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Symbols

A(x) coe�cient of second order term of linear ordinary di�erential equation

A(�) lower limit of integral in Leibniz rule depending on parameter �

a constant

BC, BC1, BC2 boundary conditions

B(x) coe�cient of �rst order term in second order linear ordinary di�erential equation

B(�) upper limit of integral in Leibniz rule depending on parameter �

b constant

C; C1; C2 constants

C(x) coe�cient of zero order term (the unknown function) in second order linear
ordinary di�erential equation

c constant, also speed of sound

D space of in�nitely di�erentiable functions with bounded support (test functions)

D0 space of generalized functions based on D

E1; E2 expressions in integrands of Kirchho� formula for moving surfaces

E(�) function de�ned by equation (3.70)

Eh shift operator Ehf(x) = f(x+ h)

Eij viscous stress tensor

F in F [�] , de�nes linear functional on test function space; generalized function

F (y;x; t) = [f(y ; �)]ret = f(y; t � r
c )

eF (y;x; t) = [ef(y ; �)]ret = ef(y; t � r
c )

f(x); f(x) arbitrary ordinary functions

f1(x) arbitrary function

fi(�) components of moving compact force, i = 1 to 3

f(x ; t) equation of moving surface de�ned as f(x; t) = 0, f > 0 outside surface

ef(x ; t) moving surface de�ned by ef(x; t) = 0 intersection of which with f(x; t) = 0

de�nes edge of open surface f = 0, ef > 0

g(x; y); g(x;y) Green's function

g = � � t + r
c

g1(x; y); g2(x; y) de�ne Green's function for x< y and x > y , respectively

g(2) determinant of coe�cients of �rst fundamental form of surface

g(x); g(x) arbitrary functions

H in H [�], linear functional
R
1

0 �(x) dx based on Heaviside function

Hf local mean curvature of surface f = 0

H(x; �) function de�ned by equation (3.71)

h constant

h(x) Heaviside function

v



h"(x) function of x indexed by continuou s parameter "

I interval on real line, expression given by integral; expression

i =
p
�1; index

j index

K in K [�], de�nes linear functional on test function space; generalized function

k nonnegative integer

k(x); k(x; t) equation of shock or wake surface given by k = 0

L in dL, length parameter of edge of � surface given by F = eF = 0

` in `u, second order linear ordinary di�erential equation

M Mach number vector

Mn = M � n; local normal Mach number

Mr = M � br

M� = M � �

m index of summation of Fourier series

N unit normal to F = 0

eN unit normal to eF = 0

n nonnegative integer

n local unit outward normal to surface

n0 local unit inward normal to surface

n1 vector (n1, 0, 0) based on n = (n1 ; n2; n3)

o in o("), small order of "

PV principal value

Pij compressive stress tensor

p blade surface pressure

p0 acoustic pressure

Q(x; t);Q(x; t) source strength of inhomogeneous term of wave equation

r = jx �yj

ri components of vector r= x� y, i = 1 to 3

bri components of unit radiation vector r
r , i = 1 to 3

S in dS , surface area of given surface; space of rapidly decreasing test functions

S 0 space of generalized functions based on S

Sk portion of surface k = 0 inside surface @


s(t) position vector of compact force in motion

Tij Lighthill stress tensor

t variable; time variable

t1 unit vector in direction of projection of br onto local tangent plane to f(x; t) = 0

vi



t1 in @
@t1

, directional derivative in direction of t1

ui components of 
uid velocity, i = 1 to 3

un local 
uid normal velocity

ui curvilinear coordinate variables, i = 1 to 3

vn local outward normal velocity of surface

vn0 local inward normal velocity of surface

x observer variable; (x1 ; x2; x3)

y source variable; (y1; y2 ; y3)

� constant, parameter

�f constant depending on shape of surface f = 0

� constant

� in d�, length parameter along curve of intersection of surfaces f = 0 and g = 0

� strength of vorticity


 height of cylinder

� jump in function at discontinuity

�(x); �(x); �(f) Dirac delta function

� [�] l inear functional representing Dirac delta function

�ij Kronecker delta �ij = 0 if i 6= j , �ii = 1

" small parameter

� Lagrangian variable

� angle between rf and rg; angle between radiation direction br and local normal
to surface n

�1 angle between br and n1

� 0 angle between N and eN

� = jrF j, F = [f]ret, jrfj = 1

e� = jreF j, eF = [ef]ret, jrefj = 1

�0 = jrF � reF j, F , and eF as de�ned above

� unit inward geodesic normal

� variable of Fourier transform

� density

�0 density of undisturbed medium

� surface F (y; x; t) = 0

� test function, arbitrary function

�1; �2 test functions

�n sequence of test functions; component of vector �eld � normal to surface

�(k) kth derivative of �

�(x; t) unknown function of inhomogeneous wave equation
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e� extension of function � to unbounded space

�1;i components of vector function �1, i = 1 to 3

� source time


 open interval or region of space; @
 boundary of 



(�) sphere r = c(t � �);(x; t; �) kept �xed

Subscripts:

h in Eh, shift of function by amount h to right or left

n; n0 component of vector �eld in direction of local normal n or n0

n index of sequence such as �n

0 in �0, indicates condition of undisturbed medium

ret retarded time

x in `x, indicates that derivatives in ` act on variable x in `xg(x; y)

" continuous index in function such as h"(x)

Superscripts:

k in �(k), kth derivative of �

n in �(n), nth derivative of �

Notation:

2
D'Alembertian, wave operator 1

c2
@ 2

@t2
�r2

[ ] in F [�] , indicates functional evaluated for �, � a test function

supp support of function

e in �
~
, indicates restriction of � to support of delta function

b in b , indicates Fourier transform

� in �� , indicates emission time

r gradient operator

r2 surface gradient operator

ry gradient operator acting on variable y

� over derivative such as �f 0(x), indicates generalized di�erentiation

@ in @
, indicates boundary of region 
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Summary

Since the early 1950's, when Schwartz published his theory of distributions, generalized
functions have found many applications in various �elds of science and engineering. One of
the most useful aspects of this theory in applications is that discontinuous functions can be

handled as easily as continuous or di�erentiable functions. This provides a powerful tool in
formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized

function theory elucidates and uni�es many ad hoc mathematical approaches used by engineers
and scientists in these two �elds. In this paper, we de�ne generalized functions as continuous
linear functionals on the space of in�nitely di�erentiable functions with compact support, then

introduce the concept of generalized di�erentiation. Generalized di�erentiation is the most
important concept in generalized function theory and the applications we present util ize mainly

this concept. First, some results of classical analysis, such as Leibniz rule of di�erentiation
under the integral sign and the divergence theorem, are derived with the generalized function
theory. The divergence theorem is shown to remain valid for discontinuous vector �elds provided

that all the derivatives are viewed as generalized derivatives. An implication of this is that all
conservation laws of 
uid mechanics are valid, as they stand for discontinuous �elds with all

derivatives treated as generalized derivatives. When the derivatives are written as the sum of
ordinary derivatives and the jump in the �eld parameters across discontinuities times a delta
function, the jump conditions can be easily found. For example, the unsteady shock jump

conditions can be derived from mass and momentum conservation laws. Generalized function
theory makes this derivation very easy. Other applications of the generalized function theory

in aerodynamics discussed here are the derivations of general transport theorems for deriving
governing equations of 
uid mechanics, the interpretation of the �nite part of divergent integrals,
the derivation of the Oswatitsch integral equation of transonic 
ow, and the analysis of velocity

�eld discontinuities as sources of vorticity. Applications in aeroacoustics presented here include
the derivation of the Kirchho� formula for moving surfaces, the noise from moving surfaces, and
shock noise source strength based on the Ffowcs Will iams{Hawkings equation.

1. Introduction

In the early 1950's, Schwartz published his theory of distributions that we call generalized
functions. (See ref. 1.) Earlier, Dirac had introduced the delta function �(x) by the sifting

property Z
1

�1

�(x)�(x) dx = �(0) (1:1)

Dirac recognized that no ordinary function could have the sifting property. Nevertheless, he

thought of �(x) as a useful mathematical object in algebraic manipulations that could be viewed
as the limit of a sequence of ordinary functions. The Dirac delta function is a generalized function

in the theory of distributions. Schwartz established rigorously the properties of generalized
functions. His theory has had an enormous impact on many areas of mathematics, particularly
on partial di�erential equations. Generalized function theory has been used in many �elds of

science and engineering.

To include mathematical objects such as the Dirac delta function into analysis, we must

somehow extend the concept of a function. The process we use to introduce new objects
is familiar in mathematics. We extended natural numbers to integers, integers to rationals,
and rationals to real numbers. We also extended real numbers to complex numbers. In each

extension, new objects were introduced in the number system while most properties of the old
number system were retained. Furthermore, for each extension, we had to think of the new

number system in a di�erent way from the old system. For example, in going from integers to



rationals, we view numbers as ordered pairs of integers (a; b), where b 6= 0. We identify ordered
pairs (a; 1) with integer a . The new number system (the rationals) includes the old number

system (the integers). We must now think of numbers as ordered pairs (a; b), which we usually
write as a=b, instead of as a single number a for integers. Similarly, to extend the concept of

function to include the Dirac delta function, we must think of functions di�erently.

We explain in section 2 how to think of functions as functional (i.e., the mapping of a

suitable function space into scalars). In this way, the Dirac delta function can naturally be
included in the extended space of functions that we call distributions or generalized functions.
The usefulness of this theory stems from the powerful operational properties of generalized

functions. In addition, solutions with discontinuities can be handled easily in the di�erential
equation or by using the Green's function approach. Many ad hoc mathematical methods used

by engineers and scientists are uni�ed and elucidated by generalized function theory. In 
uid
dynamics, the derivations of transport theorems, conservation laws, and jump conditions are
facilitated by that theory. Geometric identities for curves, surfaces, and volumes, particularly

when in motion and deformation, can be derived easily with generalized function theory. In
section 2 we also de�ne generalized functions as continuous linear functionals on some space

of test functions. Some operations on generalized functions are de�ned in this section, as are
various approaches to introduce generalized functions in mathematics.

In section 3 we present some de�nitions and results for generalized functions as well as

some important results for generalized derivatives, multidimensional delta functions, and the
�nite part of divergent integrals. In section 4 we present various aerodynamic applications

including derivation of two transport theorems|the interpretation of velocity discontinuity as
a vortex sheet and the derivation of the Oswatitsch integral equation of transonic 
ow. The
aeroacoustic applications include the derivation of the solution of the wave equationwith various

inhomogeneous source terms, the Kirchho� equation for moving surfaces, the Ffowcs Williams{
Hawkings equations, and shock noise source strength. All these applications depend on the

concept of generalized di�erentiation. Concluding remarks are in section 5 and the references
follow.

Many articles and books have been published on the topic of generalized function theory.
Most of these works have extremely abstract presentations. In particular, multidimensional
generalized functions, which are most useful in applications, are often treated cursorily in

applied mathematics and physics books. Of course, some exceptions are available. (See
refs. 2{7.) Multidimensional generalized functions are relatively easy to learn and use if the

theory is stripped of some abstraction. To work with multidimensional generalized functions,
some knowledge of di�erential geometry and of tensor analysis is required. (See also refs. 8
and 9.) In this paper, we present the rudiments of generalized function theory for engineers and

scientists with emphasis on applications in aerodynamics and aeroacoustics. The presentation
is expository. The intent is to interest readers in the subject and to reveal the power of the
generalized function theory. Some illustrative mathematical examples are given here to help in

the understanding of the abstract concepts inherent in generalized functions.

2. What Are Generalized Functions?

2.1. Schwartz Functional Approach

It can be shown from classical Lebesgue integration theory that the Dirac delta function

cannot be an ordinary function. By an ordinary function we mean a locally Lebesgue integrable
function (i.e., one that has a �nite integral over any bounded region). To include the Dirac

delta function in mathematics, we must change the way we think of an ordinary function f(x).
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Conventionally, we think of this function as a table of ordered pairs (x; f (x)). Of course, often
this table has an uncountably in�nite number of ordered pairs. We show this table as a curve

representing the function in a plane. In generalized function theory, we also describe f(x) by a
table of numbers. These numbers are produced by the relation

F [�] =

Z 1

�1
f (x)�(x) dx (2:1)

where the function �(x) comes from a given space of functions called the test function space.
For a �xed function f(x), equation (2.1) is a mapping of the test function space into real or
complex numbers. Such a mapping is called a functional. We use square brackets to denote

functional (e.g., F [�] and �[�]). Therefore, a function f(x) is now described by a table of its
functional values over a given space of test functions. We must �rst, however, specify the test

function space.

