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1 SUMMARY 2 INTRODUCTION

The analysis CAMRAD/JA is used to model two

aircraft, a Puma with a swept-tip blade and a UH-60A
Black Hawk. The accuracy of the analysis in predict-

ing the torsion loads is assessed by comparing the pre-

dicted loads with measurements from flight tests. The

influence of assumptions in the analytical model is ex-

amined by varying model parameters and comparing
the predicted results to baseline values for the torsion

loads. Flight test data from a research Puma are used

to identify the source of torsion loads. These data in-

dicate that the aerodynamic section moment in the re-

gion of the blade tip dominates torsion loading in high-
speed flight. Both the aerodynamic section moment at

the blade tip and the pitch-link loads are characterized

by large positive (nose-up) moments in the first quad-

rant with rapid reversal of load so that the moment
is negative in the second quadrant. Both the charac-

ter and magnitude of this loading are missed by the

CAMRAD/JA analysis.

Helicopter power required, fuselage vibration, and
rotor structural loads all increase as airspeed is in-

creased to the limit of the flight envelope. In a well-

designed aircraft, the maximum airspeed in level, for-

ward flight corresponds to the transmission or engine

power limit rather than to a vibration or structural load

limit so that helicopter performance is not limited by
the aircraft structure. The design of a new rotorcraft

requires knowledge of this rotor loading environment
to ensure that the rotor or fuselage structure does not

limit aircraft performance for normal operating mis-
sions. Knowledge of the rotor loading environment is

typically based on measurements obtained from previ-

ous flight development programs. This method of ob-

taining design loads for new aircraft does not encour-

age substantial changes from previous designs. Ideally,
comprehensive helicopter analyses should be improved

to the point where they can be used to accurately pre-

dict design loads from first principles, thus decreasing

the risk associated with innovative designs.

The development of comprehensive analyses to
the level where the analytical predictions of the ro-

tor loads are trustworthy requires careful testing of
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Figure 1. Research Puma and UH-60A blade planforms. Puma pressure arrays shown by dots and torsion moment

bridges by open circles.



thesemethodsagainst appropriate experimental mea-

surements obtained in flight or in the wind tunnel. Ref-

erence 1 approached the task of obtaining the appro-
priate experimental measurements by comparing the

rotor loads measured on a variety of different heli-

copters. Similarities observed in the rotor loading for

these different aircraft, then, represent the basic physics

of the rotor loads problem and hence provide a good

first test for the comprehensive methods. The focus of
the present paper is the prediction of blade torsional

loading, particularly at high speed. The paper first

compares the predictions of the CAMRAD/JA analysis

with measurements obtained in flight tests of two heli-

copters. Then, a number of modeling changes are made

in the analysis to better understand the differences that

are seen between the predictions and measurements.

Available flight test data are then examined in detail
to determine what features of the analysis must be im-

proved to obtain satisfactory prediction of the torsion

loading.

Swept-Tip Puma

.......... UH-60A

'o
6.0

-M-

,_ 4.0

r,.) 2.0

0.0

Figure 2.

I

, ! • I , I J l J I

0.0 0.1 0.2 0.3 0.4 0.5

/z

Comparison of oscillatory pitch-link load
measurements with advance ratio from the swept-tip

Puma and UH-6OA; CT/a = 0.070 (Flight 525) for
the Puma and CT/a = 0.080 (Flight 9) for the

UH-60A; 1-64 harmonics.

3 FLIGHT TEST DATA

The research Puma data used here are part of a

large database obtained over a number of years at the

Defence Research Agency (DRA) in Bedford, England

(formerly the Royal Aerospace Establishment) (ref. 2).

The data were obtained under a joint Anglo-French

program and have not been published. The blade used
on the research Puma is illustrated in figure 1. The

rectangular tip of the standard Puma blade has been

modified to provide the tip planform shown in the fig-

ure. Absolute pressures were measured on the upper
and lower surfaces of the modified section at 0.92R,

0.95R, and 0.978R and upper surface pressures only
at 0.89R. Pitch-link load measurements were made

as well as torsion moment measurements at three sta-

tions on the blade, as indicated in the figure. A single

revolution of data was taken for each flight test point;

therefore, there is no averaging of the data. The data

were sampled at 256 points over each revolution, which

provides a bandwidth of 128 harmonics (azimuthal res-
olution of 1.4 ° ).

