
CR-189346
!

SOFTWARE ENGINEERING LABORATORY SERIES : SEL-94-001 _ i

2

Z --

ig_t Center '-----Godclard Space Pi - m .,,
Greenbelt, Maryland20771 _- _ _ _ __ _ " _ _ --

.............. II

. G: II
I

r_': 11

https://ntrs.nasa.gov/search.jsp?R=19940030490 2020-06-16T12:58:52+00:00Z

:+L+-+.. -- __ - _ -- --

++

.... +__ --

............. ++
--+

...... + " -- -- - + ..2L- +.__

.... _ __w

i

+

r i

. . _:.+m la rm l n n

E

m - +

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-001

SOFTWARE MANAGEMENT
ENVIRONMENT (SME)

COMPONENTS AND ALGORITHMS

FEBRUARY 1994

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and

created to investigate the effectiveness of software engineering technologies when applied to

the development of applications software. The SEL was created in 1976 and has three

primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC

environment; (2) to measure the effect of various methodologies, tools, and models on this

process; and (3) to identify and then to apply successful development practices. The

activities, findings, and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Robert Hendrick (CSC)

David Kistler (CSC)

Jon Valett (GSFC)

Single copies of this document can be obtained by writing to

Software Engineering Branch

Code 552

Goddard Space FLight Center

Greenbelt, Maryland 20771

10016975L 111

PI_C_ PAGE BLANK NOT FIL_EU
• .

PAGE._.._ INT:._,Ti_'_':'.LL'__LAt,IK

ABSTRACT

This document presents the components and algorithms of the Software Management
Environment (SME), a management tool developed for the Software Engineering Branch

(Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center
(GSFC). The SME provides an integrated set of visually oriented experienced-based tools
that can assist software development managers in managing and planning software

development projects. This document describes and illustrates the analysis functions that
underlie the SME's project monitoring, estimation, and planning tools. SME Components

and Algorithms is a companion reference to SME Concepts and Architecture, and Software
Engineering Laboratory (SEL) Relationships, Models, and Management Rules.

PI_I_I_L.-WI.NG PAGE BLANK N_OT FIL._/L_tE"

....]NTENTI_'iALLY BLANK

Table of Contents

Section 1--Introduction. ... 1

l. I Purpose .. 1

1.2 Audience .. 1

1.3 Organization .. 2

1.4 Notation ... 2

Section 2--Components .. 3

2.1 Project Data ... 5

2.1.1 Project List ... 6

2.1.2 Measure List ... 7

2.1.3 Profile List ... 8

2.1.4 Project/Measure Availability List ... 9

2.1.5 Project/Profile Availability List ... 10

2.1.6 Schedule Data. ... 11

2.1.7 Measure Data .. 13

2.1.8 Profile Data. .. 19

2.1.9 Estimates Data ... 23

2.1.10 Project Characteristics .. 25

2.2 Research Data .. 27

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

Schedule Models .. 28

Measure Models ... 35

Profile Models ... 51

Estimate Set Models .. 61

Attribute Definitions .. 68

PI_DOg_6 PAGE BLANK NOT FILMED vii

It

Table of Contents

2.3 Management Rules .. 79

2.3.1 Knowledge Base ... 80

2.3.2 Rule Base ... 106

2.4 Management Data .. 133

2.4.1 Alternative Plans ... 134

2.4.2 Phase Estimates .. 135

2.4.3 Subjective Data. .. 136

Section 3---Functionality ... 137

3.1 Executive .. 139

3.1.1 Project Selection ... 140

3.1.2 Specification of Current Project Date 145

3.2 Monitoring ... 147

3.2.1 Measure Selection ... 149

3.2.2 Simple Observation. ... 151

3.2.3 Comparison to a Normal Project .. 155

3.2.4 Comparison to Manager's Plan. .. 161

3.2.5 Comparison to Other Projects .. 167

3.2.6 Prediction ... 176

3.2.7 Trend Analysis ... 184

3.2.8 Profile Analysis .. 190

3.3 Overall Assessment .. 195

3.3.1 Attribute Evaluation ... 196

3.3.2 Attribute Factor Examination .. 199

°°o

VIII

Table of Contents

3.4 Planning .. 201

3.4.1 Use of Alternative Schedules ... 202

3.4.2 Use of Alternative Estimates ... 204

Appendix A--List of Defined Services ... 207

Abbreviations and Acronyms .. 209

References ... 211

Standard Bibliography of SEL Literature ... BI-1

ix

List of Illustrations

Figure

2-1. Project List for the SME .. 6

2-2,

2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.

2-23.

2-24.

2-25.

2-26.

2-27.

2-28.

2-29.

2-30.

2-31.

Measure List for the SME .. 7

Profile List for the SME .. 8

Project/Measure Availability List for the SME .. 9

Project/Profile Availability List for the SME ... 10

Schedule Data for a Project ... I 1

Measure Data for a Project .. 13

Effort Data for an Ongoing Project ... 15

Lines of Code Data for an Ongoing Project ... 15

Module Count Data for an Ongoing Project ... 16

Computer Hours Data for an Ongoing Project .. 16

Computer Runs Data for an Ongoing Project ... 17

Changed Modules Data for an Ongoing Project .. 17

Reported Changes Data for an Ongoing Project .. 18

Reported Errors Data for an Ongoing Project ... 18

Profile Data for a Project ... 19

Effort to Isolate Change Data for an Ongoing Project 21

Effort to Implement Change Data for an Ongoing Project 21

Effort to Isolate Error Data for an Ongoing Project 22

Effort to Correct Error Data for an Ongoing Project 22

Estimates Data for a Project ... 23

Characteristics Data for a Project ... 25

Schedule Model for IBM, FORTRAN, AGSS Projects 28

Normalizing a Project's Schedule ... 29

Averaging Normalized Schedules ... 30

Converting an Expected Phase to a Date ... 32

Converting a Date to an Expected Phase ... 33

Determining the Normal Schedule .. 34

Representative Measure Model for IBM, FORTRAN, AGSS Projects 35

Effort Model for IBM, FORTRAN, AGSS Projects 38

Lines of Code Model for IBM, FORTRAN, AGSS Projects 38

X

List of Illustrations

Figure

2-32.

2-33.

2-34.

2-35.

2-36.

2-37.

2-38.

2-39.

2-40.

2-41.

2-42.

2-43.

2-44.

2-45.

2-46.

2-47.

2-48.

2-49.

2-50.

2-51.

2-52.

2-53.

2-54.

2-55.

2-56.

2-57.

2-58.

2-59.

2-60.

2-61.

2-62.

Module Count Model for IBM, FORTRAN, AGSS Projects 39

Computer Hours Model for IBM, FORTRAN, AGSS Projects 39

Computer Runs Model for IBM, FORTRAN, AGSS Projects40

Changed Modules Model for IBM, FORTRAN, AGSS Projects,40

Reported Changes Model for IBM, FORTRAN, AGSS Projects 41

Reported Errors Model for IBM, FORTRAN, AGSS Projects41

Normalizing a Project's Measure Data ... 43

Averaging Normalized Measure Data. ... 44

Converting a Phase to an Expected Measure. ... 46

Converting a Measure to an Expected Phase .. 47

Determining Normal Measure Guidelines ... 48

Generating a Rate Model. .. 50

Representative Profile Model for IBM, FORTRAN, AGSS Projects 51

Effort to Isolate Change Model for IBM, FORTRAN, AGSS Projects 54

Effort to Implement Change Model for IBM, FORTRAN, AGSS Projects 54

Effort to Isolate Error Model for IBM, FORTRAN, AGSS Projects 55

Effort to Correct Error Model for IBM, FORTRAN, AGSS Projects 55

Normalizing a Project's Profile Data ... 57

Averaging Normalized Profile Data .. 58

Converting a Phase to a Profile Measure .. 60

Estimate Set Model for IBM, FORTRAN, AGSS Projects 61

Normalizing a Project's Completion Values, .. 62

Averaging Normalized Completion Values ... 63

Obtaining the Ratio of Completion Estimates .. 65

Determining a Normal Estimate Set. ... 66

Obtaining a Project's Magnitude .. 67

Attribute Definitions for the SME .. 68

Attribute Defining Correctability ... 71

Attribute Defining Maintainability ... 71

Evaluating a Factor Using Actual Data Values ... 73

Evaluating a Factor Using Normal Model Values 75

xi

List of Illustrations

Figure

2-63.

2-64.

2-65.

2-66.

2-67.

2-68.

2-69.

2-70.

2-71.

2-72.

2-73.

2-74.

2-75.

2-76.

2-77.

2-78.

2-79.

2-8O.

2-81.

2-82.

2-83.

2-84.

2-85.

2-86.

2-87.

2-88.

2-89.

2-90.

2-91.

2-92.

2-93.

Assessing a Project Attribute .. 77

Knowledge Base for the SME ... 80

Reasoning for Higher than Normal CPU Hours ... 83

Reasoning for Lower than Normal CPU Hours ... 84

Reasoning for Higher than Normal Total Staff Hours. 86

Reasoning for Lower than Normal Total Staff Hours 88

Reasoning for Higher than Normal Lines of Code. 90

Reasoning for Lower than Normal Lines of Code 92

Reasoning for Higher than Normal Reported Errors 94

Reasoning for Lower than Normal Reported Errors 96

Rating an Objective Factor. .. 101

Rating a Subjective Factor ... 102

Rating a Dependent Factor ... 104

Evaluating a Knowledge Base Reason ... 105

Rule Base for the SME ... 106

Rules for Above Normal Computer Runs per Line of Code. 108

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Rules for

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Above Normal

Below Normal

Computer Runs per Line of Code 109

Computer Hours per Line of Code, 110

Computer Hours per Line of Code. 111

Reported Changes per Line of Code. 112

Reported Changes per Line of Code. 113

Total Staff Hours per Line of Code. 114

Total Staff Hours per Line of Code. 115

Computer Hours per Computer Run. 116

Computer Hours per Computer Run 117

Reported Changes per Computer Run. 118

Reported Changes per Computer Run 119

Total Staff Hours per Computer Run. 120

Total Staff Hours per Computer Run 121

Computer Hours per Reported Change 122

Computer Hours per Reported Change. 123

xii

List of Illustrations

Figure

2-94.

2-95.

2-96.

2-97.

2-98.

2-99.

2-100.

2-101.

Rules for Above Normal Total Staff Hours per Reported Change 124

Rules for Below Normal Total Staff Hours per Reported Change 125

Determining the Present Phase for the Rule Base 128

Determining Measure Rates for the Rule Base .. 130

Evaluating a Rule in the Rule Base .. 132

Representative Alternative Plan for a Project .. 134

Representative Phase Estimate for a Project .. 135

Subjective Data for Three Projects ... 136

3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

3-7.

3-8.

3-9.

3-10.

3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

Selecting a Project of Interest. ... 140

Identifying Project Data for the Project .. 142

Setting the Current Plan for a Project .. 143

Identifying Models for the Project of Interest ... 144

Changing the Current Date for a Project ... 145

Selecting a Measure of Interest .. 149

Observing Actual Measure Values .. 151

Scaling the Observation Plotting Area. ... 153

Plotting Actual Values for a Measure. .. 154

Comparing a Measure to Normal Guidelines .. 155

Scaling the Comparison to Normal Plotting Area 158

Plotting Normal Project Values for a Measure ... 160

Comparing a Measure to the Manager's Plan .. 161

Scaling the Comparison to Plan Plotting Area ... 164

Plotting Planned Project Values for a Measure .. 166

Comparing a Measure to Other Projects .. 167

Scaling the Comparison to Other Projects Plotting Area 170

Plotting Actual Values as a Percentage of the Normal Completion Value 172

Selecting a Comparison Project .. 173

Plotting Comparison Project Values for a Measure 175

Representative Prediction ... 176

Sample Phase Estimate .. 177

,°.

XUl

List of Illustrations

Figure

3-23.

3-24.

3-25.

3-26.

3-27.

3-28.

3-29.

3-30.

3-31.

3-32.

3-33.

3-34.

3-35.

3-36.

3-37.

3-38.

3-39.

3-40.

3-41.

3-42.

3-43.

Phase Analysis for One Measure .. 178

Averaging Phases from All Available Measures 179

Deriving a Phase Estimate from the Current Schedule 180

Predicting a Completion Date, ... 181

Predicting a Measure's Completion Value ... 182

Predicting a Measure's Intermediate Values ... 183

Analyzing Trends in a Measure of Interest .. 184

Analyzing Trends Using the Knowledge Base .. 187

Analyzing Trends Using the Rule Base .. 189

Analyzing Profile Data for a Measure .. 190

Selecting an Available Profile ... 192

Obtaining Actual and Normal Profile Values ... 194

Evaluating Project Attributes .. 196

Computing Attribute Values ... 197

Displaying a Bar Graph of Attribute Values. .. 198

Examining Project Attribute Factors. ... 199

Displaying a Bar Graph of Factor Values .. 200

Sample Alternative Schedule .. 202

Creating a Schedule Based on a Model. .. 203

Sample Alternative Estimates. ... 204

Creating an Estimate Set Based on a Model ... 205

xiv

List of Tables

Table

2-1.

2-2.

2-3.

2-4.

2-5.

3-1.

3-2.

3-3.

3-4.

3-5.

A-1.

Major Components Used by the SME ... 3

SME Project Data Components, .. 5

SME Research Data Components .. 27

SME Management Rules Components .. 79

SME Management Data Components .. 133

Major Functions Provided by the SME ... 137

Key Executive Services Functions .. 139

Monitoring Services Functions .. 148

Overall Assessment Services Functions .. 195

Planning Services Functions ... 201

Cross Reference of Defined Services .. 207

XV

Section 1reintroduction

SECTION I--INTRODUCTION

The Software Management Environment (SME) is an interactive management tool developed
under the sponsorship of the Software Engineering Laboratory (SEL) at the National
Aeronautics and Space Administration's Goddard Space Flight Center (NASA/GSFC). The

tool supports a key set of experience-based functions that utilize software metrics to assist
software development managers in actively tracking and evaluating the status of their

projects.

The SME provides a range of visually oriented features to help software managers observe

the progress of an ongoing project, compare the project to other efforts or to models of how
projects normally behave in the environment, predict the probable future behavior of the
project, analyze the project's strengths and weaknesses, assess the project's quality relative to
previous efforts, and examine "what if' scenarios by varying the project's plan. These
functions rely not only on software measurement data collected for the development project

by an ongoing SEL measurement program, but also on the organizational experience gained
on past development projects in the environment which can be used to understand and

manage current projects.

1.1 PURPOSE

This document presents a detailed description of the information and algorithms used within
the SME to perform these functions for the manager. Its main purpose is to capture how the
SME automates key management functions using local data and experience. As a result, the
document focuses primarily on the logical steps required to accomplish those functions.
Detailed implementation-specific issues (such as standard searching and sorting algorithms,
methods of generating menus and windows, or steps for obtaining user input) are not
addressed.

The material covered complements information appearing in two previously issued SEL
documents--Software Management Environment (SME) Concepts and Architecture

(Reference I) and Software Engineering Laboratory (SEL) Relationships, Models, and
Management Rules (Reference 2). Serving as a companion reference, this document
provides a bridge between the two earlier documents by illustrating how one can use research
results and past experience within the conceptual framework of a software management tool.

1.2 AUDIENCE

This document is intended for use by individuals and organizations interested in

understanding the internal algorithms and techniques employed in SME management
functions. While the SME has been constructed specifically for the flight dynamics

environment at GSFC, the concepts and functionality described in this document readily

apply in any software development environment. The SME can serve as a model for other
software development organizations wishing to implement a similar measurement-oriented,
integrated management tool based on local experience.

Individuals who require only an executive summary of the concepts and functionality of the
SME may read the material in each section through the second-level headings. Those
readers desiring additional information about SME components and management functions

Section 1reintroduction

should read each section through the third-level
detailed component information and algorithms
comprehensive view.

headings. Those who wish to examine
can reference the entire document for a

1.3 ORGANIZATION

The remainder of the document is organized as follows:

• Section 2 discusses the major components used to represent information and

experience within the tool. These components serve as the elemental building

blocks of data referenced by the various SME functions.

• Section 3 describes the major management functions supported by the tool and

the algorithms used within those functions. These functions rely on the

components described in the previous section for information on an ongoing

project as well as for the collective experience from past development efforts.

• Appendix A provides an alphabetic list of all general-purpose and function-

specific services defined and referenced in the document.

1.4 NOTATION

Throughout these sections, this document uses a set of standardized conventions to help the
reader easily identify items that are discussed in another part of the document. These
conventions axe as follows:

Convention Meaning

I Predicted 1
Schedule

Convert Date to Phase

A shadowed box containing text, within a figure, is

used to label information obtained from a major

component defined in Section 2. The text appearing in

the box identifies the name of the component.

A rounded box containing text, within a figure, is used

to label information that derives from a major

component or represents an intermediate result. The

text appearing in the box identifies the related
information.

Italicized text appearing within the steps of an

algorithm refers to a general-purpose or function-

specific service, defined elsewhere in the document,

that is used with a major component or function.

Additional information on the service may be found in

the section that addresses its associated component or

function. Appendix A cross-references all defined

services by name.

2

Section 2--Components

SECTION 2--COMPONENTS

Understanding the SME's functionality begins with a firm understanding of the major
components used to represent information and experience within the tool. These components
serve as the elemental building blocks of data referenced by the various SME functions.
When characterized by the source of the information they provide to the SME, these
components fall into four categories. The first is project data from the SEL database. This
data encompasses measurement and planning data collected as part of ongoing SEL
measurement activities for current projects, as well as historical measurements from past
projects. The second is research data consisting of models, relationships, and quality
definitions that describe the development environment. This information captures the
behavior of normal projects in the environment and provides the basis for predicting and
estimating key project parameters. The third is management rules that embody knowledge
from experienced managers required to analyze measurement data and determine a project's
strengths and weaknesses. These rules form the expert analysis portion of the SME and
represent lessons learned in interpreting and analyzing metrics collected on past projects.
The fourth is management data supplied interactively by users of the SME. This information
constitutes additional data intended to support what-if scenarios or to specify subjective
knowledge about projects that can only be obtained from the manager.

Table 2-1 summarizes the major components used by the SME, organized into these four
basic categories by source.

Table 2-1. Major Components Used by the SME

SOURCE COMPONENT

Project Data

Research Data

Management Rules

Management Data

Project List
Measure List
Profile List
Project/MeasureAvailability List
Project/Profile Availability List
Schedule Data
Measure Data
Profile Data
Estimates Data
Project Characteristics

Schedule Models
Measure Models
Profile Models
Estimate Set Models
AttributeDefinitions

Knowledge Base
Rule Base

AlternativePlans
Phase Estimates
Subjective Data

3

Section 2--Components

4

Section2--Components

2.1 PROJECT DATA

The SME relies on the SEL database as the source of project-specific measurement and

planning data collected for all software projects within the local development environment.
In addition to planned project schedules and estimates, the SEL database includes weekly
measurements of basic items such as the effort expended on a project, the size of the ongoing

project in both lines of code and number of modules, the amount of computer resources used
on a project, the number of errors uncovered, and the number of changes made to the source
code. Other information collected and stored in the SEL database covers more detailed

measurements of development projects, including items such as number of modules
designed, number of open problem reports, the source of software changes and errors, and
the amount of time spent uncovering and repairing errors. In short, the SEL database
provides a wide spectrum of up-to-date information on current projects, as well as historical
information on past projects. Specific details on the various types of information in the
database, as well as how that information is collected, may be found in Data Collection

Procedures for the Software Engineering Laboratory (SEL) Database (Reference 3).

The SME uses project data extracted on a weekly basis from the SEL database in all of its
analysis, comparison, prediction, and assessment functions. The data provides the
fundamental information that characterizes and describes the behavior of current projects

being tracked with the SME. Furthermore, data from completed projects provides an
historical reference for making comparisons, creating models, and identifying applicable

management rules.

Table 2-2 summarizes the major components referenced by the SME as project data. Each

component maps to a particular type of data obtained from the SEL database and is identified
with a specific purpose. As a general rule, the first five components serve to identify and
locate the project data, while the last five types of components contain project-specific

information for each project.

