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Abstract

Tile development of a thorough understanding of the mechanisms for vortex eruptions from viscous layers,
which are believed to be associated with phenomena such as dynamic stall onset and transition, is crucial

if accurate models of such phenomena are to be formulated. The development of such models may, in turn,
allow for the possibility that such effects could be accounted for during the design of various aerodynamic

devices such as wings, helicopter rotors and turbomachinery blading and thus lead to designs which are

stall free or stall resistant and which have better stall-recovery properties. The present investigation is

being conducted as part of an effort to develop analytical and numerical tools which can be used to help
improve our understanding of the vortex-eruption mechanism at high Reynolds numbers. The addition of

the normal-momentum equation to the classical unsteady boundary-layer equations is crucial, according

to recent asymptotic analyses of the vortex-eruption problem, and is a key feature of the analyses being
developed by the present authors. The purpose of this paper is, first, to describe departure solution behavior
observed when using unsteady, streamline-curvature based solution procedures in which nontrivial transverse

pressure gradient effects are included and, second, to show that special treatment of the time-derivative of

the normal velocity is needed to eliminate the ill-posed solution behavior, which is observed when small
spatial and temporal step sizes are used.

Introduction

A number of recent analytical studies have been directed towards understanding the fundamental physics

associated with the development and subsequent eruption of concentrated regions of vorticity from the

boundary layer (e.g., van Dommelen and Shen (1980), Elliott, el al (1983), Peridier, et al (1988) and Smith
(1988)). This event is believed to be associated with well-known physical phenomena, such as the onset of
airfoil dynamic stall and transition from laminar to turbulent flow. The cumulative observation of the above-

mentioned and other studies seems to indicate that the classical boundary-layer equations are insufficient to

completely describe the vortex eruption phenomenon. Even if strong viscous-inviscid interaction is allowed,

it appears likely that normal pressure gradient effects must be accounted for in some form. The present
paper describes part of an overall effort directed towards the development of unsteady analyses capable of

addressing high Reynolds number flows in which normal pressure gradients are important and ultimately, it
is hoped, where vortex eruptions occur, as well.

The important work of van Dommelen and Shen (1980) first documented the existence of a finite-time

singularity in the solution of the non-interacting, classical, unsteady boundary-layer equations for flow past

an impulsively started circular cylinder. Later work (e.g., Peridier, et al (1988)) showed that, if the boundary-
layer equations are allowed to interact with the inviscid flow, the van Dommelen and Shen singularity can

be bypassed. However, another finite-time singularity, which cannot be removed through interaction alone,

arises shortly thereafter. The recent asymptotic study of Smith (1988) indicates that normal pressure gradient
effects must be included in order to avoid the latter (interactive) finite-time singularity. This provides the

motivation for the present work, which addresses the issue of how various terms in the unsteady normal-

momentum equation must be numerically treated within the framework of a globally iterated space- and time-
marching solution algorithm, in order to avoid ill-posed behavior of the solutions. Globally iterated solution

algorithms for steady and unsteady flows have been employed extensively in both asymptotic (_.e., infinite
Reynolds number) and finite Reynolds nmnber investigations, where they have proven to be computationally
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efficient.Streamlinecurvaturetechniqueshavebeendemonstratedin anumberofstudies,forexample,see
Smithet al (1984), Presz (1985), tlothmayer (1989, 1990) and Power (1990) - many other examples can be
found in the literature. Thus, this approach is being pursued here in the hope that the use of a boundary-

layer like numerical approach will lead to a computationally efficient technique to solve the vortex-eruption

problem.

External Flow Analysis - Flow Past a Plat Plate

The particular concern of this paper is an issue which arose while the first author was developing a
numerical solution scheme for the equation set consisting of the classical, unsteady, incompressible boundary-

layer equations supplemented with the inviscid form of the normal-momentum equation. Note that these
equations are essentially identical to the leading-order terms in the Incompressible form of the "Thin-Layer"

Navier-Stokes equations, and will therefore be referred to here as the ITLNS equations, for convenience. For
two-dimensional flows these equations are given by

Ou Ov

0_ + _ = 0, (1)