The UH-60A data used here were obtained in a

NASA/Army flight test in 1987 (ref. 3) and are stored
in an electronic database. The blade tested is illustrated

in figure 1 and is identical to the standard UH-60A
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Figure 3. Comparison of pitch-link load measurements
with azimuth from the swept-tip Puma and UH-6OA;

# = 0.362 and CT/a = 0.070 (Flight 525) for the

Puma and # = 0.355 and CT/a = 0.080 (Flight 9)
for the UH-60A; 1--64 harmonics.
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Figure 5. Comparison of oscillatory pitch-link load for the UH-60A as a function of azimuth and advance ratio

(Flight 9); 1-12 harmonics.

blade. Pitch-link load measurements were obtained,

but no blade torsion measurements were made. No

pressure instrumentation was installed for these tests

Approximately 5 seconds of data were obtained at each
test point and a 20-cycle average has been used for the
results shown here. The bandwidth of 128 harmonics

is the same as that obtained on the research Puma.
Measurements from the research Puma and UH-60A

flight tests illustrate clearly the similarities in torsion

loading that were found for five different articulated

rotors in reference 1. The first similarity noted is the

rapid increase of the pitch-link load with advance ra-
tio. This is seen in figure 2, where the oscillatory (1/2

peak-to-peak) loadings are shown as a function of ad-
vance ratio for the swept-tip Puma and UH-60A.

For comparison, the pitch-link load is shown in
the nondimensional form

CpL P

a pbcgt2R 3

where P is the pitch-link force, a the rotor solidity, p

the density of air, b the number of blades, c the blade
chord, ft the rotor speed, and R the rotor radius. The

loading is seen to grow rapidly beyond tt = 0.30.



The azimuthal behavior of the pitch-link load also

is quite similar for the two rotors, as is shown in fig-
ure 3. This is particularly true on the advancing side of

the disk, where each rotor shows a large positive load

in the first quadrant that rapidly changes to a negative

load in the second quadrant. On the retreating side of

the disk, the loading is reduced and differs between
rotors.

4 CAMRAD/JA ANALYSIS

The CAMRAD/JA analysis (ref. 4) was used to

assess the ability of a current analysis to predict rotor
torsional loads. It was further used to identify model-

ing features within the analysis that are important for

the prediction of these loads. CAMRAD/JA was cho-

sen because it is widely used and because it appears to

be representative of the better analyses now in use. As

an example, the predictions of four analytical methods

were compared with flight test data in reference 2 and,

although the CAMRAD/JA prediction was not satis-

factory for the torsion loading, it was as good or better

than any of the other methods examined.
The trim procedure used by CAMRAD/JA for the

two aircraft was dictated by the availability of accurate
trim measurements. The research Puma was modeled

in CAMRAD/JA as a single, isolated rotor. The rotor

trim was specified by setting the flight speed, the rotor
thrust, the shaft angle, and the first harmonic flapping

as measured in flight. In the case of the UH-60A the

flapping measurements were not reliable, so it was nec-

essary to model the aircraft with a single main rotor

and a single tail rotor for antitorque. Rotor trim was

specified by setting the flight speed and requiring that
the aircraft forces and moments be balanced for zero

sideslip conditions. Both the trim procedure and cor-

relation for the unspecified trim parameters for the two
motors are discussed in more detail in reference 5.

$ TORSION LOAD CORRELATION

Baseline Case

Baseline calculations using the CAMRAD/JA model

were made over a range of airspeeds for both aircraft.
The blade structural deformation in the model is repre-

sented by six coupled-flap and lead-lag bending modes,

while the torsion deformation is modeled by two tor-

sion modes in the case of the research Puma and by
three torsion modes for the UH-60A. The airload com-

putation assumes that the wake is free to distort, which

is important at low speed but not at high speed (ref. 5).
Two circulation peaks are allowed in the wake model

to capture the effects of negative lift at high speed.

