A Spectral Atlas of the v_{12} Fundamental of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ in the $12 \mu \mathrm{~m}$ Region

Mark Weber, Dennis Reuter, J. Marcos Sirota, and John Hillman NASA Goddard Space Flight Center
Greenbelt, Maryland
William E. Blass
Department of Physics
University of Tennessee

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

The recent discovery of the minor isotopomer of ethane, ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$, in the planetary atmospheres of Jupiter and Neptune, added ethane to the molecules which can be used to determine isotopic ${ }^{12} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios for the jovian planets. The increased spectral resolution and coverage of the IR and far-IR instruments to be carried on the Cassini mission to Saturn and Titan may enable the detection of the minor isotopomer. Accurate frequency and cross-section measurements of the ν_{12} fundamental under controlled laboratory condition are important to interpret current and future planetary spectra. High resolution spectra of the minor isotopomer ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ have been recorded in the $12.2 \mu \mathrm{~m}$ region using the Kitt Peak Fourier Transform (FTS) and the Goddard Tunable Diode Laser spectrometer (TDL). In a global fit to 19 molecular constants in a symmetric top Hamiltonian, transition frequencies of the ν_{12} fundamental ranging up to $J=35$ and $K=20$ have been determined with a standard deviation of less than $0.0005 \mathrm{~cm}^{-1}$. From selected line intensity measurements, a vibrational dipole moment for the ν_{12} fundamental has been derived. Observed and calculated spectra covering the region from $740 \mathrm{~cm}^{-1}$ to $910 \mathrm{~cm}^{-1}$ are presented. A compilation of transition frequencies, line intensities, and lower state energies are included for general use in the astronomical community.

Introduction

The current spectroscopic study of the minor isotopomer ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ is motivated by its recent discovery as a constituent in the atmosphere of Jupiter by Wiedemann et al.(1). Employing a cryogenic echelle array spectrometer, Orton et al.(2) identified traces of ${ }^{13} \mathrm{C}$ ethane in Neptune's atmosphere. In both cases a near-terrestrial isotopic ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratio has been found (1,2). Laboratory measurements of frequencies and intensities are important for future identification and atmospheric modeling of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ in the outer planetary atmospheres using for instance high resolution heterodyne remote sensing.

Regular ethane and its deuterated species have been studied in some detail in the mid- and far-infrared (3-9). The minor isotopomer ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ has been investigated in the $2700 \mathrm{~cm}^{-1}$ region of the $\nu_{3}+\nu_{4}$ overtone (equivalent to $\nu_{2}+\nu_{6}$ in normal ethane) by Lafferty et al.(10). More recently, in studies of the $12 \mu \mathrm{~m}$ region Kurtz et al.(11) obtained the ratio of the integrated intensity of the ${ }^{r} Q_{0}$-branch of the ν_{12} band of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ with respect to the equivalent ν_{9} band of normal ethane. These studies were based on high resolution ($0.0025 \mathrm{~cm}^{-1}$) data recorded with the 1 m McMath FTS instrument at the National Solar Observatory in Kitt Peak, Arizona. The same laboratory data have been analyzed to assign rotation-torsional transitions in the ν_{12} fundamental and to determine ground state rotational constants from lower state combination differences (12).

More recently, the analysis has been extended to determine upper state constants for the ν_{12} fundamental of the minor isotopomer and to derive barriers to internal rotation in the ground and vibrational excited state (13). In this publication, a complete line by line compilation of calculated frequencies, lower state energies, and line strengths are published. From the molecular parameters a spectral atlas has been produced covering the region from 740 to $910 \mathrm{~cm}^{-1}$.

Experimental Details

Several spectra at room and typical planetary temperatures (101 K and 161 K) were recorded using the $1-\mathrm{m}$ Fourier transform spectrometer at the Kitt Peak National Solar Observatory (11,12). This instrument was operated in a double-pass configuration yielding a spectral resolution of $0.0025 \mathrm{~cm}^{-1}$ (14). The ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ sample was provided in a 99% purified form by Matheson Co. No traces of the major isotopomer have been found in the unapodized FTS spectra: Calibration to absolute wavenumbers was done using wellisolated P - and R-branch lines of the $\nu_{2}^{1 e}$ and $2 \nu_{2}^{0 e}$ band of $\mathrm{N}_{2} \mathrm{O}$ at $580 \mathrm{~cm}^{-1}$ and 1168 $\mathrm{cm},^{-1}$ respectively (12).

Details of the tunable diode laser system at NASA Goddard Space Flight Center can be found in Ref. (15). Several Q-branches ranging from $K \Delta K=-6$ to 6 were measured to obtain complementary information on observed torsional splittings (13). These spectra were recorded with gas pressures of $p=1.5$ Torr and an absorption cell length of $\ell=30 \mathrm{~cm}$. Relative wavenumber calibrations were obtained using a 3 inch solid Ge etalon (0.01623 cm^{-1} fringe spacing). A total of 68 splittings from the diode laser observations (Table II)

Table I. Molecular constants of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ in cm^{-1}. C_{σ} is the torsional Coriolis interaction parameter connecting the $v_{12}=1$ state with the $v_{6}=3$ state. σ_{F} is the weighted standard deviation of the overall fit. 2307 transitions and torsional splitting values survived the fit. For convenience parameters are also given in Hz .

ν_{o}	820.931 394(42)		
$B_{\text {o }}$	$0.6497649(91)$	19 479.46(27)	MHz
A_{0}	$2.66852 \dagger$	$80000.2 \dagger$	MHz
D_{o}^{J}	$0.99385(67) \times 10^{-6}$	29.795(20)	kHz
$D_{o}^{J K}$	$2.6088(87) \times 10^{-6}$	78.08(21)	kHz
D_{o}^{K}	$9.54 \times 10^{-6} \dagger \dagger$	$286 \dagger \dagger$	kHz
α_{12}^{B}	$1.29618(50) \times 10^{-3}$	38.858(15)	MHz
α_{12}^{A}	$-7.7964(11) \times 10^{-3}$	-233.730(33)	MHz
β_{12}^{J}	$3.07(10) \times 10^{-9}$	92.0(39)	Hz
$\beta_{12}{ }^{\text {J }}$	$-2.063(81) \times 10^{-8}$	-618(24)	Hz
β_{12}^{K}	$-1.868(20) \times 10^{-7}$	-5600(60)	Hz
$(A \zeta)_{12}^{z}$	$0.696191(18)$	20871.28 (54)	MHz
η_{12}^{J}	$-2.024(21) \times 10^{-6}$	-60.68(63)	kHz
η_{12}^{K}	$2.3911(30) \times 10^{-5}$	716.83(90)	kHz
q_{12}^{o}	$-1.72670(83) \times 10^{-3}$	51.765(25)	MHz
q_{12}^{J}	$9.07(88) \times 10^{-9}$	272(26)	Hz
$V_{6}^{(0)}$	1026.888(79)	$30785.3(24)$	GHz
$V_{6}^{(12)}$	1088.61(77)	32 635(24)	GHz
$F_{1 J}$	$-1.542(12) \times 10^{-2}$	-462.3(36)	MHz
$F_{1 K}$	$-0.947(11) \times 10^{-2}$	-283.9(33)	MHz
C_{σ}	$3.6510(28) \times 10^{-2}$	1094.54(84)	MHz
$\begin{aligned} & \sigma_{F} \\ & \text { data } \end{aligned}$	$5.5 \times 10^{-4} \quad 2307$	$2447^{16 \mathrm{MHz}}$	

\dagger Moazzen-Ahmadi et al.(9)
$\dagger \dagger$ Duncan et al.(16)
were added to the FTS data in the global fit to determine molecular constants for ν_{12}.

Global Least Squares Fit

An iterative bi-weighted non-linear least squares fit of the upper and lower state energies has been carried out simultaneously. The upper state Hamiltonian included off-diagonal ℓ-resonance terms within the $v_{12}=1$ state and off-diagonal torsional Coriolis interaction terms connecting with the excited torsional state of $v_{6}=3$. The results of the global fit are summarized in Table I (13). A more detailed account of the fitting procedure and the Hamiltonian used can be found in Ref. (13).

Of the 21 parameters employed in the upper and lower state Hamiltonian, the rotational constants A_{o} and D_{o}^{K} have been fixed to $2.66852 \mathrm{~cm}^{-1}(9)$ and $9.54 \times 10^{-6} \mathrm{~cm}^{-1}(16)$, respectively. The rotation-torsional constants $F_{1 J}$ and $F_{1 K}$ in the $v_{12}=1$ state were fixed to the ground state value. Observed torsional splittings recorded with the TDL spectrometer have been weighted by an extra factor of 4 corresponding to the enhancement in spectral resolution over the FTS data.

The intrinsic and unperturbed torsional splitting between the components of the torsional doublets as calculated from the upper and lower state barriers is 1.53×10^{-3} $\mathrm{cm},^{-1}$ which is not resolved in the current FTS data. For $K=3 n$ transitions with relative intensities of $2: 1$, both peaks of the doublets can be measured from the FTS data if they are separated by more than about $4.5 \times 10^{-3} \mathrm{~cm}^{-1}$ and for $K \neq 3 n$ (4:1 relative intensities) by more than $7.0 \times 10^{-3} \mathrm{~cm} .^{-1}$ Therefore, most torsional doublets could not be resolved, except near the crossing region which occurs at $K \Delta K=-18$. Most transition frequencies, particularly in the R-branches $(\Delta K=1)$ and as J approaches K, represent rather an average of the doublets. In order to avoid "frequency pulling" (5), transition frequencies of the $K=3 n$ series have been calculated using a weighted average of the two calculated frequencies of the doublets. The weights were chosen according to their statistical weights. Simulated spectra showed that such a weighting scheme yields a good approximation. In cases where one of the components of the doublets is rather weak, the average of the frequencies tends to be closer to the frequency of the strong component and therefore observed frequencies of unresolved $K \neq 3 n$ torsional doublets (with 4:1 relative intensity ratio) have been assigned to the stronger component of the doublet.