Ou Ou Ou _ OP 02u
0-7+ u_ + voy ox + _ (2)

and 0v Ov Ov Re cQP
o-7+ u_ + v_ =- '_u ' (3)

where u and v are the velocity components in the z- and y-directions, respectively, with x oriented tangent

to the body surface and y normal to it, and P is the static pressure. In this section, the body is assumed to
be a semi-infinite flat plate, so that z and y are Cartesian coordinates. Standard low-speed, external flow

nondimensionalizations have been used and the y-coordinate and v-velocity component have been scaled with
= (P - P2,)/P _,the square root of the Reynolds number as follows: u = u*/U_, v = v*V/_/U_, P * * * r*_

t*ltL * /U* '_ Asterisks denote dimensional quantities, the subscript_:= _'/L;. 1,y = y'v_/L;._ andt =., _S" _'"
_c, denotes a quantity evaluated in the uniform far field upstream flow and Re is the Reynolds number defined

as Re = U_ L_._I/u*, where u* is the upstream value of the kinematic viscosity which, along with the density

p', is assumed to be constant.
The ITLNS equations can be solved in the primitive variable form given above, or they can be solved after

transforming to GSrtler variables - the latter approach has been used in this study. However, to simplify the

present discussion, the primitive variable form of these equations will be considered, after using the stream

function ¢, defined by the relations u = O_b/Oy and v = -Og,/Ox, to replace v. Substituting for v in Eq. (3)

yields
02¢ 0¢ 0"-¢02¢ = Re OP
o_ot uT_ + oxoxoy - N (4)

The boundary conditions on the surface (y = 0) are the no-slip, zero injection conditions: u(x,O) = 0

and ¢(x,0) = 0 for t >_ 0. At the outer edge of the boundary layer (y --, oc) the edge condition on u is

lira u(x,y;t) ---., U_(x,t) and the pressure P satisfies the unsteady Bernoulli relation. The equations can
y_oo

either be solved in direct mode (edge conditions specified) or inverse mode (displacement thickness specified).

The additional boundary condition needed for the latter is given by the following relationship between the

edge value of ¢ and the displacement thickness 6",

¢(_,y_;0 = u_(_,t)(y_- 6"(_,0), (5)

where Ye is the value of y at the boundary-layer edge and Ue is treated as an unknown. In addition, both

upstream and downstream boundary conditions are needed - the latter is required because the introduction
of the inviscid normal-momentum equatio!_ makes the inviscid form of the governing equations equivalent

to the unsteady incompressible Euler equations, which are elliptic-like in space at any time t, as explicitly

evidenced by the presence of the Cxx term in Eq. (4), which represents the streamline curvature. For the

simple problem to be considered here, the upstream and downstream profiles for u and ¢6 are assumed to
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correspondto theBlasius(flat-plate)profile.Finally,tile initial conditionwhichis neededat timet = 0 is

assumed to correspond to tile Blasius solution along the entire plate surface.
Tile ITLNS equations are numerically solved using fully implicit discretizations which are first-order

accurate for the x- and t-derivatives and second-order accurate for the y-derivatives. All y-derivatives are

central differenced and all x- and t-derivatives are backward differenced with respect to tile solution point
(at (xi, yj, tn)) with the exception of the _brx term in tim normal-momentum equation, which is central

differenced, thus introducing unknown information from the upstreana point at x_+l. This information

is obtained by initially guessing _'i+1, using the value from the previous time step, and then performing
multiple, global spatial sweeps at each time level until the V-field converges. An acceleration scheme has

been used to improve the convergence properties of this procedure but will not be discussed here, however,

as it is not relevant to the present focus. Initially the authors believed that central differencing of tile ¢_x
term would properly (and full)') account for the elliptic-like nature of the governing equations at each time

step, as demonstrated in applications of similar approaches to steady flows (e.g., see Presz (1985)). tlowever,
this was not found to be the case, as will be discussed below.

The issue which is of concern here arises when attempting to solve the above system of equations for

a specified time-dependent displacement-thickness distribution (i.e., the inverse method). Consider the
simplest possible case, where the displacement thickness is assumed to be that for a steady fiat-plate flow for

all time t > 0. Thus, the inverse solution procedure should yield the Blasius solution at all values of x and t,

with a small perturbation (depending on the specified value of the Reynolds number) due to normal pressure

gradient effects. This has been found to be the case here when the spatial and temporal step sizes Ax and At,
respectively, are not chosen to be "too small." However, as Ax and At are decreased, it has been observed
that, during the first time step, the solution departs from its anticipated behavior in a manner reminiscint

of that observed when attempting to solve a boundary-value problem using an initial-value technique. This

occurs despite the use of central differencing for the g,_ term. That is, for a fixed, constant spatial stepsize
Ax below some minimum value, there appears to be a minimum temporal step size At, below which the

space-marching solution behaves as if it is ill-posed with respect to x.