The blade aerodynamic loading is computed using two-
dimensional airfoil tables. A static stall model is used

to account for blade stall.

The pitch-link loads calculated by CAMRAD/JA

are compared qualitatively with flight test data for the
research Puma in figure 4 and for the UH-60A in fig-
ure 5. The measured and calculated loads are shown

as functions of the blade azimuth and the advance ra-

tio. The experimental measurements are similar for the

two rotors and show a buildup in the oscillatory loads

as airspeed increases. The calculated pitch-link loads,

however, are qualitatively different from measured val-
ues for both aircraft.

The pitch-link load correlation at high speed is

examined quantitatively in figure 6 for the research
Puma and the UH-60A. The azimuthal behavior of the

pitch-link loads is poorly predicted for both aircraft. In

particular, the positive-negative loading in the first two

quadrants of the rotor that is so evident in the flight data
is not adequately computed by the analytical model.

In addition, the oscillatory pitch-link load amplitude

is significantly underpredicted. This underprediction

of the oscillatory pitch-link loads occurs at all flight

speeds, as shown in figure 7.

Calculation Sensitivity

The CAMRAD/JA calculated pitch-link loads show

poor qualitative and quantitative agreement with flight

test measurements. This poor agreement suggests that

the physics of the torsional loading is not correctly

modeled in CAMRAD/JA. It is sometimes possible to

gain insight into the physics of rotor loading by look-

ing at which parameters in an analytical model have
the greatest influence on the acciaracy of the calcula-

tion. This approach has been used recently for rotor

flap vibratory loads (ref. 5), but in that case the base-

line calculations showed reasonably good agreement
with flight measurements, which provided confidence

in the approach. In the present case, the predicted
loads for the baseline case are sufficiently inaccurate

that there may be no utility in examining the sensitivity

of the calculation to modeling changes. Nonetheless,

4
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Figure 6. Comparison of measured and calculated pitch-link load with azimuth.

Flight 525 Flight 9

CAMRAD/JA CAMRAD/JA

'O

_c
6.0 --

4.0 -

2.0 -

0.0 , ,
0.0 0.I

(a) Swept-tip Puma:

/

6.0
'0

4.0-
2.0-

J

C_
CD

I • I , I , I 0.0 , l , i , , , I

0.2 0.3 0.4 0.5 0.0 0.I 0.2 0.3 0.4

CT/C_ -- 0.070 (Flight 525) (b) UH-60A: CT/ty = 0.080 (Flight 9);
1-12 harmonics.

Figure 7. Comparison of measured and calculated oscillatory pitch-link load with advance ratio;

5



Table1. Slopeandcorrelationcoefficientvaluesfor
pitch-linkloadsandaerodynamicsectionmomentsat
r/R = 0.95at highspeed;1-12harmonics

Pitchlink Moment
Puma m r m r

Free wake 0.29 0.70 0,32 0.59

Prescribed wake 0.29 0.70 0.32 0.59

Straight blade 0.16 0.48 0.29 0.52

No yawed flow 0.25 0.73 0.33 0,63

Boeing dynamic stall 0.30 0.67 0.31 0,56

Johnson dynamic stall 0.30 0.70 0.31 0.59

Single-peak wake 0.29 0.73 0.32 0.59
model

Add'l bending/torsion 0,33 0.74 0.31 0.58

No bending modes 0.39 0.84 0.35 0.67
No torsion - - 0.37 0.70

No unsteady/ - - 0.03 0.44
no torsion

the approach of reference 5 will be followed here in

the expectation that some insight will be obtained.