The test function space that we use here is the spaceD of all in�nitely di�erentiable functions

with bounded support. The support supp �(x) of a function �(x) is the closure of the set on
which �(x) 6= 0. For an ordinary function f(x), the functional F [�] is linear in that, if �1 and �2
are in D and if � and � are two constants, then

F [��1 + ��2] = �F [�1] + �F [�2] (2:2)

The functional F [�] is also continuous in the following sense. Take a sequence of functions f�ng

in D and let this sequence have the following two properties:

1. There exists a bounded interval I such that for all n, supp �n � I .

2. l im
n!1

�
(k)
n (x) = 0 uniformly for all k = 0; 1; 2; : : :.

Such a sequence is said to go to 0 in D and is written �n! 0
D

. Here supp �n stands for support

of �n. We then say that the functional F [� ] is continuous if F [�n] ! 0 for �n ! 0
D

. We will
have more to say in this section about the space D and why we require the two conditions above

in the de�nition of �n ! 0
D

.

As an important example of a function �(x) in D , for a given �nite a > 0, we de�ne

�(x; a) =

8<
:

exp
�

a2

x2�a2

�
(jxj < a)

0 (jxj � a)

(2:3)

Note that supp �(x; a) = [�a; a ] and is bounded. We can show that �(x; a) is in�nitely
di�erentiable. Therefore, �(x; a) 2 D. The proof of in�nite di�erentiability at x = �a is
somewhat messy and algebraically complicated and we will not belabor this point here. We can

show that from any continuous function g(x), we can construct another function  (x) in D from
the relation

 (x) =

Z c

b

g(t)�(x� t ; a)dt (2:4)

where the interval [b; c ] is �nite. The support of  (x) is [b � a; c + a] , which is bounded.
The in�nite di�erentiability of  (x) follows from in�nite di�erentiabil ity of �(x; a). Therefore,
 (x) 2 D. There exists an uncountably in�nite number of continuous functions. (Consider the

family of continuous functions sin(�x), �, "(0; 1). This family has an uncountable number of
members.) It follows from the above argument that there exists an uncountably in�nite number

of functions in space D, so our table constructed from F [�] by equation (2.1) representing
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the ordinary function f(x) has an uncountably in�nite number of elements. This fact has an
important consequence. Two ordinary functions f and g that are not equal in the Lebesgue

sense (i.e. , two functions that are not equal on a set with nonzero measure) generate tables by
equation (2.1) that di�er in some entries. Thus, the space D is so large that the functionals on

D generated by equation (2.1) can distinguish di�erent ordinary functions.

We now give an example of a sequence f�ng in D such that �n ! 0
D

. Using the function

�(x; a) in equation (2.3), we de�ne

�n(x) =
1

n
�(x; a) (2:5)

This sequence can easily be shown to satisfy the two conditions required for �n ! 0
D

. We note
in particular that supp�n = [�a; a] for all n.

Now we de�ne distributions or generalized functions of Schwartz. First, we note that for an
ordinary function f(x) (i.e., a locally Lebesgue integrable function), the functional F [�] given by
equation (2.1) is l inear and continuous. The proof of linearity is obvious. The proof of continuity

requires only that �n ! 0 uniformly, which already follows from �n ! 0
D

. Remembering that we
are now looking at functions by their table of functional values over the space D and that this

functional is linear and continuous, we ask if all the continuous linear functionals on space D

are generated by ordinary functions through the relation given in equation (2.1). We �nd they
are not! Some continuous linear functionals on space D are not generated by ordinary functions.

For example,

� [�] = �(0) (2:6)

Proof of linearity is obvious. Continuity follows again from �n ! 0 uniformly. However, this
functional has the sifting property that the Dirac delta function requires. As we stated earlier,

no ordinary function has the sifting property. Therefore, this approach introduces the delta
function rigorously into mathematics. We de�ne generalized functions as continuous linear

functionals on space D . The space of generalized functions on D is denoted D0. Figure 1 shows
schematically how we extended the space of ordinary functions to generalized functions. We call
ordinary functions regular generalized functions, whereas all other generalized functions (such

as the Dirac delta function) are called singular generalized functions.

For algebraic manipulations, we retain the notation of ordinary functions for generalized

functions for convenience. We symbolically introduce the notation �(x) for the Dirac delta
function by the relation

� [�] = �(0) =

Z
�(x)�(x) dx (2:7)

Note that the integral on the right side of equation (2.7) does not stand for conventional

integration of a function. Rather, it stands for �(0). We can now use �(x) in mathematical
expressions as if it were an ordinary function. However, we must remember that singular
generalized functions are not, in general, de�ned pointwise; they de�ne a functional (i.e., a

function from our new point of view) when they are multiplied by a test function and appear
under an integral sign. Thus, when a singular generalized function appears in an expression, it

is always in an intermediate stage in the solution of a real physical problem.

More facts about space D in multidimensions, convergence to 0 in D, and the concept of

continuity of a functional are appropriate now. The multidimensional test function space D is
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Ordinary

functions

f(x)

δ(x)

Singular generalized

functions

F[φ]φ(0)

F[φ] = ∫ fφ dx, φ ∈ D

Real or

complex numbers

Space of generalized functions D´

Figure 1. Generalized functions are continuous linear functionals on space D of test functions.

de�ned as the space of in�nitely di�erentiable functions with bounded support. For example,
for a > 0,

�(x; a) =

8<
:

exp
�

a2

jxj2�a2

�
(jxj < a)

0 (jxj � a)

(2:8)

where jxj =

�
nP
i=1

x2
i

�1=2

is the Euclideannorm. Other functions in this space can be constructed

by using any continuous functiong(x) and the convolution relation

 (x) =

Z


g(t)�(x � t; a) dt (2:9)

where 
 is a bounded region. The multidimensional generalized function spaceD 0 is de�ned as

the space of continuous linear functionals on the spaceD. In the multidimensional case, a number
of importantsingulargeneralized functions of the delta function type appear in applications. In

one dimension, the support of�(x) consists of one point, x = 0. We de�ne the support of a
generalized function later. In the multidimensional case, in addition to�(x), which has the
support x = 0, there is also �(f) with support on the surface f (x) = 0. Section 2.2 contains a

detailed explanation of�(f).

We now discuss the de�nition of continuity of linear functionals on the spaceD. Continuity
is a topological property. SpaceD is a linear or vector space. It is made into a topological

vector space by de�ning the neighborhood of�(x) = 0 by a sequence of seminorms. The two

conditions required above in the de�nition of�n ! 0
D

follow from the conditions used to de�ne

the neighborhood of �(x) = 0. (See refs. 10 and 11.) The de�nition of continuity of linear
functionals on spaceD can be based on the weak or strong topologies of spaceD 0. (See ref. 11.)

It so happens that the de�nitions of continuity based on these topologies are equivalent to the

5



earl ier de�nition of F [�n] ! 0 if and only if �n ! 0
D

. Furthermore, we note that because D is

a linear space, we can de�ne �n ! �
D

if �n � � ! 0
D

and because F [� ] is linear, we can also say

that F [�] is continuous if when �n! �
D

, we have F [�n ] ! F [�] .

We conclude this discussion with one more important fact. Although in this paper we con�ne

ourselves to the test function space D, inmany applicationswe should use adi�erent test function
space. For example, to de�ne Fourier transformation, we should use a test function space S of

in�nitely di�erentiable functions that go to 0 at in�nity faster than jxj�n for any n > 0 (the
space of rapidly decreasing functions). Other test function spaces are de�ned in Carmichael
and Mitrovi�c (ref. 10) and in references 12 and 13. Generalized functions on these spaces are

de�ned as continuous linear functionals after a suitable de�nition of convergence to 0 in the
test function space is given to get a topological vector space. Note that in all these spaces
of generalized functions, the important singular generalized functions (such as the Dirac delta

function) are retained with properties essentially similar to those we study below in space D0.
It can be shown that if A � B and if A and B are two test function spaces used to de�ne

generalized function spaces A0 and B 0, respectively, then we have A � B � B 0
� A0 (i.e. , the

space of generalized functions A 0 is larger than B 0). In particular, D � S � S 0 � D0, where S
is the space of rapidly decreasing functions de�ned above.

2.2. How Can Generalized Functions Be Introduced in Mathematics?

Although Schwartz developed the theory of distributions, like many great ideas in mathe-
matics and science, the subject has a long history. Synowiec (ref. 14) has stated that evolution

of the concepts of distribution theory followed a familiar pattern in mathematics of multiple and
simultaneous discoveries because the appropriate ideas were `in the air.' Several good sources on
the history of theory of distributions are available. (See refs. 15 and 16.) Therefore, we will not

present a detailed history here. Also, many di�erent approaches in mathematics can be used to
introduce and develop systematically generalized function theory. We mention several of them

here.

2.2.1. Functional approach to generalized functions. In the functional approach, generalized
functions are de�ned as continuous linear functionals. This approach (which we use here) was

originally introduced by Schwartz (ref. 1) and is the most popular and direct method of studying
generalized functions. (See refs. 3, 4, and 7.) The operations on ordinary functions such as
di�erentiation and Fourier transformation are extended by �rst writing these operations in the

language of functionals for ordinary functions, then by using them to de�ne the operations for
all generalized functions. After the rules of these operations are obtained, the usual notation of

ordinary functions can be used for all generalized functions. A working knowledge is relatively
easy to develop with this notation without confusion. Some elementary knowledge of functional
analysis is needed in this approach.

2.2.2. Sequential approach to generalized functions. The sequential approach is essentially
based on the original idea of Dirac in de�ning a delta function as the limit of a sequence of
ordinary functions. The approach was originated by Mikusi�nski from a theorem in distribution

theory that the space of generalized functions is complete. Therefore, singular generalized
functions such as the delta function canbe de�ned as the limit of ordinary (i.e., regular) functions

much like de�ning irrational numbers as limits of a Cauchy sequence of rational numbers. Many
good books have been published on this subject. (See refs. 2, 6, and 17.) To de�ne a generalized
function, the analyst is required to construct and work with a sequence of in�nitely di�erentiable

functions. Although mathematics only to the level of advanced calculus is involved, the algebraic
manipulations are technical and laborious. An extension to the multidimensional case also

appears more di�cult than with the functional approach.
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2.2.3. Bremermann approach to generalized functions. In the Bremermann approach,
general ized functions of real variables are viewed as the boundary values of analytic functions on

the real axis. (See refs. 12 and 13.) The Bremermann approach has its basis in earlier works on
Fourier transformation in the complex plane to de�ne Fourier transforms of polynomials. This

approach employs some of the powerful results of analytic function theory and is particularly
useful in Fourier analysis and partial di�erential equations. A recent book on the subject is by
Carmichael and Mitrovi�c. (See ref. 10.)

2.2.4. Mikusi�nski approach to generalized functions. The Mikusi�nski approach is based on

ideas from abstract algebra. A commutative ring is constructed from functions with support
on a semi-in�nite axis by de�ning the operations of addition and multiplication as ordinary

addition and convolution of functions, respectively. This commutative ring has no zero divisors
by a theorem of Titchmarsh. (See refs. 18 and 20.) Therefore, it can be extended to a �eld by
the addition of a multiplicative identity and the multiplicative inverses of all functions. This

multiplicative identity turns out to be the Dirac delta function. The Mikusi�nski approach gives
a rigorous explanation of the Heaviside operational calculus and solves other problems such as

the solution of recursion relations. One limitation of this approach is that the supports of the
functions are con�ned to semi-axis or half-space in the multidimensional case. Good sources
for this approach are Mikusi�nski (ref. 18), Mikusi�nski and Boehme (ref. 19), and an excellent

expository book by Erd�elyi (ref. 20)

2.2.5. Other approaches to generalized functions. Several other important approaches
introduce generalized functions in mathematics. One approach is based on the nonstandard

analysis of Robinson. (See ref. 21.) Nonstandard analysis uses formal logic theory to extend
the real line by the rigorous inclusion of Leibniz in�nitesimals. Many interesting applications
of this theory, particularly in dynamical systems, are now available. Another more recent

approach is presented in Colombeau (refs. 22 and 23) and Rosinger (ref. 24). This approach
uses advanced algebraic and topological concepts to develop a theory of generalized functions in

which multiplication of arbitrary functions is allowed and it is gaining popularity at present.
Applications to nonlinear partial di�erential equations are given by Rosinger (ref. 24) and
Oberguggenberger (ref. 25).