Table 2-2. SME Project Data Components

COMPONENT PURPOSE

Project List
Measure List
Profile List
;)roject/MeasureAvailability List
Project/Profile Availability List
Schedule Data
Estimates Data
Measure Data
Profile Data
Project Characteristics

Identifies the names of allavailable projects
Identifies the set of definedsoftware developmentmeasures
Identifiesthe set of definedprofilesof each measure
Identifieswhat measure data existsfor each project
Identifieswhat profiledata existsfor each project
Capturesthe manager'splannedprojectschedule
Capturesthe manager'splannedcompletionestimates
Capturesactual prolect valuesovertime of defined measures
Captures actual project values over time of defined profiles
Captures key objective facts that characterize a project

The following sections provide detailed information on each of these components.

I>fI6C_IK)tN6 PAGE BLANK NOT FILMED

Section 2--Components

2.1.1 Project List

Purpose

Identifies the names of all projects available for access through the SME.

Description

The project list is an alphabetized table containing the names of all projects, both ongoing
and completed, that may be examined using the SME. The list defines all available projects
that the user may choose as the project of interest. A project name can appear in the list if
and only if a file containing schedule data exists for that project. The SME uses the project
name as a starting point for identifying, locating, and referencing all project data associated
with a project.

ProjectName I

PROJECT117

PROJ ECT4 _
PROJ'ECTn

Prc_ec_Data _
PROJE-CT3

Schedub Data
EstJmataSe(Data
Measure Data
Pr_ile Data

Projed Charact_isli:s

Pn:_e_ctData for
PROJECT4

Schedule Data
EstJrrBtaS_ Data

Source

Created by the SME during
initialization based on the

existence of project data files

Assumptions

• Each project in the list
must have a schedule

• The existence of a schedule

for a project implies the
existence of an estimate set

containing at least one
nonzero estimate

• The existence of a schedule

also implies the existence
of nonzero measure data
for at least one measure

Figure 2-1. Project List for the SME

Instances

The SME creates one project list, which exists only for the duration of the SME session.

Structure

Table with one column--project name. Each row in the table contains the name of a single
project.

6

Section 2--Components

2.1.2 Measure List

Purpose

Identifies the set of fundamental software development measures used by the SME.

Description

The measure list is a table containing the names (and codes) of all fundamental software
development measures that may be referenced using the SME. The SME defines a set of
eight basic measures that managers in this environment use to track and judge project
progress. The SME uses the list in locating and referencing the measure data and measure
models that are available. Consolidating the names of all defined measures in one list
facilitates changing or extending the list to accommodate new measures or other
development environments.

Measure
Code

CPU

EFF
LOD
MCH

MOD
RCH
RER

RUN

Measure
Name

CPU Hours

Total Staff Hours
Unes of Code

Modules Clk3rlged
Module CcxJnl

Reported Changes
Reported Errors

Computer Jobs

Figure 2-2. Measure List for the SME

Source

Defined as part of the SME

Assumptions

• Any measure data accessed
by the SME will
correspond to one of the
defined measures in the list

• A one-to-one mapping
exists between the defined
measures and the set of
measure models used for a

given project type

• A one-to-one mapping
exists between the defined
measures and the entries in
an estimate set model

Instances

The SME defines one measure
list.

Structure

Table with two columns--measure code and measure name. Each row in the table defines a

single measure, identified by a measure code and an associated descriptive measure name.

Section 2--Components

2.1.3 Profile List

Purpose

Identifies the types of profile data used by the SME for specific measures.

Description

The profile list is a table containing the names, codes, and associated measure of all types of
profile data that may be referenced using the SME. Profile data takes an associated measure
and breaks it down into two or more discrete categories. Thus, each profile must be
associated with a measure. The SME defines a set of four profiles that the software uses
primarily in assessing a project's overall health, stability, and reliability. These four profiles
can also be used by managers to track and judge a project's progress. The SME uses the list
in locating and referencing the profile data and models that are available. Consolidating the
names of all defined profiles in one list facilitates changing or extending the list to
accommodate new profiles or other development environments.

M6,_.ure

Code

CPU

EFF _ Pndile

LOD Name
MCH
MOO
RCH . Effod to Isolate Char_

R Efloa to lrnder_ra Cha_

RUN " Effort to _ E,ror

-- Effod to _ Error

Source

Defined as part of the SME

Assumptions

• Any profile data accessed
by the SME will
correspond to one of the
defined profiles in the list

• A one-to-one mapping
exists between the defined

profiles and the set of
profile models used for a
given project type

Instances

The SME defines one profile
list.

Structure
Figure 2-3. Profile List for the SME

Table with three columns--

measure code, profile code,

and profile name. Each row in the table defines a single profile, identified by a unique
profile code, its associated measure, and an associated descriptive profile name.

Section 2--Components

2.1.4 Project/Measure Availability List

Purpose

Identifies what measure data exists for each project.

Description

The project/measure availability list is a table of boolean flags that indicates what measure
data is available for each project. Each row in the table contains information related to one
project specified in the project list. Each column that is associated with a boolean flag
corresponds to one measure defined in the measure list. A measure is flagged as available
for a given project if and only if a file containing data for that particular measure and project
exists. The SME uses the list in determining what measures are available for a project.

I FrojecYMeasureAvailabqTity List B

Project Measure6
Names

CPU EFF LOC MCH MOD RCH PER RUN

PROJECT1 T T F T T I= T T
PROJECT2 F T T T T T T F
PROJECT3 T T T T F T T T
PROJECT4 F T T F T F F F

PROJECTn T T T 1" T T T T

Figure 2-4. Project/Measure Availability List for the
SME

Source

Created by the SME during
initialization based on the

existence of project data files

Assumptions

• A one-to-one mapping
exists between the rows in

the table and the projects in
the project list

• A one-to-one mapping
exists between the columns

of boolean flags in the
table and the measures
defined in the measure list

Table entries flagged as
"TRUE" identify the
measures that are

accessible by the SME for
a given project

Instances

The SME creates one project/measure availability list, which exists only for the duration of
the SME session.

Structure

Table of boolean flags with one row for each project in the project list and one column for
each defmed measure. An individual row in the table indicates which measures are available

for the project identified for the row.

9

Section 2---Components

2.1.5 Project/Profile Availability List

Purpose

Identifies what profile data exists for each project.

Description

The project/profile availability list is a table of boolean flags that indicates what profile data
is available for each project. Each row in the table contains information related to one
project specified in the project list. Each column that is associated with a boolean flag
corresponds to one profile defined in the profile list. A profile is flagged as available for a
given project if and only if a file containing data for that particular profile and project exists.
The SME uses the list in determining what profiles are available for a project. Note that if

data exists for a given profile, data inherently exists for the profile's associated measure.

ProjecVProfileAvailabifiry Ust]

Project Profiles
Names

RCHI RCH2 RERI RER2

PROJECT1
PROJECT2
PROJECT3

PROJECT4

T T F T
F T T T
T T T T
F T T F

T T T TPRO,JECTn

Figure 2-5. Project�Profile Availability List for the SME

Source

Created by the SME, as
needed, based on the existence

of project data files

Assumptions

• A one-to-one mapping
exists between the rows in

the table and the projects in
the project list

• A one-to-one mapping
exists between the columns

of boolean flags in the
table and the profiles
defined in the profile list

• Table entries flagged as
"TRUE" identify the
profiles that are accessible
by the SME for a given
project

Instances

The SME creates one project/profile availability list, which exists only for the duration of the
SME session.

Structure

Table of boolean flags with one row for each project in the project list and one column for
each defined profile. An individual row in the table indicates which profiles are available for
the project identified for the row.

10

Section 2--Components

2.1.6 Schedule Data

Purpose

Captures a chronological record of the project's schedule as planned and periodically
updated by the manager.

Description

Schedule data is a list of all schedules submitted by a manager for a project over the project's

life cycle. The individual schedules in the list are maintained in chronological order by
submission date with the most recent submission identifying the default "current" schedule.
Each schedule in the list specifies the planned start and end dates of each phase in the
software development life cycle. Since the SME follows the SEL database's use of a
traditional waterfall life cycle, the SME currently uses a set of four contiguous, non-
overlapping phases: design, code and unit testing, system testing, and acceptance testing.
By specifying phases in this manner, the schedule implicitly defines the start and end dates
for the entire project.

I 1 DESGN C_ _ A,cc'rE

Currsrrt I I I : I
Schedule sodom o_s_2 o_J_ o¢_u_ _2r_s_3

Figure 2-6. Schedule Data for a Project

Source

Collected by the SEL from the
manager via Project Estimates
Forms (PEFs); subsequently
extracted from the SEL
database for the SME

Assumptions

• Projects follow a
traditional waterfall life

cycle with four serial, non-
overlapping phases

• The phases in a schedule
map to the phases defined
in the schedule model for

the corresponding project
type

Instances

One schedule data file is

required for each project.

Structure

Collection of schedule records. Each schedule record consists of a submission date and a

table with three columns--phase name, phase start date, and phase end date. Each row in the

table supplies the dates for a single phase.

The following section delineates a set of general-purpose services commonly associated with
schedule data.

11

Section 2---Components

2.1.6.1 General-Purpose Use of Schedule Data

The SME incorporates a set of general-purpose services commonly used with schedule data.
The services are requested by various high-level SME functions to perform specific actions
associated with schedules. These services include

• Get Scheduled Phase Dates--Obtains the start and end dates for a given phase from a

specified schedule.

• Get Project Dates--Obtains the start and end dates planned for the project from a

specified schedule.

• Get Schedule--Obtains the schedule that was in effect on a given date (if no date is

specified, obtains the most recent schedule).

12

Section 2--Components

2.1.7 Measure Data

Purpose

Captures the actual recorded behavior over time of a fundamental software development
measure such as lines of code, effort, or software errors.

Description

Measure data is a chronological record of the actual values collected on a project for a single

specific measure over the development life cycle. For any given project, the SME references
measure data for one or more of the eight key measures defined in the measure list. The
measure values in the data are zero at the start of a project and cumulative measure values to

date are subsequently recorded at a fixed sampling frequency. By convention, the SME uses
measure data recorded on a weekly basis to match the sampling frequency of SEL data
collection activities. The measure values stop at the most recent sampling date for ongoing

projects, but continue through the end of the project for completed projects.

I
I I.ines of Code

Effoa

10/11/91 15.00
10/18/91 140.50
10t25/91 244.00

.Jl_ 4r_l:ao
11/19r'9_ 47408.80
11/26/95 4747"L80
12/03/93 47531.80
12/10/9_3 47570.80
12/17/93 47580.80
12/24/93 475,9480

Module Count

1 0.0O I

1 0.00 I

• 1 0.0O I

ii_ I°0o

).00 O_

i_.i3'_ ,00

_2,00 "

3 6_0.0O I
3 693,0O I

3 6"93oo I
3 6930O I
3 6930O I
3 6gO.0o I
3 693.0o I

I 1

Figure 2-7. Measure Data for a Project

Source

Collected by the SEL via
forms and automated data

collection tools; subsequently
extracted from the SEL data-
base for the SME

Assumptions

• At project start, all
measure values are zero

• The measure values are

recorded on a weekly basis

with one value per week
(no time gaps exist in the
data)

,, Each project collects
measure data for at least

one measure

Instances

One measure data file may

exist for each defined measure per project, as noted in the project/measure availability list.

Structure

Table with two columns---date of sample, measure value. Each row in the table describes
the actual cumulative value observed for the measure on the sampling date.

13

Section 2--Components

2.1.7.1 Representative Measure Data

The SME references measure data for one or more of the eight defined measures for each
project. This data encompasses

• Effort Data
• Lines of Code Data
• Module Count Data

• Computer Hours Data
• Computer Runs Data
• Changed Modules Data

• Reported Changes Data
• Reported Errors Data

The following sections present a representative set of data for the eight measures. The
samples depict measurements for an ongoing project.

14

Section 2---Components

2. 1.7. 1.1 Effort Data

i
Damof i Me4mure
Sam#e I Value-

02/01/91 I 1_

0_/9! I 564

11,_oR_ I 3e,0e_
11/13/92 3_281
11_ 3_,_

11K2"/_32 I 39.7"34

39.943
12/11_ I 40.12312J1_

Total StaffHours vs. Time
For PROJEC'i-Z

50,000

4o,o00....................... _.

30,000 _ :

"_ 20,000

10, -

Calendar Time

Effort data provides weekly
measurements of the actual

expenditure of effort in staff
hours on a project. The effort
represents all hours expended
by programmers and line
management, but excludes all
project management and
service hours. The informa-
tion is collected via SEL
Personnel Resource Forms

(PRFs).

Note: The measurements will

typically cover the entire
development life cycle from
project start through project
end.

Figure 2-8. Effort Data for an Ongoing Project

2.1.7.1.2 Lines of Code Data

I Measure|

zta •

of Moe._r e

s_, v=_.___.

0_JOl_JI 0
02/O&_l 0

02/15,_91 0

,1_ 2ot_7_
11/13/g_ 201,8Q4
11F¢_ 201,924

11 ,_rT_ 301 ,g24
I PJ_l._ 201,8_

12J't 1_ 2_3,:3_4
12fl _ 203,874

Lines of Code vs. Time
For PROJECTZ

250,000

200,600

_ 150,000

................. t }..........
50,;----........ i..........

i

2_ II • i0 1/91 =z_s,l_ 09/10/93

Calendar Time

Figure 2-9. Lines of Code Data for an Ongoing Project

Lines of code data provides
weekly measurements of the
actual generation of lines of
code in SLOC on a project.
This measure reflects the
number of records in the

project's controlled source
library. The information is
collected via an automated tool

that examines project libraries
and is recorded on SEL Ser-

vices/Products Forms (SPFs).

Note: The measurements will

remain at zero until the project
begins placing source code
under configuration control in
the project's source library.
This typically occurs near the
beginning of the code and unit
test phase.

15

Section 2--Components

2.1.7.1.3 Module Count Data

Module Countvs.Time
For PROJEC'i-Z

1,250

 ,.ooo...................
750 ''''''" !

,_ 500

2_ -'-........... {
• (,_ m

i =

OK 1/91 12n_B2 09/10/93
Calendar Time

Figure 2-10. Module Count Data for an Ongoing
Project

Module count data provides

weekly measurements of the
actual number of modules

generated on a project. This
measure reflects the number of

members in the project's
controlled source library. The
information is collected via an
automated SEL tool that

examines project libraries and
is recorded on SEL SPFs.

Note: The measurements will

remain at zero until the project
begins placing source code
under configuration control in
the project's source library.
This typically occurs near the
beginning of the code and unit
test phase.

2.1.7.1.4 Computer Hours Data

l_te ot i Meas.m)

san_ va_.__7"

02_1_1 0
0_._I J 0

(:_Jt 5Rq i o
• [.

11 t0_92
1lti 3FJ2 I 42.00435_

11 r'ZO,'S_] 4428

12/1EL_] 4_,3251,00

Computer Hours vs. Time
"For PROJECTZ

100

60 ,. I.l*.......emlmul_-n -

40 P"'''''''''''''" ""r_ "''---'''°

o 2°...............J..j
L
o_ 1/91 1_2 o_/IO/_]

Calendar "time

Figure 2-11. Computer Hours Data for an Ongoing
Project

Computer hours data provides
weekly measurements of
actual computer usage in CPU
hours by a project. This
measure reflects values from

all computers used by the
project, normalized to account
for different processor speeds.
The information is collected by
computer system accounting
software and recorded on SEL
SPFs.

Note: These measurements

are particularly sensitive to the
development process being
applied, but do exhibit useful
trends within similar classes of

projects.

16

Section 2--Components

2.1.7.1.5 Computer Runs Data

I
Dab o# I Meel_e

Sm_e I value •

O_JOl_I

02/15_I

24.1 g2
11/20/_1fP13_I 24.384

24.504
11K27_ I 24.7P:_.t ?J04._

12/11)g_ 25._4
1?JlS,_2 2&220

ComputerRunsvs. Time
For PROJECTZ

50,000

40.000 "" "

20,000

C5 10,000

ca
02701/91 1_92 0_/i0/93

Calendar 77me

Figure 2-12. Computer Runs Data for an Ongoing
Project

Computer runs data provides
weekly measurements of
actual computer usage in terms
of the number of jobs
submitted by a project. This
measure reflects jobs
submitted on all computers
used by the project. The
information is collected by
computer system accounting
software and is recorded on
SEL SPFs.

Note: These measurements

are particularly sensitive to the
development process being
applied, but do exhibit useful
trends within similar classes of

projects.

2.1.7.1.6 Changed Modules Data

l

I Measure|
I uafa •

Da_of M_legre

s._, v=u,, -

02/01 _11 0
0?..O&_! 0

02/15R! 0

11/0_ 2.9_

11H3_ 3.306
11_'_(_,_ 3,042

11 r27_ 3.042
12,_)4292 3.072

12/II_I_ 3,318
t ?..,'t_ 3,360

Changed Modulesvs. Time
For PROJECTZ

5,000,

_4 0(30

..........................,..........

..................i..........
0:_01,,'91 '_,_e,'_ 09/10/93

Calendar 77me

Figure 2-13. Changed Modules Data for an Ongoing
Project

Changed modules data
provides weekly measurements
of the actual number of

module changes occurring on a
project. This measure reflects
the number of module versions

in the project's source library,
minus the number of baseline
members. The information is
collected via an automated

SEL tool that examines project
libraries and is recorded on
SEL SPFs.

Note: The measurements will

remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library. This typically
occurs in the code and unit test

phase.

17

Section 2--Components

2.1.7.1.7

_r_l_ I vz, uo.

02_11 _il " ""
02_1

02"1,,_91

+I_ l 1,536

1584
+tr20_+tn3_ I s'.,_

1,584
12/04.._t1+'_7'_tI 1,608

12+,'11,'_r t ,(GSO
12/18RZ2 1.7 6

Reported Changes Data

Reported Changesvs. Time
for PROJECTZ

2,500

2,000

J

1,500 ",,1_,"..........

++
r_

Calendar Time

Reported changes data pro-
vides weekly measurements of
the actual number of logical

changes reported for a project.
This measure reflects the

number of SEL Change Report
Forms (CRFs) submitted to
date for a project.

Note: The measurements will

remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library. This typically
occurs in the code and unit test

phase.

Figure 2-14. Reported Changes Data for an Ongoing
Project

2.1.7.1.8 Reported Errors Data

i
6PJOI_I + 0
C_91 0

_2J_5_t 0

11/13,13_ 618
I1_ 618

11r_7_ 61,8
1_ 624

12/11/92 648
12/18/92

1.250.

ReportedErrorsvs. Time
For PROJECTZ

t_E_1,000" ,

..................Z; i
I

02%1..'91 12_e.;_ (_10._

Calendar 77me

Figure 2-15. Reported Errors Data for an Ongoing
Project

Reported errors data provides
weekly measurements of the
actual number of logical
changes reported as being due
to an error that occurred on a

project. This measure reflects
the number of SEL CRFs
submitted to date on which the

type of change is listed as error
correction.

Note: Reported error
measurements will remain at

zero until the project begins
correcting source code that
resides under configuration
control in the project's source
library. This typically occurs
in the code and unit test phase.

18

Section 2--Components

2.1,8 Profile Data

Purpose

Captures the actual recorded behavior over time of a software development measure using
an associated profile such as effort to isolate changes or effort to correct errors.

Description

Profile data is a decomposition into discrete categories of a particular development measure
to further characterize that measure's behavior over the development life cycle. The profile

values in the data are zero at the start of a project and cumulative profile values to date are
subsequently recorded at a fixed sampling frequency. As with measure data, the SME uses
profile data recorded on a weekly basis to match the sampling frequency of SEL data
collection activities. The profile values stop at the most recent sampling date for ongoing
projects, but continue through the end of the project for completed projects.

I Effort_o Corr_t Error

I I
I f:floa to Irr_eme_t Chanae

Effod to isolate Change

1_11191 0 0 0 0 0
10/18_91 0 0 0 0 0
10/25_1 0 0 0 0 0

11/1zm 830 _ ,2 46 o
11119/93 836 503 113 46 0
11/26/_ 836 5_ 113 46 0
12/03/93 836 503 113 46 0
12/10/93 836 503 113 46 0
12/17/93 836 503 113 46 0
12/24/93 836 503 113 46 0

4 0

'5 0
5 0

5 0

7 0

0 0
0 0
0 0

11 0
11 0
12 0
14 0
14 0
14 0
14 0

Figure 2-16. Profile Data for a Project

Source

Collected by the SEL via
forms; subsequently extracted
from the SEL database for the
SME

Assumptions

• At project start, all profile
values are zero

• The profile values are
recorded on a weekly basis

with one value per week
(no time gaps exist in the
data)

• The existence of profile
data associated with a

measure implies that
measure data exists for that

measure

Instances

One profile data file may exist for each defined profile per project, as noted in the
project/profile availability list.