Table 2. Slope and correlation coefficient values for

UH-60A pitch-link load at high speed; 1-12 harmonics

Pitch link

UH-60A m r

Free wake --0.11 -0.24

Prescribed wake -0.11 -0.24

Straight blade --0.08 --0.11
No yawed flow -0.04 -0.10

Boeing dynamic stall -0.17 -0.36

Johnson dynamic stall -0.21 -0.42

Single-peak wake model -0.15 -0.25

Add'l bending/torsion -0.13 -0.28

No bending modes -0.30 -0.47

Two measures are used to assess the accuracy of

the torsional loading predictions for each of the para-

metric changes (ref. 5). These measures are obtained

by plotting the harmonic cosine and sine coefficients

(1-12) of the prediction as a function of the harmonic
coefficients of the flight measurement. A least-squares

fit is calculated that relates the predicted and measured
harmonic coefficients. The first measure of correlation

accuracy that is used is the slope of the line, m, which

will be unity if the prediction is exact. The second

Flight 525
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Boeing Dynamic Stall

Johnson Dynamic Stall

t_

'o
8.0

4.0

0.0

-4.0

-8.0 , I i 1 i I , I

o oo t8o zTo 38o
BLADE AZIMUTH, deg

Figure 8, Comparison of predicted and measured pitch-link loads for the Puma; # = 0,402 and CT/a = 0.070

.(Flight 525); 1-12 harmonics.
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measure is the correlation coefficient, r, which is a

measure of dispersion. If the prediction matches the

measurements exactly, the correlation coefficient also

will be one. As an example, the correlation that is

shown in figure 6(a) for the research Puma results in
a slope of 0.29 and a correlation coefficient of 0.70.

The difference in the slope from unity is large, and the

correlation coefficient indicates substantial dispersion.
The measures of correlation for the different mod-

eling changes are tabulated in tables 1 and 2 for a

high-speed case. Table 1 contains the measures for

the Puma pitch-link load and aerodynamic section mo-

ment at 0.95./2. Similarly, table 2 contains the mea-

sures for the UH-60A pitch-link loads. There are no

data available to correlate airload predictions for the

UH-60A aircraft. The modeling changes examined
in these tables include parameters that affect both the

aerodynamic and structural portions of the calculation.

A prescribed wake is used rather than the free wake of

the baseline model. The "straight blade" case has no

aerodynamic or mass offsets from the elastic axis and

hence removes the influence of tip sweep. The effects

of yawed flow corrections are examined by calculat-
ing the airloads under the assumption that the flow

is normal to the elastic axis. Two different dynamic

stall models are examined. The first, the Boeing dy-
namic stall model, uses an _ stall delay, and the

second model, the Johnson model, uses an 6 delay.

The single-peak circulation model uses the maximum
circulation to calculate the far-wake vortex lattice and

tip vortex strengths. The effects of the blade structural

modes are examined first by increasing the number of
flap and lead-lag bending modes to ten and the number

of torsional modes to five; second by removing the flap

and lead-lag modes, which results in a rigid, articulated

rotor; and third by removing the torsion modes while

retaining the flap and lead-lag modes. Finally, the ef-

fects of removing unsteady aerodynamics is examined
for the case with no torsion modes.

The accuracy measures shown in tables 1 and 2
are, in all cases, poor. In this regard it is difficult

to assess the sensitivity of the calculation to model-

ing changes, as none of these changes shows a clear

improvement. However, some insight into the present

problem can be gained from these calculations. First,

the calculations using the two dynamic stall models

have no effect on the accuracy of the calculation, as

evidenced by the m and r values in tables 1 and 2.
A comparison of the measured and calculated pitch-

link loads for the Puma, shown in figure 8, also shows

this lack of influence of the dynamic stall model. It is

possible that there is no improvement in the predicted

torsional loading when including these dynamic stall
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models because of inadequacies in the models them-

selves. However, the more likely explanation is that

there is very little stall on the rotor disk for these flight

conditions; therefore, the dynamic stall model used has
no effect.

A second modeling effect that can be seen in

table 1 is the effect of removing the unsteady aero-

dynamic terms. In this case it was necessary to re-

move the torsion degrees of freedom when the un-

steady aerodynamics were removed to obtain a trim
solution. Therefore, the "no torsion" case is the appro-

priate baseline for comparison. Figure 9 demonstrates

the influence of unsteady aerodynamics on the section
moment at 0.95/2. The case without the blade tor-

sion modes is quite similar to the prescribed-wake case.