Intensity Analysis

Forty-two individual lines of the ν_{12} band observed with the FTS have been measured to retrieve their intensities. Only those lines whose torsional components were sufficiently separated (mostly ${ }^{p} P_{K}(J)$ lines) permitting a measurement of both components were included in the analysis. Since the intensity retrieval is constrained to a limited region, no attempts were made to determine the F-factors. Some of the very weak intensities have been discarded if their peak strength was below 10%. The lines were fitted to a convolution

Table II. Torsional Splittings $\Delta_{\text {obs }}$ measured with the TDL for the ν_{12} fundamental of ${ }^{13} C^{12} \mathrm{CH}_{6}$.

ΔK	ΔJ	K		$\begin{aligned} & \Delta_{\text {obs }} \quad \mathrm{o-c} \\ & {\left[\mathrm{~cm}^{-1}\right]} \end{aligned}$	ΔK	ΔJ	K	J	$\begin{gathered} \left.\Delta_{\text {obs }} \quad \mathrm{cm}^{-1}\right] \end{gathered}$
-1	0	6	12	0.005320 .00029	-1	0	2	17	0.006540 .00028
-1	0	6	13	0.006070 .00035	-1	0	2	18	0.007510 .00076
-1	0	6	14	0.006740 .00030	-1	0	2	19	$0.00696-0.00029$
-1	0	6	15	0.007500 .00030	1	0	1	10	0.002830 .00046
-1	0	6	16	0.008480 .00049	1	0	2	9	0.002630 .00013
-1	0	6	17	0.009150 .00033	1	0	2	10	0.003090 .00036
-1	0	6	18	0.009910 .00024	1	0	2	11	0.003410 .00042
-1	0	6	19	0.01049-0.00006	1	0	2	12	0.003710 .00044
-1	0	4	17	0.008520 .00107	1	0	3	12	$0.00240-0.00007$
-1	0	4	18	0.008280 .00018	1	0	3	13	0.002860 .00022
-1	0	4	19	0.008930 .00016	1	0	3	14	0.002950 .00013
-1	0	4	20	0.009710 .00026	1	0	3	15	$0.00281-0.00021$
-1	0	4	21	0.010230 .00007	1	0	3	16	$0.00311-0.00011$
-1	0	4	22	0.011010 .00014	1	0	3	17	0.00334-0.00010
-1	0	3	10	0.00247-0.00015	1	0	3	18	0.003790 .00012
-1	0	3	11	0.002950 .00011	1	0	3	19	$0.00368-0.00024$
-1	0	3	12	$0.00320 \quad 0.00012$	1	0	3	21	0.00415-0.00029
-1	0	3	13	0.003540 .00020	1	0	3	22	0.00457-0.00015
-1	0	3	14	0.00359-0.00002	1	0	5	16	0.003000 .00011
-1	0	3	15	0.004120 .00023	1	0	5	17	0.003250 .00018
-1	0	3	17	$0.00398-0.00051$	1	0	5	18	$0.00320-0.00007$
-1	0	3	18	0.00457-0.00025	1	0	5	19	0.003610 .00013
-1	0	3	19	0.005170 .00002	1	0	5	20	0.00351-0.00019
-1	0	3	20	$0.00512-0.00036$	1	0	5	21	0.00357-0.00035
-1	0	3	21	$0.00540-0.00043$	1	0	6	10	0.002400 .00031
-1	0	3	22	0.00577-0.00042	1	0	6	11	0.002750 .00048
-1	0	3	23	0.00584-0.00071	1	0	6	12	0.002870 .00040
-1	0	3	24	$0.00595-0.00096$	1	0	6	13	0.003120 .00044
-1	0	3	25	$0.00651-0.00077$	1	0	6	14	0.003530 .00063
-1	0	2	12	0.004270 .00021	1	0	6	15	0.003640 .00050
-1	0	2	13	$0.00488 \quad 0.00042$	1	0	6	16	0.003930 .00053
-1	0	2	14	0.005380 .00050	1	0	6	18	0.004410 .00046
-1	0	2	15	0.005620 .00029	1	0	6	19	0.004680 .00043
-1	0	2	16	0.006010 .00022	1	0	6	20	0.005060 .00050

Table III. Measured Line Intensities of the ν_{12} band $\left(822 \mathrm{~cm}^{-1}\right)$ of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ at 294 K .

J	ΔJ	K	ΔK		$\begin{gathered} \nu_{i} \\ {\left[\mathrm{~cm}^{-1}\right]} \end{gathered}$	$\begin{array}{r} S_{i} \times 10 \\ {\left[\mathrm{~cm}^{-2} \mathrm{~atm}\right.} \end{array}$	$\begin{gathered} (\mathrm{o}-\mathrm{c}) / \mathrm{o} \\] \% \end{gathered}$	W_{i}
24	-1	8	-1	2	769.1331	3.664	-4.1	1.010
22	-1	9	-1	3	769.3221	4.289	-3.7	1.006
18	-1	11	-1	1	769.7383	5.201	-3.1	1.001
24	-1	6	-1	0	774.1979	4.520	0.8	1.016
22	-1	7	-1	1	774.3451	5.187	-3.8	1.010
20	-1	8	-1	2	774.5033	5.901	-5.5	1.005
18	-1	9	-1	3	774.6752	7.217	3.8	1.003
18	-1	9	-1	1	774.6813	3.808	9.0	1.002
16	-1	10	-1	2	774.8591	7.580	1.4	1.001
15	-1	8	-1	2	781.1717	9.667	-2.5	1.002
19	-1	4	-1	2	786.0276	8.304	1.0	1.017
22	-1	2	-1	2	787.1992	6.327	3.5	1.062
18	-1	4	-1	2	787.3652	8.625	-3.6	1.015
21	-1	2	-1	2	788.5452	6.427	-4.6	1.056
17	-1	4	-1	2	788.7006	9.790	1.5	1.013
18	0	2	-1	2	815.8488	14.295	2.5	0.944
18	0	2	-1	0	815.8856	3.517	1.0	0.943
$R_{v}^{2}=7.45(29) \times 10^{-4}(\text { Debye })^{2}$								
$S_{\mathrm{band}}=\sum_{i} S_{\mathrm{i}}=15.93(62) \mathrm{cm}^{-2} \mathrm{~atm}^{-1} @ 294 \mathrm{~K}$								

of a Doppler spectrum in absorption with an appropriate FTS instrument function whose amplitude modulation function of the interferogram is a cosine truncated by the length of the mirror $\operatorname{scan}(17)$.

The retrieved intensities (Table III) were subjected to a least squares fit to the usual equation

$$
\begin{equation*}
S_{i}=\frac{8 \pi^{3}}{3 h c} \frac{L_{o} T_{o}}{T p_{o}} \gamma_{a} g_{J K} \frac{\exp \left(-E_{v r t}^{\prime \prime} / k T\right)}{Q_{v} Q_{r} Q_{t}}\left[1-\exp \left(-\frac{h c \nu_{i}}{k T}\right)\right] L_{r} R_{v}^{2} W_{i} \tag{1}
\end{equation*}
$$

where S_{i} is the line intensity in units of $\mathrm{cm}^{-2} \mathrm{~atm}^{-1} h$ Planck's constant; k the Boltzmann
constant; c the speed of light; L_{o} Loschmidt's number at standard temperature $T_{o}=273.15$ K and pressure $p_{o}=1 \mathrm{~atm} ; T$ the ambient temperature; $E_{v r t}^{\prime \prime}$ the lower state energy, and Q_{v}, Q_{r}, and Q_{t} are the vibrational, rotational, and torsional partition function, respectively. γ_{a} is the isotopic abundance of the species which equals 1 for a purified sample.

The last three terms in Eq. (1) represent the effective square dipole moment, where R_{v}^{2} is the square vibrational transition moment and L_{r} the Hönl-London factor (18). The perturbation factor W_{i} is a correction factor to the rigid-rotor intensity caused by combined ℓ-resonance within the $v_{12}=1$ state and the torsional Coriolis interaction between $v_{12}=1$ and $v_{6}=3$. These factors have been calculated by transforming the rotational transition moment matrix using the unitary eigenvector matrix which also diagonalizes the upper state Hamiltonian. Values for W_{i} are obtained after squaring and normalizing to the square rotational transition moment L_{r} in the unperturbed limit. Due to the mixing effects, ${ }^{p} P,{ }^{r} Q$, and ${ }^{p} R$ type transitions are enhanced in their intensities, while ${ }^{r} P,{ }^{p} Q$, and ${ }^{r} R$ transitions are depleted.

The partition functions at $T=294 \mathrm{~K}$ were calculated to be: $Q_{r}=18,613, Q_{v}=$ 1.058 , and $Q_{t}=4.063$. The fitted square vibrational dipole moment was $R_{v}^{2}=7.45(29) \times$ $10^{-4} \mathrm{D}^{2}$, which is about 11% less than the value derived from the major isotopomer(5). This result is also in agreement with earlier analysis of the integrated strength of the ${ }^{r} Q_{0}$ branch(11).