Examples of the departure solutions are shown in Figs. 1A and 1B, where the skin-friction coefficient,

C! = 2r_ v/_e/p*U_ _, and wall pressure P_, respectively, are plotted as functions of distance along the plate

for a Reynolds number of 1 × 106 based on a reference length L_! = 1. This case was calculated starting

at x = 1.0 with a fixed value of Ax = 0.001 and three different values of At, namely 0.0010, 0.0009 and
0.0001. This value of Ax is below the minimum for which departures have been observed, and the three

values of At are near the boundary between departure-free solutions and departing solutions. Note that the

solution goes from being well-behaved at the largest value of At to growing in an oscillatory exponential

manner for the middle value to monotonic exponential growth for the smallest value. Similar departure
behavior was subsequently observed in the solutions obtained from a different numerical code which uses a

similar streanfline-curvature based technique to solve the full Navier-Stokes equations, for internal flows, as
discussed in the next section.

Before continuing, it should be noted that a consistency check on the finite-difference form of Eq. (4) was

carried out. The equations were found to be consistent in the sense that as Ax and At are independently
reduced to zero, Eq. (4) is identically recovered. Thus, the possibility that truncation errors associated with

the discretized equations have changed the mathematical character of the governing differential equations
has been eliminated as a possible source for the branching behavior.

Calculations to establish the "departure boundary" for three different Reynolds numbers were performed,
namely Re = 1 × 106, 1 x 10 r and 1 × l0 s . The results are consistent, and indicate that the value of At

for which the solution crosses over from "departure-free" to "departing" is a function of Reynolds number,

as might be anticipated. The fact that there is a minimum Ax above which solutions remain departure-free

for any value of At is not surprising - once Ax becomes large enough, the solution probably oversteps the
streamwise length scale of the physical mechanism governing the behavior.

The branching behavior of the small step size solutions of the ITLNS equations obtained using the present
numerical solution procedure has been examined in detail by the authors in an effort to understand its source.

As a result of this investigation, the term responsible for the departure solutions has been found to be the v_

term appearing in the normal-momentum equation. That is, it has been found that, regardless of the values

used for Ax and At, if the vt term is neglected, then the solution will never exhibit the departure behavior
described above, so long as the ¢** term is not backward differenced, but is instead central differenced.
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Further,thisbehavioris foundto beindependentof the numerical treatment used for the convective terms
in the normal-momentum equation.

Recall that in the present stud)', the v, term has been written using the stream function definition, i.e.,

vt = -¢,t. Ill the numerical algorithm described above, this term was discretized using a backward difference
for the x-derivative, leading to the following form at all V-locations, where tile subscript i and superscript

n denote the z-index and the t-index, respectively, with (i, n) at the current station in both space and time

and Ax assumed to be uniform:

1
¢_,_ _ [(¢_'- ¢,L:,) - (v_-t - _,_%_)]• (6)

Tile apparent ill-posedness exhibited by the numerical solutions, and tile fact that the vt term has been

found to be responsible, suggests an alternative discretization for the err term wherein a forward difference

in x with respect to the solution station is used. That is, ¢_t is discretized in the form

1
¢_,,_ _ [(_'+_- ,i,_')- (,_,5-,_- ,_,_-_)1• (7)

With this modification, the ill-posed behavior which is observed when a backward difference is used no

longer arises, regardless of the values of Az and At that are specified. A case for which violent branching
occurs when using a backward difference for the z-derivative in Cxt, which was presented in Fig. 1, has been

recalculated using a forward difference with the same spatial and temporal stepsizes, i.e., Ax = 0.001 and
At = 0.0001. The resultant solution is departure free and virtually identical to the backward-difference

solution for At = 0.001, which did not branch because the value of Ax was too large.

The precise reason that forward-differencing of the x-derivative in the ¢_t term is needed to prevent
the ill-posed behavior of the small step-size solutions of these equations is unknown at the present time.