However, without unsteady aerodynamics, essentially

no aerodynamic section moment is predicted to occur.
This suggests that improvements in the modeling of

unsteady aerodynamic moments may be important in

dealing with the present problem. This aspect of the

problem was further investigated and is shown in fig-

ure 10, where calculated and measured.CL and CM

values are compared for the research Puma at high
speed. The steady airfoil characteristics used in the

CAMRAD/JA calculation are overplotted in the figure

to indicate the operating condition of the airfoil. Over

most of the azimuth, the airfoil is below the regime

where nonlinear transonic flow becomes important. It
is only for a small region on the advancing side of the

disk that the steady section moment takes on a nonzero

value; over most of the azimuth, the blade is operating

at an angle of attack and a Mach number where the

steady section moment is zero. From this perspective,

nonlinear transonic flows and compressibility effects

are unimportant. What does appear to be important

is the unsteady loading. The angle of attack varies
roughly from -1 ° to +9 °, and the CAMRAD/JA lift

prediction is quite good. But the section moment is
substantially underpredicted and, it seems clear, the

effect of unsteady aerodynamics is important.

Hybrid Calculations

It has been shown here that the CAMRAD/JA

analysis, a lifting-line-based code, is unable to ac-

curately predict the aerodynamic section moment at

the blade tip for the research Puma. It is expected

that some improvement should be seen using a CFD-

based code that could properly account for the impor-

tant three-dimensional effects at the tip. Some limited
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Figure 11. Comparison of CAMRAD/JA and FPR pre-

dicted aerodynamic section moment with flight test

data for the Puma; r/R = 0.978, # = 0.381, and

CT/a = 0.070 (Flight 488); 0-12 harmonics.

calculations have been made in reference 6 that couple

the Full-Potential Rotor (FPR) code to CAMRAD/JA;

these calculations are compared with the measurements

at 0.978R shown in figure 11. The hybrid calcula-

tions are significantly better than the lifting-line cal-

culations over the retreating side of the disk, but the

strong positive-negative loading that is seen in the mea-

surements in the first and second quadrants is not cor-
rectly matched. It is important to note, however, that

the aerodynamic section moments computed by FPR

are not fed back to the CAMRAD/JA analysis through

the coupling procedure of reference 6; therefore, the
torsional deformations obtained in the CAMRAD/JA
solution are based on the CAMRAD/JA section mo-

ments. It is possible that a hybrid solution that couples
the moment and drag as well as lift would show an

improvement in prediction accuracy over the results

shown in figure 11.

6 INSIGHT FROM FLIGHT TEST

The CAMRAD/JA analysis is unable to accurately

predict the torsion loading that has been measured on
the research Puma and UH-60A. The reasons for this

are not clear. It is possible to gain some understand-

ing of the parameters that most strongly influence this
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Figure 13. Blade planform for the blades on the mixed-bladed research Puma. Pressure arrays shown by dots.

loading by examining flight test dataobtained on the

research Puma. This examination process is enhanced,

as there are also data available for flights with an un-

usual mixed-bladed rotor configuration in addition to
the testing of the four swept-tip blades that have been
used for the correlation.

Swept-Tip Rotor

Data available from the Puma with four swept-

tip blades provide strong indications that the pitch-link
loads are due mainly to the aerodynamic section mo-

ment near the blade tip. Figure 12 shows the aero-

dynamic section moment near the blade tip, the struc-
tural torsion moment inboard on the blade, and the

pitch-link load for the swept-tip Puma in high-speed,
level flight. Figure 12(a) shows a very rapid growth in

aerodynamic section moment near the blade tip. The

rate at which the section moments grow with radius
indicates that most of the section moment is outboard

of 0.90R. Figure 12(b) shows no significant change in

the amplitude or phase of the structural torsion moment

with radius. This is especially true over the advancing
side of the disk, where the torsion moment is simi-

lar in wave form to the aerodynamic section moment.