3. Some De�nitions and Results

3.1. Introduction

In this section, some important de�nitions and results used later are presented. Then, the

generalized derivative, the multidimensional delta functions, and the �nite part of divergent
integrals are discussed. This paper is application oriented so we are selective about the material
presented here. We also freely refer to a generalized function by a symbolic or a functional

notation.

3.1.1. Multiplication of a generalized function by an in�nitely di�erentiable function. Let
f(x) be a generalized function in D 0 de�ned by the functional F [� ] and let a(x) be an in�nitely

di�erentiable function. Then, a(x)f(x) is de�ned by the rule

aF [�] = F [a�] (3:1)

Note that aF stands for the functional that de�nes af . Also, because � is in D , so is a�. We

can use this de�nition to de�ne a(x)�(x). Let �[�] be the Dirac function given by equation (2.6);
then,

a� [� ] = � [a�] = a(0)�(0) (3:2)
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Symbolically, this equation is interpreted as

a(x)�(x) = a(0)�(x) (3:3)

In the space D 0, multiplication of two arbitrary generalized functions is not de�ned; however,
this statement needs clari�cation. Obviously, ordinary functions are also generalized functions

and any two ordinary functions can be multiplied; thus, they can also be multiplied in the sense
of distributions. However, multiplication of a regular and a singular generalized function or two

singular generalized functions may not always be de�ned. For example, the multiplication of
�(x) by itself (i.e. , �2(x)) is not de�ned, neither is f(x)�(x), where f(x) has a jump discontinuity
or a singularity at x = 0. In applications, experience or inconsistencies in the results occasionally

show that some multiplications of two generalized functions are not allowed. Sometimes this
problem can be removed by rewriting the expression such that the troublesome multiplication is

avoided. For example, di�culties with multiplication of distributions appear if we use the mass
continuity and momentum equations in nonconservative forms to �nd shock jump conditions
(section 4.2). These di�culties can be removed by using the conservation laws in conservative

forms. To overcome the problem of multiplication of distributions in space D 0, new spaces of
generalized functions have been de�ned. (See refs. 23{27.) Colombeau (ref. 27, chapters 1{3)
gives an intuitive description of the problem of multiplication of distributions and shows how to

remedy this problem.

3.1.2. Shift operator. Let f(x) be an ordinary function and de�ne the shift operator as

Ehf(x) = f(x + h). Then, if F [�] is the functional representing f(x) by equation (2.1) and if
the shifted function Ehf(x) is represented by EhF [�] , we have

EhF [�] =

Z
f(x+ h)�(x) dx

=

Z
f(x)�(x � h) dx

= F [E�h� ] (3:4)

This rule can now be used for all generalized functions in D0 because E�h� is in D . For example,

Eh�(x) = �(x + h) has the property

Eh�[�] =

Z
�(x + h)�(x)dx

= �[�(x� h)]

= �(�h) (3:5)

Note that the integral in equation (3.5) is meaningless and stands for the functional Eh�[�],
which in turn is given by � [E�h�].

3.1.3. Equality of two generalized functions f(x) and g(x) on an 
 open set. Two generalized

functions f and g in D0 given by functionals F [�] and G[� ] on D, respectively, are equal on an

 open set if F [�] = G[�] for all � such that supp � � 
. For example, �(x) = 0 on open sets

(0;1) and (�1; 0). Note that generalized functions are compared only on open intervals.

3.1.4. Support of a generalized function. The support of a generalized function f(x) is the
complement with respect to the real l ine of the open set on which f(x) = 0. For example, the

support of �(x) is the set f0g; that is, the point x = 0.
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3.1.5. Sequence of generalized functions. A sequence of generalized functions Fn [�] is
convergent if the sequence of numbers fFn [� ]g is convergent for all � in D. For example, let

�n(x) =

8><
>:
n2
�
1
n � jxj

� �
jxj � 1

n

�

0
�
jxj > 1

n

� (3:6)

This function is shown in �gure 2 and is, of course, an ordinary function. It can be shown that

lim
n!1

�n(x) = �(x) (3:7)

Thus, for the functional �n[�] representing �n(x),

�n [�] =

Z
�n(x)�(x) dx (3:8)

when � is in D , we have

lim
n!1

�n [�] = �(0)

= � [�] (3:9)

The index in the de�nition of convergence can be a continuous variable. For example, F"[�] is
convergent as "! 0 if lim

"!0
F"[�] exists for all � in D.

The following important theorem characterizes D0 and has signi�cant applications. (See

ref. 7.)

y

n

δn(x)

1

n– 1


n

Figure 2. Example of � sequence.
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Theorem: The space D0 is complete.

This theorem implies that a convergent sequence of generalized functions in D 0 always converges

to a generalized function in D 0.

We use this theorem later in this section whenwe discuss the �nite part of divergent integrals.

3.1.6. Odd and even generalized functions. A generalized function F [�] is even if F [�(�x)] =
F [�(x)] and odd if F [�(�x)] = �F [�(x)]. For example �(x) is even and x is odd.

3.1.7. Derivative of a generalized function. The derivative of a generalized function is the most
important operation used in this paper. Let f (x) be an ordinary function with a continuous �rst
derivative (i.e. , f is a C1 function). If f(x) is represented by the functional F [�] in equation (2.1),

then we naturally identify its derivative f 0(x) with F 0 [�] given by the functional

F 0[�] =

Z
f 0�dx (3:10)

Now we integrate by parts and use the fact that � has compact support to get

F 0[�] = �

Z
f� 0dx

= �F [�0] (3:11)

Because � 2 D, then �0 2 D . Thus, F [� 0] is a functional on D. We now use equation (3.11)
to de�ne the derivative of all generalized functions in D 0. We can keep taking higher order

derivatives and obtain the following result:

F (n)[�] = (�1)nF
h
�(n)

i
(n= 1; 2; :: :) (3:12)

We have thus arrived at the following important theorem.

Theorem: Generalized functions have derivatives of all orders.

We have obtained a very surprising result. Even locally Lebesgue integrable functions that are
discontinuous are in�nitely di�erentiable as generalized functions. What are the implications of
this theorem in applications? We address this question about generalized derivatives and their

applications in section 3.2. First, some examples would be helpful.

Example 1. The derivative of the delta function � 0(x) has the property,

� 0[�] = �� [�0]

= ��0(0) (3:13)

Symbolically, we can write Z
� 0(x)�(x) dx = �� 0(0) (3:14)

Note that �0(x) is an odd generalized function.

Example 2. The Heaviside function is de�ned as

h(x) =

�
1 (x > 0)

0 (x < 0)
(3:15)

10



or in functional notation,

H [� ] =

Z 1

0
�(x)dx (3:16)

This function is discontinuous at x = 0. To de�ne the generalized derivative, we use
equation (3.11) as follows:

H 0 [�] = �H [�0]

= �

Z 1

0
�0 dx

= �(0)

= � [�] (3:17)

Symbolically, we write
�h0(x) = �(x) (3:18)

Note the use of the bar over h0 to signify generalized di�erentiation because h0(x) = 0 where

now h0 stands for the ordinary derivative.

We give one more important characterization of space D0 (ref. 7) known as the structure
theorem of distribution theory.

Theorem: Generalized functions in D 0 are generalized derivatives of a �nite order of continuous

functions.

For example, we note that the Dirac delta function is the second generalized derivative of the
continuous function

f(x) =

�
x (x � 0)
0 (x < 0)

(3:19)

3.1.8. Fourier transforms of generalized functions. We now work with the space of rapidly
decreasing test functions S . (See sec. 2.1, the last paragraph.) In this space the Fourier transform

of each test function is again in S . (See refs. 2, 4, 6, and 7.) We de�ne the Fourier transform of
an ordinary function  (x) as b (�) = Z 1

�1

 (x)e2�ix� dx (3:20)

Let f(x) be an ordinary function that has the Fourier transform f̂(�) (e.g., let f be square

integrable on (�1;1)). Then for  (x) in S , the Parseval relation isZ 1

�1

f̂(x) (x) dx =

Z 1

�1

f (x)b (x) dx (3:21)

If now F [ ] is identi�ed with f(x), then we should identify bF [ ] with f̂(�). However,
equation (3.21) is actually the relation

bF [ ] = F [b ] (3:22)

We use this relation as the de�nition of the Fourier transform of generalized functions in space

S 0. For example, b� [ ] = � [b ] = b (0) = Z 1

�1

 (x) dx (3:23)
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The last integral is the functional generated by the function 1 so that

b�(�) = 1 (3:24)

Thus, the Fourier transform of the Dirac delta function is the constant function 1.

We will not discuss this subject further because we do not use Fourier transforms extensively

in this paper. We note, however, that if  is in D , then b is not necessarily in D and
equation (3.22) is meaningless in D0 . Therefore, we must change the test function space fromD

to S . Another method of �xing this problem is to use the Fourier transforms of functions
in space D as a new test function space bD. The Fourier transformations of functions in
D0 are now continuous linear functionals on space bD . These generalized functions are called

ultradistributions. (See ref. 28.)

3.1.9. Exchange of limit processes. One of the most powerful results in generalized function

theory is that the limit processes can be exchanged. For example, all the following exchanges
are permissible:

�d

dx

Z


� � � =

Z



�d

dx
� � � (3 :25a)

�d

dx

X
n

� � � =
X
n

�d

dx
� � � (3:25b)

X
n

Z


� � � =

Z



X
n

� � � (3:25c)

lim
n!1

Z


� � � =

Z



lim
n!1

� � � (3:25d)

�d

dx
lim
n!1

� � � = lim
n!1

�d

dx
� � � (3:25e)

lim
n!1

X
m

� � � =
X
m

lim
n!1

� � � (3:25f)

@
2

@xi @xj
� � � =

@
2

@xj @xi
� � � (3 :25g)

Here, as before, a bar over the derivative indicates generalized di�erentiation. For example, let
us consider the Fourier series of the simple periodic function with period 2�

f(x) =

�
1 (0 < x < �)

�1 (�� < x < 0)
(3:26)

which is

f(x) =

1X
m=0

4

(2m + 1)�
sin(2m+ 1)x (3:27)

This function is shown in �gure 3. The function f(x) has a jump of 2(�1)n at x = n� for
n = 0; �1; �2. By a result given in section 3.2.1 (eq. (3.43)),

�df

dx
= 2

1X
n=�1

(�1)n�(x� n�) (3:28)
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1

0–π–2π π 2π x

–1

y

Figure 3. Periodic function with jump discontinuity of 2(�1)n at x= n�, n = 0;�1;�2;: : :.

Also, by equation (3.25b), we have

�df

dx
=

�d

dx

1X

m=0

4

(2m + 1)�
sin(2m+ 1)x

=

1X

m=0

�d

dx

4

(2m + 1)�
sin(2m+ 1)x

=

1X

m=0

4

�
cos(2m + 1)x (3:29)

From equations (3.28) and (3.29), we conclude that

2

�

1X

m=0

cos(2m+ 1)x=

1X

n=�1

(�1)n�(x� n�) (3:30)

The series on the left is divergent in the classical sense. Nevertheless, such a result is often useful
in signal analysis. Another important application of exchange of limit processes is in obtaining

the �nite part of a divergent integral. (See sec. 3.4.)

3.1.10. Integration of generalized functions. We say that G[�] is an integral ofF [� ] if

G0[� ] = F [�] (3:31)

For example, we can easily show that the Heaviside function is an integral of the Dirac delta
functionbecause

H 0 [�] = �H [�0]

= �(0)

= � [�] (3:32)

Let K [�] be a generalized function such that

K 0 [�] = 0 (3:33)
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for all � 2 D. Then, if G[�] is an integral of F [�], it follows that (G+ K)[�] = G[� ] +K [�] is
also an integral of F [�] . References 7 and 29 show that the only solution of equation (3.33) in

D0 is

K [�] =

Z
c�(x) dx (3:34)

where c is an arbitrary constant (i.e., K [�] is a constant distribution). This result corresponds
to the classical inde�nite integration of a functionZ

f(x)dx = g(x)+ c (3:35)

We use the same notation symbolically for all generalized functions. For example, we writeZ
�(x) dx = h(x) + c (3:36)

where h(x) is the Heaviside function. Note that the integral on the left of equation (3.36) is
meaningless in terms of the classical integration theories.