Structure

Table with multiple columns-----date of sample, and one column per profile value. Each row
in the table describes the actual cumulative values observed in the profile's defined categories
on the sampling date. Additionally, the horizontal sum of the profile values taken on any
given date will equal the observed value of the associated measure on the same date.

19

Section 2mComponents

2.1.8.1 Representative Profile Data

The SME references profile data for up to four defined profiles for a project. This data

encompasses

• Effort to Isolate Change Data

• Effort to Implement Change Data
• Effort to Isolate Error Data
• Effort to Correct Error Data

The following sections present a representative set of data for the four profiles. The samples
depict measurements for an ongoing project.

2O

Section 2--Components

2.1.8.1.1 Effort to Isolate Change Data

Da_ of I PTOlJeVa_e_

I0/11_I

10/18/91
I_I

11fI_

11fI_

0 0 _ O 0

0 0 b C 0

0 0 b 0 0

8301 5_31 1 !1 46 0

8381 5_31 1' _| 46 0
11/2_ 83Sl 5_31 1 _1 46 0

\
12/(_/_ 8361 5_31 1' _1 46 0
12tl 0/_ 8361 G_31 I' _1 46 0

12/17,_ 83Sl 5(31 1 _ _1 46 0
12_..4_3 8361 _31 11 _ _ 0

10_04_91 03FmO_ 12QSZ_3

Figure 2-17. Effort to Isolate Change Data for an
Ongoing Project

Effort to isolate change data
provides weekly measurements
that record reported changes
by the effort expended in
isolating the change. The
profile partitions the reported
change data into five
categories--1 hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown. The information is
collected via SEL CRFs.

Note: The measurements will

remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library.

2.1.8.1.2 Effort to Implement Change Data

Data of

s.m_
Vakm6

Olo o o°o o o o0/'1_1
or"z5,gt

- ! .

1/12'93 828 | 423 _ 150 62 0

1/19,93 831 I 425 _ 1_:1 84 0

I_,93 I _1 _s lS2 s4 o
71 425 I.. 84 0

2/10,_3 K37, 425 t_K_.
2/17_g3 _371 425 152

2r24S33 837 | 425 152 0S
0

o

|

--I t
_m

. . •
10_4_1 03t_0_3

\
84
84

84

12_5F_3

Figure 2-18. Effort to Implement Change Data for an
Ongoing Project

Effort to implement change
data provides weekly mea-
surements that record reported
changes by the effort expended
in implementing the change.
The profile partitions the
reported change data into five
categories--1 hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown. The information is
collected via SEL CRFs.

Noto: The measurements will

remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library.

21

Section 2--Components

2.1.8.1.3 Effort to Isolate Error Data

Date of I PrelJe V_

Sa_ae I
i

I0d11/9t I o i 0 0 I 0

10¢1_1 | n i 0 o I 0
10rg#91 I o | 0 0 I 0

Sn'_ I 4O7 I 178 28 I 18

,1hE, s3 I 4,40 I 1,80 2_1 19ttt26_3 I 442 I 180 19

180 19

t2rz,ts3 I _ I tso 29 I 19

i

o\0

o

Effort to _,_te Error vs. Trne
o lot Pn:_ec_l
o

o
o =

g ;

sJJ i

Figure 2-19. Effort to Isolate Error Data for an Ongoing
Project

Effort to isolate error data

provides weekly measurements
that record reported errors by
the effort expended in isolating
the error. The profile

partitions the reported error
data into five categories--1
hour or less, 1 day to 1 hour, 3
days to 1 day, more than 3
days, and unknown. The
information is collected via
SEL CRFs.

Note: The measurements will

remain at zero until the project
begins correcting source code
that resides under config-
uration control in the project's
source library.

2.1.8.1.4 Effort to Correct Error Data

Dabot

SzW_

10/11/91

10/18/91
lOr'_t

11/12/9_

11;19_3
11/"_6/¢j_

12JO3,'B3

12r10_
12/17_3

12r24,4P3

_Value6

0 (0 I 0

0 (0 I 0

0 (0 I 0

4?2 I t3(38 21 0

474 I 13; 39 2; o

4761 13; 40 2; 0

4791 13; 40 2; 0
4_I I I_e 40 _ 0

41121 I_ 4O _ 0
111121 1:_ 4O Z 0

t:)ata

i

I
I0/04_1

\
!

03F2:0,*_3 12,_z54_3

Figure 2-20. Effort to Correct Error Data for an
Ongoing Project

Effort to correct error data

provides weekly measurements
that record reported errors by
the effort expended in cor-
recting the error. The profile
partitions the reported error
data into five categories--1
hour or less, 1 day to 1 hour, 3
days to 1 day, more than 3
days, and unknown. The
information is collected via
SEL CRFs.

Note.: The measurements will

remain at zero until the project
begins correcting source code
that resides under config-
uration control in the project's
source library.

22

Section 2---Components

2,1,9 Estimates Data

Purpose

Captures a chronological record of the project's completion estimates as planned and
periodically updated by the manager.

Description

Estimates data is a list of all completion estimates submitted by a manager for a project's
measures over the development life cycle. The individual estimate sets in the list are
maintained in chronological order by submission date, with the most recent submission
identifying the "current" set of estimates. Each estimate set in the list specifies the planned
completion values for all defined measures. The completion values for specific measures in
an estimate set may be set to zero to indicate that the manager does not plan to collect that
measure; however, at least one measure in each set of estimates must have a nonzero value.

Note: Estimates are collected from the manager for only three of the eight defined measures
(lines of code, module count, and effort). Since the SME requires a manager's estimate for
each measure, estimated completion values for the remaining five measures are derived by

applying an estimate set model to the three values collected from the manager.

I Sull_i_on Dam. 10X)M31
---I

I S_i_ion Dam, 06/(_

SuS'_iad_e Oate. 1?.tl 1_

_ Deto. 04J16,_3

Code Es,_le

t_2o_
57442.05"

t.OC 225000.00
3065.40

MOD 1181.48
RCH 1912.73

RER 984.60
RUN 68575.05

._= 60,000

Total Staff Hours vs. "lqrne

Z
j,fI

10/11/91 05/14J93 12/24/93

Figure 2-21. Estimates Data for a Project

Source

Collected by the SEL from the
manager via SEL PEFs;
subsequently extracted from
the SEL database for the SME

Assumptions

• A completion value is
provided in each estimate
set for all measures defined
in the measure list

• At least one entry in each
estimate set must have a

nonzero completion value

Instances

One estimates data file is

required for each project.

Structure

Collection of estimate set

records. Each estimate set record consists of a submission date and a table with two

columns----measure code and estimated completion value. Each row in the table supplies the

completion estimate for a single measure.

23

Section 2DComponents

2.1.9.1 General-Purpose Use of Estimates Data

The SME incorporates a set of general-purpose services commonly used with estimates data.
The services are requested by various high-level SME functions to perform specific actions
associated with completion estimates. These services include

• Get Estimated Completion Value--Obtains the estimated completion value for a

given measure from a specified set of estimates.

• Get Estimates--Obtains the set of completion estimates that was in effect on a given

date (if no date is specified, obtains the most recent set of estimates).

24

Section 2--Components

2.1.10 Project Characteristics

Purpose

Captures a collection of key objective facts about a project that helps to characterize the
project.

Description

Project characteristics data is a list of known, objective information about a project that can
help to classify the project. When taken in aggregate, the key characteristics of a project
compose the project type. The SME uses this project type to identify an appropriate set of
models that corresponds to the project. Currently, the SME recognizes three basic
characteristics--the development computer, the computer language used, and the application
area. These key characteristics serve to identify the two primary classes of development
projects found in the SEL environment--attitude ground support systems (AGSSs)
developed in FORTRAN on IBM computers, and simulators developed in Ada on DEC
computers. If the specified project characteristics fail to match these two classes or no
characteristics exist for a project, the SME uses a default set of models for that project.

I Project I
Characteristics

Charac_er_c Coded

Name Value

Project Narre .-_ IBM, FORTRAN
AGSS mode_s

PROJECT1
PROJECT2
PROJECT3
PROJECT4

PROJECTn

COMPUTER IBM

LANGUAGE FORTRAN
APPLICATIC_ AGSS

Characteristic Ceded
Name Value

COMPUTER DEC
LANOJAGE ADA
APPLICATION SIMULATOR

I==.. DEC, ADA
SIMULATOR mctlels

Figure 2-22. Characteristics Data for a Project

Source

Extracted from the SEL data-

base for the SME

Assumptions

• Three key characteristics
provide sufficient
information to classify
most projects and select
appropriate models

• Default models can be used

with other projects whose
characteristics are not
known or do not match the

supported models

Instances

One project characteristics file
may exist for each project.

Structure

Table with two columns--_haracteristic name and coded value.

supplies the coded value for a single characteristic.

Each row in the table

25

Section 2--Components

26

Section 2_Components

2.2 RESEARCH DATA

The SME relies on information from SEL research efforts to identify ways of representing
the normal behavior of development projects in the local environment. The models and
relationships used within the SME to describe normal projects derive from numerous SEL
studies conducted over the years. A summary of representative SEL research results that
could be applied to the SME may be found in Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules (Reference 2).

In this context, the term model refers to a representation of how a given parameter of interest
normally behaves over the software development life cycle within a specific environment.
This parameter of interest may be time (as in the case of schedule models), a particular
measure (as with measure models of effort or lines of code), or even a combination of

measures (as in rate models of coding productivity or attribute models of correctability).
Typically, these models are developed by averaging historical project data for the parameter
over a set of similar, completed projects. The resultant models, normalized for project size,
subsequently may be used to represent the behavior normally expected for a class of
homogeneous projects having similar project characteristics. The SME currently
incorporates models for the two primary classes of development project found in the SEL
environment--AGSSs developed in FORTRAN on IBM computers and simulators
developed in Ada on DEC computers.

The term relationship, on the other hand, refers to a representation of the correlation between
various software development parameters at a specific point in the project life cycle. Due to
a need for accurate planning and estimation, most relationships focus on the correlation at
project completion between a pair of measures or between duration and a measure. The
SME currently incorporates the relationships that exist between the completion values of
each pair of measures via estimate set models provided for all supported classes of projects.

Table 2-3 summarizes the major components referenced by the SME as research data and
identifies each component's purpose.

Table 2-3. SME Research Data Components

COMPONENT PURPOSE

Schedule Models

Measure Models

Profile Models

Estimate Set Models

Attribute Definitions

Describes the fractional amount of time normally spent in
each life-cycle phase
Describes the normal behavior over time of the defined
measures
Describes the normal behavior over time of profiles defined for
measures
Describes the relationships that exist between completion
values of measures
Describes a defined set of overall project quality attributes

The following sections provide additional detailed information on each of these components.

PAGE BLA_'_K t_OT FtLI_,I,EO

27

Section 2--Components

2.2.1 Schedule Models

Purpose

I Describes the amount of time normally spent in each software development life-cyclephase as a fraction of total project duration.

Description

A schedule model is a normalized representation of the fractional amount of calendar time
typically expended during a development project as a function of life-cycle phase. Specific

points in the life cycle are identified by the combination of a phase name and an elapsed
fraction of that phase between 0 and 1.0 inclusive. The amount of time expected at those
points is measured from the start of the phase and is expressed as a fraction of elapsed
project duration. The sum of the total fractional time spent in all phases is 1.0.

Percentof Time inPhase

Fraction o_

Duration

0.2530

0.3580

0.1766

0.2124

Normal DeriSion. 0.0280

Figure 2-23. Schedule Model for IBM, FORTRAN,
AGSS Projects

Source

Statistical averaging of actual
schedules from a set of com-

pleted development projects

Assumptions

• The projects follow a
traditional waterfall life

cycle with four serial,
non-overlapping phases

Instances

One model exists for each

project type.

Structure

Table with three columns--

phase name, fraction of phase,
and fraction of duration; sca-
lar value--normal deviation.
Each row in the table describes
the fractional amount of

calendar time typically expended from the start of the phase through the point in the life
cycle specified by the row's phase name and fraction of phase. The scalar value associated
with the table represents the normal allowable deviation in a project's schedule from the
tabulated fractional values.

The following sections detail the steps required to create schedule models using actual data
from completed projects and present a set of general-purpose algorithms commonly used
with schedule models.

28

Section 2mComponents

2.2.1.1 Creating a Schedule Model

The schedule models used by the SME are created by normalizing and then statistically
averaging actual project schedules observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model and should have the same number of
phases. By first normalizing the schedules, the two-step creation process gives equal weight
within the model to each contributing project regardless of size or duration.

Required Data

• Schedule data (for each project in the set)

Step l_ormalize Each Prolect's Schedule

For each project in the set, perform the following:

.

.

.

Calculate the actual number of weeks elapsed between the project start date and

project completion date found in the schedule data (Actual Woeksrota _.

For each life-cycle phase in the schedule data, calculate the actual number of weeks

elapsed between the start and end dates of the phase (Actual WeekSln Phase I/I).

For each life-cycle phase, normalize the amount of time spent in the phase by the

total project duration to compute the fraction of duration for that phase as

Fraction of Durationln Phase [J] = Actual WoekSln Phase [i] / Actual WeekSTota I

I I I E., I

IDE,_I_ IO_S_7 I0_ I
I OODET I o=xz_ I _
I SYSTE I o"z_v_ I oe1_/_ l-"I_

I Actual Time 1in Weeks

I DESGN CODEr
I 31 weeks 44 weeks

Time DESGN CODEr
26.96*/. 38.26*/.

115 weeks total __
I •

SYSTE' ACCTE _1
|

19 weeks 21 weeks I

I I I
SYSTE ACCTE
16.52% 18.26°/*

F/gum 2-24. Normalizing a Project's Schedule

,_ STEPS

1. Based on the schedule

data, the project started on
08/29/87 and ended on

11/11/89 (i.e., start of first
phase through end of last
phase) for a total elapsed
time of 115 weeks.

2. Based on the phase dates
in the schedule data, the
actual weeks spent in each
phase were 31 for DESGN, 44
for CODET, 19 for SYSTE,
and 21 for ACCTE.

3. Dividing the actual time
spent in each phase by a
total duration of 115 weeks

gives normalized values of
0.2696, 0.3826, 0.1652, and
0.1826 for the defined

phases (i.e., 26.96% DESGN,
38.26% CODET, 16.52%

SYSTE, and 18.26% ACCTE).

29

Section 2--Components

Step 2mA veraqe the Normalized Project Schedules

Using the intermediate results from the first step, calculate the normal values to be stored in
the schedule model as follows:

. For each life-cycle phase, average the normalized values calculated for the amount of

time spent in that phase by the selected projects using
N

Normal Fraction of Durationln Phase [i] = (j_=7 Fraction of Durationln Phase [i,j]) / N

for the I_h phase, where j refers to projects 1 through N

2. For each life-cycle phase, also determine the standard deviation in the normalized

values calculated for the amount of time spent in phase from the average for the set of

projects using

Standard DeviationlnPhase[i] = (= lX[i,j]) / (N-l)

where X [i,j] = (Fraction of Durationln Phase [i,]J - Normal Fraction of Durationln Phase [i])2

3. Calculate the normal deviation in the model by averaging the values of the standard

deviation computed for each phase, 1through K, using

K

f_= Standard Deviationln [i]) / KNormal Deviation = (= I Phase

I Normalized 177me

P_j_A I
!
!

ProjecLB I
I
I

project_C I

I
I

I Schedule iMoa_ |
Average

Standard Devia_

DESGN CODET SYSTE ACCTE
26.86°/. 38.26*/. 16.52% 1B.26%

I ! I I
i

2672% I 2672°/* I 20.69*/* I 25._'/. 1I
z340-/. I 39.89*/. 11649./.i 20.21"/. i

; ; i i
I I I I

I I I IOESGN CODrr JSYS_ ACCTE
25 _9"/* 3496*/. 17.90"/. 21.45%

1.620 5_6_/* 1.9_0 3.22*/.

Normal Deviation = 3.17% (averaged)

ii

STEPS

1. For each life-cycle phase,
the average amount of time
spent in the phase is
calculated. SYSTE phase
values of 16.52%, 20.69%,
and 16.49% for the three

projects result in an average
of 17.90% for that phase.

2. For each phase, the
standard deviation in the

normalized project values
from the average is also
calculated. Given the three
values in SYSTE, a standard

deviation of 1.97% may be
computed for the phase.

3. Averaging the standard
deviation computed for each
phase (i.e., 1.62%, 5.86%,
1.97%, and 3.22%) results in
a normal deviation of 3.17%
for the model.

Figure 2-25. A veraglng Normalized Schedules

3O

Section 2--Components

2.2.1.2 General-Purpose Use of Schedule Models

The SME incorporates a set of general-purpose services commonly used with schedule
models. These services are referenced freely throughout various high-level SME functions
to provide needed functions associated with schedule models. The services include

• Convert Phase to Date
• Convert Date to Phase
• Determine Normal Schedule

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

31

Section 2--Components

2.2.1.2.1 Convert Phase to Date

Purpose

Translates a phase name and elapsed fraction of phase into the calendar date on which the

project can normally be expected to reach that phase.

Required Data

* Phase name and elapsed fraction of phase
e Project start and end dates
e Schedule model

(input value)
(input value)

Steps

1. Referencing the schedule model, calculate the total cumulative fraction of the

project's duration normally expected through the specified phase as

k-1

Cumulative Fraction of Duration = __, Fraction of Duration/n Phase[i]
i= I + F * Fraction of Durationln Phase[k]

for the k th phase and an elapsed fraction of phase equal to F

2. Calculate the planned project duration as the number of weeks between the project

start and end dates. Scale the fractional value from the model by the duration in

weeks to obtain the expected number of weeks into the project.

Expected WeekSTo Phase = Cumulative Fraction of Duration * Project WeekSTota I

3. Add the expected weeks to the project start date to get the expected calendar date.

DESGN COOEr $'dm'E
25.6g% 34.96% 17.90%

I
ACCTE

21.4o'%

09_4_3

DES_ coder S_SrE
i
|
I
i

3s%_o_ ACCTE

D

I
i
I

100weeks B

t(_6/91 I_

Figure 2-26. Converting an Expected Phase to a Date

1 v1

_I] STEPS

1. Based on the schedule

model, 35% through accept-
ance tasting is normally
86.2% of the total project
duration (i.e., DESGN at
25.69% plus CODEr at
34.96% plus SYSTE at
17.90% plus 35% of ACCTE
at 21.45%).

2. Scaling this value by a
project duration of 116
weeks, translates to 100

weeks into the project.

3. Adding the 100 weeks to
the known project start date
results in an expected
calendar date of 09/04/93 for

the specified phase.

32

Section 2--Components

2.2.1.2.2 Convert Date to Phase

Purpose

Translates a calendar date specified between the project start and end dates into the phase
name and elapsed fraction of phase that normally should be reached on that date.

Required Data

• Calendar date

• Project start and end dates
• Schedule model

(input value)
(input value)

Steps

1.

.

Divide the weeks between the project start date and the calendar date by the total

weeks between the project start and end dates to obtain the fraction of duration.

Fraction of DurationTo Date = Project WeekSTo Date / Project WeeksTota I

Identify the phase in which the calendar date falls by serially examining the schedule

model to locate the first phase k that satisfies the following:
k

Fraction of DurationTo Date <= _ Fraction of Durationln Phase [t]
i=I

° Linearly interpolate the fraction of phase g that corresponds to the calendar date as
k-I

Fraction of Phase = (Fraction of DurationTo Date" _ Fraction of Durationln Phase [iJ_ /

i= I Fraction of Durationln Phase [k]

1_1

DESGN COOEr

1001

I I I

CODET SWS"tE

25.6g% 34.g_,.:, 17._,

SYSTE

12,25_3

0oJ04_3

|
i
i
i

i
|
i
i

v I
i
i
|

ibm|
w..-i

i
i
i

I i

21.45%

_] STEPS

1. Given the project start
and end dates, 09/04/93
occurs after 100 weeks; this
corresponds to 86.2% of the
116-week projecl duration.