The Line Atlas

In Appendix A calculated line parameters for transitions of the ν_{12} fundamental are listed. The line parameters for each transition are the rotational quantum numbers $J, K, \Delta K$, and ΔJ and the torsional quantum number σ, calculated frequency ν_{i} in cm^{-1}, observed minus calculated frequency (o-c) given in the last digits, lower state (ground state) energy E_{i} in cm^{-1}, line intensity in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1} @ 296 \mathrm{~K}$, and the perturbation factor W_{i}. Line parameters have been calculated up to $K=20$ and $J=35$. The intensities have been converted from 294 K to the standard temperature $T=296 \mathrm{~K}$ using the exact expression in Eq. (1). For general conversion to other temperatures, for instance planetary temperatures, values for the torsional partition function have been calculated in the range of 100 K to 400 K using a ground state torsional barrier height of $1026.88 \mathrm{~cm}^{-1}$ (Table IV).

The observed FTS spectrum of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ is shown in Appendix B. The experimental conditions were $p=1.05$ Torr, $\ell=150 \mathrm{~cm}$, and $T=294 \mathrm{~K}$. Below the observed spectrum in each panel the calculated spectrum under the same experimental condition is shown in two ways, first on a scale from 0% to 100% transmission and, secondly, from 90% to 100% transmission. The calculated Doppler spectra has been properly convolved with an appropriate instrumental profile as outlined as follows.

The approximate FTS apparatus function in interferogram space due to the aperture

Table IV.The torsional partition function Q_{1} as a function of temperature T.

T $[\mathrm{~K}]$	Q_{t}	T $[\mathrm{~K}]$	Q_{t}	T $[\mathrm{~K}]$	Q_{t}
100	3.049	200	3.456	300	4.105
110	3.072	210	3.513	310	4.178
120	3.100	220	3.572	320	4.251
130	3.132	230	3.633	330	4.326
140	3.168	240	3.696	340	4.401
150	3.209	250	3.761	350	4.477
160	3.252	260	3.827	360	4.553
170	3.299	270	3.895	370	4.631
180	3.349	280	3.964	380	4.709
190	3.401	290	4.034	390	4.787
		296	4.077	400	4.866

effect can be written as (17)

$$
\begin{equation*}
A(\delta)=\cos \left(b \frac{\delta}{L}\right) ; \quad|\delta| \leq L \tag{2}
\end{equation*}
$$

where δ is the optical path difference in the two arms of the interferometer and L the maximum optical path difference. The form of Eq. (2) introduces a self-apodization in the observed spectra. The Fourier transform of $A(\delta)$ is then given by

$$
\begin{align*}
A(\nu) & =L\left\{\frac{\sin (2 \pi \nu L+b)}{2 \pi \nu L+b}+\frac{\sin (2 \pi \nu L-b)}{2 \pi \nu L-b}\right\} \\
& =L\{\operatorname{sinc}(2 \pi \nu L+b)+\operatorname{sinc}(2 \pi \nu L-b)\} \tag{3}
\end{align*}
$$

The parameters used were $L=173 \mathrm{~cm}$ and $b=0.818$ as determined from a least squares fit of the line profiles. This apparatus function was convolved with a calculated Doppler spectrum to simulate the observed FTS spectra, i.e. the normalized transmission τ at frequency ν is

$$
\begin{equation*}
\tau(\nu)=\int_{-\infty}^{\infty} d \nu^{\prime} A\left(\nu^{\prime}-\nu\right) \exp \left(-\sum_{i} S_{i} f\left(\nu^{\prime}-\nu_{i}\right) x\right) \tag{4}
\end{equation*}
$$

S_{i} is the line strength of the transition at frequency $\nu_{i}, x=p \ell$ the optical density, and $f\left(\nu-\nu_{i}\right)$, the unit area line profile, here a Doppler profile. The convolution integral has been calculated by numerical summation with proper truncation to a finite sum of
intensities, the apparatus function, and line shapes in the far wing.
The spectra shown in Appendix B extends from $740 \mathrm{~cm}^{-1}$ to $910 \mathrm{~cm}^{-1}$. The top spectrum shows the observed FTS spectrum, the middle and bottom trace the calculated spectrum in different scales. Observed lines which do not appear in the calculated spectra belong either to the $\nu_{6}+\nu_{12} \leftarrow \nu_{6}$ vibration-torsional hotband, which is equivalent to the $\nu_{4}+\nu_{9} \leftarrow \nu_{4}$ band of normal ethane, or are outside the range of calculated quantum numbers.

References

[1] G. Wiedemann, G.L. Bjoraker, and D.E. Jennings, Astrophys. J. 383, L29 (1991).
[2] G.S. Orton, J.H. Lacy, J.M. Achtermann, P. Parmar, and W.E. Blass, Icarus 100, 541 (1992).
[3] S.J. Daunt, W.E. Blass, G.W. Halsey, K. Fox, R.J. Lovell, H. Flicker, and J.D. King, J. Mol. Spectrosc. 86, 327 (1981).
[4] J. Susskind, D. Reuter, D.E. Jennings, S.J. Daunt, W.E. Blass, and G.W. Halsey, J. Chem. Phys. 77, 2728 (1982).
[5] L. Henry, A. Valentin, W.J. Lafferty, J.T. Hougen, V. Malathy Devi, P.P. Das, K.N. Rao, J. Mol. Spectrosc, 100, 260 (1983).
[6] S.J. Daunt, A.K. Atakan, W.E. Blass, G.W. Halsey, D.E. Jennings, D.C. Reuter, J. Susskind, and J.W. Brault, Astrophys. J. 280, 921 (1984).
[7] N. Moazzen-Ahmadi, H.P. Gush, M. Halpern, H. Jagannath, A. Leung, and I. Ozier, J. Chem. Phys. 88, 563 (1988).
[8] W.E. Blass, G.W. Halsey, J. Susskind, D.C. Reuter, and D.E. Jennings, J. Mol. Spectrosc. 141, 334 (1990).
[9] N. Moazzen-Ahmadi, A.R.W. Kellar, J.W.C. Johns, and I. Ozier, J. Chem. Phys. 97, 3981 (1992).
[10] W.J. Lafferty and E.K. Plyler, J. Res. Nat. Bur. Stand. A 67, 225 (1963).
[11] J. Kurtz, D.C. Reuter, D.E. Jennings, and J.J. Hillman, J. Geophys. Res. 96, 17489 (1991).
[12] M. Weber, W.E. Blass, D.C. Reuter, D.E. Jennings, and J.J. Hillman, J. Mol. Spectrosc. 159, 388 (1993).
[13] M. Weber, D.C. Reuter, J.M. Sirota, W.E. Blass, and J.J. Hillman, J. Chern. Phys., To be Published (1994).
[14] D.E. Jennings, R. Hubbard, J.W. Brault, Appl. Opt. 24, 3438 (1985).
[15] J.M. Sirota, D.C. Reuter, and M.J. Mumma, Appl. Opt. 32, 2117 (1993).
[16] J.L. Duncan, R.A. Kelly, G.D. Nivellini, and F. Tullini, J. Mol. Spectrosc. 98 , 87 (1983).
[17] V. Dana and A. Valentin, Appl. Opt. 27, 4450 (1988).
[18] H.C. Allen Jr., P.C. Cross, Molecular Vib-Rotors,Wiley and Sons, New York-London, 1963.

Appendix A

Table of Calculated ν_{12} Transitions of ${ }^{13} \mathbf{C}^{12} \mathbf{C H}_{6}$

Legend:

$K, J \quad$ Lower state rotational quantum number, i.e. K," $J^{\prime \prime}$
$\Delta K, \Delta J \quad$ Difference in rotational quantum number of upper and lower state, i.e. $\Delta K=$ $K^{\prime}-K,{ }^{\prime \prime} \Delta J=J^{\prime}-J .{ }^{\prime \prime}$ The ℓ quantum number of the upper state can be deduced from the selction rules $\Delta K=\Delta \ell$
$\sigma \quad$ Torsional quantum number with selection rule $\Delta \sigma=0$
$\nu_{i} \quad$ Calculated transition frequency in cm^{-1}
oc
Observed minus calculated frequency in the last five digits. Transitions marked with an asterisk (*) were excluded from the global fit
$E_{i}^{\prime \prime} \quad$ Lower state energy in cm^{-1}
$S_{i} \quad$ Line intensity in $\mathrm{cm}^{-2} \mathrm{~atm}^{-1} @ 296 \mathrm{~K}$
$W_{i} \quad$ Intensity perturbation factor (dimensionless)