This first-quadrant positive loading, followed by the

second-quadrant negative loading, appears to dominate

the structural loading. Taken together, these measure-

ments indicate that the aerodynamic section moments
on the outer 10% of the blade are the source of the

large oscillatory pitch-link load.

Mixed-Bladed Rotor

The mixed-bladed rotor provides a unique set of
data from which differences due to planform may be

identified. This unusual four-bladed rotor configuration

consisted of a swept-tip blade opposed by a gloved,

rectangular-tip blade with two standard rectangular blades

on either side. The planforms of these blades are il-

lustrated in figure 13. Both the swept-tip blade and

11
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Figure 14. Comparison of aerodynamic section moment at 0.978R and pitch-link load for the swept-tip and

rectangular-tip Puma blades; IL = 0.376 and CT/a = 0.080 (Flight 456); 1-64 harmonics.

the gloved, rectangular-tip blade were pressure instru-
mented. Figure 14 shows the aerodynamic section mo-

ment at 0,978R, and the pitch-link load for the swept-

tip and rectangular-tip blades of the mixed-bladed rotor

in high-speed flight, The measured section moments
for these two blades is very similar. This indicates that

the large section moment at the blade tip is not strongly
influenced by blade planform. The pitch-link loads for

these two blades are also very similar, although the

rectangular-tip blade does show slightly greater oscil-

lations on the retreating side.

Lift-Offset Moment

The pitch-link load for the swept-tip blade is af-

fected by the lift-offset moment in addition to the sec-
tion moment. The lift-offset moment is the section lift

times the distance between the feathering axis and the

reference location of the section moment. The swept-

tip blade has been designed to minimize the integrated
effect of this moment by placing the local quarter chord

(reference axis) ahead of the feathering axis at the be-

ginning of the swept section. The local quarter chord is
then swept aft of the feathering axis outboard of 0.94R,

resulting in spanwise cancellation of the lift-offset mo-

ment. Figure 15 shows the CAMRAD/JA prediction

of aerodynamic section moment and the lift-offset mo-

ment for the swept-tip blade compared to the flight test
measurement at zero azimuth. CAMRAD/JA shows

good correlation for lift and therefore predicts the lift-

offset moment accurately. It is in the prediction of

the aerodynamic section moment where CAMRAD/JA
falls short. This figure clearly shows how rapidly the

measured section moment increases near the blade tip.

This rapid increase in section moment is missed com-

pletely in the CAMRAD/JA calculation. This sharp

gradient with radius near the tip further indicates that
an accurate prediction of the loading must incorporate
three-dimensional effects.

Measured Chordwise Pressure Distributions

Pressure data available from the mixed-bladed ro-

tor configuration provide additional details of the aero-

dynamic section moment. Figures 16 and 17 contain
the chordwise pressure distribution for the swept-tip

and rectangular-tip blades, respectively. The upper sur-

face pressure is shown as a solid line, and the lower

surface pressure is shown as a dashed line. The heavy
dashed line crossing the ordinates in these figures is the
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critical Mach number line (M = 1), which is the bound-

ary of the supercritical flow regime. Pressure distribu-
tions have been selected at the approximate azimuth

angles of the maximum nose-up, first zero crossing,
the maximum nose-down, and the second zero crossing

of the section moment at 0.978/7. On the advancing

side of the disk, the rectangular-tip blade shows large

areas of supercritical flow and relatively strong shocks

as compared to the swept-tip blade, where the com-

pressibility effects are relieved by the sweep. On the
retreating side of the disk, where the flow is subsonic,

the pressure distributions appear quite similar.