One possiblity is that the responsible mechanism is somehow related to physical boundary-layer instability
mechanisms. Another possibility is that the mechanism is purely inviscid in nature, as is the case leading

to the requirement for central differencing of the ¢** term. Both of these possiblities are currently under

investigation, and it is hoped that this issue will be resolved in the near future.

Internal Flow Analysis - Pulsatile Flow Through a Channel

Here the governing equations are taken to be the unsteady Navier-Stokes equations. This set of equations
is non-dimensionalized by the method of Snfith (1976). The final equations are: conservation of mass,

u_ + vy = 0 ; (8)

conservation of x-momentum,

ut + Re(uu. + v%) = -P. + V_,r.z_+uyv ; (9)

and conservation of y-momentum,

v_, + Re[u(t,_ - _T) + y_] = -P_ + v__..._+ _.__. (10)

The vT term is a pseudo-time derivative introduced to accelerate convergence of the global-iteration scheme
at each time-level t. The Reynolds number, Re, is defined here by Re = L*3g*/p*v .2, where L* is the

dimensional channel width, p* is the density, v* is the kinematic viscosity and -9" is the local applied

pressure gradient driving the basic flow. This set of equations is solved in a two-dimensional channel where

the upstream flo_/,"is a pulsatile Poiseuille flow driven by the pressure gradient

OR (11)
7;(-_, v) = - 1+ 70cos;_t.

The corresponding velocity profile is
u(-_, Y) = u_ + u_ , (12)

where

= , _= e,cv_e ' Y 70 (13)u_ _y(1 - y) Uo cleV_e_Y + . 2#3 '
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with

70
2i/3 1+ eV 'Sea'_a_ , ca = 2i¢3 1 + eV _ea'P

and v(-oo,y) = 0. No-slip boundary conditions are applied along the upper and lower walls and the
downstream boundary conditions are u, = 0 and v, = 0.

For the case where the streamwise length scale is the same order as the channel width, tile minimal system

of equations needed to reproduce the unsteady asymptotic structure of Snfil_h (1976) is the parabolized

Navier-Stokes (PNS) equations (Eqs. (8)-(10) with all underlined terms neglected). Bearing this in mind,

a Navier-Stokes algorithm is formulated by first developing a PNS algorithna and then iterating on the

additional (underlined) terms. It is well-known that, when solving the steady PNS equations, departure
solutions can be suppressed either by neglecting the streamwise pressure-gradient term P,, or the streamline-

curvature term (the uv, term, see Rothmayer (1989, 1990)). In this study, the streamline-curvature term

uv_: is used to suppress departure solutions in the steady single-pass version of the algorithm, and also to

provide a mechanism for upstream propagation of information in the steady and unsteady global-iteration
algorithms.

The streamline-curvature term uvx is treated as a known source term and is forward-differenced in space

relative to the current solution point. The pseudo-unsteady term uvT (introduced to accelerate convergence
as in Davis (1984) and Barnett and Davis (1986)) is included implicitly using a standard backward difference

in time (see Rothmayer (1989, 1990)). Note that two unsteady effects are present - the real unsteady terms

ut and vt and the pseudo-unsteady term vT. The latter is driven to zero during multiple sweeps through the
solution domain at each real time level t.

The algorithm described above, without the addition of the Navier-Stokes terms (i.e., underlined terms

in Eqs. (8)-(10)) is similar to that described in the section on external flows, where the ITLNS equations
are solved. As with that algorithm, a number of implicit/explicit PNS-like algorithms were tested. The

full Navier-Stokes version of the internal-flow solution technique treats the underlined terms as source terms

calculated from the solution at the previous iteration, although algorithms with implicit treatment of vt were

also tested. The reader is referred to Rothmayer (1990) for further details.

The above-descrlbed Navier-Stokes solution algorithm has been used to solve for the flow through a
flat channel with the pulsatile pressure gradient given by Eq. (11) and the upstream boundary conditions

given by Eqs. (12-14). Fig. 2A shows a comparison between the wall shear stress computed using the
present analysis at a downstream location along with that given by the analytical Poiseuille solution - the

agreement is excellent. The departure solutions, to be discussed next, were triggered by introducing a very

small indentation in the channel wall (typical height h = 1 x 10-s).