	 NONOM－mーNONm－ONOM－MーNONOMーmHNONMーONmーO \qquad \qquad
	 ת ศ ∞ \qquad

ΔK	-	$K \quad J$	σ	$\frac{\nu_{i}}{75630246}$	O-c	${ }^{E_{i}^{\prime \prime}}$	S_{i}	W_{i}	ΔK	ΔJ	$K \quad J$	σ	ν_{i}	$0-\mathrm{c}$	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
-1	-1	1128	3	756.30246	119	769.784	. $3494 \mathrm{E}-03$	1.008	-1	-1	1519	3	758.74099	-12	699.673	. $2190 \mathrm{E}-02$	1.000
-1	-1	1128	1	756.31776	-73	769.779	.1396E-02	1.007	-1	-1	1519	1	758.74887	-12	699.667	. $1095 \mathrm{E}-02$	1.000
-1	-1	1619	2	756.37599	-7	762.057	. $1707 \mathrm{E}-02$	1.000	-1	-1	1028	2	758.76208	26	727.492	. $1638 \mathrm{E}-02$	1.010
-1	-1	1619	0	756.43974	-71	762.051	. $4136 \mathrm{E}-03$. 969	-1	-1	1028	0	758.79209	15	727.487	. $4088 \mathrm{E}-03$	1.008
-1	-1	1226	2	756.56676	21	744.953	.8043E-03	1.005	-1	-1	1126	3	759.00301	1	698.640	. $4796 \mathrm{E}-03$	1.006
-1	-1	1226	0	756.60362	-12	744.947	. $1604 \mathrm{E}-02$	1.002	-1	-1	1126	1	759.01647	-46	698.635	.1918E-02	1.006
-1	-1	1717	3	756.68894		780.560	. $4112 \mathrm{E}-03$	1.000	-1	-1	1617	2	759.03793	-32	714.162	. $2147 \mathrm{E}-02$	1.000
-1	-1	1717	1	756.69055	-51	780.555	. $1645 \mathrm{E}-02$	1.000	-1	-1	1617	0	759.06445	-97	714.156	. $5283 \mathrm{E}-03$. 984
-1	-1	735	3	756.71364		914.341	. $1643 \mathrm{E}-03$	1.035	-1	-1	635	2	759.24183	51	888.158	. $3600 \mathrm{E}-03$. 1.044
-1	-1	735	1	756.72876	-113	914.335	.6573E-03	1.035	-1	-1	1224	2	759.25857	36	678.967	. $1080 \mathrm{E}-02$	1.003
-1	-1	1324	3	756.83512	17	729.306	.4450E-03	1.003	-1	-1	635	0	759.26666	-4	888.152	.7200E-03	1.044
-1	-1	1324	1	756.84876	-28	729.301	. $1778 \mathrm{E}-02$	1.002	-1	-1	1224	0	759.29035	-18	678.962	. $2155 \mathrm{E}-02$	1.001
-1	-1	833	2	756.93956	17	855.389	.8769E-03	1.024	-1	-1	733	3	759.44561	25	825.181	.2439E-03	1.030
-1	-1	833	0	756.96872	-103	855.384	.2190E-03	1.023	-1	-1	733	1	759.45957	-94	825.175	. $9756 \mathrm{E}-03$	1.030
-1	-1	1422	2	757.11805	20	722.839	. $1893 \mathrm{E}-02$	1.001	-1	-1	1322	3	759.51896	55	668.484	.5853E-03	1.002
-1	-1	1422	0	757.15916	21	722.834	. $4705 \mathrm{E}-03$. 995	-1	-1	1322	1	759.53020	-23	668.479	.2339E-02	1.001
-1	-1	931	3	757.16674	60	805.609	. $1126 \mathrm{E}-02$	1.017	-1	-1	831	2	759.66210	26	771.368	.1272E-02	1.020
-1	-1	931 15	1	757.18184	-72	805.603	.5623E-03	1.016	-1	-1	831	0	759.68881	-28	771.363	.3180E-03	1.020
-1	-1	1520	3	757.40650	97	725.561	. $1941 \mathrm{E}-02$	1.000	-1	-1	1420	2	759.79311	11	667.184	.2443E-02	1.001
-1	-1	1029	2	757.40863	-117	764.998	. $1387 \mathrm{E}-02$	1.011	-1	-1	1420	0	759.82486	-36	667.179	.6077E-03	. 996
-1	-1	1520	1	757.41603	-2	725.555	. $9703 \mathrm{E}-03$	1.000	-1	-1	929	3	759.88076	57	726.733	. $1596 \mathrm{E}-02$	1.014
-1	-1	1029	0	757.44033	3	764.993	. $3461 \mathrm{E}-03$	1.009	-1	-1	929	1	759.89440	-37	726.728	.7972E-03	1.013
-1	-1	$\begin{array}{ll}11 & 27 \\ 11 & 27\end{array}$	3	757.65363	51	733.568	. $4107 \mathrm{E}-03$	1.007	-1	-1	1518	3	760.07364	-31	675.076	. $2457 \mathrm{E}-02$	1.000
-1	-1	1127	1	757.66801	-64	733.563	. $1641 \mathrm{E}-02$	1.006	-1	-1	1518	1	760.07990	64	675.071	. $1229 \mathrm{E}-02$	1.000
-1	-1	1618	2	757.70787	-28	737.463	.1920E-02	1.000	-1	-1	1027	2	760.11374	23	691.274	. $1923 \mathrm{E}-02$	1.009
-1	-1	1618	0	757.75474	-130	737.458	. $4679 \mathrm{E}-03$. 975	-1	-1	1027	0	760.14204	6	691.268	. $4798 \mathrm{E}-03$	1.007
-1	-1	1225	2	757.91356	6	711.316	.9348E-03	1.004	-1	-1	1125	3	760.35059	63	665.000	. $5566 \mathrm{E}-03$	1.005
-1	-1	1225 7	0	757.94790	-19	711.310	.1864E-02	1.001	-1	-1	1125	1	760.36313	158	664.994	.2226E-02	1.005
-1	-1	734	3	758.08054		869.120	.2008E-03	1.032	-1	-1	1616	2	760.36612	-141	692.152	. $2391 \mathrm{E}-02$	1.000
-1	-1	734 13	1	758.09508	-95	869.114	.8031E-03	1.032	-1	-1	1616	0	760.36773		692.146	.5977E-03	1.000
-1	-1	1323 13	3	758.17794	-10	698.250	. $5116 \mathrm{E}-03$	1.002	-1	-1	1223	2	760.60177	21	647.908	. $1241 \mathrm{E}-02$	1.003
-1	-1	1323 832	1	758.19038	-36	698.245	.2044E-02	1.001	-1	-1	634	2	760.60976	19	842.934	. $4393 \mathrm{E}-03$	1.041
-1	-1	832 832	2	758.30173	14	812.737	$.1060 \mathrm{E}-02$	1.022	-1	-1	1223	0	760.63096	34	647.903	.2474E-02	1.000
-1	-1	832 14	0	758.32968	35	812.731	. $2649 \mathrm{E}-03$	1.022	-1	-1	634	0	760.63366	-236*	842.928	. $8786 \mathrm{E}-03$	1.041
-1	-1	1421	2	758.45649	12	694.367	.2157E-02	1.001	-1	-1	732	3	760.80883		782.526	. $2943 \mathrm{E}-03$	1.028
-1	-1	1421 930	0	758.49299	-17	694.361	. $5360 \mathrm{E}-03$. 995	-1	-1	732	1	760.82221	-73	782.520	.1177E-02	1.028
-1	-1	930 930	3	758.52465	64	765.529	.1344E-02	1.015	-1	-1	1321	3	760.85814	61	640.008	. $6649 \mathrm{E}-03$	1.001
-1	-1	930	1	758.53902	-53	765.523	. $6721 \mathrm{E}-03$	1.015	-1	-1	1321	1	760.86820	-28	640.003	.2660E-02	1.001