3.2. Generalized Derivative

The generalized di�erentiation concept is quite important in generalized function theory;

this section focuses on it and gives some very useful results for applications. Indeed, the results
themselves, rather than the mathematical rigor used in deriving them, are of interest in this
paper. As before, a bar over the di�erentiation symbol denotes generalized derivatives if there

is an ambiguity in interpretation. For example, we use �df=dx, �f 0(x), @f=@xi , and @
2
f=@xi @xj

to denote generalized derivatives of ordinary functions, but we do not use a bar over � 0(x) and
@�(f)=@xi because it is obvious that these derivatives can only be generalized derivatives because
�(x) and �(f ) are singular generalized functions.

3.2.1. Functions with discontinuities in one dimension. Let f(x) be a piecewise smooth
function with one discontinuity at x0 with a jump at this point de�ned by the relation

�f = f(x0+)� f(x0�) (3:37)

We want to �nd the generalized derivative of f (x). Let � be in D and let x0 be in the

support of �(x). Then if F [�] is the functional representing f(x) by equation (2.1), we have for
supp � = [a; b ], the result

F 0 [�] = �F
�
�0
�

= �

Z b

a
f (x)�

0

(x) dx

= �

"Z x0�

a
+

Z b

x0+

f(x)�0(x)dx

#

=

Z b

a
f 0(x)�(x)dx+ [f(x0+)� f (x0�)]�(x0)

=

Z b

a
f 0(x)�(x)dx+ �f �(x0) (3:38)

14



We have performed an integration by parts to get to the last step. We have also used the fact that
�(a) = �(b) = 0 in the integration by parts. Noting that � (x0) = � [� (x + x0)] = E�x0

� [�(x)],

where E�x0 is the shift operator, we write equation (3.38) symbolically as

�f0(x) = f 0(x)+ �f �(x � x0) (3:39)

One question is the use of �f 0(x) compared with the ordinary derivative f 0(x). Let us study
equation (3.38). The functional F 0[�] corresponding to �f 0(x) indeed has retained the memory of

the jump �f on the right side of the equation. Symbolically, �f 0(x) can be integrated over [c; x],
where c < x0 < x, to give the result

f(x) =

Z x

c
f 0(x)dx + f(c)+ �fh(x � xo) (3:40)

Thus, we have recovered the original discontinuous function. We note, however, that

f(x) 6=

Z x

c
f 0(x)dx + f(c) (3:41)

because the memory of the jump �f is not retained in f 0(x) but is retained in �f 0(x). If a

function f (x) has n discontinuities at xi; i = 1� n with the jump �fi at xi de�ned by

�fi = f(xi+) � f(xi�) (3:42)

then

�f 0(x) = f 0(x) +

nX
i=1

�fi �(x � xi) (3:43)

This equation is the �rst indication that when we work with discontinuous functions in
applications, the proper setting for the problem is in the space of generalized functions. In

particular, if an integral method, such as the approach that uses the Green's function, is used
to �nd the solution, essentially no signi�cant changes to algebraic manipulations are needed in

�nding discontinuous solutions provided we stay in the space of generalized functions. Again,
we will have more to say about this later. (See sec. 3.2.3.)

3.2.2. Functions with discontinuities in multidimensions. Let us now consider the function
f(x), which is discontinuous across the surface g(x) = 0. Let us de�ne the jump �f across

g = 0 by the relation

�f = f(g = 0+)� f(g = 0�) (3:44)

Note that g = 0+ is on the side of the surface g = 0 into which rg points. We would like to

�nd @f=@xi . To do this we use the results from section 3.2.1 as follows. Let us put a surface
coordinate system

�
u1; u2

�
on g = 0 and extend the coordinates to the space in the vicinity of

this surface along normals. Let u3 = g be the third coordinate variable that is well de�ned by

the function g in the vicinity of this same surface. We note that f in variables u1 and u2 is
continuous, but it is discontinuous in variable u3. Therefore, we have

@f

@ui
=

@f

@ui
(i = 1; 2) (3 :45a)

@f

@u3
=

@f

@u3
+ �f �(u3) (3:45b)
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In equation (3.45b), we used equation (3.39). Thus, using the summation convention on index
j , we get

@f

@xi
=

@f

@uj

@uj

@xi

=
@f

@uj

@uj

@xi
+ �f

@u3

@xi
�(u3)

=
@f

@xi
+ �f

@g

@xi
�(g) (3:46)

We can write this in vector notation as

rf =rf + �frg �(g) (3:47)

In section 3.2.3, we discuss how to interpret �(g) when g = 0 is a surface. We can simi larly

de�ne generalized divergence and curl as follows:

r � f = r � f +rg � �f �(g) (3 :48a)

r � f = r � f +rg ��f �(g) (3:48b)

The rigorous derivation of both these results requires some knowledge of the invariant de�nition

of divergence and curl in general curvilinear coordinate systems. (See refs. 8 and 9.) We can
combine the above three results by using � for the three operations such that

r � f = r� f + rg ��f �(g) (3:49)

3.2.3. Ordinary di�erential equations and Green's function. We give a few simple results

here. One important question discussed in connection with integrals of generalized functions is
the solution of

�f0(x) = 0 (3:50)

in D 0. It can be shown easily that the only solution of this equation is the classical one (refs. 7

and 29)

f(x) = C (3:51)

where C is a constant. However, the solution of the equation

xf(x) = 0 (3:52)

which is not a di�erential equation, is

f(x) = C�(x) (3:53)

To get this solution, some simple results from the generalized Fourier transform are used. (See
ref. 29.) Taking the Fourier transform of both sides of equation (3.52), we get

�d

d�
f̂ (�) = 0 (3:54)
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Therefore, after integration of equation (3.54), we have

f̂ (�) = C (3:55)

By taking the inverse Fourier transform of both sides of equation (3.55), we get equation (3.53).

From this result, the solution of
x�f 0(x) = 1 (3:56)

is found as
f(x) = lnjxj + C1 + C2h(x) (3:57)

where C1 and C2 are constants and h(x) is the Heaviside function. The solution C2h(x) comes
from the fact that the generalized function �f 0(x) satisfying the equation

x�f 0(x) = 0 (3:58)

is, from equation (3.53),
�f 0(x) = C2�(x) (3:59)

Thus, the solution of the homogeneous equation (3.58) is the integral of this function

f(x) = C1 + C2h(x) (3:60)

Let us now consider a second order linear ordinary di�erential equation with two linear and

homogeneous boundary conditions (BC) as follows:

`u = A(x)u00 + B(x)u0 + C(x) = f(x)
BC1[u] = 0
BC2[u] = 0

9=
;

(x 2 [0; 1])
(3:61)

Let us also assume that we know u is a C1 function and u00 is Lebesgue integrable so that �u00 = u00

and �u0 = u0. Suppose a function g(x; y) exists, the Green's function, such that

u(x) =

Z 1

0
f(y)g(x; y)dy (3:62)

Because u 2 C1, then �̀u = `u by continuity of u and u0. We know we can take �̀ into the
integral in equation (3.62) but not ` because g(x; y) may not belong to C1. Therefore, using `x
to indicate that derivatives in ` are with respect to x, we get

`u = �̀u

= �̀
x

Z 1

0
f(y)g(x; y)dy

=

Z 1

0
f(y)�̀xg(x; y)dy

= f(x) (3:63)

from equation (3.61). We see that �̀xg(x; y) must have the sifting property

�̀
xg(x; y) = �(x � y) (3:64)
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Because the BC's are linear, we also have

BC[u] =

Z 1

0
f(y)BCx[g(x; y)] dy (3:65)

Therefore, other conditions on g(x; y) are

BC1x[g(x; y)] = 0 (3 :66a)

BC2x[g(x; y)] = 0 (3:66b)

where the x in the subscripts of the BC's indicates that g(x; y) in the variable x satis�es the two
boundary conditions.

From equation (3.64) we conclude that, because �̀
x is a second order ordinary di�erential

equation, g(x; y) must be continuous at x = y and @g=@x must have a jump discontinuity at

x= y . The reason is that if g(x; y) has a discontinuity at x= y, the �rst generalized derivative
with respect to x will give a �(x� y) by equation (3.39). A second generalized derivative would
give � 0(x� y) in the result. But because � 0(x� y) is missing on the right of equation (3.64),

g(x; y) cannot be discontinuous at x= y. Assuming that g(x; y) is de�ned by

g(x; y) =

(
g
1
(x; y) (0 � x < y)

g
2
(x; y) (y < x� 1)

(3:67)

equation (3.64) means that

`xg1
(x;y) = `xg2

(x; y) = 0 (3 :68a)

g
1
(y; y) = g

2
(y; y) (3:68b)

@ g
2

@x
(y; y) �

@g
1

@x
(y; y) =

1

A(y)
(3:68c)

Note that equation (3.68a) is the same as `xg = 0 used above. This equation means that g
1
and

g
2
in variable x are solutions of the homogeneous equation `u = 0. Equation (3.68b) expresses

continuity of g at x = y and equation (3.68c) gives the jump of @g=@x at x = y. To get

equation (3.68c), we note that

�̀
xg = `xg + A(y)

�
@g

2

@x
(y; y)�

@g
1

@x
(y; y)

�
�(x� y)

= A(y)

�
@g

2

@x
(y; y)�

@g
1

@x
(y; y)

�
�(x � y)

= �(x� y) (3:69)

The last delta function follows from equation (3.64). Equation (3.68c) follows from the fact that
the coe�cient of �(x � y) in the expression after the second equality sign must be equal to 1.
The Green's function is now determined from equations (3.66) and (3.68a{c).

3.2.4. Leibniz rule of di�erentiation under the integral sign. We want to �nd the result of

taking the derivative with respect to variable � in the following expression in which A, B , and
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f are continuous functions and B(�) > A(�) for � 2 [a; b]. Thus,

E(�) =
d

d�

Z B(�)

A(�)
f(x; �) dx (3:70)

Let us de�ne the function H(x; �) as follows:

H(x; �) = h[x � A(�)]h[B(�)� x] (3:71)

where h(x) is the Heaviside function. The function H(x; �) = 1 when A(�) < x < B(�) and

H(x; �) = 0 otherwise. Using H(x; �), we can write E(�) as

E(�) =
�d

d�

Z
1

�1

H (x; �)f(x; �) dx

=

Z
1

�1

�
@H

@�
f + H

@f

@�

�
dx (3:72)

We have

@H

@�
(x; �) = �A0(�)h[B(�) � x]� [x � A(�)]

+ B 0(�)h[x� A(�)]� [B(�)� x]

= �A0(�)�[x� A(�)] + B 0(�)� [B(�)� x] (3:73)

Note that we have used

h[B(�) � x]� [x � A(�)] = h[B(�) � A(�)]�[x� A(�)]

= � [x � A(�)] (3:74)

because B(�) � A(�) > 0; thus, the Heaviside function is 1. Similarly, we do the same as in
equation (3.74) for the secondproduct of the Heaviside and the delta functions in equation (3.73).

Using equation (3.73) in equation (3.72) and integrating with respect to x, we get the Leibniz
rule of di�erentiation under the integral sign,

E(�) =

Z B(�)

A(�)

@f

@�
(x; �) dx + B 0(�)f [B(�); �] � A0(�)f [A(�); �] (3:75)

3.3. Multidimensional Delta Functions

In multidimensions, �(x) has a simple interpretation given by

Z
�(x)�(x) dx = �(0) (3:76)

Thus,

�(x) = �(x1)�(x2) : : : �(xn) (3:77)

where x = (x1; x2 ; : : : ; xn). In this section, we con�ne ourselves to three-dimensional space. Of

interest in applications are �(f) and � 0(f) where f = 0 is a surface in three-dimensional space.
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We can always assume that f is de�ned so that jrf j = 1 at every point on f = 0. If f does not
have this property, then f1 = f= jrf j does. Thus, rede�ne the surface.

3.3.1. Interpretation of �(f ). Consider the integral

I =

Z
�(x)�(f) dx (3:78)

Assume that we de�ne a curvilinear coordinate system
�
u1 ; u2

�
on the surface f = 0 and extend

these variables locally to the space near this surface along local normals. Let u3 = f which,

because jrf j = df=du3 = 1, u3 is the local distance from the surface. Thus, f = u3 = constant
6= 0 is a surface parallel to f = 0. Of course, we assume u3 is small. From di�erential geometry

(refs. 8 and 9), we have

dx =
q

g(2)

�
u1; u2 ; u3

�
du1du2 du3 (3:79)

where g(2)
�
u1; u2; u3

�
is the determinant of the �rst fundamental form of the surface f = u3 =

Constant. Using equation (3.79) in equation (3.78) and integrating with respect to u3 gives

I =

Z
�

h
x

�
u1; u2; u3

�i
�

�
u3
�q

g(2)
�
u1; u2; u3

�
du1du2du3

=

Z
�

h
x

�
u1; u2; 0

�iq
g(2)

�
u1 ; u2 ; 0

�
du1 du2

=

Z
f=0

�(x)dS (3:80)

That is, I is the surface integral of � over the surface f = 0.