2. The schedule model
shows 86.2% of theproject
duration falling in ACCTE.

3. Since 86.2% of the project
duration exceeds the end of
SYSTE by 7.6% (i.e., 86.20/0
minus DESGN at 25.69%
minus CODEr at 34.96%
minus SYSTE at 17.90%), the
date should occur at a point
35% into ACCTE (i.e., 7.60
divided
ACCTL=)by_21.45% in

Figure 2-27. Converting a Date to an Expected Phase

33

Section 2--Components

2.2.1.2.3 Determine Normal Schedule

Purpose

Scales the schedule model on the basis of a project's planned duration to generate a schedule

that is considered normal for the project.

Required Data

• Project start and end dates
• Schedule model

(input value)

Steps

1. Calculate the planned project duration as the number of weeks between the project

start and end dates (Project WeekSTotal).

2. For each life-cycle phase, scale the fraction of duration found in the schedule model

for the phase by the planned project duration to obtain the number of weeks normally

spent in the phase.

Normal WeekSln Phas_fi] = Fraction of Durationln Phase[i] * Project WeeksTota I

3. Beginning with the project start date, iteratively calculate the start and end dates of

the life-cycle phases by incrementing the dates to account for the number of weeks

normally spent in each phase.

DEIGN _ SYSTE
25,60"/. 34,96"/. 17.90%

30_

40v_
r

21v_

B i
i

Acc'rE
21.4_

ACC'FE

25wod_

_ o7_o t2._

NOTE

The figure depicts scaling a
schedule model to reflect an
expected total project
duration of 116 weeks. In
this instance, the schedule
model is applied directly, as
if it were a template, to the
given project duration to
produce a schedule that is
considered normal. The
resultant normal schedule

indicates that if the project is

typical, the DESGN, CODET,
SYSTE, and ACCTE phases

should take 30, 40, 21, and

25 weeks, respectively.

Given a project start date of
10/05191, this results in the
following end date for each
phase: DESGN 4/02/92,
CODET 2/06/93, SYSTE
7/03/93, and ACCTE 12/25/93.

Figure 2-28. Determining the Normal Schedule

34

Section 2mComponents

2.2.2 Measure Models

Purpose

Describes the normal behavior over time of a fundamental software development
measure such as lines of code, effort, or software errors.

Description

A measure model is a normalized representation of the typical behavior of a single specific
measure as a function of life-cycle phase. The SME uses a set of eight basic measure models
to describe a given type of project. These models map to eight key measures defined for use
with the SME that managers in this environment use to track and judge project progress. As
with schedule models, specific points in the life cycle are identified by the combination of a
phase name and an elapsed fraction of that phase between 0 and 1.0 inclusive. The measure
value expected at those points is measured from the start of the phase and is expressed as a
fraction of the total measure value at project completion. The sum across all phases of the
total fractional measure value in each phase is 1.0.

Note: The SME models the ratio of any two individual measures (for example, lines of code
per hour) by mathematically combining the appropriate pair of measure models to produce a
resultant measure model known as a rate model. Section 2.2.2.3.4 details the steps involved
in generating rate models.

Source

Percent of Total Effort In Phase

htame

CODEr

4% S't'b'TE

, ACC_t_

0%
Design 'Sy_'tem Tesl

Code & Unit Test Acceptance Test

Nonna/Dedalon, 0.C_70

m

Measure

Model

Frac'4on Fracfl<m of

of Prmem Melm_re

0.25 0.0192
0,50 0.0556

0.75 0.1321
1.00 O2121

0.25 0.1276

0.50 0.2418
0.75 0.3681

1.00 0.47'_
0._ 011010

1.00 0.1783
0.25 0.0433

0.50 00813

0.75 0.1136

1.00 0.1300

Statistical averaging of actual
measure data from a set of

completed development pro-
jects

Assumptions
• Measure data behavior is

dependent on life-cycle
phase

• At project start, all
measure values are zero

Instances

One model exists for each
defined measure, for each

project type.

Structure
Figure 2-29. Representative Measure Model for IBM,

FORTRAN, AGSSProjects Table with three columns--
phase name, fraction of phase,
and fraction of measure; scalar

value--normal deviation. Each row in the table describes the fractional amount of the

measure typically observed from the start of the phase through the point in the life cycle

35

Section 2--Components

specified by the row's phase name and fraction of phase. Since measures typically do not
exhibit linear behavior within a phase, each phase is broken into multiple intervals for a total

of 14 segments with one per row. The scalar value associated with the table represents the
normal allowable deviation in the measure from the tabulated fractional values.

The following sections describe a representative set of measure models, detail the steps

required to create any measure model using actual data from completed projects, and present
a set of general-purpose algorithms commonly used with measure models.

36

Section 2---Components

2.2.2.1 Defined Measure Models

The SME defines a set of eight measure models for each supported project type. These
models are

• Effort Model
• Lines of Code Model
• Module Count Model

• Computer Hours Model
• Computer Runs Model
• Changed Modules Model
• Reported Changes Model
• Reported Errors Model

The sample measure models presented below illustrate a complete set of these models for
one of the supported project types--IBM, FORTRAN, AGSS projects.

37

Section 2---Components

2.2.2.1.1 Effort Model

Pr_a_e Fraclk_ Fradbon
Nan_ of Pnam ol _

{:_GN 0.25 0.0192
0.50 00655

0,75 0.1313

1.00 02101
CODEr O.25 0.1259

0.00 O.2422
0.75 0.3708

| .00 0.4828
S_STE O,5O 0.1_9

1.00 Gt795

ACCTE 0.25 0.0421
0.00 0.07_
0.75 0.1113,

t.00 0._276

Ncre_ D_mdlen. 0.02_30

Cumulative Effort Model
over Life C'ycle

-" 1.0

4 4 lJ-

_ Test

Figure 2-30. Effort Model for IBM, FORTRAN, AGSS
Projects

An effort model describes how

effort is normally expended as
a function of life-cycle phase
on a given type of project. The
effort represents all staff hours
expended by programmers and
line management, but excludes
all project management and
service hours. Each supported
effort model is created by

statistically averaging actual
data from a set of similar,

completed projects.

Note: The accumulation of

effort over the life cycle

inherently exhibits the beha-
vior of a monotonically

increasing function.

2.2.2.1.2 Lines of Code Model

Phase Fraclon Frwd_on
Name of Pha_ of MMsure

DF_.._N 0.25 00.000
0.50 0,00cO

0.')5 0.0000

1.00 0.0000

C_2,ET 025 0.0075

0.50 0.3937
0,75 &0018

1.00 0,0072
SYS'i'E 0.00 0.0630

1.00 o.t4._

ACCTE 0.25 0.0181
0.50 0.0L_75
0.75 0,0413

1.00 0.04_

N l_mal tN*._dkxl. 0.0G5381

Curnulath_eLines of Code Model
over Life Cycle

-- 1,0

fr

: =l:_i_ C<x_ & IJ_ T_,t SY_Amll T_AcolR_nce T_

Figure 2-31. Lines of Code Model for IBM, FORTRAN,
AGSS Projects

A lines of code model de-

scribes how lines of code are

normally generated as a
function of life-cycle phase on
a given type of project. This
measure reflects the number of

records in the project's source
code library. Each supported
model is created by
statistically averaging actual
data from a set of similar,

completed projects.

Note: The number of lines of

code is expected to be zero
until the beginning of the
code and test phase. With
some projects, the cumulative
growth in lines of code may
drop due to deletion of obso-
lete components near the end
of the project.

38

Section 2--Components

2.2.2.1.3 Module Count Model

Pha_ Fract_ Frad_n
Name _Ph_e of Measure

DEIGN 025 0.(X]00
0.50 (10000

0.75 0.0000

1.00 0.0O00
C_OE'T 02525 0.1_9

0.50 0,4498
0.75 0,6494

] .00 0,8464
SY_'TE 0.50 0.0743

1.00 0.1397
ACCTE 025 0.00_5

0.50 0.0106
0.75 0.0135

1.00 0,0140

N<_al DeriSion. 0.(_7378

CumulativeModule Count Model
over Life Cyde

_ -- _

........iiiii]iiiiiii
Code& Unit Test A<:coptance Te=_

. 1.0

Figure 2-32. Module Count Model for IBM, FORTRAN,
AGSS Projects

A module count model
describes how the number of

components normally grows as
a function of life-cycle phase
on a given type of project.
This measure reflects the
number of members in the

project's source code library.
Each supported model is

created by statistically
averaging actual data from a

set of similar, completed
projects.

Note: The module count is

expected to be zero until the
code and test phase. With
some projects, the cumulative
count may drop due to deletion
of obsolete components near
the end of the project.

2.2.2.1.4 Computer Hours Model

Phase Fradk_ Fracllon
Name of fe,,Me of Msae:ure

DESGN 0.25 0.0004
0.50 00026

0.'_ 00108

1.00 0(_53
COOET 025 0.0515

0,50 0.1776
0.75 03_4

.00 0,4526
S_'TE 0.50 0,1124

1,00 0-2093

ACCTE 025 0.(_52
0.50 01810
0.75 02785

1.00 0.3128

N<xn_ _ = 0.074853

Cumulative Computer Hours Model
over Life Cycle

I/
f

_ _'r_
Code& Unit T_t _T_

Figure 2-33. Computer Hours Model for IBM,
FORTRAN, AGSS Projects

1.0

A computer hours model
describes the normal usage of
computer time in CPU hours
as a function of life-cycle
phase on a given type of
project. This measure reflects
values from all computers used
by the project, normalized to
account for processor speed.
Each supported model is
created by statistically aver-
aging actual data from a set of
similar, completed projects.

Note: The accumulation of

computer hours over the life
cycle inherently exhibits the

behavior of a monotonically
increasing function.

39

Section 2---Components

2.2.2.1.5 Computer Runs Model

Pt_,.se R'acllon
N=_e of PtlesQ of Measu_

OESC_ 0.25 0,0009
0.50 0.0_0

0_75 0.0117
1.00 0.GQ91

COOET 0.25 0.07_2
0.50 0.2180
0.75 0.3734

1.0o 0.5116

SYSTE 0.5O 0,1135
1,00 0.2206

0,_ 0.0739

0.50 0.144,3
0.75 0.2108
I ,IX) 0.2365

Ncm_ al Cmvia_Jon. 0,053_70

Cumula'0ve Computer Runs Model
over Life Cyde

- 1,0

/

Design Code & _Te6t Acc_Ftanoe T_

Figure 2-34. computer Runs Model for IBM,
FORTRAN, AGSS Projects

A computer runs model
describes the number of

computer runs normally
observed as a function of life-

cycle phase on a given type of
project. This measure of
computer resource usage
reflects the number of jobs
submitted on all computers by

the project. Each supported
model is created by
statistically averaging actual
data from a set of similar,

completed projects.

Note: The accumulation of

computer runs over the life
cycle inherently exhibits the
behavior of a monotonically

increasing function.

2.2.2.1.6 Changed Modules Model

Fracflon Ffadlonol Phaee ot MelaJ_

DESGN 0.25 0.0(_0
0.50 0._000

0.75 0.0000

1.00 0.0(_0
COOET 0,25 0.0070

0,.50 0.1066
0.75 0.2157

1.CO 0.3716
SYSTE 0.50 O2288

1.00 0.3585

ACCTE 0.25 0.(_49
0.50 0.1728
0.75 024_

1.00 02699

Nmnal D e._,lon = 0.0_514

Cumulative Changed Modules Model
over I_fie Cycle

, ,,--
|

........................
i

........r--/..............
- = S./,amn Te,d

Code & Urit Test

lr0

_Tut

Figure 2-35. Changed Modules Model for IBM,
FORTRAN, AGSS Projects

A changed modules model
describes how the number of

changes normally made to
modules varies as a function of

life-cycle phase on a given
type of project. This measure
reflects the number of versions
of individual modules in the

project's source code library,
minus the number of base

versions. Each supported
model is created by sta-

tistically averaging actual data
from a set of similar, com-

pleted projects.

Note: The number of changed

modules is expected to be zero
until the beginning of the code
and test phase.

40

Section 2_omponents

2.2.2.1.7 Reported Changes Model

Fr_S_'_ Frlu:llon
Name o_ lat'_ee o¢Me_ure

DESGN 0,25 00000
0.50 0-0000

0.75 0-0000

1.00 0`0000
0_5 0,0124

0_1 0-1120
0.75 0-2403

1.00 0.3888
$_t_'t'E 0.50 0_,118

1.00 0-3493

ACCTE 025 0-(_5S5
0.50 0-1644
0.75 02388

1.00 0.2619

Normal I_l,,4ark:,n. 0.091881

Cumulative Re ,.ix_od C,hangesModel
oveN"LEeuycle

Jl

i

......... ,4 r-

it

......... 4 I

............
_ T_

Code & L,_'_tTe_.t Acoep_"<e Tq_t

Figure 2-36. Reported Changes Model for IBM,
FORTRAN, AGSS Projects

.1.0

A reported changes model
describes the number of logical
changes normally made to the
software as a function of life-

cycle phase on a given type of
project. This measure reflects
the number of forms submitted

to report a logical change to
one or more related

components. Each supported
model is created by
statistically averaging actual
data from a set of similar,
completed projects.

Note: The accumulation of

the number of reported
changes is expected to be zero
until the beginning of the code
and test phase.

2.2.2.1.8 Reported Errors Model

Frac_ Ffaclon
Name _ P_ o¢ _e

DE_N 0.25 0-0000
0.,_ 0`0000

0.75 0-0000

1.00 0-0000
CODET 0.25 0.0115

03O 0-0995
0,75 0.Z22¢

1.00 0-3893
SYS'TE 0.50 0-Ig72

1.00 0.3_'_4

ACCTE 0.25 0-(_5
050 0.1631

0.75 O.2532
1,00 0.2843

Nom_l Oevidon. 0._17009

Cumulative Repoded Errors Model
overLife Cycle

........ ,4

........ <,

• 1.0

J

If
..... d ,

' I
T_

T

Figure 2-37. Reported Errors Model for IBM,
FORTRAN, AGSS Projects

A reported errors model
describes the number of logical
errors normally found in the
software as a function of life-

cycle phase on a given type of
project. This measure reflects
the number of forms submitted

to report a logical change that
indicate the change was due to
an error. Each supported
model is created by sta-
tistically averaging actual data
from a set of similar,

completed projects.

Note: The accumulation of

the number of reported errors
is expected to be zero until the
beginning of the code and test
phase.

41

Section 2--Components

2.2.2.2 Creating a Measure Model

The measure models used by the SME are created by normalizing and then statistically

averaging actual project measure data observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model. The algorithm may be applied to any
defined measure with data. By first normalizing the measurements, the creation process

gives equal weight within the model to each contributing project regardless of size or
duration.

Required Data

• Schedule data (for each project in the set)
• Measure data (for the measure of interest, for each project in the set)

42

Section 2--Components

Step 1--Normalize Each Project's Measure Daf_

For each project in the set, perform the following:

1. For each life-cycle phase in the schedule data, determine the actual number of weeks

from the project start date through the start date of the phase (Actual Weeksro Phase[i])

and calculate the actual number of weeks elapsed between the start and end dates of

the phase (Actual WeekSln Phase [i]),

2. For each phase segment to include in the model, calculate the actual number of weeks

from project start through the segment as

Week Numbersegment[_j] = Actual Weeksro Phase [i] + FO") * Actual WeekSln Phase

for the t_hphase and f h segment, where FO") refers to the fraction of phase of the/th segment

3. For each calculated week number corresponding to the desired phase segments,

normalize the actual measure value for that week, measured cumulatively from

project start, by the actual total measure value at project completion

Fraction of Measuresegment [i,j] = Actual MeasureFo r Week [i,j] / Actual Measure Total

4. Adjust each computed fraction of measure value to be cumulative within phase using

Fraction of Measureln Phase [i,j] = Fraction of Measureseamenz v,j j
- Fraction of Measuresegment IMax(i- 1)]

for the/_h phase and/lh segment, where i > 1 and JMax(i- 1) is the last segment in the (i- 1) th phase

Cumulative Measure Data
Over Life Cycle

I Schedulei

f

Normalized

" Measure Data

Ncw_a_zed Fra¢_

I' IDESGN 0.25 1137.0 0.0239 0.(_39

0.50 3667.0 0.0831 0.C_31 I

075I 737&7 0.1550 011_i
1.oo I 11012.1 0.2314 02314 I

cooer o_ I 15362.3 0,3228 0.0014 I
0.50 I 1_,0 0.41_ 0,1878 I

0.75I 2,tcsos 0s22_ 0_907 i
1.00 I 29185.5 0.613_t 0.3818 I

0.50 1 35506.6 0.746O 0.1328 1
1,00 I 40_SS2 0.S4_0 023;_ I

ACCTE 025 I 4274S.9 0_g_t 0.0_ I
0.50 1 4533_8 0.9525 0.1085 I

0.75 I 47123,$ O.ggOI 0.1441 I
1.00 I 475G4,8 1.0000 0. I540 I

I ,

i ii

_} STEPS

1. The number of weeks in
the DESGN, CODE'r, SYSTE,
and ACCTE phases are 30,
40, 21, and 25, respectively.

2. Each phase is broken
down into 4, 4, 2, and 4
segments, respectively.

3. The cumulative value at
each segment is divided by
47594.8, the cumulative total.

4. Each segment's value is
converted to a value that is
cumulative within phase.

Figure 2-38. Normalizing a Project's Measure Data

43

Section 2--Components

Step 2--A veraqe the Normalized Measure Data

Using the intermediate results from the first step, calculate the normal values to be stored in
the measure model as follows:

, For each life-cycle phase and segment, average the normalized values calculated for

the fraction of measure within phase as observed by the selected projects using

N

Normal Fraction of Measureln Phase [i,l] = (k_=l=Fraction of Measureln Phase[i,j,k]) / N

for the ;_hphase and1 _hsegment, where k refers to projects 1 through N

2. For each life-cycle phase, also determine the standard deviation in the normalized
values calculated for the fraction of measure observed within phase from the average

for the set of projects using

Standard DeviationlnPhase[i,j] = ([i,j,k]) / (N-l)

where X [i,j,k] = (Fraction of Measureln Phase [i,j,k] - Normal Fraction of Measureln Phase [i,j])2

3. Calculate the normal deviation in the mode] by averaging the values of the standard

deviation computed for each phase segment, 1 through M, using

M

Normal Deviation = (_ Standard Deviationln Phase[i,J]) / M
1,1= 1

I Norrn_ed Measure Values 1

_rojqcN mot_z Proj_ 3 A_ra_
Starda_f

0ESGN 0.25 0.0_39 0.0164 0.0174 0.01_ 0.0033
0.50 00_31 0.0552 0.0582 _ 0.0_S 0_0125

0.75 01550 0.1224 0.1165 0.1313 0.01_9

1.00 0.2314 0.2119 01579 0.211_ 0.0180
COOET 0.25 0.3,_8 0.3736 03118 0.3_1 0.(_1

0.50 0AIg2 0.4852 04528 0.4._24 0.0_9

0.75 0,5_1 0.6120 0.6089 0._I0 0.0416
1.00 0.6132 0.7340 0.7316 0JE_9 0.0_3

SYb-'TE 0.50 0.7,t_lO 0.80_. 08387 0.7_8 0.0381
1.00 0.84_0 0.11703 0,9009 0.8/24 0.0_.4

ACCTE 0.25 0.8981 0.9154 0_001 0.9145 0.0130
0.50 0.9525 0.9542 0.9581 0._4e 0.0405

0.75 0.9901 0.9788 0._i_23 0.9837 0.0047
1.00 1.(3000 t ._ 1.0IX30 ! .0000 1.0000

NormalO_,,_l_.o.o_,4 _ (A_)

STEPS

1. The normalized measure

values at each segment for
the three projects are
averaged.

2. The standard deviation of

each segment value from the
respective average is
calculated.

3. The avera_le of the
standard deviations is
calculated to derive a normal
deviation of 0.0944.

Figure 2-39. Averaging Normalized Measure Data

44

Section2nComponents

2.2.2.3 General-Purpose Use of Measure Models

The SME incorporates a set of general-purpose services commonly used with measure

models. The services are referenced freely throughout various high-level SME functions to
provide needed functions associated with measure models. These services include

• Convert Phase to Measure
• Convert Measure to Phase
• Determine Normal Measure Guidelines
• Generate Rate Model

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

45

Section 2mComponents

2.2.2.3.1 Convert Phase to Measure

Purpose

Calculates the cumulative measure value that can normally be expected at a given point in

the life cycle specified by a phase name and elapsed fraction of phase.