	区 战 NOMールーNOM－NNONOM－NONONONOM－NONNONONON
	 Nod

ΔK		$K \quad J$	σ	ν_{i}	O-C	$E_{i}^{\prime \prime}$	S_{i}	W_{i}	$\Delta K \Delta J$	$K \quad J$	σ	ν_{i}	O-c	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
-1	-1	711	3	788.99033		184.443	. $3316 \mathrm{E}-02$	1.001	-1 -1	416	0	790.04012		208.612	. $2543 \mathrm{E}-02$	1.011
-1	-1	711	1	788.99297	-48	184.438	. $1326 \mathrm{E}-01$	1.001	-1 0	1228	0	790.05895	-60	816.084	. $1021 \mathrm{E}-02$. 976
-1	-1	89	2	789.10590	40	187.466	.1419E-01	1.000	-1 0	1227	2	790.08025		779.878	. $5838 \mathrm{E}-03$. 983
-1	-1	89	0	789.10809		187.461	. $3547 \mathrm{E}-02$	1.000	-1 -1	514	3	790.11636		186.593	.2896E-02	1.005
1	-1	024	2	789.31508		388.794	. $2021 \mathrm{E}-02$	1.000	$\begin{array}{ll}-1 & -1\end{array}$	514	1	790.11994	-40	186.588	. $1158 \mathrm{E}-01$	1.005
1	-1	024	0	789.31671	-9	388.789	.4042E-02	1.000	-1 0	1227	0	790.12196	-242*	779.872	. $1162 \mathrm{E}-02$. 978
-1	0	1235	2	789.48924		1105.565	. $1639 \mathrm{E}-03$. 969	-1 0	1226	2	790.14319	-22	744.953	.6571E-03	. 984
-1	0	1235	0	789.54764		1105.559	. $3258 \mathrm{E}-03$. 963	-1 0	1226	0	790.18249	40	744.947	.1309E-02	. 980
-1	0	1234	2	789.57170		1060.361	.1977E-03	. 971	-1 0	1225	2	790.20372		711.316	.7329E-03	. 986
-1	0	1234	0	789.62829		1060.355	. $3931 \mathrm{E}-03$. 965	-1 -1	612	2	790.20940		173.779	.6418E-02	1.002
-1	0	1233	2	789.65169		1016.439	.2367E-03	. 973	-1 -1	612	0	790.21380	-112	173.773	. $1284 \mathrm{E}-01$	1.002
-1	0	1233	0	789.70639		1016.433	.4706E-03	. 967	-1 0	1225	0	790.24056	-150	711.310	. $1458 \mathrm{E}-02$. 981
-1	0	1232	2	789.72922		973.800	. $2808 \mathrm{E}-03$. 974	-1 0	1224	2	790.26186	73	678.967	. $8080 \mathrm{E}-03$. 987
1	-1	432	2	789.74801	70	716.040	.7554E-03	. 898	-1 0	1224	0	790.29618	$246 *$	678.962	. $1609 \mathrm{E}-02$. 983
1	-1	534	3	789.74805		820.778	.1152E-03	. 904	-1 1	710	3	790.30986		170.182	. $3478 \mathrm{E}-02$	1.000
1	-1	330	3	789.75521	616*	620.467	.1177E-02	. 886	$\begin{array}{ll}-1 & -1\end{array}$	710	1	790.31218	-36	170.177	. $1391 \mathrm{E}-01$	1.000
1	-1	534	1	789.75544		820.773	. $4604 \mathrm{E}-03$. 903	-1 0	1223	2	790.31761		647.908	.8816E-03	. 989
1	-1	432	0	789.75850		716.034	. 1884E-03	. 896	-1 0	1223	0	790.34937	8	647.903	. $1756 \mathrm{E}-02$. 985
1	-1	330	1	789.76225		620.461	. $5879 \mathrm{E}-03$. 885	-1 0	1222	2	790.37098	-12	618.139	.9492E-03	. 990
1	-1	228	2	789.77905	-92	534.060	. $1726 \mathrm{E}-02$. 859	-1 0	1222	0	790.40015	-22	618.134	. $1891 \mathrm{E}-02$. 986
-1	0	1232	0	789.78195		973.794	. $5588 \mathrm{E}-03$. 969	-1 -1	88	2	790.42081	33	175.797	.1493E-01	1.000
1	-1	228	0	789.78930		534.055	. $4306 \mathrm{E}-03$. 857	-1 0	1221	2	790.42198	-84	589.660	.1008E-02	. 991
-1	0	1231	2	789.80430		932.445	. $3308 \mathrm{E}-03$. 976	$\begin{array}{ll}-1 & -1\end{array}$	88	0	790.42236		175.792	. $3734 \mathrm{E}-02$	1.000
-1	-1	122	3	789.81299		329.949	. $1531 \mathrm{E}-02$	1.136	-1 0	1221	0	790.44853	33	589.655	.2011E-02	. 988
-1	-1	122	1	789.81783	-38	329.944	. $6129 \mathrm{E}-02$	1.137	-1 0	1220	2	790.47060	7	562.472	.1055E-02	. 992
1	-1	126	3	789.82316		456.836	.5642E-03	. 775	-1 0	1220	0	790.49452	-18	562.467	. $2104 \mathrm{E}-02$. 989
1	-1	126	1	789.83014	-39	456.830	. $2254 \mathrm{E}-02$. 774	-1 0	$12 \quad 19$	2	790.51687	23	536.576	. $1086 \mathrm{E}-02$. 994
-1	0	1231	0	789.85497		932.439	.6583E-03	. 971	-1 0	1219	0	790.53815	23	536.570	. $2165 \mathrm{E}-02$. 991
-1	0	1230	2	789.87693		892.374	. $3864 \mathrm{E}-03$. 978	-1 0	1218	2	790.56078	-335*	511.971	. $1094 \mathrm{E}-02$. 995
-1	-1	220	2	789.88891	-14	280.299	.7243E-02	1.050	-1 0	1218	0	790.57943	5	511.966	. $2182 \mathrm{E}-02$. 992
-1	-1	220	0	789.89618	118	280.294	.1812E-02	1.051	-1 0	1217	2	790.60234	34	488.659	.1075E-02	. 996
-1	0	1230	0	789.92547		892.369	.7682E-03	. 972	-1 0	1217	0	790.61838	20	488.653	. $2146 \mathrm{E}-02$. 994
-1	0	1229	2	789.94713		853.589	. $4476 \mathrm{E}-03$. 980	-1 0	1216	2	790.64156	$-176 *$	466.639	.1023E-02	. 997
-1	-1	318	3	789.95736	136	239.857	.8683E-02	1.023	-1 0	1216	0	790.65502	-11	466.634	. $2041 \mathrm{E}-02$. 995
-1	-1	318	1	789.96187		239.851	.4342E-02	1.023	-1 0	1215	2	790.67844	-2	445.913	.9301E-03	. 998
-1	0	1229	0	789.99346	109	853.584	.8897E-03	. 974	-1 0	1215	0	790.68937	9	445.908	.1857E-02	. 996
-1	0	1228	2	790.01490		816.090	.5133E-03	. 981	$1 \begin{array}{ll}1 & -1\end{array}$	023	2	790.70328		357.717	. $2254 \mathrm{E}-02$	1.000
-1	-1	416	2	790.03389	-9	208.618	.1017E-01	1.011	$1-1$	023	0	790.70490	-16	357.712	. $4508 \mathrm{E}-02$	1.000

	 N
	 品

	 象 NOM-NOM-NONOMNOーNOMNTONONOMHNONONONOON
	 NONOONNONONONONONONOONONONNONOM-NM-NOO $0000-1000000000000070000007000170171071$

	 성 ※ NONOM－NONNOOMーツーNONNONOOONNールーNONNOON
	 －© O स OMNOーNMーONO－NONNOONNO－NONOMNNOMNNNHO

	 效 \qquad

	 $\stackrel{*}{\circ}$ ONOMーNONONONONNTMNOMONNNOOMONM-NONNOON

	 $\vec{\sim}$ 8 分 8 F －NTONONーMーONOMーNOMーNONONOMーNONONONONO
	 知 会 ※た

$E_{i}^{\prime \prime}$	S_{i}	W_{i}
620.467	$.3964 \mathrm{E}-02$	1.101
620.461	$.1982 \mathrm{E}-02$	1.101
581.661	$.4600 \mathrm{E}-02$	1.094
581.655	$.2302 \mathrm{E}-02$	1.095
668.484	$.3767 \mathrm{E}-04$.970
668.479	$.1507 \mathrm{E}-03$.970
544.141	$.5304 \mathrm{E}-02$	1.088
544.135	$.2652 \mathrm{E}-02$	1.088
982.758	$.3197 \mathrm{E}-04$	1.053
853.589	$.1150 \mathrm{E}-03$	1.050
1121.055	$.6790 \mathrm{E}-04$	1.056
733.568	$.9875 \mathrm{E}-04$	1.047
982.752	$.1279 \mathrm{E}-03$	1.053
733.563	$.3954 \mathrm{E}-03$	1.048
622.699	$.6482 \mathrm{E}-03$	1.045
507.909	$.6068 \mathrm{E}-02$	1.082
507.903	$.3034 \mathrm{E}-02$	1.082
521.000	$.1014 \mathrm{E}-02$	1.042
853.584	$.2300 \mathrm{E}-03$	1.050
622.694	$.1620 \mathrm{E}-03$	1.045
520.995	$.5073 \mathrm{E}-03$	1.042
428.473	$.1516 \mathrm{E}-02$	1.039
1121.050	$.1691 \mathrm{E}-04$	1.052
428.468	$.3790 \mathrm{E}-03$	1.039
472.965	$.6888 \mathrm{E}-02$	1.076
472.959	$.3444 \mathrm{E}-02$	1.076
783.655	$.9816 \mathrm{E}-04$.967
783.649	$.2454 \mathrm{E}-04$.967
345.134	$.5408 \mathrm{E}-03$	1.036
345.129	$.2163 \mathrm{E}-02$	1.036
439.310	$.7758 \mathrm{E}-02$	1.070
439.304	$.3882 \mathrm{E}-02$	1.071
270.983	$.1474 \mathrm{E}-02$	1.033
270.978	$.2951 \mathrm{E}-02$	1.034
157.217	$.3151 \mathrm{E}-04$.989
157.212	$.1261 \mathrm{E}-03$.989
406.944	$.8675 \mathrm{E}-02$	1.065
206.036	$.9611 \mathrm{E}-03$	1.031