3.3.2. Interpretation of � 0(f). We want to interpret

I =

Z
�(x)� 0(f) dx

=

Z
�

h
x

�
u1 ; u2 ; u3

�i
�0
�
u3
� q

g(2)
�
u1 ; u2 ; u3

�
du1 du2 du3 (3:81)

Here we have used the coordinate system
�
u1 ; u2 ; u3

�
de�ned above. Integrating the above

equation with respect to u3 gives

I = �

Z
@

@u3

h
�(x)

q
g(2)

�
u1 ; u2 ; u3

�i
u3=0

du1 du2 (3:82)

Again, from di�erential geometry, we have

@

@u3

q
g(2)

�
u1 ; u2 ; u3

�
= �2Hf

�
u1 ; u2 ; u3

�q
g(2)

�
u1; u2; u3

�
(3:83)
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where Hf stands for the local mean curvature of the surface f = u3 = Constant. Taking the
derivative of the integrand of equation (3.82) and using the result of (3.83), we obtain

I = �

Z
@�

@u3

h
x

�
u1 ; u2 ; 0

�iq
g(2)

�
u1 ; u2; 0

�
du1du2

+

Z
2Hf

�
u1; u2; 0

�
�

h
x

�
u1 ; u2 ; 0

�iq
g(2)

�
u1; u2; 0

�
du1du2

=

Z
f=0

�
�
@�

@n
+ 2Hf(x)�(x)

�
dS (3:84)

where @�=@n is the usual normal derivative of � . Intuitively, the appearance of the term 2Hf�

in the integrand is not at all obvious. This appearance is a clear indication of the importance
of di�erential geometry in multidimensional generalized function theory.

3.3.3. A simple trick. We have already shown that �(x)�(x) = �(0)�(x). By taking the
derivative of both sides of this equation, we get

�0(x)�(x)+ �(x)� 0(x) = �(0)�0(x) (3:85)

Obviously, the right side is simpler than the left side. Let us consider the expression

E = �(x)�(f) = �

h
x

�
u1 ; u2 ; u3

�i
�

�
u3
�

(3:86)

where again we have used the coordinate system
�
u1 ; u2 ; u3

�
de�ned in section 3.3.1 above. We

know that

�

h
x

�
u1 ; u2 ; u3

�i
�

�
u3
�
= �

h
x

�
u1 ; u2 ; 0

�i
�

�
u3
�

(3:87)

We use the notation�
~
(x) for �

�
x

�
u1 ; u2 ; 0

��
; that is, �

~
(x) is the restriction of�

~
(x) to the support

of the delta function that is the surface f = 0. We note that @�
~
=@n =

�
@=@u3

�
�
�
x
�
u1 ; u2 ; 0

��
= 0. Using �

~
(x), we can write E in two forms:

E = �(x)�(f ) (First form)

E = �
~
(x)�(f ) (Second form)

9=
; (3:88)

Is there an advantage of using the second form compared with the �rst form? The answer is
yes! Let us take the gradient of E for the two forms in equation (3.88). Thus,

rE = r� �(f) + �(x) rf � 0(f) (First form)

rE = r2�
~
�(f)+ �

~
(x)rf � 0(f) (Second form)

9>=
>; (3:89)

Here, r2�
~
is the surface gradient of �

~
(x) on f = 0. From equation (3.84), we note that

in the integration of �0(f) in the �rst form, the term @�=@n cancels a similar term in the in-

tegration of r� �(f). In the second form, because @�
~
=@n = 0, @�

~
=@n does not appear in

the integration of � 0(f ) and obviously is also absent in the integration of r2�
~
�(f). Therefore,
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algebraic manipulations are reduced. It is, thus, expedient to restrict functions multiplying
the Dirac delta function to the support of the delta function. Note carefully that functions

multiplying �0(x) cannot be restricted to the support of � 0(x); that is, �(x)� 0(x) 6= �(0)� 0(x).

3.3.4. The divergence theorem revisited. Let 
 be a �nite volume in space and let �(x) be a
C1 vector �eld. Let us de�ne the discontinuous vector �eld �1(x) as

�1(x) =

(
�(x) (x 2 
)

0 (x 62 
)
(3:90)

Let the surface f = 0 denote the boundary @
 of region 
 in such a way that n = rf points to
the outside of @
 and jrf j = 1 on f = 0. We have

r � �1 = r � �1 + ��1 � n �(f )

= r � �1 � �(x) � n �(f) (3:91)

We note that ��1 = �1(f = 0+)� �1(f = 0�) = ��(f = 0). Integrating over the unbounded

three dimensional space, we get

Z Z Z
@�1;1

@x1
dx1 dx2 dx3 =

Z Z
�1

���1
�1

dx2 dx3 = 0 (3:92)

Similarly, we get zero for integrals of @�1;2=@x2 and @�1;3=@x3, where �1;i is the ith component

of �1. Therefore, Z
r � �1 dx = 0 (3:93)

Now, the integration of the right side of equation (3.91) using equation (3.80) gives

Z


r � � dx �

Z
@


�n dS = 0 (3:94)

Here we have used the fact that, from equation (3.90),

r � �1 =

(
r � � (x 2 
)

0 (x 62 
)
(3:95)

Also, we de�ne �n = � � n. Equation (3.94) is the divergence theorem.

We note that equation (3.93) is valid if �1 has a discontinuity across the surface k = 0 within

 as shown in �gure 4. Equation (3.94) is therefore valid ifr�� in the volume integral is replaced

by r � �, where the only jump of � in the generalized divergence comes from the discontinuity
on k = 0. That is, we write

r � � = r � � + �� � n
0 �(k) (3:96)

where n0 = rk is the unit normal to k = 0. Equation (3.94) can now be written

Z


r � � dx =

Z
@


�n dS (3:97)
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∇k = n´

n

∂Ω

k = 0

Ω

Sk

Figure 4. Control volume 
 intersecting surface of discontinuity of vector �eld � used for deriving generalized

divergence theorem.

which, by using equation (3.96),we can also write as

Z


r � � dx =

Z
@


�n dS �

Z
Sk

��n0 dS (3:98)

where ��n0 = �� � n0 and Sk is the part of the surface k = 0 enclosed in region 
. (See �g. 4.)

The divergence theorem is used in deriving conservation laws in 
uid mechanics and physics

in di�erential form. The fact that it remains valid for discontinuous vector �elds, as shown
in equation (3.97), implies that such conservation laws are valid when all the derivatives
are interpreted as generalized derivatives. Thus, the jump conditions across the surface of

discontinuities are inherent in these conservation laws as shown in section 3.4. This interpretation
of conservation laws eliminates the need for the pillbox analysis of jump conditions.

3.3.5. Product of two delta functions. We have said earlier that the product of two arbitrary
generalized functions generally may not be de�ned. Here we give the interpretation of the
product of two multidimensional generalized functions for which multiplication is possible. Let

f = 0 and g = 0 be two surfaces intersecting along a curve � as shown in �gure 5. Assume
rf = n and rg = n

0 , where jnj = jn0 j = 1. We want to interpret

I =

Z
�(x)�(f )�(g) dx (3:99)

On the local plane normal to the �-curve, de�neu1 = f , u2 = g, and u3 = �, where � is the
distance along the �-curve. Extend u1 and u2 to the space in the vicinity of the plane along a
local normal to the plane. We have

dx =
du1 du2 du3

sin�
(3 :100)
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∇g = n'

f = 0

∇f = n

g = 0

Γ

Figure 5. Integration of �(f) �(g) for two intersecting surfaces f = 0 and g= 0.

where sin� = jn � n0j. Using equation (3.100) in equation (3.99) and integrating the resulting
integral with respect to u1 and u2, we get

I =

Z
�(x)

sin�
�

�
u1
�
�

�
u2
�
du1du2 du3 =

Z
f=0
g=0

�(x)

sin�
d� (3 :101)

This result is useful in applications. (See sec. 4.3.)

3.4. Finite Part of Divergent Integrals

The �nite part of divergent integrals is important in aerodynamics. The classical procedure

for �nding the �nite part of divergent integrals appears ad hoc and leads to questions about the
validity of the procedure. First, could the appearance of divergent integrals in applications be
the result of errors in modeling the physics of the problem? Second, will the method lead to a

unique analytical expression or do di�erent analytical expressions lead to equivalent numerical
results? The generalized function theory clearly answers these questions.

Let us �rst examine the function f(x) = lnjxj , which is locally integrable. The ordinary
derivative of this function is

d

dx
lnjxj =

1

x
(3 :102)

which is not locally integrable over any interval that includesx = 0. We know, however, that
as a generalized function, lnjxj has generalized derivatives of all orders. What is the relation of
the generalized derivative of lnjxj to the ordinary derivativef 0(x) = 1=x?

Let us work with F [�] representing lnjxj as follows:

F [�] =

Z
lnjxj�(x) dx (� 2 D) (3 :103)

We have, using the de�nition of generalized derivative,

F 0[� ] = �

Z
lnjxj� 0(x)dx (3 :104)
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hε(x)

1

–ε αε

Figure 6. Function h"(x) used in de�ning �nite part of divergent integral
R
[�(x)=x]dx. "> 0; � > 0.

We need some integration by parts to get the term 1=x in the integrand of equation (3.104).

However, this integration cannot be performed because 1=x is not locally integrable. We solve
this problem by using a new functional depending on", the limit of which isF 0[�] as follows.

Let h"(x) be a function de�ned below for some constant� > 0 and a parameter " > 0. Thus,

h"(x) =

(
0 (�" < x < �")

1 (Otherwise)
(3 :105)

This function is shown in �gure6. Then it is obvious that lnjxj can be written as the limit of

an indexed generalized function as follows:

lim
"!0

h"(x)lnjxj = lnjxj (3 :106)

Note that if we de�ne F 0"[�] as

F 0"[�] = �

Z
h"(x)lnjxj�

0(x) dx (3 :107)

then we have from the completeness theorem ofD0 (sec. 3.1.5)

lim
"!0

F 0
"[�] = F 0[�] (3:108)

The function h"(x)lnjxj has two jump discontinuities atx = �" and x = �". We can either
apply the classical integration by parts to equation (3.107) by breaking the real line into two
intervals or by using the generalized derivative

F 0"[�] =

Z �d

dx
[h"(x) lnjxj]�(x) dx (3 :109)

Here we are integrating oversupp � and we do not worry about the terms coming from the limits
of the integral in the integration by parts because� = 0 at the limit points.

We now take the derivative of the term in square brackets in equation (3.109):

�d

dx
[h"(x)lnjxj] =

h"(x)

x
� ln"�(x + ") + ln(�")�(x � �") (3 :110)
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Here and below, we have used the result that �(x)� (x � x0) = � (x0) � (x � x0). Thus, after
using equation (3.110) in equation (3.109) and integrating with respect to x, we have

F 0"[�] = �ln "�(�") + ln(�")�(�") +

Z
h"(x)

x
�(x) dx

= �(0)ln�+

Z
h"(x)

x
�(x)dx+ o(") (3 :111)

where o(") stands for terms of order " and higher. Now from equation (3.108) we have

F 0[� ] = lim
"!0

F 0"[�]

= �(0)ln�+ lim
"!0

Z
h"(x)

x
�(x) dx

= �(0)ln�+ lim
"!0

�Z �"

�1

�(x)

x
dx +

Z 1

�"

�(x)

x
dx

�
(3 :112)

We can show that the limit of the integral on the right of equation (3.112) exists. If now � = 1,

then ln� = 0 and

F 0 [�] = lim
"!0

�Z
�"

�1

�(x)

x
dx+

Z
1

"

�(x)

x
dx

�
(3 :113)

which is known as the Cauchy principal value (PV) of the integral. But � = 1 need not be taken
and equation (3.112) is numerically the same as equation (3.113). The above limit procedure is
called taking the �nite part of a divergent integral.

What have we achieved? Over any open interval that does not include x = 0 we have

�d

dx
lnjxj =

1

x
(3 :114)

but when x = 0 belongs to the open interval, then the classically divergent integral must

be interpreted such that the functional F 0[�] corresponding to (�d=dx) lnjxj is recovered. As
the above simple function demonstrates, more than one di�erent analytical expression for the
procedure can be used to �nd the �nite part of a divergent integral. However, all the expressions

are numerically equivalent. We de�ne the principal value of 1=x as

PV

�
1

x

�
=

�d

dx
lnjxj (3 :115)

Thus, when x = 0 is in the interval of integration of 1=x, the �nite part of the divergent integral
must by taken to get the numerical value of F 0[�] , where F [�] is given by equation (3.103). Note

that the term regularizing a divergent integral is also used in mathematics. The procedure given
here corresponds to the canonical regularization of Gel 'fand and Shilov. (See ref. 7.)