Required Data

a Phase name and elapsed fraction of phase

• Expected measure value at project completion
a Measure model

(input value)
(input value)

Steps

l.

.

°

Referencing the measure model, linearly interpolate the cumulative fraction of the

measure's value normally expected within the specified phase as

Fraction of Measureln Phase [k] = Fraction of Measure ln Phase [k,j-1] +

(Fraction of Measureln Phase [k,j] - Fraction of Measureln Phase [k,j- 1]) * (F - FO'- 1)) / (FO") - F_- 1))

for the k th phase, the j_h segment, and an elapsed fraction of phase, F, where F_-1) < F <= FO)

Also, from the model, calculate the cumulative fraction of the measure's value

normally expected in any earlier phases occurring before the specified phase as
k-1

Fraction of MeasureBefore Phase [k] = Z Fraction of Measureln Phase [i, dMax(i)]

i=1

where JMax(i) is the last segment in the/_h phase

Obtain the expected measure value by scaling the sum of these two computed values

by the specified expected measure value at project completion

Expected Measure Value = Expected Completion Value *
(Fraction of Measureln Phase [k] + Fraction of MeasureBefore Phase [k])

i

I

I
I

1,0 tSO,_

0.4,8 72,000

_) STEPS

1. Usingthe measure model,
at 65% through CODET the
measure will normally attain
a cumulative measure value
equal to 48% of the expected
value at project completion.

2. Given an expectedproject
completion value of 150000
for the measure, the normal
measure value to expect at
this point in the project
schedule is 72000 (i.e., 48%
of 150000).

Figure 2-40. Converting a Phase to an Expected Measure

46

Section 2--Components

2.2.2.3.2 Convert Measure to Phase

Purpose

Calculates an expected phase, specified by a phase name and elapsed fraction of phase, that
will normally be reached when the measure of interest attains a given value.

Required Data

= Cumulative measure value

• Expected measure value at project completion
• Measure model

(input value)
(input value)

Steps

l.

.

°

Divide the cumulative measure value by the expected measure value at project

completion to obtain the fraction of measure at the desired point in the life cycle.

Fraction of MeasureTo Date = Measure ValueTo Date / Expected Completion Value

Identify the phase and segment in which the fraction of measure falls by serially

examining the measure model to locate the first phase g and segment] that satisfies

the following
k-t

Fraction of MeasureTo Date <= _ Fraction of Measureln Phase [i, JMax(i)]

i= 1 + Fraction of Measure/n Phase [k,j]

Linearly interpolate the fraction of phase k, in segment j, that corresponds to the
fractional measure value as

Fraction of Phase = (FO') - FO'-1)) * Fraction of MeasureT_ o Date
/ (Fraction of Measureln Phase [k,j] - Fraction of Measureln Phase [k,j- 1])

f

1.0

0.48

At 65 percqcdIhrough I

Ihe Code & T_t Phase J

150,000

72.000

[]

_] STEPS

1. Dividing a cumulative
measure value of 72000 by
the completion estimate of
150000 yields a value of 0.48.

2. The fraction of measure
matching a cumulative value
of 0.48 in the measure model
falls within the code and test
phase.

3. Unearly interpolating
between the fractional
measure values in the model
identifies a point 65% into
the code and test phase.

Figure 2-41. Converting a Measure to an Expected Phase

47

Section2--Components

2.2.2.3.3 Determine Normal Measure Guidelines

Purpose

Calculates expected cumulative measure values, with upper and lower normal bounds on the
values, as a function of project schedule.

Required Data

• Project start and end dates
• Expected measure value at project completion
• Schedule model

• Measure model

(input value)
(input value)

Steps

1.

.

°

Use the schedule model routine Convert Phase to Date with the specified project start

and end dates to determine the calendar dates associated with each phase and phase

segment defined in the model (Expected Calendar Date [i,1] , for the ith phase and l_thsegment).

Also for each phase and phase segment, use the measure model routine Convert

Phase to Measure with the expected completion value to determine the expected

cumulative measure value for those dates from the model (Expected Measure Value [i,j]).

Compute the upper and lower normal bounds on the measure values by adding and

subtracting, respectively, the normal deviation stored in the measure model from each

expected measure value.

Normal Range [i,j] = Expected Measure Value [i,j] + (Normal Deviation * Expected Completion Value)

STEPS

1. For a start date and end
date of 10/05/91 and 12/25/93,
applying the schedule model
results in intermediate phase
dates of 04/02/92, 02/06/93,
and 07/03/93.

2. For a completion value of
225000, applying the
measure model results in
intermediate values of 57802,
136463, and 176736 at these
phase boundaries.

3. The normal range results
from scaling the standard
deviation in the measure
model by 225000. Upper and
lower bounds for the range
are the expected measure
values at each date plus or
minus the scaled value.

Figure 2-42. Determining Normal Measure Guidelines

48

Section 2BComponents

2.2.2.3.4 Generate Rate Model

Purpose

Generates a measure model, known as a rate model, that captures the typical behavior of the
cumulative ratio of any two specified measures as a function of life-cycle phase.

Required Data

• Measure name for numerator
• Measure name for denominator

• Measure models (for the two specified measures)

Steps

1.

.

,

.

(input value)

(input value)

For each phase and phase segment in the measure models of both the specified

numerator and denominator, adjust the expected fraction of measure values to be

cumulative from project start using

Fraction of MeasureRateFromStart[i,j] ,, Fraction of Measureln Phase[i,j] +
i-I

Fraction of Measureln Phase[n , JMax(n)]

for the Fh phase andj_hsegment, where i> 1and JMax(i-1) is the last segment in the fi- l)th phase

Divide the fraction of measure values for the numerator by the corresponding

denominator values to obtain expected rate values at each phase and segment.

Adjust each computed fraction of measure value to be cumulative within phase using

Fraction of MeasureRa _ In Phase [i,j] = Fraction of MeasureRate From Start [i,j]

- Fraction of MeasureRate From Start [i- 1, JMax(i- 1)]

Set the normal deviation for the rate model to the maximum absolute deviation to

expect from the two individual measure models using

Normal Deviation = Max(1 - , 1 -
1 - Normal DeviationDeno m 1 + Normal DeviationDeno m)

49

Section 2--Components

I Measure Model _J

I (for Numerator) I

CumulaSve Lines of Code Model
over Life Cycle

! i-l-il-il-
-10

D_GN 0.25 0`0000
0.5_ 0.0000

0.75 0.0000
1,00 0.0000

0.25 0.0975
0.50 0.3037
0,75 0.9018

1+00 0.8072
SYSTE 0,50 0._11

1.G0 09564
ACCTE 025 0.9745

0.50 0..._.._
0.75 0._t7

1.00 I .(3000

Normal _. 0.065381

Measure Mode/ I

I (f_" Denominator) I

Cumulative Effort Model _' '_''

over Life Cycle
1.0

DESGN 025 0,01g2
0.50 0,0_5

0.75 0`1313
1.00 _01

CODET 025 0.33_0
0,50 0,4,523
0.75 0,,5_

I .(30 0,6929

S_TE 0,50 0,7958
1 lid 0`0724

ACCTE 0.25 0.9145
0,50 0J_lg
0.75 0,g837

1,00 1.0000

Normal De,._Jon - 0.C_0

Rate I
Model I

F_ F_ Cur_
Name o_Phase Raid

D(_Gt_ 0.25 0.(_000
0,50 0.0000

035 0.0000
1,00 0.0000

CODEr 0.25 0_

0.50 0.0703
0.75 t ._57
l.O0 1.1(4_.

SYSTE 0.50 1.1lg7

1.00 1.0Q_3

CTIE 025 I.
0,50 1.0336
0.75 1.0142

t .00 1.0000

Norm,al Do,&_Sen. 0.094J_6

CumulaSve Unes of Code per Effort
over Life Cycle

1.0

_] STEPS

Generating any rate model
proceeds as follows:

1. Adjust the expected
fraction of measure values in
both the numerator's and the
denominator's measure
model to be cumulative from

the start of the project.

2. To compute rate model
values, divide the expected
value for the numerator at

each model segment by its
corresponding expected
value for the denominator.

3. Adjust the cumulative rate
model values, calculated
above, to be fractional
values within each phase.

4. Calculate the rate model's
normal deviation based on

the worst case allowed by
the two individual models.

The specific example shown
here illustrates generating a
rate model for lines of code

per hour (i.e., LOC/EFF):

The upper figure shows
adjusting the measure model
for LOC (i.e., the numerator
of the rate) to be cumulative
from the project start.

The middle figure shows
adjusting the measure model
for effort(i.e., the denom-
inator of the rate) to be
cumulative from the project
start.

The bottom figure shows the
cumulative rate model that

results from dividing the
LOC values by the effort
values at each model

segment.

Note that the rate model's

normal deviation is depicted
in the bottom figure as
guidelines about the normal
values.

F/gum 2-43. Generating a Rate Model

5O

Section 2--Components

2.2.3 Profile Models

Purpose

Describes the normal behavior over time of a software development measure using anassociated profile such as effort to isolate change or effort to correct error.

Description

A profile is a breakdown of a basic measure into discrete categories that describe the
behavior of the measure in greater detail. A profile model is a normalized representation of
the typical behavior of a profile as a function of life-cycle phase. The SME uses four profile
models to describe a given type of project. These four profile models correspond to two of
the eight key measures defined for use with the SME. As with other SME models, specific
points in the life cycle are identified by the combination of a phase name and an elapsed
fraction of that phase between 0 and 1.0 inclusive. The value of each component expected at
those points is measured from the start of the phase and is expressed as a fraction of the total
component value at project completion. The sum of all components across all phases of the
total fractional profile value in a phase is 1.0.

25%"

Percentin Phase of
Effort to isolateChange

/¢vn_Fracllon
ot R_a*e

0.50

0.7S
1.00

02S
0.50

0.75
1.00

0.50
1.00

...... ACCTE 0.750.500"25

_nmm'r_l
Code & Unit Te6t AOCel:tmnoeT_

of W

0.0_00 0.0000 I 0.0_ 00.000
0.0000 0.0_0 I 0.0000 0.0000

0.0000 0.0_00 I 0,0000 O.O000
0.0000 0.0_0 I 0.0000 0,0_0

O,OOg6 0.0(_0 I 0,00(35 0.00_0
0.0811 0.0_53 I 0 0.033 00024

0.1691 0.0584 I 0.0064 0,0043
0.2688 0.0979 I 0.0152 0,00_9

0.1'_Ol O.0_Q9 I 0.0071 0.0C_7
02.191 0.1087 ! 0.0160 0.0055

0.0441 0.0332 0.0055 0.0C_6

0,0799 0.0575 0.0194 0.0076
0,1119 0.0_ 0.0300 0.0109

0,1214 0.0961 0.0_24 0.0121

Source

Statistical averaging of actual

profile data from a set of
completed development proj-
ects

Assumptions
• Profile data behavior is

dependent on life-cycle

phase

• At project start, all profile
values are zero

Instances

One model exists for each

defined profile for each project

type.

Structure
Figure 2-44. Representative Profile Model for IBM,

FORTRAN, AGSS Projects Table with two fixed
columns--phase name and
fraction of phase--and a col-

umn for each defined component containing its fraction of measure; list of text values

describing what each component represents. Each row in the table describes the fractional
amount of the profile typically observed from the start of the phase through the point in the
life cycle specified by the row's phase name and fraction of phase, broken down by
component. As with measure models, each phase is broken into multiple intervals for a total
of 14 segments with one per row.

51

Section 2--Components

The following sections describe a representative set of profile models, detail the steps
required to create any profile model using actual data from completed projects, and present a
set of general-purpose algorithms commonly used with profile models.

52

Section 2DComponents

2.2.3.1 Defined Profile Models

The SME defines a set of four specific profile models for each supported project type. These
models are

• Effort to Isolate Change Model
• Effort to Implement Change Model
• Effort to Isolate Error Model
• Effort to Correct Error Model

The sample profile models presented below illustrate a complete set of these models for one
of the supported project types--IBM, FORTRAN, AGSS projects.

53

Section 2--Components

2.2.3.1.1 Effort to Isolate Change Model

Effort tD Isolate Changefor Reported Changes

Narne/Fr ac'_on oi PI_.v_ Fmc_on _ Me.urn

025 0.0_0 0.001_ 0.0000 0.0000 O.OOX

0.50 O.OIX_O 0.00_0 0.0000 0,0000 0.000(
0.75 0.0000 0.0000 O.OIX_ 0.0000 O,OOIX

1.00 0.0000 0.0000 0.0000 0.0000 0.0001
COOEr O25 0.O006 C_O(_O 0.0006 0.0003 O.O01X

O.5,0 0.0811 _0253 0.C033 0.0_4 O.OlXX
0_75 0.1691 C_0584 0.0084 0.(1043 O.OllO(

1.00 02_88 C,.0979 0_152 0,00_ O.OOKX
C_50 0.1:"Ol O.OB_ 0.0071 O.C¢ff? O.O_X

1.00 0.2191 0.1087 00160 0.01155 O,O(lCK

ACCTE 0.25 _0441 0.03_ 0.0055 0.00_ 0000(
Ct50 _07_ 0,0575 0.0194 0.0076 0.000(

1_75 Ct1119 O.OB_ 0/_QO0 0.0100 0.000(
1.00 _1214 0,0_1 0.O324 0.0121 O.OOX

Cx,_n
Code, & UnitT_

I

1.0

SyCm_ T,_'t
Aoc_m_T_t

Figure 2-45. Effort to Isolate Change Model for IBM,
FORTRAN, AGSS Projects

An effort to isolate change
model describes how effort is

normally expended in isolating
reported changes on a given
type of project as a function of
life-cycle phase. The model

captures the number of
reported changes to expect in
five categories that are based
on the effort needed to isolate

the change--1 hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown.

Note: For any phase and
fraction of phase, the sum of
the fractional values across all

categories equals the fractional
value in the reported changes
model.

2.2.3.1.2 Effort to Implement Change Model

DET=C=N 025
0.50
0,75

1.00

COOE'T 025
0.50

0.75
1.00

b'W_'TE 0.50
1.00

ACCTE 025
0.50

0.75
1,00

Effp.rt to Implement Change
for Hepoi'ted Changes

RaCfKm of _

0.0000 O,CO00 1 0,00¢0 1 0.0000 (10000

0.0000 0.0000 1 0.0000 1 0.0000 0.0000

0.0000 0.0000 I 0.0000 I 0.0000 0.0000
0.0000 0.0000 I 0.0000 I 0.0000 0.0000

0.00tl2 0.00_0 I 0.0010 I 0.000_ 0.0000
0.0725 0.0305 I 0.0051 I 0.0040 0.000¢

0.1483 O.070g I 0.0t37 I 0.0_/4 0.0000
0.2375 0.1157 1 01_30 I 0.0125 0.0(_0

0.1240 0._653 1 0.0Z54 I 0.0070 0.0000
02057 0.1058 1 00274 1 0.0106 0.0000

0.04_ 0.02"/7 I 0.00_ I 0.0047 0.0000

0.0_27 0.Q651 10.0151 I 0.0116 0.0000

0,1196 0.0789 I 0.024.3 0.0157 0,0000

0.1310 0.0B82] 0.(X256 I 0.0172 0,0_00

C,_ & Onit 1"_

Tot_

A¢_gtm¢*T_

Figure 2-46. Effort to Implement Change Model for
IBM, FORTRAN, AGSS Projects

An effort to implement change
model describes how effort is

normally expended in making
reported changes on a given
type of project as a function of
life-cycle phase. The model
captures the number of
reported changes to expect in
five categories that are based
on the effort needed to make

the change_l hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown.

Note: For any phase and
fraction of phase, the sum of
the fractional values across all

categories equals the fractional
value in the reported changes
model.

54

Section 2QComponents

2.2.3.1.3 Effort to Isolate Error Model

I p _ttle • Effotlto Isolate_Error
i _ Get • lor Heportecl Errors
"aim

Name,'Fr'aetk_ of Pt_m

COolEr

SYS'TE

ACCt'E

0.25 0.060¢

0.,_0 0.0_
0.75 O.060_

1.60 O._(X_
O25 O.0_8

0.50 0.0777
0.75 0.165_

1.60 0.29OI
0_50 0.1213

1.60 0.2013

025 0.03_
0.50 0.6071

0.7S 0.1030
1.00 0.1142

Ro<i¢_ of Moluro
_ i

00`¢0 0.0600 0.0_0 I 0.6000 I

0._ o_ 0.606010._1_

0.0600 0.6060 0.0600 00.600

o._ 0._ o._ I0._ I0.0016 O._ (LOGO0 0,_

o.o,_0._ 0._"10._ Io._ 0._ 0._,, 0._
0._ 0.o,_ o._,o._,
0.0668 0.0076 0.6015 I 0.0600 I

0.1031 0.0170 00`OEO I 0.0060 I

0.0051 0.0604 0.0604 II 0.6060 I ._ s'"0.0_ 0._ 0.60700.0600I_
0.10_ 0.0_79 0.0119 | 0.0600 J ,a"
0.1150 00422 o.o1_ i o0.o60/ ,..

; s

i ''"

1.0

Figure 2-47. Effort to Isolate Error Model for IBM,
FORTRAN, AGSS Projects

An effort to isolate error model
describes how effort is

normally expended in isolating
reported errors on a given type
of project as a function of life-
cycle phase. The model
captures the number of
reported errors to expect in
five categories that are based
on the effort needed to isolate

the errorml hour or less, 1 day
to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown.

Note: For any phase and
fraction of phase, the sum of
the fractional values across all

categories equals the fractional
value in the reported errors
model.

2.2.3.1.4 Effort to Correct Error Model

_ _fi/"_ Effort to Correct Errorz_J for Reported Errors

NametFr_fk>n of Phase Fr_ o_Me_ure
• i

DEIGN

ACCT'E

0.25 0.6060 0.6060 I 0`6000 I 0.0060 I 0.0000 I

0,50 0.6060 0.6000 1 0.0000 I O.OO_O I 0.0600 I
0,75 00.000 0.0_0 1 0.0600 I 0.6000 I 0.0600 I
1.60 0.6000 0.(_600 I 0,0000 I 0.6000 I 0.0000 I

° °-I°-I /0`._ 0.0750 0.0_' 0,_15 I 0.0004 0._

0.75 0.1570 0._10 ! 0.60_ I 0.0007 0._
10`0 02707 0.1018 I 0.0145 I 0.0_3 0.6000

01 o0 ,oo1.,0.601.10. I100 0.2060 0.0_12 1 0`024_ I 0.60_ O.(XXXl

025 0.0474 0.02_4 I 0.60_ I 0.0041 i0._ V ..-.-""
O.SO 0.0623 0.0565 I 00160 I 0.0(_4 0.0060

0.75 C).1314 0.0843 I 0.0_L4 I 0.01"° 00.000 _-"

1.60 D.1441 0.6090 I 0.(_261 I 0.0143 0.0000

1.0

_cel_n_TJ

Figure 2-48. Effort to Correct Error Model for IBM,
FORTRAN, AGSS Projects

An effort to correct error

model describes how effort is

normally expended in
correcting reported errors on a
given type of project as a
function of life-cycle phase.
The model captures the
number of reported errors to
expect in five categories that
are based on the effort needed

to fix the error--1 hour or less,
1 day to 1 hour, 3 days to 1
day, more than 3 days, and
unknown.

Note: For any phase and

fraction of phase, the sum of
the fractional values across all

categories equals the fractional

value in the reported errors
model.

55

Section 2--Components

2.2.3.2 Creating a Profile Model

The profile models used by the SME are created by normalizing and then statistically
averaging actual project profile data observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model. The algorithm may be applied to any
defined profile with data. By first normalizing the measurements, the creation process gives
equal weight within the model to each comxibuting project regardless of size or duration.

Required Data

• Schedule data (for each project in the set)
• Profile data (for the profile of interest, for each project in the set)

56

Section 2_omponents

Step lmNormalize Each Proiect's Profile Data

For each project in the set, perform the following:

1. For each life-cycle phase in the schedule data, determine the actual number of weeks

from the project start date through the start date of the phase (Actual Weeks To Phase I/I)

and calculate the actual number of weeks elapsed between the start and end dates of

the phase (Actual WeekSln Phase [i]).