ΔK	ΔJ	K 3	σ	$\frac{\nu_{i}}{828.89121}$	$\mathrm{o}-\mathrm{C}$	$\frac{E_{i}^{\prime \prime}}{}{ }^{\prime \prime}$	$\frac{S_{i}}{4337 \mathrm{E}-02}$	W_{i}	ΔK		K J	σ	ν_{i}	O-c	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
-1	1	515	1	828.89493	-623*	406.938 206.030	. $4337 \mathrm{E}-02$	1.065	1	-1	1015	2	829.36449		357.250	.2831E-03	. 980
1	0	323	3	828.94431	129	375.868	. $.9621 \mathrm{E}-02$	1.031	1		1015	0	829.36666		357.244	.7077E-04	. 980
1	0	323	1	828.94932		375.862	. $4810 \mathrm{E}-02$	1.060	1	0	314	3	829.36712	-26	154.319	.1626E-01	1.022
-1	1	413	2	828.95616	42	150.290	. $4790 \mathrm{E}-02$	1.060 1.028	1		314	1	829.36994		154.314	.8136E-02	1.023
-1	1	413	0	828.96179		150.284	.1199E-02	1.028	1		173	3	829.39947		9.804	. $2196 \mathrm{E}-02$. 996
1	-1	1526	3	828.97168		907.982	. $6020 \mathrm{E}-04$	1.029	1		1730	3	829.39985		1184.040	.4782E-05	. 959
1	-1	1526	1	828.97452		907.976	. $3010 \mathrm{E}-04$. 964	1		$\begin{array}{ll}1 & 3 \\ 3\end{array}$	1	829.40113	111	9.799	. $8785 \mathrm{E}-02$. 996
1	0	322	3	829.00050	138	346.082	. $1058 \mathrm{E}-01$. 1.055	1	0	313 17	3	829.40225	-89	136.170	.1633E-01	1.019
1	0	322	1	829.00523		346.077	. $5290 \mathrm{E}-02$	1.055	1	-1	1730 3	1	829.40299		1184.034	.1913E-04	. 959
-1	1	311	3	829.02802	1	103.758	. $5730 \mathrm{E}-02$	1.027	1	0	313 3	1	829.40489		136.165	.8166E-02	1.019
-1	1	311	1	829.03109		103.752	. $2865 \mathrm{E}-02$	1.027	1	0	312 312	3	829.43494	-24	119.316	. $1618 \mathrm{E}-01$	1.016
1	-1	811	2	829.03168		214.690	.2332E-03	1.027	1	0	312 311	1	829.43741		119.311	.8096E-02	1.017
1	-1	811	0	829.03350		214.685	. $5830 \mathrm{E}-04$. 986	1	0	311	3	829.46518	-21	103.758	. $1578 \mathrm{E}-01$	1.014
1	0	321	3	829.05445	211*	317.588	. $1154 \mathrm{E}-01$. 1.050	1	0	11	1	829.46749		103.752	. $7890 \mathrm{E}-02$	1.014
1	0	321	1	829.05889		317.582	.5769E-02	1.050	1	0	310	3	829.49294	-23	89.495	. $1509 \mathrm{E}-01$	1.011
1	0	320	3	829.10612	211*	290.385	.1247E-01	1.045	1	0	10	1	829.49511		89.489	.7546E-02	1.011
-1	1	29	2	829.10953	-129	66.437	. $6591 \mathrm{E}-02$	1.026	1	0	39	3	829.51823	-26	76.527	.1412E-01	1.009
1	0	320	1	829.11030		290.380	. $6240 \mathrm{E}-02$	1.046	1	0	$\begin{array}{ll}3 & 9 \\ 3\end{array}$	1	829.52027		76.522	. $7061 \mathrm{E}-02$	1.009
-1	1	29	0	829.11286		66.432	.1648E-02	1.026	1	-1	38 17	3	829.54102	-20	64.856	. $1283 \mathrm{E}-01$	1.007
1	0	319	3	829.15550	-12	264.475	. $1337 \mathrm{E}-01$	1.026	1	-1	1117	3	829.54171		442.323	.6177E-04	. 978
1	0	319	1	829.15942		264.469	.6683E-02	1.041	1	-1	38	1	829.54294		64.851	.6417E-02	1.007
1	-1	1628	2	829.18304		1041.445	. $3486 \mathrm{E}-04$	1.041 .961	1	-1	1117	1	829.54381		442.317	.2468E-03	. 977
1	-1	1628	0	829.18663		1041.439	.8716E-05	. 961		0	7	3	829.56131	-25	54.481	$.1121 \mathrm{E}-01$	1.005
1	-1	913	3	829.19366		281.372	. $2844 \mathrm{E}-03$. 983	1	0		1	829.56312		54.476	.5610E-02	1.006
1	-1	913	1	829.19550		281.367	. $1422 \mathrm{E}-03$. 983	1	0		3	829.57908	-28	45.403	.9222E-02	1.004
-1	1	17	3	829.19747		281.3679	.1844E-02	.983 1.030	1	0		1	829.58080		45.398	. $4611 \mathrm{E}-02$	1.004
-1	1	17	1	829.19962	242*	38.334	. $7377 \mathrm{E}-02$	1.030	1	0		3	829.59432	-42	37.621	.6801E-02	1.003
1	0	318	3	829.20255	-173^{*}	239.857	. $1419 \mathrm{E}-01$	1.030 1.037	1			1	829.59597		37.616	. $3401 \mathrm{E}-02$	1.003
1	0	318	1	829.20623		239.851	. $7096 \mathrm{E}-02$	1.037				3	829.60704	-34	31.136	$.3825 \mathrm{E}-02$	1.002
1	0	317	3	829.24726	2	216.532	.1492E-01	1.033				1	829.60863		31.131	.1912E-02	1.002
1	0	317	1	829.25070		216.526	. $7460 \mathrm{E}-02$	1.033 1.033				2	829.62562		1335.746	.4970E-05	. 956
1	1	05	2	829.25836		19.458	. $3926 \mathrm{E}-02$	1.033 1.000				0	829.62961		1335.740	.9940E-05	. 956
1	1	05	0	829.25989	30	19.453	.7852E-02	1.000				2	829.72778		536.576	.9747E-04	. 975
1	0	316	3	829.28960	-7	194.500	.1552E-01	1.029				0	829.73034		536.570	.1947E-03	. 974
1	0	316	1	829.29283	-55	194.495	.7761E-02	1.029				3	829.85647		1496.556	. $1226 \mathrm{E}-05$. 953
1	0	315	3	829.32956		173.762	. $1599 \mathrm{E}-01$	1.026				1	829.85992		1496.550	.4903E-05	. 953
1	0	315	1	829.33258		173.757	.7993E-02	1.026	-1			3	829.86331		1024.109	.2812E-04	1.056
							. 995 L -02	1.020	-1	1	1434	2	829.86872		1164.968	.5879E-04	1.059

ΔK	${ }^{\text {d }}$	$K \quad J$ 1021	σ	$\frac{\nu_{i}}{84846819}$	$\frac{0-\mathrm{c}}{36}$	$\frac{E_{i}^{\prime \prime}}{}{ }^{\prime \prime}$	S_{i}	W_{i}	$\Delta K \Delta$	J	K J	σ	ν_{i}	O-c	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
1	0	1021	2	848.46819	36	501.023	. $3651 \mathrm{E}-02$	1.012	1	1	510	3	849.19291		121.773	. $4310 \mathrm{E}-02$. 997
1	0	1021	0	848.47184		501.017	.9127E-03	1.012	-1	1	123	3	849.19323		359.736	. $1527 \mathrm{E}-02$	1.212
1	0	1020	2	848.52348	47	473.830	.3847E-02	1.011	1	1	510	1	849.19500	29	121.768	.1724E-01	. 997
1	0	1020	0	848.52688		473.824	.9617E-03	1.011	-1	1	123	1	849.19871	-342*	359.730	. $6118 \mathrm{E}-02$	1.214
-1	1	531	3	848.55213		692.801	.2782E-03	1.093	1	1	68	2	849.41512		119.325	. $9430 \mathrm{E}-02$. 999
-1	1	531	1	848.56390	-33	692.795	.1114E-02	1.094	1	1	68	0	849.41704	82	119.319	.1886E-01	. 999
1	0	1019	2	848.57618	131	447.929	.3993E-02	1.010	-1	1	634	2	849.60169		842.934	. $2824 \mathrm{E}-03$	1.096
1	1	216	2	848.57778	-28	184.412	.1105E-01	. 960	-1	1	634	0	849.62736		842.928	. $5653 \mathrm{E}-03$	1.097
1	0	1019	0	848.57935		447.923	.9983E-03	1.010	1	1	119	3	849.64499		248.339	.1907E-02	. 875
1	1	216	0	848.58277		184.407	. $2759 \mathrm{E}-02$. 959	1	1	119	1	849.64991	-39	248.334	.7620E-02	. 874
1	0	1018	2	848.62630	35	423.320	. $4070 \mathrm{E}-02$	1.008	-1	1	532	3	849.75282		734.176	.2382E-03	1.098
1	0	1018	0	848.62925		423.314	. $1018 \mathrm{E}-02$	1.008	-1	1	532	1	849.76507	-63	734.170	.9537E-03	1.099
1	0	1017	2	848.67383	30	400.003	.4070E-02	1.007	1	1	217	2	849.82748	17	206.444	.1032E-01	. 955
-1	0	1017 419	0	848.67656		399.998	.1017E-02	1.007	1	1	217	0	849.83289		206.439	.2577E-02	. 954
1	0	429 1016	2	848.70936	-14	595.767	. $1780 \mathrm{E}-02$	1.099	-1	1	430	2	849.91585	-125	634.573	. $1546 \mathrm{E}-02$	1.105
1	0	1016	0	848.72128		377074	.3969E-02	1.006	-1	1	430	0	849.93336		634.567	. $3868 \mathrm{E}-03$	1.106
-1	1	429	0	848.72613		595.762	. 4455 E	1.006	1	1	315	3	850.02726	-3	173.762	. $1264 \mathrm{E}-01$. 980
1	0	1015	2	848.76107	56	357.250	. $3748 \mathrm{E}-02$	1.005		1	315	1	850.03047		173.757	.6322E-02	. 980
1	0	1015	0	848.76340		357.244	. $9369 \mathrm{E}-03$	1.005	-1	1	28	3	850.07981	35	544.141	.2412E-02	1.117
1	1	314	3	848.77297	-1	154.319	.1336E-01	. 983	1	1	328	1	850.08855	20	544.135	.1207E-02	1.118
1	1	314	1	848.77597		154.314	.6682E-02	. 983	1	1	22	2	850.17865		327.931	. $3074 \mathrm{E}-02$	1.000
1	0	1014	2	848.80077	26	337.813	.3385E-02	1.004	1	1	413	2	850.18024	9	327.925	.6149E-02	1.000
1	0	1014	0	848.80293		337.808	.8463E-03	1.004	1	1	413	2	850.23905	41	150.290	.1475E-01	. 991
1	0	1013	2	848.83785	9	319.671	.2858E-02	1.003	-1	1	226	2	850.24239 850.25141		150.284	. $3688 \mathrm{E}-02$. 991
1	0	1013	0	848.83984		319.666	.7144E-03	1.003	-1	0	1135	3	850.26235	10	462.883 1059.286	.3653E-02	1.144
-1	1	327	3	848.86798	348*	507.909	.2739E-02	1.110	-1	1	226	0	850.26286	-215*	1059.286 462.877	$.1187 E-03$ $.9149 E-03$	1.034 1.146
1	0	1012	2	848.87231	-84	302.824	.2139E-02	1.002	1	0	1135	1	850.26796		1059.280	. $4747 \mathrm{E}-03$	1.146 1.034
1	0	1012	0	848.87414		302.818	. $5347 \mathrm{E}-03$	1.002	1	0	1134	3	850.35354		1014.078	. $1426 \mathrm{E}-03$	1.034 1.032
-1	1	327	1	848.87635		507.903	.1371E-02	1.111	1	0	1134		850.35892		1014.072	. $5705 \mathrm{E}-03$	1.032
1	0	1011	2	848.90414	31	287.271	.1199E-02	1.001	-1	1	124	3	850.41242		390.813	.1389E-02	1.032 1.228
1	0	1011	0	848.90582		287.265	.2997E-03	1.001	-1	1	124	1	850.41812	-125	390.807	. $5567 \mathrm{E}-02$	1.228 1.230
1	1	412	2	848.97959	275*	133.436	. $1544 \mathrm{E}-01$. 993	1	0	1133	3	850.44228		970.152	. $1701 \mathrm{E}-03$	1.230 1.030
1	1	412	0	848.98267		133.431	. $3855 \mathrm{E}-02$. 992	1	0	1133		850.44743		970.146	. $6802 \mathrm{E}-03$	1.030
1	1	021	2	848.98514		299.435	. $3380 \mathrm{E}-02$	1.000	1	1	511	3	850.45760		136.035	. $4149 \mathrm{E}-02$	1.030
1	1	021	0	848.98672	-333^{*}	299.430	. $6761 \mathrm{E}-02$	1.000	1	1	511	1	850.45983	-45	136.030	. $1659 \mathrm{E}-01$. 9996
-1	1	225	2	849.03470	-19	429.227	. $4085 \mathrm{E}-02$	1.134	1	0	1132	3	850.52853		927.509	2012E-03	. 996
-1	1	225	0	849.04562	26	429.221	.1023E-02	1.136	1	0	1132	1	850.53346		927.503	. $8046 \mathrm{E}-03$	1.028

