actual timelines will also be made.

Random Problem Testing.

Problems will be randomly generated so that they are similar to actual

MSFC missions. This will allow many, say several hundred different problems to

be generated. Each problem will be solved by the heuristic and the solution

evaluated with respect to several measures of performance. Also, bounds on the

best possible solution will be calculated, and compared to the heuristic solutions.

This will verify the quality and efficacy of the heuristic.

Predictive Testing.
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The heuristic, in conjunction with ESP, will be used to generate a timeline

for a mission that has yet to be flown. This schedule will be compa_red to the

timeline proposed for the mission.
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