What is the use of this procedure in applications? Suppose we have reduced the solution of

a problem to the evaluation of the expression

u(x) =
d

dx

Z


�(y) lnjx � y j dy (3 :116)
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where x 2 
. Let us assume that we know that the integral is continuous as a function of x so
that d=dx can be replaced by �d=dx and taken inside the integral. We get

u(x) =

Z


�(y)

�d

dx
lnjx� yj dy

=

Z


�(y)PV

�
1

x � y

�
dy (3 :117)

which is interpreted as the �nite part of the divergent integral by the procedure de�ned earlier.

We remind the readers that the procedure will result in exactly what equation (3.116) would
give had we been able to perform the integration analytically. Also, assuming that � = 0 at the

boundaries of 
, an integration by parts of the �rst integral in equation (3.117) would give

u(x) = �

Z


�0(y)lnjx� yj dy (3 :118)

which is also a legitimate result if this integral exists. The problem is that often in applications,
equation (3.116) is an integral equation for the unknown function �(x), which has integrable

singularities at the boundaries of the interval 
. Thus, the above integration by parts is invalid
and, in any case, the integral equation (3.118) is divergent. Therefore, the only choice left is
the integral equation with the principal value of 1=(x� y), which is a well-known kernel in the

theory of singular integral equations.

We now give an advanced example in three dimensions with a surprising implication in the
numerical solution of an integral equation of transonic 
ow which we will discuss in section 4.

Let us consider the integral

I(x) =
@2

@x21

Z



�(y)

r
dy (3 :119)

r2 = (x1 � y1)
2 + (x2 � y2)

2 + (x3 � y3)
2 (3 :120)

where 
 is a region in space and x 2 
. In this problem �(x) is a C1 function and is the
unknown of the aerodynamic problem. Assuming that the integral is a C1 function in x, we can

replace @2=@x21 with @
2
=@x21 and take the derivatives inside the integral

I(x) =

Z


�(y)

@
2

@x21

�
1

r

�
dy

=

Z


�(y)

@
2

@y2
1

�
1

r

�
dy (3 :121)

We use generalized di�erentiation rather than ordinary di�erentiation because the latter will
result in a divergent integral. Note that

@

@y1

�
1

r

�
=

r1
r3

(3:122a)

@2

@ y21

�
1

r

�
=

3r21 � r2

r5
(3:122b)
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where r1 = x1 � y1. Because r1=r
3 is integrable, we write

@
2

@y21

�
1

r

�
=

@

@y1

� r1
r3

�
(3 :123)

and we proceed to �nd the �nite part of the divergent integral in equation (3.121).

Let f(y ;x; ") = g (r1; r2 ; r3) � " = 0 be a piecewise smooth surface enclosing the point
y = x where ri = xi � yi , i = 1{3 and g is a homogeneous function of order 1; that is,

g (�r1 ; �r2 ; �r3) = �g (r1 ; r2; r3). This condition assures that the surface g (�r1 ; �r2 ; �r3)�" = 0
corresponds to g (r1 ; r2 ; r3) � "=� = 0 for � 6= 0. Thus, all the surfaces g � " = 0 correspond
to various values of � that are similar in shape. From the homogeneity of g, it follows that

f(y ;x; 0) = g (r1; r2 ; r3) = 0 consists of a single-point y = x. For example, for a sphere with a
center at y = x and radius ", we have

f(y ;x; ") =

q
r21 + r22 + r23 � " = 0 (3 :124)

In addition, we assume ryf = n, where n is the local unit outward normal to the surface. Let

f > 0 outside and f < 0 inside this surface, respectively. We introduce the function h"(y) by
the relation

h"(y) =

(
1 (f > 0)

0 (f < 0)
(3 :125)

Now, we de�ne the required generalized derivative in equation (3.123) by the relation

@
2

@y21

�
1

r

�
= lim

"!0

@

@y1

�
h"(y)r1

r3

�

= lim
"!0

"
r1n1

r3
�(f)+

3r21 � r2

r5
h"(y)

#
(3 :126)

where n1 is the component of n along the y1-axis. Therefore, I(x) can be written

I(x) = lim
"!0

Z
f=0

r1 n1

r3
�(y) dS

+ lim
"!0

Z



3r21 � r2

r5
h"(y)�(y)dy (3 :127)

where we have used equation (3.80) to integrate �(f ) in equation (3.126).

Using a Taylor series expansion of �(y) at y = x , we �nd that

lim
"!0

Z
f=0

r1 n1
r3

�(y) dS = �f �(x) (3 :128)

where �f is a constant depending on the shape of the surface f = 0. For example, for the sphere
given by equation (3.124), we have

�f =
4�

3
(3 :129)
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If we take the surface f = 0 to be a circular cylinder with its axis parallel to the y1-axis such
that the base radius is " and its height is 
; "



� 1, then

�f = 4� (3 :130)

Equation (3.127) is thus written

I (x) = �f �(x) + lim
"!0

Z



3r21 � r2

r5
h"(y)�(y)dy (3 :131)

Numerically, I (x) is the same regardless of the shape of f = 0. Because
�
3r21 � r2

�
=r5 near y = x

takes both positive and negative values, the shape of f = 0 as " ! 0 a�ects the value of the
integral in the summation process. This e�ect is similar to a well-known result for conditionally
convergent series, which can be made to converge to any value by rearranging the terms of the

series. The term �f�(x) in equation (3.131) compensates for the change in the value of the
volume integral when f = 0 is changed so that I(x) is numerically the same.

What is the implication of the above result in applications? In practice, the volume
integration is performed numerically. The volume integral has a hole enclosing y = x whose
boundary surface is given by f = 0. The value of �f must, therefore, correspond to the grid

system used in the volume integration. If the hole is rectangular, which is often the case, then
neither of the above two �f 's in equations (3.129) and (3.130) is appropriate for the problem.

One question remains unanswered. When does the appearance of a divergent integral imply
anything other than the breakdown of the physical modeling? The answer is when we have

wrongly taken an ordinary derivative inside an improper integral. Such a step can make the
integral divergent and is caused by the wrong mathematics (improper procedure) rather than the
wrong physics. Thus, the analyst should always check the cause of the appearance of divergent

integrals in applications. Because in classical aerodynamics, the inappropriate mathematics
generally causes the appearance of divergent integrals, the �nite part of divergent integrals must

be used.

4. Applications

4.1. Introduction

In this section we give some applications in aerodynamics and aeroacoustics that show

the power and the beauty of generalized function theory. We use the results of the previous
sections here. Many areas of aerodynamics and aeroacoustics can use generalized function
theory, especially because the approach is almost always more direct and simpler than other

methods. In addition, for many problems involving partial di�erential equations, no alternate
method is available for �nding a solution. Below is a partial list of applications of generalized

function theory in aerodynamics, 
uid mechanics, and aeroacoustics:

Aerodynamics and 
uid mechanics

Derivation of transport theorems

Derivation of governing conservation laws (such as two-phase 
ows)

Derivation of jump conditions across 
ow discontinuities, velocity discontinuity as a vortex
sheet

Derivation of the governing equation for boundary element or �eld panel methods

Subsonic, transonic, and supersonic aerodynamic theory
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Aeroacoustics

Sound from moving singularities

Derivation of the governing equation for the boundary element method

Derivation of the Kirchho� formula for moving surfaces

Study of noise from moving surfaces using the acoustic analogy

Identi�cation of new noise generation mechanisms and their source strength (such as shock

noise)

In addition, in both aerodynamics and aeroacoustics, generalized function theory can help in

the derivation of geometric identities involving curves, surfaces, and volumes, particularly under
deformation and in motion.

4.2. Aerodynamic Applications

We give here four applications that have been previously derived by other classical methods.

The method based ongeneralized function theory, as expected, is much shorter and more elegant.
Other examples in aerodynamics are presented by De Jager. (See ref. 5.)

4.2.1. Two transport theorems. We give two results here that are used in the derivation of

conservation laws. We want to take the time derivative inside the integral

I =
d

dt

Z

(t)

Q(x; t)dx (4:1)

where 
(t) is a time-dependent region of space and Q(x; t) is a C1 function. Let us assume the

boundary @
(t) of 
 is piecewise smooth and is given by the surface f = 0 such that f > 0 in

. Assume also that rf = n0 where n0 is the unit inward normal to the surface. Suppose we
can ascertain that the integral in equation (4.1) is continuous in time. Then, we can replace

d=dt with �d=dt and bring the derivative inside the integral. We write

I =
�d

dt

Z
h(f )Q(x; t)dx

=

Z �
@f

@ t
�(f)Q(x ; t)+ h(f)

@Q

@t

�
dx

=

Z
@
(t)

@f

@t
Q(x; t) dS +

Z

(t)

@Q

@t
dx (4:2)

where h(f ) is the Heaviside function. Here we have used equation (3.80) to integrate �(f) in the

second step above. We can show that

@ f

@t
= �vn0 = vn (4:3)

where vn0 and vn are the local normal velocities in the direction of inward and outward normals,
respectively. Thus,

I =

Z
@
(t)

vnQ(x; t) dS +

Z

(t)

@Q

@t
dx (4:4)

This equation is the generalization of the Leibniz rule of di�erentiation of integrals in one

dimension.
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For the second result, we want to take the time derivative inside the following integral by
assuming again that the integral is continuous in time and that Q is a C1 function. Thus,

I =
d

dt

Z
@
(t)

Q(x ; t) dS (4:5)

We �rst convert the surface integral into a volume integral

I =
�d

dt

Z
�(f)Q

~
(x; t) dx (4:6)

Here f = 0 describes @
(t) and rf = n, where n is the unit outward normal. Also, note that
Q
~
is the restriction of Q to f = 0 as explained in section 3.3. Therefore,

I =

Z 2
4@f
@t

� 0(f)Q
~
(x ; t) + �(f )

@Q
~

@t

3
5dx (4:7)

We now must use the results of section 3.3 to integrate � 0(f) and �(f ). However, @f=@t = �vn
~

and this function is restricted already to f = 0. Thus,

@

@n

�
vn
~

Q
~
(x ; t)

�
= 0 (4:8)

Using equations (3.80) and (3.84), we get

I =

Z
@
(t)

2
4 @Q

~
@t

� 2vnHfQ(x ; t)

3
5dS (4:9)

where Hf is the local mean curvature of @
(t). What is @Q
~
=@t? We have the following result,

assuming that Q is nonimpulsive,

@Q
~

@t
=

@Q

@t
+ vn

@Q

@n
(4:10)

Derivation of equation (4.9) by other methods is not trivial.

4.2.2. Unsteady shock jump conditions. These conditions are usually obtained by the pillbox
analysis. We present a method here based on generalized function theory. We have said that
the conservation laws such as the mass continuity and the momentum equations are valid as

they stand if we replace all ordinary derivatives with generalized derivatives. We derive here the
jump conditions from these two conservation laws. Let k(x; t) = 0 describe an unsteady shock

surface. Let rk = n, where n is the unit normal pointing in the downstream direction. We
denote this downstream region as region 2 and the upstream region as region 1. We de�ne the
jump �Q in any parameter by

�Q = [Q]2 � [Q]1 (4:11)
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∇ × u = 0
∇k = n

k(x) = 0

Wake
Wing

Figure 7. Thin wing in incompressible, irrotational 
ow with wake.

where the subscripts 1 and 2 refer to the upstream and downstream regions, respectively.

Applying the rules of generalized di�erentiation to the mass continuity equation, we have

@�

@t
+r � (�u) =

@�

@t
+r � (�u)

+

�
��

@k

@t
+ �(�u) � n

�
�(k) = 0 (4:12)

where � is the density andu is the 
uid velocity. The sum of the �rst two terms on the right of

the �rst equality sign is the ordinary mass continuity equation and is 0. The coe�cient of�(k)
must also be 0. Thus,

���vn + �(�un) = �[� (un � vn)] = 0 (4:13)

where vn = �@k=@t is the local shock normal velocity andun = u � n is the local 
uid normal
velocity. This expression is the �rst shock jump condition.