2. For each phase segment to include in the model, calculate the actual number of weeks

from project start through the segment as

Week Numbersegment [i,j] = Actual Weeksro Phase [i] + FO") * Actual WeekSln Phase [i]

for the t_h phase and j_h segment, where FO") refers to the fraction of phase of the 1lh segment

3. For each calculated week number corresponding to the desired phase segments,

normalize the actual measure value of each component for that week, measured

cumulatively from project start, by the actual total measure value of all components at

project completion

Fraction of Measuresegment [i,j,k] = Actual MeasureFo r Week [i,j,k] / Actual Measure Total

for the k th component (i. e., the kth profile category)

4. Adjust the computed fraction of measure values for each component to be cumulative

within phase using

Fraction of Measureln Phase [i,j,k] -- Fraction of Measuresegm ,_ [i,j,k]
- Fraction of Measuresegment _- }, JMax(i- 1), k]

for the t_h phase, 1_ segment, and k th component,

where i> 1 and JMax(i-l) is the last segment in the (i-1) th phase

Cumulative Measure Data
Over Life Cycle

Ac_ Cum,.A_liW Norm_=_d
Mosaxe Meamxe

DESGN 0-25 0 0 0 0.O00 0.1300 0,C00
0.50 0 0 0 0,000 0.000 0.C_0

0.75 0 0 0 0,000 00,00 0.000
1.00 0 0 0 0.0CO 0,000 0,000

COOE'T 025 3 I 0 0,002 O001 0.0(X)
0.50 39 32 6 0.0_/I 0,0_2 0.004

0.75 155 98 18 0,107 0,067 0.011
1.00 4o0 ! t_ 32 0.275 0,136 0,_Z2

S't3TE 0.50 560 2_4 47 0,386 0.202 0,032

tOO 704 400 72 0.4115 0.275 0.049
ACCTE 025 745 431 62 0.513 0297 0,056

0..',',',',',',',',',$077'2 451 96 O_ 0,3H O.O_t

0.75 _26 501 112 0_;_ 0.345 0,077
I.O0 836 _ 113 0,57G 0.346 0.078

I Notarized 1Pmfie Data

Fractk_

_ Phase

0.000 0000 0,000

0,000 0,000 0,000
0,000 0,000 0.000

0.000 0,000 0.0C0
o0,0_ O001 0.0G0

0,0_' 0.01t 0.004
0.107 0.067 0.011

0.276 0.136 0.022
0.110 0.0_6 0.01q

0.209 0.073 0.C_r7
0.0_8 0.C22 0.007

0.047 0,0_6 0.017

0.064 0.070 0.0_.
0,0_1 i 0,071 I 0,(_g

Figure 2-49. Normalizing a Project's Profile Data

_) STEPS

1. The number of weeks in
the DESGN, CODET, SYSTE,
and ACCTE phases are 30,
40, 21, and 25, respectively.

2. The phases are broken
down into 4, 4, 2, and 4
segments, respectively.

3. The cumulative total for
each component at each
segment is divided by 1452,
the cumulative total of the
sums of the components.

4. Each segment's value is
converted to a value that is
cumulative within phase.

ii

57

Section 2mComponents

Step 2--A veraqe the Normalized Profile Data

Using the intermediate results from the first step, calculate the normal values to be stored in

the profile model as follows:

1. For each life-cycle phase and segment, average the normalized values calculated for

the fraction of measure of each component within phase as observed by the selected

projects using
N

Fraction of Measureln Phase [i,j,k] = (_ Fraction of Measureln Phase [i,j,k,p]) / NNormal
[3 7=

for the/_h phase, j_h segment, and k th component, where p refers to projects 1 through N

Normalized Profile Values J

I I,_ _ I P,_,_o

I_ Av_-_gedValu_

100 0.000 0`000 O.O(XI 0`000 0`000

DESGN 0.25 0.0C0 0`000 0`000 0`000 0`(X)0 _ 0.0g0 0.000 0.000 0`000 0`000
0.50 0.000 0`000 0`000 0.000 0`000 O.OgO 0.000 0,000 0.000 0`000
0,75 0.000 0`000 i 0`000 0`0_0 0`000 0.000 0`000 0`000 0,000 0`000

1.00 0`000 0`000 0`000 0`000 0.000 0.009 0.002 0.001 0.000 0`000

CODET 0,25 0,002 0`000 0`000 0`000 O.OEI_ 0.041 O.02S 0.003 0.0_ 0`000
0.50 O.¢L_ i 0`_'I 0`004 0`0OO 0.000 O_IBg 0.058 0.008 0004 0`0O0

0.75 0.10_ 0.065 0.011 0`OO2 0`OO0 -_.J_--,.,J 0.2_ Or_ 0.015 0._ Oe_

0.50 0.374 0.196 0`0_1 0.009 0.000 0.488 0207 0.001 0.013 0`000

I.O0 0.470 0.267 0.048 0.013 0`000 0._1_ 0.2_ 0.0_16 0.016 0`000
ACCTE 0.25 0.497 0288 0.055 0.015 0.000 0`E_'I 0_4 0.0_0 0.021 0`000

0.50 0.515 0.301 0`064 0._50.(X)O 0.600 0.293 0.0_1 0.024 0`000
0.75 0.551 0334 0.075 O.O_g 0.000 O.60g 0.303 0.063 0.025 0`0OO

1.00 0`558 0.336 0.075 0`031 0.000

_] STEPS

1. The normalized values for

all components at each
segment for the three
projects are averaged.

2. The resultant averaged
values may subsequently be
stored as a profile model.

Figure 2-50. Averaging Normalized Profile Data

58

Section 2mComponents

2.2.3.3 General-Purpose Use of Profile Models

The SME incorporates a set of general-purpose services commonly used with profile models.
The services are referenced freely by SME functions to provide needed services associated
with profile models. These routines include

• Convert Phase to Profile Measure

The following section discusses this routine and details the algorithms behind the service it
provides.

59

Section 2--Components

2.2.3.3.1 Convert Phase to Profile Measure

Purpose

Calculates the cumulative profile vector that can normally be expected at a given point in the
life cycle specified by a phase name and elapsed fraction of phase.

Required Data

• Phase name and elapsed fraction of phase
• Expected measure value at project completion
• Profile model

(input value)
(input value)

Steps

1.

.

.

Referencing the profile model, linearly interpolate the cumulative fraction of each

component's value normally expected within the specified phase as

Fraction of Measureln Phase [k,I] = Fraction of Measureln Phase [k,j- 1,1] +

(Fraction of Measureln Phase [k,j,I]- Fraction of Measureln Phase [k,j- 1,1]) * (F- F_- 1)) / (FO") - F_- I))

for the k th phase, the Ilh component, and an elapsed fraction of phase, F, where F_-I) < F <= FO')

Also, from the model, calculate the cumulative fraction of each component's value

normally expected in any earlier phases occurring before the specified phase as
k-I

Fraction of MeasureBefore Phase [k,I] = E Fraction of Measureln Phase [i, dMax(i),l]
i=1

Obtain the expected profile vector by scaling the sum of these two vectors of

computed values by the specified total expected measure value at project completion

Expected Component Value [I] = Expected Completion Value *

(Fraction of Measureln Phase [k,I] + Fraction of MeasureBefore Phase [k,I])

J
1.0 1i

0,010,0"70.101!

STEPS

1. Usingthe profile model,
at 65% through CODET the
components will normally
attain cumulative measure

values of 1"/o, 7%, and 10°/, of
the expected total value at
project completion.

2. Given an expectedproject
completion value of 1498 for
the measure, the normal
profile values to expect at
this point in the schedule are
16, 98, and 155.

Figure 2-51. Converting a Phase to a Profile Measure

60

Section 2--Components

2.2.4 Estimate Set Models

Purpose

II relationships the completion values of measures.
Describes the that exist between

Description

An estimate set model is a normalized representation of the measure values to expect at
project completion. The model implicitly captures the set of linear relationships that exist
between estimated completion values for each pair of measures. The completion values in
the model are normalized to 1000 lines of code, with one value for each measure defined in

the measure list. The order of the measures in the model denotes the default hierarchy used
by the SME in choosing a measure whose estimated completion value will be used as a
scaling factor to generate the set of normal completion values.

J Estimate SetModel

Measure Complelion
Code Value

LOC 1(3OO.OOO
IVlOD 5.251

EFF 255.298
CPU 0.832
MCH 17.624

RCH 8..501
PER 4.376
RUN 304.778

Figure 2-52. Estimate Set Model for IBM, FORTRAN,
AGSS Projects

Source

Statistical averaging of actual
measure completion values
from a set of completed devel-
opment projects

Assumptions

• Over the domain of the

model, linear expressions
are sufficient to capture the
relationships between
completion values

• A one-to-one mapping
exists between the entries

in the estimate set model
and the measures defined
in the measure list

• A measure model exists for

each entry in the estimate
set model

Instances

One model exists for each project type.

Structure

Table with two columns--measure code and completion value. Each row in the table
supplies the estimated completion value per 1000 lines of code for the named measure.

The following sections detail the steps required to create estimate set models using actual
data from completed projects and present a set of general-purpose algorithms commonly
used with estimate set models.

61

Section 2---Components

2.2.4.1 Creating an Estimate Set Model

The estimate set models used by the SME are created by normalizing and then statistically

averaging actual measure completion values observed on a set of one or more similar,
completed development projects. The projects selected for inclusion in the set should be
representative of the type of project to be captured by the model and should have measure
data for each defined measure. By first normalizing the completion values, the two-step

creation process gives equal weight within the model to each contributing project regardless
of size or duration.

Required Data

• Measure data (for each project in the set, for each measure)

Step 1--Normalize Each Pro/ect's Completion Values

For each project in the set, perform the following:

1. For each defined measure, obtain the actual cumulative measure value at project

completion from the measure data (Actual Completion Value [i]).

2. Calculate the normalization factor based on the actual completion value for lines of

code as

.

Normalization Factor = 1000.0 / Actual Completion ValueLo C

Normalize each measure's actual completion value using the computed factor

Normalized Completion Value [i] = Actual Completion Value [i] * Normalization Factor

M(_asu_e

Code Value

154.9
EFF 47594.8
LOC 1788820
MCH 31560
MOO 913.0
RCH 1498.0
RER 843.0
RUN 4,84820

Nomlal_ation
factoris

0.0055965

Measure
Code Es_mate

CPU 0.867
EFF 266.364
LOC 10OOOO
MCH 1L662
MOO 5.110
RCH 8.386
PER 4.618
RUN 271.330

STEPS

1. Obtain the actual cumula-

tive value at project
completion of each measure
from its measure data.

2. Given 178682 lines of

code, the normalization
factor would be 0.0055965

(i.e., 1000.0 divided by
178682.0).

3. Multiply the actual
completion value of each
measure by this factor to
produce normalized values.

Figure 2-53. Normalizing a Project's Completion Values

62

Section 2--Components

Step 2--.4 veraqe the Normalized Prelect Completion Values

Using the intermediate results from the first step, calculate the normal completion values to
be stored in the estimate set model as follows:

I. For each defined measure, average the normalized measure completion values for the
selected projects using

N

Normal Completion Value [i] = (j=_ Normalized Completion Value [i,j]) / N

for the I_h measure, where j refers to projects 1 through N

2. Store the normal completion values in the model in order of the measure's decreasing

importance in determining the magnitude of a project.

Note: By convention, the order used by the SME is lines of code (LOC), module

count (MOD), total staff hours (EFF), computer hours (CPU), modules changed

(MCH), reported changes (RCH), reported errors (RER), and computer runs (RUN).

i Normalized1Values

Measure Proje<:tl Project2 Projed3
EstimateModel Set

cPu .867 .706 923 .832
EFF 266.366 215.941 283588 255.298
LOC IO00.(X)O 10130.000 1000.000 _ 1000000

17663 14.589 20.619 _ 17.624
MOlD 5110 6.156 4.486 5.251
RCH 8384 6.838 10.283 8.,502
PER 3783 3.732 4.680 4.065
RUN 271.331 255,089 387.912 304.778

STEPS

1. For each measure,
average the normalized
values from the three

projects to calculate the
measures completion value
for the estimate set model.

2. Store the averaged values
in the model in a suitable

order (e.g., LOC, MOD, EFF,
CPU, MCH, RCH, RER, and
RUN).

Figure 2-54. Averaging Normalized Completion Values

63

Section 2--Components

2.2.4.2 General-Purpose Use of Estimate Set Models

The SME incorporates a set of general-purpose services commonly used with estimate set
models. The services are referenced in various high-level SME functions to provide needed
functions associated with estimate set models. These services include

• Get Ratio of Estimates
• Determine Normal Estimate Set

• Get Project Magnitude

The following sections discuss each of these services and detail the algorithms behind the

actions they perform.

64

Section 2---Components

2.2.4.2. 1 Get Ratio of Estimates

Purpose

Obtains the ratio of estimated completion values normally expected for any two specified
measures.

Required Data

• Measure name for numerator
• Measure name for denominator
• Estimate set model

(input value)
(input value)

Steps

1. Obtain the normal completion values of the two specified measures from the estimate
set model.

. Divide the completion value of the measure for the numerator by the completion

value of the measure for the denominator to obtain the normal ratio of estimated

completion values.

Ratio of EstimatesAt Cornp/edon = Completion Va/UeNu m / Completion ValueDeno m

Es#mateModeiSeti

Measures Completi0_Estimates

Measure Compk_on
Code Value

LOC,EFF LOC 1000.000
LOC,MOO _ MOO 5.251
RER,LOC EF'F 255298
RER,RCH CPU 0.832

MCH 17.624
RCH 8.501
PER 4.376

MCHIMOD RUN 304.778

LOC_JEF'_= 3.917
LOC_MOD= 190.457
RER/LOC= 0.0O4
RER/RCH= 0.515

MCH#_OD= 3.357

_} STEPS

1. Get the estimated

completion values of the two
specified measures from the
model. For LOC and EFF,
this would result in 1000.0

and 255.298, respectively.

2. Divide the value for the

numerator by the value for
the denominator to derive

the normal ratio expected at
project completion. For
LOC/EFF, this would result in
3.917 lines of code per hour.

Figure 2-55. Obtaining the Ratio of Completion Estimates

65

Section 2--Components

2.2.4.2.2 Determine Normal Estimate Set

Purpose

Produce a full set of normal completion estimates

completion value for any one measure.

for all measures given the expected

Required Data

• Measure name

• Expected completion value for the measure
• Estimate set model

(input value)
(input value)

Steps

1.

,

°

Locate the specified measure in the estimate set model and obtain the normal

completion value for the measure (Normal Completion Valuetc_asoro).

Calculate a scaling factor for the model based on the ratio of the input expected

completion value for the measure to the model's normal completion value as

Scale Factor = Expected Completion ValueMeasur e / Normal Completion ValueMeasur e

Multiply the completion values found in the estimate set model for each measure by

the calculated scaling factor to produce a set of completion estimates using

Completion Estimate [i] = Normal Completion Value [i] * Scale Factor

Prdfect_i_
225,000Frees

o_code

(-)Model EstimateSet

Measure _ Measure
Code Value Code Estm'_e

LOC 1000.000 LOC 22500000
MOO 5,251 MOD 1181.4.8
EFF 255.298 _ EFF 57442.05
CPU 0.832 CPI3 18720
MCH 17._24 MCH 3965.4O
RCH 8.501 RCH 191273
RER 4.376 PER 98460
RUN 304778 RUN co8575,05

STEPS

1. The normal completion
value for LOC in the estimate
set model is 1000.0.

e For a project expected to225000 lines of code, this
would result in a scaling
factor of 225 (i.e., 225000.0

divided by 1000.0).

3. Multilplying each
completuon value in the
estimate set model by this

scaling factor generates a
set of normal completion
estimates that is sized to the

magnitude of the project.
Any measure can be used to
generate an estimate seL

Figure 2-56. Determining a Normal Estimate Set

66

Section 2--Components

2.2.4.2.3 Get Project Magnitude

Purpose

Obtains the measure and estimated completion value for the measure that is most indicative
of the project's magnitude.

Required Data

a Estimate data
• Estimate set model

Steps

1.

,

Locate the first measure in the estimate set model for which there exists a non-zero

value in the project's estimate data (PlannedValuecompletion).

Identify the measure and return the planned completion value stored in the estimate
data for the measure.

Meelure Compidc_

Code Value

EFF 255.298
CPU 0.832

MCH 17,$24

8.5014.376

304.778

_e

Code

CPU

EFF
"_ _ LOC

MCH

MOD

RUN

com=_lon
_ate

187._

57442.05

.
3_5.40

11St .48
1912.73

984.60
6B57_05

_] STEPS

1. LOC is the first measure
in the estimate set model for
which there exists a non-
zero value in the estimates
data, with a value of 225000.

2. This would indicate a
project whose magnitude is
estimated at 225000 lines of
code.

3. if the estimates data
contained zero values for
both LOC and MOD, the
algorithm would show a
project whose magnitude is
estimated at 57442 staff
hours.

Figure 2-57. Obtaining a Project's Magnitude

67

Section 2--Components

2.2.5 Attribute Definitions

Purpose

l[Describes the set of overall project quality attributes, such as correctability andmaintainability, used by the SME.

Description

The attribute definitions list is a set of associated tables that (1) identifies fundamental

project quality attributes used by the SME and (2) specifies how relative ratings for those
attributes are calculated. The list decomposes each attribute into one or more weighted
factors and further defines each weighted factor as a function. Each function is a
mathematical expression consisting of arithmetic operators, numerical constants, and
variable references to specific measure or prof'de values. This hierarchy, in essence, captures
the algorithm used to evaluate measurement data to calculate a relative rating for key project
quality attributes. The SME implementation currently defines two attributes--correctability
and maintainability.

AtTributeDefini_ons

Alt_ot_es Fadors

Cone_ gd_y Erru__ ease

I Factor FunctionCorreclability Minm_m/Maxinlurn Range and Basis
Maintainal_lity Range

Fact_ & Weights

I _ Error C_n'ect_ase

Maintainability

Change_lsolatiorV'Ease

Figure 2-58. Attribute Definitions for the SME

Source

Defined as part of the SME

implementation

Assumptions

• Objective measurements
taken during the software
development effort can be
used as early indicators of
project and product quality.

• The defined attribute

ratings are relative to a
normal project of the same
project type (and are not
absolute values).

Instances

The SME references one
attribute definitions list.

Structure

Three tables consisting of an attribute list, a set of attributes, and a set of factors. The
attribute list is a table with one column--attribute name. The names appear in alphabetical

order with one defined attribute name per row. The set of attributes are described by a
second table of attribute records with each record containing information on one
attribute--the attribute's name, the minimum and maximum rating values, the number of

underlying factors, and the name and weighting of each factor. The set of factors are

68

Section 2--Components

described by a third table of factor records with each record containing information on one
factor--the factor's name, the maximum range of values to consider (as a percentage of the
normal expected value), the function used to evaluate the factor, and the measures which
must be available to evaluate the factor.

69

Section 2--Components

2.2.5.1 Defined A ttributes

The SME defines two basic overall project quality attributes. These attributes are rated on a
relative scale from -10 to +10, with 0 considered normal. Negative and positive ratings are
considered below normal and above normal, respectively. The attributes are

• Correctability
• Maintainability

The following sections describe the two attributes and present
algorithms commonly used with attribute definitions.

a set of general-purpose

70

Section 2--Components

2.2.5.1.1 Correctability

Attl_te Fldors

Name: C,_r Klabaity
Mkwnum: -10.0

Maximum: +10.0
Factor Count 2

Facl_ Name W_t

Error Isola, ton_.,_ 1.0

Name: En.or IsolaSon/Ea_
Label: "/*_no_ s tsdaled _ 1 Day

I_: 0.10
_: (q:_mt[1] + _I[_/RE_ • loo
Bad_: PJER

Name: E_'or C_r_licr,._ase
Labd: %FJ_'S _ v, il_ I Day

M_r_<jo: 0.10

Buis: RER

Figure 2-59. Attribute Defining Correctability

The SME rates correctability
on the basis of two associated

factors--the ease of isolating
errors and the ease of

correcting errors. Both factors
rely on profile data collected
on reported errors. The ease of
isolating errors is calculated as
the percentage of all reported
errors that were isolated within

1 day. The ease of correcting
errors is calculated as the

percentage of all reported
errors that were corrected

within 1 day. After scaling,
the resultant factor values are

averaged to produce a relative
rating on a scale of -10 to +10
for the attribute.