$\Delta K \Delta J$	$K \quad J$	σ	ν_{i}	O-c	$E_{i}^{\prime \prime}$	S_{i}	W_{i}	$\Delta K \Delta J$	K J	σ	ν_{i}	O-C	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
11	1010	2	863.16196	8	273.013	. $1432 \mathrm{E}-01$	1.000	10	1633	2	864.88128		1241.703	. $1562 \mathrm{E}-03$	1.018
11	1010	0	863.16363		273.008	. $3579 \mathrm{E}-02$	1.000	10	1633	0	864.88628		1241.697	. $3906 \mathrm{E}-04$	1.018
11	130	3	863.22160		604.343	. $4063 \mathrm{E}-03$. 706	10	1632	2	864.97082		1199.083	. $1828 \mathrm{E}-03$	1.017
1	619	2	863.22916		318.921	. $4721 \mathrm{E}-02$. 988	10	1632	0	864.97557		1199.078	. $4571 \mathrm{E}-04$	1.017
11	130	1	863.23163	88	604.337	. $1620 \mathrm{E}-02$. 704	10	1631	2	865.05775		1157.747	. $2116 \mathrm{E}-03$	1.015
11	619	0	863.23370	-119	318.916	.9443E-02	. 988	10	1631	0	865.06224		1157.741	. $5291 \mathrm{E}-04$	1.015
11	228	2	863.40157	62	534.060	. $2851 \mathrm{E}-02$. 875	11	816	2	865.06227	77	305.413	. $1111 \mathrm{E}-01$. 996
11	228	0	863.41308		534.055	.7120E-03	. 874	11	816	0	865.06541		305.407	. $2776 \mathrm{E}-02$. 996
11	717	3	863.51650		297.199	.2718E-02	. 994	11	425	2	865.13179	12	453.420	.4851E-02	. 958
11	717	1	863.51942	-52	297.193	. $1087 \mathrm{E}-01$. 994	1.1	425	0	865.13966		453.415	. $1211 \mathrm{E}-02$. 957
11	326	3	863.64163	215*	472.965	. $4131 \mathrm{E}-02$. 934	0	1630	2	865.14204		1117.695	. $2428 \mathrm{E}-03$	1.014
11	326	1	863.64791		472.959	.2063E-02	. 933	0	1630	0	865.14629		1117.689	. $6069 \mathrm{E}-04$	1.014
11	815	2	863.81297	42	284.679	. $1204 \mathrm{E}-01$. 997	10	1629	2	865.22370		1078.927	.2755E-03	1.013
11	815	0	863.81589		284.674	. $3011 \mathrm{E}-02$. 997	0	1629	0	865.22772		1078.921	.6886E-04	1.013
11	424	2	863.90642	2	421.055	. $5541 \mathrm{E}-02$. 962	0	1628	2	865.30272		1041.445	. $3090 \mathrm{E}-03$	1.012
11	424	0	863.91383		421.050	. $1384 \mathrm{E}-02$. 961	0	1628	0	865.30650		1041.439	.7724E-04	1.012
11	1913	3	864.11504	-19	281.372	. $1290 \mathrm{E}-01$. 999	11	914	3	865.36981	-12	299.516	. $1199 \mathrm{E}-01$. 998
11	1913	1	864.11709		281.367	. $6452 \mathrm{E}-02$. 999	11	914	1	865.37199		299.510	. $5994 \mathrm{E}-02$. 998
11	1034	2	864.12423		770.409	.5409E-03	1.000	0	1627	2	865.37908		1005.249	. $3422 \mathrm{E}-03$	1.011
11	1034	0	864.12591	202*	770.403	.1082E-02	1.000	0	1627	0	865.38264		1005.243	. $85555 \mathrm{E}-04$	1.011
11	1522	3	864.18105		378.344	. $1759 \mathrm{E}-02$. 977	1	523	3	865.41125		408.128	. $1561 \mathrm{E}-02$. 975
1	1522	1	864.18544	-41	378.339	. $7036 \mathrm{E}-02$. 977	11	523	1	865.41589	-74	408.122	.6237E-02	. 974
1	$1 \quad 1011$	2	864.42520	33	287.271	.1343E-01	1.000	0	1626	2	865.45278		970.340	. $3735 \mathrm{E}-03$	1.009
1	11011	0	864.42701		287.265	. $3357 \mathrm{E}-02$	1.000	0	1626	0	865.45613		970.334	.9337E-04	1.009
11	1131	3	864.44442		644.436	. $3355 \mathrm{E}-03$. 688	0	1625	2	865.52382		936.718	. $4017 \mathrm{E}-03$	1.008
11	1131	1	864.45503	-77	644.431	. $1338 \mathrm{E}-02$. 686	0	1625	0	865.52695		936.712	. $1004 \mathrm{E}-03$	1.008
1	1620	2	864.46758		344.829	. $4270 \mathrm{E}-02$. 987	0	1624	2	865.59218		904.384	.4245E-03	1.007
11	1620	0	864.47246	-22	344.824	. $8531 \mathrm{E}-02$. 986	0	1624	0	865.59511		904.379	. $1061 \mathrm{E}-03$	1.007
11	1229	2	864.62032	65	571.580	.2421E-02	. 866	0	1623	2	865.65786		873.339	. $4393 \mathrm{E}-03$	1.006
11	1229	0	864.63252		571.575	.6040E-03	. 864	0	1623	0	865.66060		873.334	. $1098 \mathrm{E}-03$	1.006
10	01635	2	864.69437		1330.789	.1111E-03	1.021	11	132	3	865.66555		685.815	.2750E-03	. 670
10	01635	0	864.69990		1330.783	.2778E-04	1.021	11	132	1	865.67678	-180*	685.810	. $1097 \mathrm{E}-02$. 668
1	1718	3	864.76029		320.520	.2483E-02	. 993	1	1012	2	865.68552	36	302.824	. $12565 \mathrm{E}-01$	1.000
1	1718	1	864.76338	-51	320.514	. $9933 \mathrm{E}-02$. 993	11	1012	0	865.68750		302.818	. $3139 \mathrm{E}-02$	1.000
10	$\begin{array}{lll}0 & 1634\end{array}$	2	864.78913		1285.605	.1323E-03	1.019	11	621	2	865.70306	-91	372.029	. $3832 \mathrm{E}-02$. 985
10	$0 \quad 1634$	0	864.79439		1285.599	. $3308 \mathrm{E}-04$	1.019	11	621	0	865.70827	1	372.023	. $7664 \mathrm{E}-02$. 985
1	1327	3	864.86272	-26	507.909	. $3565 \mathrm{E}-02$. 928	0	1622	2	865.72085		843.583	. $4430 \mathrm{E}-03$	1.005
11	1327	1	864.86935		507.903	.1783E-02	. 928	10	1622	0	865.72340		843.578	. $1108 \mathrm{E}-03$	1.005