The momentum equation in tensor notation using the summation convention gives

@

@t
(�ui)+

@

@xj

�
�uiuj

�
+

@p

@xi
=

@

@t
(�ui)+

@

@xj

�
�uiuj

�
+

@p

@xi

+

�
�(�ui)

@k

@t
+ �

�
�uiuj

�
nj + �pni

�
�(k) = 0 (4:14)

where p is the pressure. The sum of the three terms after the �rst equality sign is the ordinary
momentum equation. The coe�cient of�(k) must be zero; therefore,

�[�ui(un � vn)] + �pni = 0 (4:15)

This expression is the second shock jump condition.We can derive a similar result from the
energy equation.

Note that had we used the mass continuity and momentum equations in nonconservative
form, we would have been faced with ambiguities of multiplication of generalized functions.

This problem is discussed in detail by Colombeau. (See ref. 27.) In that reference, the remedy
for the removal of these ambiguities is discussed from intuitive and mathematically rigorous

aspects.

4.2.3. Velocity discontinuity as a vortex sheet. Let us consider a thin lifting wing in forward

ight in an incompressible 
uid as shown in �gure 7. It can be shown that the velocity �eld can

be idealized as irrotational (i.e.,r � u = 0) where u is the 
uid velocity. However, a velocity
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n = ∇k

x3
x2

x1

n

Shock

n

Shock

Wake

k(x) = 0:  wing and shock surfaces

Figure 8. Diagram used in deriving Oswatitsch integral equation of transonic 
ow.

discontinuity can occur on the wing and on the wake. In this caser � u 6= 0 and the velocity
discontinuity over the wing and the wake gives the vorticity distribution

r � u = r � u+ n ��u�(k)

= u��u�(k)

= ��(k) (4:16)

where k(x; t) = 0 describes the wing and wake surfaces andrk = n, the local unit normal to
these surfaces. Here we de�ne the vorticity distribution� = n��u. Note that again we de�ne

�u = [u]2 � [u]1, where n points into region 2. The Biot-Savart law gives the velocity �eld,

u(x) =

Z
� � r̂

r2
�(k) dy =

Z
k=0

� � r̂

r2
dS (4:17)

where

r̂ =
x � y

r

4.2.4. An integral equation of transonic 
ow. To derive the Oswatitsch integral equation of
transonic 
ow (refs. 30 and 31), consider a thin wing with shock waves in transonic 
ow moving

with uniform speed along thex1-axis as shown in �gure 8. Letu be the perturbation velocity
along the x1-axis. The governing equation for this 
ow parameter in nondimensional form is

r2u �
1

2

@2u2

@x21
= 0 (4:18)

For simplicity, we assume that the airfoil, the shock surfaces, and the wake surface are all

speci�ed by k(x) = 0. We set up this problem in generalized function space by converting
the derivatives in equation (4.18) to generalized derivatives. We again de�ne a jump inu or

u2 by �(�) = [ �]2 � [ �]1, where n = rk points into region 2. For the airfoil itself, we de�ne
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[u]1 =
�
u2
�
1
= 0 because the airfoil is a closed surface. Thus,

r

2
u �

1

2

@
2
u2

@x21
= �

�
@u

@n
�

@

@n1

�
u2

2

��
�(k)

+ r �

�
�

�
un �

u2

2
n1

�
�(k)

�
(4:19)

where n = (n1; n2; n3) is the unit normal to the surface k = 0 and n1 = (n1; 0; 0). Note that
on the right side of equation (4.19) we dropped the sum of two terms, which by equation (4.18)

is 0.

To get an integral equation, we use the Green's function of the Laplace equation, which is
�1=4�r , and treat �@2u2=@x21 as a source term to obtain

4�u(x) = �

1

2

@
2

@x21

Z
1

r
u2(y) dy

�

Z
k=0

1

r

�
@u

@n
�

@

@n1

�
u2

2

��
dS

� r �

Z
k=0

1

r

�
un�

u2

2
n1

�
dS (4:20)

Now if we bring the derivatives inside the �rst volume integral, which is over the unbounded

space, we must use the �nite part of the divergent integral introduced in section 3.4, equa-
tion (3.119). Taking Q(y) = u2(y) in equation (3.119), from equation (3.131) we have

@
2

@x21

Z
1

r
u2(y)dy = �fu

2(x) + lim
"!0

Z
3r21 � r2

r5
h"(y)u

2(y) dy (4:21)

The last integral in equation (4.20) is

r �

Z
k=0

1

r

�
un �

u2

2
n1

�
dS = �

Z
k=0

1

r2

�
u cos � �

u2

2
n1 cos �1

�
dS (4:22)

where cos� = r̂ � n, cos �1 = 1=n1 r̂ � n1, and r̂ = (x1 � y1)=r. Our job is �nished. The integral
on the right side is convergent. Substitute equations (4.21) and (4.22) in equation (4.20). The

result is the Oswatitsch integral equation of transonic 
ow. Further approximation is possible,
but we stop at this point. This derivation is much shorter and more direct than the original one.

(See refs. 30 and 31.)

4.3. Aeroacoustic Applications

In this section, we give four examples for the linearwave equation. Even for this equation, the

use of generalized function theory leads to important and useful results. Before the examples,
we give some standard forms of the inhomogeneous source terms appearing in aeroacoustic

problems. These follow:

2
� = Q(x; t) (4 :23a)

2
� = Q(x; t)�(f ) (4:23b)
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2
� =

@

@t
[Q(x; t)�(f)] (4:23c)

2
� = r � [Q(x; t)�(f)] (4:23d)

2
� = Q

~
(x; t)h

�
~f
�
� 0(f ) (4:23e)

2
� = Q(x; t)�(f )�

�
~f
�

(4:23f)

In these equations, f(x; t) = 0 is a moving surface, usually assumed a closed surface. An
open surface, such as a panel on a rotor blade, is described by f = 0 and ~f(x ; t) > 0, where
f(x; t) = ~f(x; t) = 0 describes the edge of the open surface. (See �g. 9.) Also, we denote the

Heaviside function as h
�
~f
�
. In equation (4.23e), note that Q

~
is the restriction of Q to f = 0.

The solutions of the above equations have been given in many publications of the author and

coworkers. (See refs. 33{36.) We give only a brief summary here.

The Green's function of the wave equation is

G(y; � ; x; t) =

(
�(g)
4�r (� � t)

0 (� > t)
(4:24)

where

g = � � t +
r

c
(4:25)

In this equation, (x; t) and (y ; � ) are the observer and the �eld (source) space-time variables,

respectively. The speed of sound is denoted by c and r = jx� yj . The two forms of the solution

n

∇f = n

∇f = ν~

f = f = 0 edge
~

f = 0,  f  > 0
~

f = f = 0
~

f = 0

f = 0
~

f = 0

 f  > 0
~

Figure 9. De�nition of open surface by relations f = 0, ~f > 0. Edge is de�ned by f = ~f = 0 and � is the unit inward

geodesic normal.
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of equation (4.23a) are

4��(x; t) =

Z
1

r
[Q]ret dy (4:26)

and

4��(x ; t) =

Z t

�1

d�

t � �

Z

(�)

Q(y; � )d
 (4:27)

where the subscript ret stands for retarded time t � r=c. The surface 
(� ) is the sphere
r = c(t � � ) (i.e. , the sphere with center at the observer x and radius c(t � �) with the element
of the surface denoted by d
). The two forms of the solution of equation (4.23a) are known as

the retarded time and the collapsing sphere forms of the solution, respectively.

The solution of equation (4.23b) can also be written in several forms. (See refs. 33 and 34.)
We give two forms here. For a rigid surface f(x; t) = 0, let Mr = M � r̂ be the local Mach number

in the radiation direction. Then

4��(x ; t) =

Z
f=0

�
Q(y ; � )

r j1 �Mr j

�
ret

dS (4:28)

Note that to get this equation, the formal Green's function solution, which is

4��(x; t) =

Z
1

r
Q(y; �)�(f)�(g) dy d� (4:29)

is integrated as follows. First introduce a Lagrangian variable � on and near the surface f = 0
such that the Jacobian of the transformation is unity. Note that we have y = y(� ; � ) and

r = jx � y(�; �)j (4:30)

Next let � ! g, which gives @g=@� = 1�Mr . Integrate equation (4.29) next with respect to g

and �nally integrate �(f) by the method of section 3.3 to get equation (4.28).

A more interesting method of integrating the delta functions in equation (4.29) is to let � ! g

and integrate with respect to g . The integration gives

4��(x; t) =

Z
1

r
[Q(y; � )]ret�(F) dy (4:31)

where F (y;x ; t) = [f (y ; � )]ret = f [y ; t � r=c ]. Note, however, that even if jrf j = 1 by
de�nition, we have jrF j 6= 1 in equation (4.31). We will, therefore, give a slight modi�cation of

equation (3.80). In the following integral, assume jrf j 6= 1, then

I =

Z
�(x)�(f )dx =

Z
f=0

�(x)

jrf j
dS (4:32)

This result applies to equation (4.31). It is easily shown by di�erentiation that

jrF j =
�
1 +M2

n � 2Mn cos �
� 1
2
� � (4:33)

where Mn = vn=c , vn = �@f=@t is the local normal velocity on f = 0, and cos � = n � r̂ is the
cosine of the angle between the local normal to f = 0 and the radiation direction r̂ = (x �y)=r.

Using equations (4.32) and (4.33) in equation (4.31), we get

4��(x; t) =

Z
F=0

1

r

�
Q(y ; � )

�

�
ret

d� (4:34)
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Influence surface

(acoustic planform)

Observer

Blade

surface

Figure 10. In
uence surface for observer on propeller surface, forward Mach number = 0.334, helical Mach

number = 0.880. (See ref. 44.)

where d� is the element of the surface area atF = 0. Note that for supersonic surfaces, the

conditionMr = 1 produces a singularity in equation (4.28). The use of equation (4.34) removes
this singularity in most cases.

To visualize the surface �: F = 0, let the surface f = 0 move in space. Construct the inter-
section of the collapsing spherer = c(t� � ) for a �xed (x; t) with the surface f = 0. The surface
in space that is the locus of these curves of intersection is the �-surface or the in
uence surface

for (x; t). Given (x; t), this surface is uniquebecause the sphere r = c(t � � ) has center at x and
r = 0 at � = t. Given � � t, because (x; t) is �xed, the sphere is speci�ed andf(y; �) = 0 is also
speci�ed. Therefore, the intersecting curve, if it exists, is speci�ed. Figure 10 (ref. 32) shows the

�-surface for a rotating propeller blade. This �gure indicates that the �-surface is dependent
on the motion and the geometry of the surface f = 0. A singularity in equation (4.34) may exist

when � = 0; however, we will not address the singularity problem here. Such a problem can
occur for supersonic propeller blades with blunt leading edges. That situation should be avoided
because of excessive drag problems.