Despite the obvious differences observed between
the two blade tips, there are also some similarities;

these explain why the integrated section moments of

the two tips are so similar. Comparing figures 16(a)

and 17(a), the pressure distributions are seen to have

high levels of upper surface suction over the airfoil

leading edge while the difference in pressure over the

aft portion of the airfoil is srnall. The pressure distribu-

tion for the rectangular-tip blade in figure 17(a) shows

the leading-edge expansion slightly aft cornpared to the

swept-tip blade, with steep compression typical of tran-
sonic flow. Both distributions create a large nose-up

section moment. Figure 16(b) shows a pressure distri-

bution typical of two-dimensional non-lifting subcrit-
ical flow, and figure 17(b) appears similar, although

the rapid compression near the quarter chord indicates

the presence of shocks on both the upper and lower

surfaces. These distributions result in zero section mo-

ment. Figures 16(c) and 17(c) show an increase in
lower surface suction over the nose of the airfoil, which

results in a nose-down section moment. Figures 16(d)

and 17(d) look typical of lifting two-dimensional sub-

critical flow resulting in zero section moment.

The chordwise pressure distributions during the

maximum positive and maximum negative section mo-

ments are of particular interest. Figure 18 shows the

chordwise pressure distribution at four azimuthal sta-

tions over the aft portion of the rotor disk, where the

section moment is most positive. From figure 18(a)

to 18(b), the section moment is on the rise. The pres-

sure difference along the aft portion of the airfoil is

seen to decrease or reverse, causing a nose-up section
moment. From figure 18(b) to 18(c), the section mo-

ment is fairly constant. From figure 18(c) to I8(d),
the section moment has decreased. The leading-edge

suction has decreased, and the lower surface pressure

is approaching the upper surface pressure. Both sec-
tion lift and Section moment are rapidly approaching

zero. Figure 19 shows the chordwise pressure distri-
bution at four azimuthal stations over the advancing

side of the rotor disk, where the section moment is

most negative. In figure 19(a) the lift is slightly neg-
ative; the lower surface leading-edge suction over the

front of the airfoil exceeds the upper surface suction,

causing a negative section moment. From figure 19(a)

to 19(b), the pressure difference over the aft portion of

13
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the airfoil has grown, causing an increase in the nose-

down section moment. From figure 19(b) to 19(c), the

upper surface suction over the nose of the airfoil has

grown and the difference in pressure over the aft por-
tion has grown. These effects cause opposite section
moments; the net result is little change in the section

moment. From figure 19(c) to 19(d), the increase in

the pressure difference over the aft portion of the airfoil
has increased faster than the increase in upper surface

suction over the nose, resulting in a decrease in the
nose-down section moment. The aerodynamic loading

shown ill these figures is not completely understood.
It does seem clear, however, that the correct calcula-

tion of these section moments will require an accurate

accounting of both three-dimensional and unsteady ef-

fects. This remains a challenge in the development of

comprehensive methods for rotor loads.

7 CONCLUDING REMARKS

Flight test data and the CAMRAD/JA analysis
have been used in this paper to examine the buildup of
the blade torsional loads and the control system loads

that are observed at high speed for a number of artic-
ulated rotors. It is shown here that it is not possible

to accurately predict these high-speed loads; this is

clearly a deficiency of present analytical methods. It is

possible, however, to obtain substantial insight into the

high-speed loading problem using both measurements
and analysis.

The detailed aerodynamic measurements made on
the research Puma show that the torsional loading is

characterized by large positive section moments in the

first quadrant, with a rapid reversal of load so that
the section moment is negative in the second quadrant.
The section moment then returns to its large positive

value in a gradual manner around the retreating side
of the disk. It is believed that this loading is directly

related to:
1. The three-dimensional character of the flow

over the rotor blade tip.

2. Unsteadiness in the aerodynamic loading in-

duced by the large cyclic pitch motion and elastic
torsion.

From the present examination it is also possible

to suggest features of the rotor loading that are not im-

portant for the prediction of these high torsional loads:

1. The specific geometry of the blade tip has only

a minor effect on this loading.

2. Compressibility is not important in modeling

of the rotor unsteady airloads for this torsional loading

problem.

3. The angles of attack of the blade tip are not

large for the lift levels examined, and dynamic stall
does not play a part in this loading.

4. The effects of yawed flow at the blade tip do

not play a significant role in this loading.
5. The structure of the rotor wake has only a minor

effect on this aspect of the rotor loading.
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