2.2.5.1.2 Maintainability

AUribu_

Name: Madnt_ab_ly
5Rinimum:-10.0
_urn: +10.0

F_-4or Count: 2

Factor N_ Woi_ilt

1¢,,¢/a_ 1.0
_lmplomontaloa/Ease 1.0

Factors

l_J Nan.: Ctlange I¢,dalon/F_as_

label: %Gha_ Isc/_l ",,,if'in 1 Day

l_: 0.10
i Fun¢_<_: ((l_:Ht [Il ÷ RCHI[2 D !RCH) • 100
I BaS: RCH

.....I

I Labd:'/.Chan_s Implem6"_4 _dl'in I Day

Ma_ar, ge: O. 10
r-u.a_: ((RCH2p] + RCH,T4) JRC_ • ioo
Barn: RCH

Figure 2-60. Attribute Defining Maintainability

The SME rates maintainability
on the basis of two associated

factors--the ease of isolating

changes and the ease of
implementing changes. Both
factors rely on profile data
collected on reported changes.
The ease of isolating changes
is calculated as the percentage
of all reported changes that
were isolated within 1 day.
The ease of implementing
changes is calculated as the
percentage of all reported
changes that were imple-
mented within 1 day. After

scaling, the resultant factor
values are averaged to produce
a relative rating on a scale of
-10 to +I0 for the attribute.

71

Section 2--Components

2.2.5.2 General-Purpose Uses of Attribute Definitions

The SME incorporates a set of general-purpose services commonly used with attribute
definitions. The services are referenced in high-level SME functions to provide needed
services associated with attribute definitions. These services include

• Evaluate Actual Factor Value

• Evaluate Expected Factor Values
• Assess Attribute

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

72

Section 2--Components

2.2.5.2. 1 Evaluate Actual Factor Value

Purpose

Calculates a factor's actual value as of a given
evaluate the function defined for that factor.

date using actual project data values to

Required Data

• Factor
• Calendar date

• Measure data (for any referenced measures)
• Profile data (for any referenced profiles)

Steps

1.

.

.

(input value)
(input value)

For the expression in the factor's function, locate all references to measure values.

Obtain the actual data value on the input calendar date from the measure data of any
referenced measure.

For the expression in the factor's function, locate all references to profile values.

Obtain the actual data value on the input calendar date from the profile data of any

referenced profile.

Evaluate the expression in the factor's function using the actual project data values

obtained (Actual Factor Value).

Figure 2-61.

Change_isolation/ease

Funct_n: ((RCHI[I]+ RCHI[2]) /RCHI) ° 100

RCHt - Effort to I_aW Change

<=l_" llv- 1 day 1-3 day_ >3 days

loft 1_11 0 0 0 0
I0_18,91 0 0 0 0

As d 12J24/93, atotal of 89% of the Re_:xxtedChanges
were P:,olmedwithin 1 day.

Unknown

0
0

STEPS

1. "l'he actual measure value

for reported changes is 1498
on 12/24/93 (i.e., RCH1 or the
sum of all components).

2. The actual values for the

profile components are 836,
503, 113, 46, and 0 (i.e., the
1st through 5th components
of RCH1).

3. To evaluate the factor's
function, add 836 and 503 to

ield a value of 1339 (i.e.,

CHl[1]plus RCHI[2]).
Divide thin by the actual total

value of 1498 and multiply by
100 to yield a value of 89
(i.e., 89% of the changes
were isolated within I day).

Evaluating a Factor Using Actual Data Values

73

Section 2mComponents

2.2.5.2.2 Evaluate Expected Factor Values

Purpose

Calculates a factor's expected values as of a given date using normal model values to
evaluate the function defined for that factor. The factor's expected values consist of three

values that represent the normal, best, and worst cases expected for the factor.

Required Data

• Factor
• Calendar date
• Schedule data
• Schedule model
• Estimate data
• Estimate set model

• Measure model (for referenced measures)

• Profile model (for referenced profiles)

Steps

I.

(input value)
(input value)

(in Convert Date to Phase)

(in Determine Normal Estimate Set)
(in Convert Phase to Measure)
(in Convert Phase to Profile)

Use Get Project Dates to obtain the planned project start and end dates from the

current schedule data.

2. On the basis of the project start and end dates, use Convert Date to Phase to translate

the input calendar date to the phase and elapsed fraction of phase that normally

should be reached on that date.

3. Use Get Project Magnitude on the current estimate data to obtain the measure and

estimated completion value for the measure that is most indicative of the project's

magnitude.

4. On the basis of that magnitude, use Determine Normal Estimate Set to create a

normal set of estimates for the project.

5. For the expression in the factor's function, locate all references to measure values.

For any referenced value, use Convert Phase to Measure to obtain the expected

measure value at the desired phase and fraction of phase, given the normal

completion value of the measure, from the measure model.

6. For the expression in the factor's function, locate all references to profile values. For

any referenced value, use Convert Phase to Profile to obtain the expected profile

value at the desired phase and fraction of phase, given the normal completion value

of the profile's measure, from the profile model.

7. Evaluate the expression in the factor's function using the obtained model values

(Expected Factor ValUeNormal).

74

Section 2--Components

. Use the maximum range value for the factor to compute the best and worst case
expected values as

Expected Factor ValueBest = Expected Factor ValueNormal * (1.0 + Factor Maxrange)

Expected Factor ValueWorst = Expected Factor ValUeNormal* (1.0 - Factor Maxrange)

Factor Values

I Cha_ge_iso_ioWease I
Func'_n: ((RCHI[1] + RCHI[2D/ RCH1) * 100
Maxrange: O, 10

_ RCH1-E_o,to_._. C._n_. I _
Normal

03f20,_3
v

Pro_ Du_k_

As _ (X3rZQ,_, I_e mod_ indcat_ 91.2% o#

STEPS

1. A calendar date of 3/20/93

represents 75% through the
system test phase.

2. The project's magnitude
is next determined to derive

a normal completion esti-
mate for reported changes of
1418.

3. Given 1418 total changes,
the profile model shows that
the component values at
75% of system test should
be 624, 213, 53, 28, and 0.

4. When used to evaluate

the factor's function, the
model values yield a value of
91.2. For a maximum range
value of 0.10, best and worst
case expected values are
100.3 and 82.1, respectively.

Figure 2-62. Evaluating a Factor Using Normal Model Values

75

Section 2--Components

2.2.5.2.3 Assess Attribute

Purpose

Calculates a relative rating as of a given date for a specified project quality attribute.

Required Data

• Attribute
• Calendar date

• Factors (associated with specified attribute)

(input value)
(input value)

Steps

1. For each factor associated with the specified attribute, use Evaluate Actual Factor

Value, discussed earlier, to calculate the factor's actual value as of the input calendar

date (Actual Factor Value [i], for the t_h factor).

2. For each factor associated with the specified attribute, use Evaluate Expected Factor

Values, discussed earlier, to calculate the factor's expected values as of the input

calendar date (Expected Factor ValueNormal [i], Expected Factor ValueBest fi], Expected Factor

Valueworst [i]).

3. Calculate the normal value for the attribute's relative rating as the average of the

minimum and maximum rating values defined in the attribute with

Normal Attribute Rating -= (Minimum Rating + Maximum Rating) / 2

4. Calculate a scaling value for the attribute's relative rating as the difference between

the defined maximum rating and the computed normal rating with

Rating Scale = Maximum Rating - Normal Attribute Rating

5. For each factor, calculate the corresponding range of the expected values obtained

from evaluating the factor with

Factor Range [i] = (Expected Factor ValueBest [i] - Expected Factor Valueworst [i]) / 2

6. For each factor, scale the factor's actual value to match the range of values used in

rating the attribute with

Factor Rating [i 1 = Normal Attribute Rating + (Rating Scale / Factor Range [i]) *

(Actual Factor Value [t] - Expected Factor ValueNormal [i])

7. Set the attribute's rating to the weighted average of the scaled factor ratings computed

for each factor, 1 through K, using

K K

Factor Weight [,_ * Factor Rating [i]) / LAttribute Rating = (i _- 1Factor Weight [t_

76

Section 2--Components

Maintainabiity
Attrt_te
Rat_g

+10

Norrr_l 0

Change_isolatiorVease

" _ Best

....... Actual

9_- -------

' _ Normal

10032 Best

93.89

"''''='''''''-" ActuaJ

91.20

-10 • _ Worst 82.08

Char_ge_implementa_rYease

I 97.22

90.64

Nom_l 88.39

Wor_ 79.55

29" 10+26" 10

Average" 2.0 - 275

Figure 2-63. Assessing a Project Attribute

(STEPS

1. Each factor's actual and

expected values are
evaluated.

2. The attribute's normal
value is calculated.

3. The difference between

the defined maximum rating

and the computed normal
rating is calculated as a
scaling value.

4. The range of expected
values for each factor is

calculated, and the actual
values are scaled.

5. The attribute's rating is
set to the weighted average
of the scaled factor ratings.

77

Section 2--Components

78

Section 2--Components

2.3 MANAGEMENT RULES

The SME relies on experienced software development managers in the SEL environment for

the expert knowledge needed to analyze and interpret the observed behavior of projects.
Capturing and applying this knowledge using expert systems techniques has been
investigated by the SEL and proven feasible in this domain (References 4 and 5). Over the
years, a variety of management rules and heuristics that are useful in the local environment

have been collected and published in numerous SEL reports. A representative selection of
these management rules may be found in Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules (Reference 2) and in Manager's Handbook
for Software Development (Reference 6).

Conceptually, interviewing successful software development managers to learn how they
interpret certain conditions observed on a project captures reusable knowledge about
evaluating a project's strengths and weaknesses. Their interpretations can then be combined
or recast into specific management rules that describe the possible explanations for certain
conditions. For example, one simple rule could express several possible reasons for an
observed deviation in reported errors as "If the number of reported errors is below normal,
then either (1) the development team is experienced, (2) the system testing is inadequate, or
(3) the problem is easier than expected." More complex networks or sets of these rules can

be created to examine a wide range of data and provide more depth from which to draw
conclusions.

The SME currently incorporates two independent approaches to capturing management rules
and providing expert assistance to software development managers--a knowledge base and a
rule base. The knowledge base focuses on explaining observed deviations from normal
values in fundamental software development measures; the rule base concentrates on

providing interpretations of the project's general status based on conditionally evaluating a
series of rules.

Table 2-4 summarizes the major components referenced by the SME as management rules
and identifies each component's purpose.

Table 2-4. SME Management Rules Components

COMPONENT PURPOSE

Knowledge Base

Rule Base

Captures management experience that relies on objective
measurements and subjective data to explain deviations in
measures from normal values
Captures management experience that relies on a series of
rules which use the observed ratios between key pairs of
measures to assess the project's current status

The following sections provide additional detailed information on each of these components.

PIt_CIlCM_K P6,GE BLANK I'K_)T F_M_'D

79

Section 2--Components

2.3.1 Knowledge Base

Purpose

Describes a collection of captured management experience that uses objective
measurements and subjective data to explain deviations in measures from normal values.

Description

The knowledge base is a set of associated tables that (1) identifies possible reasons for
observed deviations in a project's measures from what is considered normal and (2) specifies

how to assess the probable validity and relative merit of those reasons. The list of reasons in
the knowledge base are organized to associate the deviation of a measure with that
deviation's possible causes. Each reason in the list is identified by an encoded reason,
consisting of a causal rating and a factor name, that maps to an entry in a list of explanations
used for display purposes. In assessing the reason's validity, the named factor is evaluated to
produce a rating that can be compared to the causal rating. If the ratings match, the reason is
a likely cause of the deviation. Each underlying factor is defined as being either objective,
subjective, or dependent. Objective factors are evaluated using actual measure data, while
subjective factors rely on subjective data from the manager. Dependent factors represent a
weighted combination of ratings from a network of two or more factors. The SME
knowledge base currently contains the reasoning needed to assess deviations in four defined
measures: CPU hours, staff hours, lines of code, and reported errors.

I Knowledge
Base

Reasons

t_a_ _r_ Cau_ _r_ &Faau _Oon Taa

CPUh 15 high _urce_modub__a,m t.lmda_ code

ER

low _¢dh"h_s._bmiwi_n "1"_'_ ise,otlalwnim'_ lomb5PEP¢,o 40

Factors r-"-

Factor _ Flctor _ I=act_.Facton_,

Name: _ mock_ _t Name: prohllQ_ _=/_r_. Opl_tJm]=lairs,

_: k_k_ule_ (MCH) Ou_: Howdim_x_= t_abl_n? _d w_t,_

Figure 2-64. Knowledge Base for the SME

Source

Defined as part of the

based on past experience

SME

Assumptions

• The manager's estimated
completion values
accurately reflect the
project's magnitude and
can serve as a basis for

determining what is
considered normal

• The subjective data
provided by the manager is
rated consistently across

projects

Instances

The SME has one knowledge
base.

Structure

Three tables consisting of a reason list, an explanation list, and a set of factors. The reason
list is a table with three columns--a deviation in a measure, the weight used to rank the

80

Section 2--Components

reason, and the possible reason for the deviation encoded as a causal rating and a factor
name. The explanation list is a table with two columns--the encoded possible reason and the
explanatory text for that reason. The set of factors are described by a third table of factor
records with each record containing information on one factor. The record structure varies
by the type of factor. Objective factors contain the factor name and the function used to

evaluate the factor (i.e., a mathematical expression referencing specific measure values).
Subjective factors contain the factor name, the question used to solicit the subjective
information, and a list of acceptable responses to that question. Dependent factors contain
the factor name and a list of underlying factors identified by name, weight, and optimum
rating. The underlying factors referenced in a dependent factor may be objective, subjective,
or dependent.

The following sections describe the specific reasoning captured in the knowledge base for
assessing deviations in four specific measures and present a set of general-purpose
algorithms commonly used with the knowledge base.

81

Section 2--Components

2.3.1.1 Captured Knowledge

The SME captures reasoning in the knowledge base for assessing deviations in four defined
measures which may be either above normal (high) or below normal (low). This reasoning,
discussed in detail below, addresses

• Higher than Normal CPU Hours
• Lower than Normal CPU Hours

• Higher than Normal Total Staff Hours
• Lower than Normal Total Staff Hours

• Higher than Normal Lines of Code
• Lower than Normal Lines of Code

• Higher than Normal Reported Errors
• Lower than Normal Reported Errors

82

Section 2mComponents

2.3.1.1.1 Higher than Normal CPU Hours

The SME considers five possible reasons that could cause the number of CPU hours recorded
for a project to be above normal. These reasons, in order of decreasing potential likelihood,
are (1) team made up of terminal jockeys, (2) too much system testing, (3) unreliable system,
(4) team is not doing desk work, and (5) unstable code. Assessing the validity of these
reasons in explaining the deviation relies on evaluating the objective, subjective, and
dependent factors shown below.

Possible Reasons and Explanations

Causal
RatingRank Factor Name Explanation

40 High dev._team/terminal_jockeys Team made up of terminal jockeys
30 High system_testing/amount Too much system testing
25 Low software/reliability Unreliable system
20 Low dev team/desk work Team is not doing desk work
15 High souTce_modute__change/amount Unstable code

Objective Factors

Factor Name Function

source code changes/rate RCH/LOC {Reporled Changes per LOC)
source_-mod_e_chang e/amount MCH (Module Changes)

Subjective Factors

Factor Name

CM_pian/use
code reading/amount
code_reading/quality
design/stabihty
design/quality
dev_team/desk_work

dev_tearn/terminal jockeys
librarian/use
specs/stability
systemtesting/amount
unit_testing/amount

uniLtesting/quality

Question

Is this project using/following its CM plan?
How much code reading is being done on this project?
What quality rating would you assign to this project's code reading?
What level of stabdity would you assign to th=sproject's design?
What quality rating would you assign to this project's design?
Is the team completing required desk work before getting on
the computer?
Is the team spending too much time on the computer?
Is this project using a librarian?
How would you rate the stability of the specifications for this project?
How would you rate the amount of system testing being done?
How wouldyou rate the amount of unit testing being done on
this project?
What quality rating would you assign to unit testing on this project?

Responses
(High,Low,Normal)

(Yes,No,N/A)
(Lots,Minimal, Norma])

High,Low,Normal)
High,Low,Normal)
High ,Low,Normal)

(Yes,No, N/A}

Yes,No, N/A)
Yes,No,N/A)

(High ,Low,Normal)
(High,Low,Normal]
(High,Low,Normal)

(High,Low,Normal)

De)endent Factors

Factor Name

CM/quality

software/reliability

Underlying Factors

CM_plan/use
librarian/use

CM/quality
code_reading/amount
cod e_readi..ng/quality
design/stability
design/quality
source_code_changes/rate
specs/stability
unit testing/amount
unit_testing/quality

gila timum
ting

High
High

High
High
High
High
High
Low
High
High
High

Weight

1.0
1.0

1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0

Figure 2-65. Reasoning for Higher than Normal CPI 1 Hours

83

Section 2--Components

2.3.1.1.2 Lower than Normal CPU Hours

The SME considers seven possible reasons that could cause the number of CPU hours
recorded for a project to be below normal. These reasons, in order of decreasing potential
likelihood, are (1) computer not available, (2) not enough system testing, (3) experienced
development team, (4) good planning, (5) good configuration management, (6) good quality
assurance, and (7) low productivity. Assessing the validity of these reasons in explaining the
deviation relies on evaluating the objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Rank

4O
3O
30
20
15
15
15

Causal
[:late Factor Name

Low co mput er/availability
Low system_testing/amount
High dev team/experience
High pla -n/rig/quality
High CM/quality
High QbJquality
Low devjearn/productivity

Explanation

Computer not available
Not enough system testing
Experienced development team
Good planning
Good configuration management
Good quality assurance
Low productivity

Objective Factors

Factor Name Function

coding/productivity LOC/EFF (LOC per hour)
desigrv'productivity MOD/EFF (Modules per hour)

ective Factors

Responses
Factor Name Question (High,Low,Normal)

Sub

CM plarVquality
CM_-plan/use
code reading'use
compuler/reliab_ity

dev plart/quality

dev_t eam/exper_w/applicatio n

dev_team/exper_w/en_ronment

dev._team/exper wllang uage

dev_t earrvex per_w/tools

dev_team/quality
librarian/use
mg mt_plarVquality

planmaintenance/quality

QA._plarVquality
QA_plarVuse
staffing_plan/quality
system_testing/amount

term/nal_.per_pgmr/amou nl
test_plan/quality

What quality rating would you assign to this project's CM plan?
is this proient using//ollowing its CM plan?
Is this project using code reading?
What level of reliability would you assign to the development
computer?
What quality rating would you assign to this project's development

lan?
_'low would you rate the team's experience with the project's

application?
How would you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?

How would you rate the team's experience with the developmenttools in use.
How would you rate the development team's overall quality?
s this project using a I_rarian?
Nhat quality rating would you assign to this project's management
)lan?
s the set of plans (dev, mgmt, QA, CM, and test) being kept up to

date?

What qualit_ rating would you assign to this project's QA plan?
ts this projet ,1using/folLowing its QA plan?
What qualit) rating would you assign to this project's staffing plan?
How would ,.'ou rate the amount of system testing being done on this

roject?
ow would you rate the number of terminals per programmer?

What quality rating would you assign to lhis project's test plan?