As with the previously described external-flow analysis, it has been found that the present solution
algorithm experiences departure-solution behavior when a minimum spatial/temporal step-size restriction is

violated, with solutions like that shown in Fig. 1. Figure 2B shows how the minimum allowable time step,
Ats, changes with varying streamwise step size, Az, for a Reynolds number of 10 million. For a streamwise

step size above a critical value (Ax _ 0.207) the numerical scheme is free of departure solutions for all values

of At examined. As found with the external-flow analysis, neglecting the vt term leads to departure-free
solutions for all values of Az and At.

A similar departure-solution behavior was also observed when solving the PNS equations numerically. As

with the Navier-Stokes algorithm, the unsteady PNS method displayed the spatial/temporal step-size con-

straints. These departure solutions could again be eliminated by neglecting the vt term. These observations

hold even if the normal-momentum equation is reduced to the very simple form vt = -Py.

In the external-flow analysis, branching of the numerical solution was suppressed by spatially forward-
differencing the v t term, after re-expressing in terms of the stream function. A similar approach was at-

tempted in the internal-flow analysis. The -t/,xt term was forward and backward differenced in space, and

treated both implicitly and explicitly in both cases, in an attempt to eliminate the departure solutions. Of

the four methods, the backward-differenced explicit method had the least severe time-step restriction for a

given value of Ax. However, for sufficiently small time steps, all four algorithms exhibited the departure-

solution behavior previously discussed. This is in contrast with the external-flow analysis, where branching
could be completely eliminated by spatial forward-differencing of the -g',t term. It is not clear at this time
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wily this differencebetweentheinternal-andexternal-flowanalysesexists._'ortunate'ly,thepseudotime
stepAT can be optimized so that tile time scales for the observed departu-r_ solutions fall below the scales of

the Navier-Stokes regime (which constitute a likely absolute lower bound'on "the temporal time s-tep needed

for practical calculations). However, if a judicious choice of A_r is not made, then depgiq_ure-_o]mions may
be encountered even at the'large values of 2Xt associated with the :interactive _boundary:layer regime 0FSmith
(1976) (see Fig. 2C),

Another interesting, and currently unexplained, phenomena observed in both (he inte-ri_a_l- and extei'nal-

flow analyses is that departure solutions canbe elimina/ted by rleglect-lng l:he vt-te'rm in:certain local ttangviyrSe

regions, while retaining this term outside of those regions. :q_lae five "points )abelect A'I, )t_2 an_l "B'I through
B3 on Pig. 2B are points at which the solution has beeh stabi'lized by neglecting vt ;in t'he :various r_gio-n_

indicated. Fig. 2D shows the location of these regions "i'or each point. ]t Can _be seen }'roth _dais "gro'u'p oi"
figures that the size and location of these regions are gensitively dependent o_a'bot'h t'he sp£tlidl and-temporal

stepsizes. For all values of Ax there appears to exist a 2Xt below Which vt must be neg'lected ac'roSs :fhe entire
channel to ensure departure-free solutions.

Concluding Remarks

The objective of riffs paper has been, first, to describe departure solution behavior dbserved 'a;hen using

streamline-curvature based solution procedures which are being develope_t to study high 'Reynolds number
vortex-eruption phenomena, second, to indicate the responsible term in the governing equations und, finally,
to show how the departure solutions can be eliminated. We 'have Shown that the time-derivative of the

normal velocity, v, = -_b,t, appearing in the normal-momentum equations, is respbnsible for the branching
behavior, which only occurs 'for small spatial and temporal step sizes. "l%e ill-posed behavior has been

eliminated in the external-fl0w analysis byforward di-frerencing the spat!al-_lerivative appearing in the -_b,t
term. It should be noted that the step sizes for which the observed ill-posed behavior arises turn out to

be within the range needed to capture :many impd_taiit ungteady viacous-inviscid ihteraCfi6n l_henomena,
such as dynamic stall onset. Therefore, this mechanism should n-6t'be igriored _f aecm'dte SOlutions are to'be

obtained. The implication is that special differencing procedures may :be needed to propeiqy account'for :the

mechanisms responsible for the elliptic-like Character of the governing equa(ions at each time level o}"a time-

marching algorithm, possibly even for non-strean{line-curvature_techniques. A more-etm_plete description

of the responsible mechanism is currently being pursued _by the authors, and will be reported when it is
available.
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Fig. 2A.
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