The solutions of equations (4.23c) and (4.23d) can be related to that of (4.23b). For example,
the solution of equation (4.23c) is

4��(x; t) =
@

@ t

Z
f=0

�
Q(y ; � )

r j1 �Mr j

�
ret

dS (4:35)

Now @=@t can be brought inside the integral using the relation

@

@t
=

1

1 �Mr

@

@�
(4:36)

Note, however, that r = jx � y(� ; � )j so that @r=@ � 6= 0. (See refs. 33 and 34.) Similar

manipulations can be performed for the form of solution of equation (4.23c) based on equation
(4.34), but it is better to work with the source terms of equation (4.23c) before using the Green's

function approach. (See section 4.3.3.)
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The solution of equation (4.23e) is by far the most di�cult of the problems considered here.
We �rst simplify the algebraic manipulations by de�ning ~f such that r~f = � where � is the

unit outward geodesic normal to the edge. The geodesic normal is tangent to the surface f = 0,
~f > 0 and is orthogonal to edge f = ~f = 0. (See �g. 9.) The formal solution of equation (4.23e)

is

4��(x ; t) =

Z
1

r
Q
~
(y ; � )h(~f )� 0(f)�(g) dy d�

=

Z
1

r
[Q
~
(y; �)]reth(eF)� 0(F) dy (4:37)

where, as before, F = [f ]ret and we de�ne eF(y; x; t) = [~f(y ; � )]ret. Let N be the unit normal to

the surface F = 0. We can show that

N =
n�Mnr̂

�
(4:38)

Equation (4.37) is now of the form of equation (3.81). Again, because jrF j = � 6= 1, we must

give the modi�cation to equation (3.81) here. In this case, we have for jrf j 6= 1

Z
�(x)� 0(f) dy =

Z
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�
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dS (4:39)

Next, using F in place of f here, we get from equation (4.39)

4��(x; t) =

Z
F=0
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>:�
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h(eF)

1
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]reth(eF )

r�2

9>=
>; d� (4:40)

where HF is the local mean curvature of the �-surface given by F = 0. Note that

@

@N
h(eF ) = N � reF �(eF) (4:41)

so that we must integrate this delta function in equation (4.40). Using a curvil inear coordinate
system on the �-surface, we can show that

Z
F=0

�(x)jr eF j�(eF) d� =

Z
F=0eF=0

�

sin�0
dL (4:42)

where � 0 is the angle between N and eN = reF=jreF j. Also, dL is the element of length of the

edge of the �-surface given by F = eF = 0. The �nal result of manipulations of equation (4.40)
based on equation (4.42) is

4��(x; t) =

Z
F=0eF>0
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]ret
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r�2
dL (4:43)
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Note that we have de�ned eN as the unit normal to eF = 0 and we have

eN =
� � M� r̂e� (4 :44a)

e� = jreF j (4:44b)

cos�0 = N � eN (4:44c)

Because Q
~
is the restriction of Q to f = 0, we have @Q

~
=@n = 0. In equation (4.43), we �nd the

normal derivative of [Q
~
]ret �rst:
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@N
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]ret =

2
4 @Q

~
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ret

+
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2
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~
@�

N � r̂

3
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(4:45)

Using equation (4.38), we get

N =
1

�
[(1 �Mn cos �)n�Mn sin�t1] (4:46)

where t1 is the unit vector along the projection of r̂ on the local tangent plane to f = 0.
Therefore, after using @Q

~
=@n = 0 we get

@Q
~

@N
= �

Mn sin�

�

@Q
~

@t1
(4:47)

where @=@ t1 is the directional derivative ofQ
~
along t1. In this case, we no longer need restriction

of Q to f = 0 because @Q
~
=@t1 = @Q=@t1. For @Q

~
=@� in equation (4.45), we must use a relation

similar to that in equation (4.10). The curve F = eF = 0 in equation (4.43) is generated by the
intersection of the collapsing sphere g = 0 and the edge curve f = ~f = 0 of the open surface

f = 0; ~f > 0.

We next consider equation (4.23f). The formal solution is

4��(x ; t) =

Z
1

r
Q(y; � )�(f )�(~f)�(g)dy d�

=

Z
1

r
[Q]ret�(F)�(eF) dy (4:48)

This equation is similar to equation (3.99) except that jrF j 6= 1 and jr eF j 6= 1. In this

case, sin � in equation (3.100) is replaced by jrF � reF j , which by de�nition is �0. Therefore,
equation (4.48) gives

4��(x; t) =

Z
F=0eF=0

1

r

�
Q

�0

�
ret

dL (4:49)

We now give four applications.

4.3.1. Lowson's formula for a dipole in motion. A dipole is an idealization of a point force.

A point force in motion is described by the wave equation

2
p0 = �

@

@xi
ffi(t)� [x � s(t)]g (4:50)
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where p0 is the acoustic pressure, fi is the component of the point force, and s(t) is the position
of the force at time t . The formal solution of equation (4.50) is

4�p0(x ; t) = �
@

@xi

Z
fi(� )

r
� [y � s(� )]�(g) dy d� (4:51)

Let us integrate the above integral with respect to y . We get

4�p0(x; t) = �
@

@xi

Z
fi(� )

r�
�(g�) d� (4:52)

where

r� = jx � s(�)j (4 :53a)

and

g� = � � t +
r�

c
(4:53b)

Now let � ! g� and note that
@g�

@ �
= 1 �Mr (4:54)

where Mr = _s � r̂=c is the Mach number of the point force in the radiation direction. Integrate

the resulting equation with respect to g� to get

4�p 0(x; t) = �
@

@xi

�
fi(� )

r j1� Mr j

�
��

(4:55)

where � � is the emission time. The solution of g� = 0 has only one root if the point force is in
subsonic motion. The derivative in equation (4.55) can now be taken inside the square brackets.

The resulting equation is a formula given by Lowson (ref. 37) that is useful in noise prediction
of rotating blades where the dipole sources can by assumed compact.

4.3.2. Kirchho� formula for moving surfaces. In the 1930's, Morgans published a paper in
which he derived the Kirchho� formula for moving surfaces. (See ref. 38.) The derivation of this

formula was based on classical analysis and was lengthy. In 1988, Farassat and Myers gave a
modern derivation of this result based on generalized function theory. (See refs. 39 and 40.) The

derivation is short and avoids the use of four-dimensional Green's identity and the associated
di�culties of dealing with surfaces and volumes in four dimensions. We present the basic idea
behind this modern derivation here and refer the readers to reference 39.

Assume that the surface in motion on which conditions on �(x; t) are speci�ed is given by
f(x; t). This surface can be deformable. Assume that � satis�es the wave equation in the

exterior of the surface f = 0, which is the region de�ned by f > 0. Now extend � to the entire
unbounded space as follows:

~�(x; t) =

(
�(x; t) (f > 0)

0 (f < 0)
(4:56)

Clearly, ~� satis�es the wave equation in the unbounded space. However, ~� has discontinuities

across f = 0 that appear as source terms of the wave equation. Note that the jumps in
~� and its derivatives depend on corresponding values for � because �~� = �(f = 0+) and

�@ ~�=@ t = @�=@t (f = 0+).
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Applying the rules of generalized di�erentiation to ~� , we get

2~� = �
�
�n +

1

c
Mn�t

�
�(f)� 1

c

@

@t
[Mn��(f)] � r � [�n�(f)] (4:57)

where Mn = vn=c and vn = �@f=@t is the local normal velocity of the surface f = 0. As before,
we have assumed rf = n, the local outward unit normal to f = 0. The three types of source

terms on the right of equation (4.57) are of the standard types given in equations (4.23a{f). The
solution for a deformable surface is given by

4�~�(x; t) =

Z
D(S)

�
E1

p
g(2)

r (1 �Mr)

�
��

du1 du2 +

Z
D(S)

�
�E2

p
g(2)

r (1�Mr)

�
��

du1 du2 (4:58)

where D(S) is a time-independent region in u1u2-space onto which the surface f = 0 is mapped.
The determinant of the coe�cient of the �rst fundamental form is denoted g(2). In this equation

� � is the emission time of the point
�
u1 ; u2

�
on the surface f = 0. The expression E1 depends on

�, �n , r2� (surface gradient of �), and the kinematic and geometric parameters of the surface

f = 0. The expression E2 depends only on the kinematic and geometric parameters of the
surface f = 0. (See ref. 39.)

4.3.3. Noise from moving surfaces. Let an impenetrable surface f = 0 be in motion such

that f > 0 outside the body and rf = n, the unit outward normal. Let us assume that the

uid is extended inside this surface with conditions of undisturbed medium (i.e., density �0 and

speed of sound c). We know that the mass continuity and momentum equations are valid when
the derivatives are written as generalized derivatives. Let us extract only the contribution of
discontinuities across f = 0 and leave the e�ect of all other discontinuities (such as those across

shock waves) in these equations. The mass continuity equation gives

@�

@t
+r � (�u) = � (� � �0)vn�(f) + �un�(f)

= �0vn�(f) (4:59)

where �n = �@f=@t is the local normal velocity of f = 0 and we have used the impenetrability
condition on this surface, which is un = �n . The momentum equation gives

@

@t
(�ui) +

@

@xj

�
�uiuj +Pij

�
=Pij nj�(f) (4:60)

where Pij = E ij + (p� p0)�ij is the compressive stress tensor and Eij is the viscous stress

tensor. Now we take the generalized derivative of both sides of equation (4.59) and @=@xi of

both sides of equation (4.60), subtract the latter from the former, and �nally subtract c2 @
2
�=@x2i

from both sides to get

2
p0 = @

2

@xi @xj

�
Tijh(f)

� � @

@xi

�
Pij nj�(f)

�
+

@

@t
[�0vn�(f)] (4:61)

where p0 = c2(� � �0). Here Tij is the Lighthill stress tensor. Now we have added h(f), the

Heaviside function, on the right side to indicate that Tij 6= 0 outside the surface f = 0. This is
the Ffowcs Will iams{Hawkings (FW-H) equation. (See ref. 41.) Note that in the far �eld, p0 is
the acoustic pressure.
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The source terms of equation (4.61) are of the standard types in equations (4.23a{f). For
a surface in subsonic motion, the solution for surface sources involving the Doppler factor is

most appropriate for numerical work. (See refs. 33 and 34.) For supersonic surfaces such as
an advanced propeller blade on which jMnj < 1 everywhere, a di�erent solution based on the

�-surface must be used. We show here brie
y how this can be done. In applications, we need to
calculate the sound from an open surface such as a panel on a blade. We, therefore, de�ne such
an open surface by f = 0; ~f > 0 with the edge de�ned by f = ~f = 0 as before. The assumptions

concerning the gradients of f and ~f at the beginning of this section hold here. We are interested
in the solution of equations of the types

2
p0 =

@

@t

h
�0vnh(~f)�(f)

i
(4 :62a)

2
p0 = �

@

@xi

h
pnih(~f)�(f)

i
(4:62b)

where h(~f) is the Heaviside function. Note that we have approximatedPij in equation (4.61) by
p�ij where p is the surface (gauge) pressure. To derive solutions for equations (4.62a)and (4.62b)

suitable for supersonic panel motion, we write
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where v� is the velocity of the edge in the direction of the geodesic normal. A similar operation

can be performed on the right of equation (4.62b) such that

�
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@xi

h
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~f )�(f)
i
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�
p
~
nh(~f)�(f )

�
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~
h(~f)� 0(f)+ 2pHfh(

~f)�(f ) (4:64)

where Hf is the local mean curvature of the surface f = 0. The source terms of the right of

equations (4.63) and (4.64) are of the types in equations (4.23a{f). (See refs. 35 and 36.)

4.3.4. Identi�cation of shock noise source strength. The �rst term on the right of the
FW-H equation (4.61) is known as the quadrupole source. As mentioned in the derivations,

the discontinuities in the region f > 0 (i.e. , outside the body) contribute source terms after
generalized di�erentiation is performed. If a shock wave described by the equation k(x ; t) = 0

exists on a rotating blade, then the quadrupole term gives surface sources on the shock, the
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strengths of which are determined as follows. Let us take the generalized second derivative of
Tij by

@Tij

@xi

=
@Tij

@ xi

+ �Tijn
0

i�(k) (4:64a)
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(4:65b)

where n0 = rk is the unit normal to the shock surface pointing to the downstream region. The

last two terms on the right of this equation are shock surface terms that are of monopole and
dipole types, respectively. The �rst term on the right of equation (4.65b) is a volume term that
is familiar in Lighthill 's jet noise theory. In the rotating blade noise problem, this term primarily

re
ects nonlinearities other than turbulence. Farassat and Tadghighi (ref. 42) conjectured that
the shock surface terms contributed relatively more than the volume term in equation (4.65b).

Preliminary calculations have supported this conjecture. (See ref. 43.)

The interesting aspect in the above result is that the shock source strength is obtained
purely by mathematics. Without the use of the operational properties of generalized functions,
the identi�cation of shocks as sources of sound and the determination of the source strength

would be rather di�cult. Other mechanisms of noise generation can also be identi�ed by this
method. (See ref. 44.)

5. Concluding Remarks

In this paper, we have given the rudiments of generalized function theory and some
applications in aerodynamics and aeroacoustics. These applications depend on the concept
of generalized di�erentiation and on the Green's function approach. We have brie
y discussed

the generalized Fourier transformation. Many more examples could be given. The power of
this theory stems from its operational properties. In addition to the exchange of limit processes

that leads to many useful results, discontinuous solutions of linear equations using the Green's
function are easily obtained by posing the problem in generalized function space. As seen in the
example of the Oswatitsch integral equation of transonic 
ow, a nonlinear partial di�erential

equation with a discontinuous solution can be cast into an integral equation based on the
fundamental solution of the linear part of the di�erential equation. The Schwartz generalized

function theory has uni�ed many ad hoc methods in mathematics and has answered some
fundamental questions about linear partial di�erential equations. The nonlinear theory now
being developed, in which multiplication of generalized functions is allowed, can be even more

useful in applications. Generalized function theory is an extension of classical analysis and gives
engineers and scientists added power in applications. This extension is much like the complex
analysis that extends real analysis and is very important in applied mathematics. Finally,

multidimensional generalized functions, particularly the delta function and its derivatives, are
quite useful in many applications.

NASA Langley Research Center

Hampton, VA 23681-0001

January 28, 1994
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