	 ㄲ 䓵 Y 俞 Tis
	 N

$\Delta K \Delta J$	$K \quad J$	σ	ν_{i}	O-C	$E_{i}^{\prime \prime}$	S_{i}	W_{i}	$\Delta K \Delta J$	K	$K J \quad \sigma$	σ	ν_{i}	O-C	$E_{i}^{\prime \prime}$	S_{i}	W_{i}
11	1426	2	894.46451	139	849.626	. $1351 \mathrm{E}-02$. 996	1	1	1819	2	897.61990		898.839	. $6229 \mathrm{E}-03$	1.000
11	1426	0	894.46856		849.621	.3379E-03	. 996	1	1	1819	0	897.62177	70	898.834	. $1246 \mathrm{E}-02$	1.000
11	1719	3	894.66321		828.449	.4151E-03	1.000	1	1	1624	2	897.85751	31	904.384	. $1125 \mathrm{E}-02$. 998
11	1719	1	894.66509	-37	828.444	. $1661 \mathrm{E}-02$	1.000	1	1	1624	0	897.86062		904.379	. $2812 \mathrm{E}-03$. 998
11	1231	2	894.73947		932.445	.4336E-03	. 988	1	1	1429	2	898.09013	-44	958.240	. $8237 \mathrm{E}-03$. 993
11	1231	0	894.74557	89	932.439	. $8671 \mathrm{E}-03$. 988	1	1	1429	0	898.09494		958.234	.2059E-03	. 993
11	1524	3	894.93541	-16	842.018	.1447E-02	. 998	1	1	1234	2	898.32033		1060.361	.2420E-03	. 985
11	1524	1	894.93820		842.012	.7235E-03	. 998	1	1	1234	0	898.32739		1060.355	. $4834 \mathrm{E}-03$. 984
11	1329	3	895.20362		903.911	.2553E-03	. 992	1	1	1722	3	898.35145		909.965	. $28388 \mathrm{E}-03$. 999
11	1329	1	895.20762	117	903.905	. $1021 \mathrm{E}-02$. 992	1	1	1722	1	898.35370	-95	909.959	. $1135 \mathrm{E}-02$. 999
11	1622	2	895.41363	68	843.583	. $1487 \mathrm{E}-02$. 999	1	1	1527	3	898.57853	30	942.895	. $9127 \mathrm{E}-03$. 996
11	1622	0	895.41635		843.578	.3719E-03	. 999	1	1	1527	1	898.58179		942.889	. $4563 \mathrm{E}-03$. 996
11	1134	3	895.47069		1014.078	.1444E-03	. 982	1	1	1332	3	898.80169		1024.109	. $1476 \mathrm{E}-03$. 989
11	1134	1	895.47628		1014.072	.5775E-03	. 982	1	1	1332	1	898.80628		1024.103	. $5903 \mathrm{E}-03$. 989
11	1427	2	895.67633	51	884.544	. $1153 \mathrm{E}-02$. 995	1	1	1820	2	898.85201		924.717	.5512E-03	1.000
11	1427	0	895.68062		884.538	.2882E-03	. 995	1	1	1820	0	898.85404	58	924.711	. $1102 \mathrm{E}-02$	1.000
11	1720	3	895.89585		854.331	. $3678 \mathrm{E}-03$	1.000	1	1	1625	2	899.07455	38	936.718	. $9699 \mathrm{E}-03$. 998
11	1720	1	895.89785	-51	854.325	.1471E-02	1.000	1	1	1625	0	899.07787		936.712	. $2425 \mathrm{E}-03$. 998
11	1232	2	895.93639		973.800	. $3592 \mathrm{E}-03$. 987	1	1	1430	2	899.29208	184*	997.017	.6905E-03	. 993
11	1232	0	895.94280	257*	973.794	.7185E-03	. 987	1	1	1430	0	899.29716		997.011	. $1726 \mathrm{E}-03$. 993
11	1525	3	896.15305	7	874.356	.1248E-02	. 997	1	1	1723	3	899.57438		939.717	.2473E-03	. 999
11	1525	1	896.15600		874.350	.6240E-03	. 997	1	1	1723	1	899.57675	-9	939.711	.9892E-03	. 999
11	1818	2	896.38456		874.252	.7004E-03	1.000	1	1	1528	3	899.78633	26	979.096	.7730E-03	. 995
11	1818	0	896.38628	73	874.247	$.1401 \mathrm{E}-02$	1.000	1	1	1528	1	899.78975		979.090	.3865E-03	. 995
11	11330	3	896.40627		942.692	.2140E-03	. 991	1	1	1333	3	899.99442		1066.744	. $1214 \mathrm{E}-03$. 988
11	$1 \begin{array}{ll}13 & 30\end{array}$	1	896.41047	-98	942.686	.8562E-03	. 991	1	1	1333	1	899.99922		1066.738	. $4856 \mathrm{E}-03$. 988
1.1	11623	2	896.63720	-17	873.339	.1297E-02	. 998	1	1	1821	2	900.08088		951.885	. $4851 \mathrm{E}-03$	1.000
11	11623	0	896.64011		873.334	. $3241 \mathrm{E}-03$. 998	1	1	1821	0	900.08307	50	951.880	.9702E-03	1.000
1 1	$1 \quad 1428$	2	896.88488	30	920.749	.9775E-03	. 994	1	1	1626	2	900.28830	103	970.340	.8306E-03	. 997
11	11428	0	896.88942		920.743	.2444E-03	. 994	1	1	1626	0	900.29184		970.334	.2076E-03	. 997
11	11721	3	897.12527		881.503	. $3238 \mathrm{E}-03$. 999	1	1	1431	2	900.49071	-74	1037.079	. $5746 \mathrm{E}-03$. 992
11	11721	1	897.12739	-3	881.497	. $1295 \mathrm{E}-02$. 999	1	1	1431	0	900.49606		1037.073	.1437E-03	. 992
11	11233	2	897.13001		1016.439	. $2958 \mathrm{E}-03$. 986	1	1	1919	3	900.59113		973.230	. $2288 \mathrm{E}-03$	1.000
11	11233	0	897.13674		1016.433	. $5915 \mathrm{E}-03$. 986	1	1	1919	1	900.59282		973.224	. $9154 \mathrm{E}-03$	1.000
11	11526	3	897.36743	-25	907.982	.1071E-02	. 997	1	1	1724	3	900.79403		970.758	. $2143 \mathrm{E}-03$. 999
11	1526	1	897.37053		907.976	.5350E-03	. 996	1	1	1724	1	900.79653	-63	970.752	.8571E-03	. 999
11	11331	3	897.60563		982.758	.1783E-03	. 990	1	1	1529	3	900.99081	28	1016.583	. $6514 \mathrm{E}-03$. 995
11	$1 \quad 1331$	1	897.61003	-101	982.752	.7132E-03	. 990	1	1	1529	1	900.99441		1016.577	. $3257 \mathrm{E}-03$. 995

Appendix B

Observed and Calculated FTS Spectra of $\nu_{12}{ }^{13} \mathbf{C}^{12} \mathbf{C H}_{6}$

Top trace:
Observed at $p=1.05$ Torr, $\ell=1.5 \mathrm{~m}$ and $T=294 \mathrm{~K}$.

Middle trace:

Calculated at $p=1.05$ Torr, $\ell=1.5 \mathrm{~m}$ and $T=294 \mathrm{~K}$. Spectrum shown on a scale from 0% to 100% transmission.

Bottom trace:

Same as middle trace. Spectrum shown on a blown up scale from 90% to 100% transmission.

(

(wavenumber $\left(\mathrm{cm}^{-1}\right)$

$\underset{\text { wavenumber }\left(\mathrm{cm}^{-1}\right)}{ }$

B-5
c-2

B-8


```
~yn
```


B-12

B-14

B-16

B-18

B-19

rrprorror

B-32

$\rightarrow \sqrt{\sim}$

Moverion

,

"prompromprommpmirng

qurmprormprormorn

B-72

mormorns

B-79

$\underset{904.0}{\text { wavenumber }\left(\mathrm{cm}^{-1}\right)}$

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1994	3. REPORT TYPE AND DATES COVERED Technical Memorandum

4. TITLE AND SUBTITLE

A Spectral Atlas of the v_{12} Fundamental of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ in the $12 \mu \mathrm{~m}$ Region
5. FUNDING NUMBERS
6. AUTHOR(S)

Mark Weber, Dennis Reuter, J. Marcos Sirota, William Blass, John Hillman
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Goddard Space Flight Center
Greenbelt, Maryland 20771
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001
8. PERFORMING ORGANIZATION REPORT NUMBER

94B00067
10. SPONSORINGMONTTORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

William E. Blass: Department of Physics, University of Tennessee

12a. DISTRIBUTIONAVAILABILTYY STATEMENT
Unclassified-Unlimited
Subject Category 72
Report available from the NASA Center for AeroSpace Information, 800 Elkridge
Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

12h. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The recent discovery of the minor isotopomer of ethane, ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$, in the planetary atmospheres of Jupiter and Neptune, added ethane to the molecules which can be used to determine isotopic ${ }^{12} \mathrm{C}^{12} \mathrm{C}$ ratios for the jovian planets. The increased spectral resolution and coverage of the IR and far-IR instruments to be carried on the Cassini mission to Saturn and Titan may enable the detection of the minor isotopomer. Accurate frequency and cross-section measurements of the v_{12} fundamental under controlled laboratory condition are important to interpret current and future planetary spectra. High resolution spectra of the minor isotopomer ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{6}$ have been recorded in the $12.2 \mu \mathrm{~m}$ region using the Kitt Peak Fourier Transform (FTS) and the Goddard Tunable Diode Laser spectrometer (TDL). In a global fit to 19 molecular constants in a symmetric top Hamiltonian, transition frequencies of the v_{12} fundamental ranging up to $\mathrm{J}=35$ and $\mathrm{K}=20$ have been determined with a standard deviation of less than $0.0005 \mathrm{~cm}^{-1}$. From selected line intensity measurements, a vibrational dipole moment for the v_{12} fundamental has been derived. Observed and calculated spectra covering the region from $740 \mathrm{~cm}^{-1}$ and to $910 \mathrm{~cm}^{-1}$ are presented. A compilation of transition frequencies, line intensities, and lower state energies are included for general use in the astronomical community.

14.SUBJECT TERMS Kitt Peak Fourier Transform, Goddard Tunable Diode Lasers, Molecular Spectroscopy, Infrared Spectrum	15. NUMBER OF PAGES 178			
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified		20. LIMITATION OF ABSTRACT
:---:				
Unlimited				