(High,Low,Normal)
(Yes,No,N/A)
(Yes,No,N/A)

(High,Low,Normal)

(High,Low,Normal)

{High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)
(Yes,No,N/A)

(High,Low,Normal)

(Yes,No,N/A)

(Higl?,Low,Norma)
(Yes,No,N/A)

(High,Low,Norma)
(High,Low,Normal I

(High,Low,Normal)
(High, Low,Normal)

Figure 2-66 (1 of 2). Reasoning for Lower than Normal CPU Hours

84

Section 2--Components

De)endent Factors

Factor Name

CM/quality

computer/availability

dev_team/experience

Underlying Factors

C M_plan/use
librarian/use

computer/reliability
termmal_per_pgm r/amount

dev _team/exp er w/application
dev_team/exper_w/environ ment
dev_team/exper_w/language
dev._tearrdexp er_wttools

°l_atimum
ring

High
High

High
High

High
High
High
High

dev tearrvproductivity

planning_quaiity

QA/quality

coding/productivity
design/productivity
dev._team/quality

C M._plan/quaJity
dev plarVquality
mgmt_plarYquality
plan_maintenance/quality
QA._plan/quality
staffing_ptan/g uality
test_plan/quality

cod e_reading/u se
QA_plan/use

High
High
High

High
High
High
High
High
High
High

High
High

Weight

1.0
1.0

1.0
1.0

1.0
1.0
1.0
1.0

5.0
3.0
2.0

1.0
1.0
1.0
5.0
1.0
1.0
1.0

1.0
1.0

Figure 2-66 (2 of 2). Reasoning for Lower than Normal CPU Hours

85

Section 2--Components

2.3.1.1.3 Higher than Normal Total Staff Effort

The SME considers six possible reasons that could cause the total number of staff hours
recorded for a project to be above normal. These reasons, in order of decreasing potential

likelihood, are (1) problem larger than expected, (2) low productivity, (3) unstable code, (4)
poor planning, (5) inexperienced development team, and (6) incomplete specifications.
Assessing the validity of these reasons in explaining the deviation relies on evaluating the
objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name Explanation

30 High estimate/accuracy Problem larger than expected
20 Low dev team/productivity Low productivity

souTce_module...chang elamount Unstable code20 High
15 Low planning/quality Poor planning
10 Low dev_team/experience Inexperienced development team
10 Low specs/completeness Incomplete specifications

Objective Factors

Factor Name Function

coding/productivity LOC/EFF (LOC per hour)
design/productivity MOD/EFF (Modules per hour)
source_module_change/amount MCH (Module Changes)

Sub ective Factors

Factor Name

CM_plan/quality
dev_plan/quaiity

dev_learWex pe Lw/applicalion

dev_tearrVexpeLw/environment

dev_tearn/exper _w/language

dev_tearrVexpeLw/tools

dev team/quality
estimate/confidence
estimate error/direction
mgmt_pl&'Vq uality

plan_maintenance/quality

QA plarJqual ity
specs_outstand questJamount

specs_TBDs/amount

staffing_.plan/.quality
test_ptarVq uahty

Question
Responses

(High,Low,Normal)

(High,Low,Normal)
(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

What quality rating would you assign to this project's CM plan?
What quality rating would you assign to this project's development
plan?
How would you rate the team's experience with the project's
application ?
How would you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?

How would _ou rate the team's experience with the developmenttools in use.
How would you rate the development team's overall quality?
What s your confidence in the projectsize estimate?.
If you're not confident in the estimate for this project, then _l is
What quality rating would you assign to this project's management

tan?
_; the set of plans (dev, mgmt, QA, CM, and test) being kept up
to date?
What quality rating would you assign to this project's QA plan?
How would you rate the number of outstanding specification
questions?
How would you rate the number of specification TBDs for this
Pwr_Ject?

at quality rating would you assign to this project's staffing plan?
What quality rating would you assign to this project's test plan?

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)
(High,Low,N/A)

(High,Low,Confident)
(High,Low,Normal)

(Yes,No,N/A)

(High,Low,Normal)
(High,Low,Normal)

(High, Low, Normal)

High,Low,Normal)
High,Low,Normal)

Figure 2-67 (1 of 2). Reasoning for Higher than Normal Total Staff Hours

86

Section 2--Components

De)endent Factors

Factor Name

dev._teamlexperi ence

dev_t earn/prod uctivity

Underlying Factors

dev_team/exper w/application
dev_tearrvexper w/environ ment
dev_team/exp er_w/language
dev_team/exp er_w/tools

oF_m um
ring

High
High
High
High

estimate/accuracy

estimale_is_hig h/truth

estimat e_is_tow/t ruth

planning/quality

specs/completeness

coding/productivity
design/productivity
dev_team/quality

estimate_is_high/truth
estimate_is_low/truth

estimate/confidence
estimateerror/direction

estimate/confidence
estimate_error/direction

C M_plan/q uality
tier_plan/quality
mgmt_plarVquality
plan maintenance/quality
QA_plan/quality
star fing_plarVguality
test .plarVquahty

specs._outstan d_quesVamount
specs_TBDs/amount

High
High
High

High
Low

Low
High

Low
Low

High
High
High
High
High
High
High

Low
Low

Weight

1.0
1.0
1.0
1.0

5.0
3.0
2.0

1.0
1.0

1.0
1.0

1.0
1,0

1.0
1.0
1.0
5.0
1.0
1.0
1.0

1.0
1.0

Figure 2-67 (2 of 2). Reasoning for Higher than Normal Total Staff Hours

87

Section 2_Components

2.3.1.1.4 Lower than Normal Total Staff Effort

The SME considers seven possible reasons that could cause the total number of staff hours
recorded for a project to be below normal. These reasons, in order of decreasing potential
likelihood, are (1) staffing up too slowly, (2) easy problem, (3) problem smaller than
expected, (4) experienced development team, (5) not paying attention to deadlines, (6) high
productivity, and (7) problem not understood. Assessing the validity of these reasons in
explaining the deviation relies on evaluating the objective, subjective, and dependent factors
shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name

40 Low staffing/amount
30 Low problem/difficulty
30 Low estimate/accur .acy
25 High dev team/experience
20 Low mgr_t_t earn/deadline sensitivity
20 High dev_tearrCproductivity
20 Low problem/understanding

Explanation

Staffing up too slowly
Easy problem
Problem smaller than expected
Experienced development team
Not paying attention to deadlines
High productivity
Problem not understood

Objective Factors

Factor Name Function

coding/produclivity LOC/EFF (LOC per hour)
desigr'gpreductivity MOD/EFF (Modules per hour)

Sub ective Factors

Factor Name

d ev_team/ex per_w/application

d ev_t eam/exper_w/environme nt

d ev_te am/ex per_w/lang uag e

d ev_te am/ex per_w/tools

dev team/quaJity
estimate/confidence
estimate error/direction
mgmt tearn/deadline_sensitivity
proble-m/difficulty

problem/understanding

staffing/direction
staffing_j01anlquality
staffing_plar0'u se

Question

How wouldyou rate the team's experience with the project's
application ?
How would you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?
How would you rate the team's experience with the development
tools in use?
How would you rate the development team's overall quality?
What is your confidence in the project size estimate?
If you're not confident in the estimate for this project, then it is
Is this team paying attention to deadlines?
How wouldyou rate the difficulty of the problem this project is
working on?
How would you rate the team's understanding of the problem they
are working on?
I1 staffing is not following a plan, would you say it was
What quality rating would you assign to this project's staffing plan?
Is this project using/following its staffing plan?

Responses
(High,Low,Normal)

(High,Low,Normal)

(High.Low.Normal)

(High,Low,Normal)

(High.Low,Normal)

(High.Low,Normal)
(High,Low,N/A)

(High,Low,Confident)
(Yes, No,N/A)

(Difficult.Easy,Normal)

(Good,Poor,N/A)

!.High ,Low.N/A)
(High,Low,Normal)

(Yes,No.N/A)

Figure 2-68 (1 of 2). Reasoning for Lower than Normal Total Staff Hours

88

Section 2--Components

De >endent Factors

Factor Name Underlying Factors

dev_tearn/experience

dev_tear'n/prod uctivity

estimate/accuracy

estimateishigh/truth

estimate_is low/truth

staffing/amount

staffing/quality

staffing_is_high/truth

staffingjs._low/truth

d ev._team/exp er_w/appfication
dev._team/exper w/environment
dev_team/exper__wAanguage
dev_team/exper_w/tools

coding/productiviTy
design/productivity
devjeam/quality

estimat e is_higi'v't rulh
estimate.is_low/truth

estimate/confidence
estimate_error/direction

estimate/confidence
estimate_error/direction

staffing_is_high/truth
staffing_is_low/truth

staffing_plan/quality
staffing_plan/use

staffing/direction
staffing/quality

staffing/direction
staffing/qua.lily

Ot_atimum
tlng Weight

High I.o
High I.o
High t.0
High 1.0

High 5.0
High 3.0
High 2.0

High 1.0
Low 1.0

Low 1.0

High 1.o

Low 1.0
Low 1.0

High 1 .o
Low 1.0

High 1.0
High 1.0

High 1.0
Low 1.0

Low 1.0
Low 1,o

Figure 2-68 (2 of 2). Reasoning for Lower than Normal Total Staff Hours

89

Section 2BComponents

2.3.1.1.5 Higher than Normal Lines of Code

The SME considers eight possible reasons that could cause the total number of lines of code

recorded for a project to be above normal. These reasons, in order of decreasing potential
likelihood, are (1) problem larger than expected, (2) lots of reused code, (3) experienced

development team, (4) stable design, (5) not enough unit testing, (6) high productivity, (7)
poor configuration management, and (8) poor quality assurance. Assessing the validity of
these reasons in explaining the deviation relies on evaluating the objective, subjective, and

dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name

40 High estimate/accuracy
35 High source module reuse/amount
30 High dev te_m/expe_ence
25 High des[gn/stability
20 Low unit_testing/amount
20 High dev team/productivity
15 Low CM/'quality
15 Low QA/quality

Explanation

Problem larger than expected
Lots of reused code
Experienced development team
Stable design
Not enough unit testing
High productivity
Poor configurat=on management
Poor quality assurance

Objective Factors

Factor Name Function

coding/productivity LOC/EFF (LOC per hour)
design/productivity MOD/EFF (Modules per hour)

ective Factors

Responses
Factor Name Question (High,Low,Normal)

Sub

CM__plan/use
code_reading/use
design/stability
dev_team/exper., w/applicatio n

dev team/exper_w/environment

dev team,'exper_w/lang uage

dev_team/exper__wltools

dev team/quality
estiMate/confidence
estimate error/direction
librarian/use
QA_plaWuse
source module reuse/amount
unit_tes-ting/amount

is this project using/following its CM plan?
Is this project using code reading?
What level of stability would you assign to this project's design?
How wouldyou rate the team's expenence with the project's
application?
How would you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?
How would you rate the team's experience with the development
tools in use?
How would you rate the development team's overall quality?
What is your confidence in the project size estimate?
If you're not confident in the estimate for this project, then it is
Is this project using a librarian?
Is this project using/following its QA plan?
How would you rate the level of module reuse on this project?
How wouldyou rate the amount of unit testing being done on
this project?

Yes,No,N/A)
Yes,No,N/A)

(High,Low,Normal)
(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)
{High,Low,N/A)

(High,Low,Confident)
Yes.No,N/A)
Yes,No,N/A)

(Hi ih,Low,Normal)
(Hi]h,Low,Normal)

Figure 2-69 (1 of 2). Reasoning for Higher than Normal Lines of Code

9O

Section 2--Components

De 3endent Factors

Factor Name

CM/quality

dev_team/experience

dev_tearn/productMty

estimate/accuracy

estimate_is_high/truth

estimate is low/truth

QNquality

Underlying Factors

CM_plan/use
librarian/use

dev_t eam/exp er w/applicat ion
dev_team/exp er_w/environ m ent
dev_team/exper w/language
dev_team/exper-w/tools

coding/productivity
design/productivity
dev_team/quaJity

eslimat e_is high/truth
estimat e_is_low/tr uth

estimate/confidence
estimate_error/direction

estimate/confidence
estimate_error/direction

code_reading/use
QA_plan/use

O_at/mum
ring

High
High

High
High
High
High

High
High
High

High
Low

Low
High

Low
Low

High
High

Weight

1.0
1.0

1.0
1.0
1.0
1.0

5.0
3.0
2.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

Figure 2-69 (2 of 2). Reasoning for Higher than Normal Lines of Code

9!

Section 2---Components

2.3.1.1.6 Lower than Normal Lines of Code

The SME considers five possible reasons that could cause the total number of lines of code

recorded for a project to be below normal. These reasons, in order of decreasing potential
likelihood, are (1) problem smaller than expected, (2) team is wasting time, (3) incomplete

design, (4) poor planning, and (5) too much unit testing. Assessing the validity of these
reasons in explaining the deviation relies on evaluating the objective, subjective, and

dependent factors shown below.

Possible Reasons and Explanations

Rank

4O

35
30
2O
20

Causal
Rate Factor Name Explanation

Low estimate/accuracy Problem smaller than expected
Low mgmt tearrVconlrol Team is wasting time
Low dasig_completeness Incomplete design
Low planning/quality Poor plannirxj
High unit_testing/amount Too much unit testing

Objective Factors

Faclor Name Function

no_ e

iective Factors

Responses

Factor Name Question (High,Low,Normal)

Sub

CM plan/quality
desTgn RIDs(CDR)/amount
design-TBDs.(.CDR)/amou nt
dev._pl_Vquahty

estimate/confidence
eslimate error/direction
mgmt_plarYquality

mgmt team/conlrol
plan_m aJnrenan ce/q uality

sQaA_,larVquality_g_plan/.quality
lest :)larVquahty
unit-_ esting/amount

What quality rating would you assign to thisproject's CM plan?
How would you rate the number of RIDs at CDR?
How would you rate the number of TBDs at CDR?
What quality rating would you assign to this project's development
van?
What is your confidence in the project s ze estimale?

ou're nol confidenl in the estimate for this project then it is
at quality rating would you assign to this project's management

lan? 9
f_the team wasting time and appear to lack a sense of direction.
Is the set of plans (dev, regret, QA, CM, and test) being kept up
to date?
What quality ating would you assign Io this)roiect's QA plan?
What quality ating would you assign to this)ro]ect's staffing plan?
What quality ating would you assign to this _roject's test plan?
How would y. _u rate the amount of unit testir g being done on
this project?

(High,Low,Normal)
(High ,Low,Normal)
(High ,Low,Normal)
(High,Low,Normal)

(High,Low.N/A)
(High,Low,Confident)
(High,Low,Normal)

No,Yes,N/A)
Yes,No,N/A)

High,Low,Normal
High,Low.Normal
High,Low.Normal
High,Low.Normal

Figure 2-70 (1 of 2). Reasoning for Lower than Normal Lines of Code

92

Section 2--Components

De)endent Factors

Oplimum
Factor Name Undedying Faclors Rating Weight

design/completeness

estimate/accuracy

estimate_is_high/truth

estimate is.low/truth

planning/quality

design_RIDs(C DR)/amount
clesign_TB Ds(CDR)/amount

estimate_is_high/truth
estimate_is low/truth

estimat e/confid ence
estimate_error/direction

estimate/confidence
estimate_error/direction

C M_plan/q uality
dev_plarVquality
mgmt_plarVquali_y
planmaintenance/quality
QA_plarVquality
staf fing_plarV_luality
t est_plarVqualily

Low
Low

High
Low

Low
High

Low
Low

High
High
High
High
High
High
High

Figure 2-70 (2 of 2). Reasoning for Lower

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0
1.0
5.0
1.0
1.0
1.0

than Normal Lines of Code

93

Section 2mComponents

2.3.1.1.7 Higher than Normal Reported Errors

The SME considers five possible reasons that could cause the total number of reported errors
recorded for a project to be above normal. These reasons, in order of decreasing potential
likelihood, are (1) team is reporting inconsequential errors, (2) inexperienced development
team, (3) poor use of methodology, (4) complex problem, and (5) unreliable system.
Assessing the validity of these reasons in explaining the deviation relies on evaluating the
objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
RateRank Factor Name Explanation

50 High dev._team/nit._picking Team is reporting inconsequential errors
25 Low dev_team/experience Inexperienced development team
20 Low process methodology'use Poor use of methodology
15 High problernTcomplexity Complex problem
10 Low software/reliability Unreliable system

Objective Factors

Factor Name Function

source_code_changes/rate RCH/LOC (Reported changes per LOC)

ective Factors

Responses
Factor Name Question (High,Low,Normal}

Sub

c_e_ larVuse
commenting/use

code_reading/amount
code_reading/quality
code_reading/use
coding_CM/use

coding QA/use

design/quality
desigrVstabil_ty
design_methodology/use
dev team/exp er_w/application

dev_tean'Vexper_w/environment

devj eam/ex per_w/lang uage

dev_team/ex per_w/toots

dev._learn/nit picking
librarian/use
problem/complexity

specs/stability
specs_methodology/use
testing_methodology/use

unit_testing/amount 0

unit_testing/quality
unil testing/use

Is this project using/folldwing its CM plan?
What level of code commenting is being used in this project's
software?
How much code reading is being done on this project?
What quality rating would you assign to this project's code reading?
Is this project using code reading?
ts this project using formal configuration management methods
during coding?
Is this project using formal quality assurance methods during
coding?
What quality rating would you assign to this project's design?
What level of stabdily would you assign to this project's design?
Is this project using a formal design methodology.,'_
How would you rate the team's experience with the project's
application?
How would you rate the tearn's experience with the development
environment?

How would you rate the team's experience with the development
language?

How would _ou rate the team's experience with the developmenttools in use.

Is the team reporling insignificant or cosmetic errors (nit picking)?
Is this project using a librarian?
How would you rate the complexity of the problem this project is
working on?
How would you rate the stability of the specifications for this project?
Is this project using a formal specification methodology?
Is this project using a formal testing methodology?
How wouldyou rate the amount of unit testing being done on
this project?
What quality rating would you assign to unit testing on this project?
Is unit testing being done on this project?

(Yes,No,N/A)
(Lots,Minimal ,Normal

(Lots,Minimal,Normal
(High,Low,Normal)

(Yes,No,N/A)
(Yes,No,N/A}

(Yes,No,N/A)

(High,Low,Normal)
(High,Low,Normal)

(Yes,No,N/A)
(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

(High,Low,Normal)

Yes,No,N/A)
Yes ,No,N/A)

(Complex,Simple,Norm

(High,Low,Norma)
(Yes,No,N/A)
(Yes,No,N/A)

(High,Low,Norma)

(High, Low, Normal)
(Yes,No,N/A)

Figure 2-71 (1 of 2). Reasoning for Higher than Normal Reported Errors

94

Section 2--Components

De)endent Factors

Factor Name

CM/quality

coding_methodology/use

dev_tearrVexperience

proces s_m ethodology/u se

software/reliability

Underlying Factors

CM_plan/use
librarian/use

code_corn menting/use
code_reading/use
coding CM/use
coding_QA/u se
unit_testing/use

dev team/exper_w/application
dev_team/exper_wlenvironment
dev_team/exper_wllanguage
dev_.team/exper_wltools

coding_methodology/use
design methodology/use
specs_methodology/use
testing_m ethodology/u se

CM/quality
code reading/amount
code_-reading/quality
design/quality
desigrVstabihty
source_code_changes/rate
specs/stability
uniUesting/amount
unit testing/quality

Ot_atimum
tmg

High
High

High
High
High
High
High

High
High
High
High

High
High
High
High

High
High
High
High
High
Low
High
High
High

Weight

1.0
1.0

1.0
1.0
1,0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Figure 2-71 (2 of 2). Reasoning for Higher than Normal Reported Errors

95

Section 2--Components

2.3.1.1.8 Lower than Normal Reported Errors

The SME considers seven possible reasons that could cause the total number of reported
errors recorded for a project to be below normal. These reasons, in order of decreasing

potential likelihood, are (1) team is not submitting SEL forms, (2) good unit testing, (3) not
enough system testing, (4) experienced development team, (5) reliable system, (6) lots of
reused code, and (7) easy problem. Assessing the validity of these reasons in explaining the
deviation relies on evaluating the objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name

40 Low dev team/forms submission
30 High unit-_testing/qual_y
20 Low system testing/amount
15 High dev team/experience
10 High soft_'ar e/reliability
10 High source module reuse/amount
5 Low probler_Vdifficu_

Explanation

Team is not submitting SEL forms
Good unit testing
Not enough system testing
Experienced development team
Reliable system
Lots of reused code
Easy problem

Objective Factors

Factor Name

source_code changes/rate

Function

RCH/LOC (Reported changes per LOC)

Subjective Factors

Factor Name

CM plan/use
code reading/amount
code-reading/quality
design/quality
design/stability
d ev_team/exper_w/application

dev_team/exper_w/environment

dev_team/exper_w/language

d ev_t eam/exper w/lools

dev_team/forms_submission

librarian/use
problem/difficulty

source module reuse/amount
specs/_ability -
syslem testing/amount
unit_testing/amount

uniLtesting/quality

Question

Is this project using/following its CM plan?
How much code reading is being done on this project?
What quality rating would you assign to this proiect's code reading?
What quality rat/n@would you assign to this project's design?
What level of stability would you assign to this project's design?
How would you rate the team's experience with the project's
application?
How would you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?
How would you rate the team's experience with the development
tools in use?
Is the team submitting SEL forms (especially COFs and CRFs) on
time?
Is this project using a librarian?
How wouldyou rate the difficulty of the problem this project is
working on?
How would you rate the level of module reuse on this proiect?
How would you rate the stability of the spedfications for this project?
How would you rate the amount of system testing being done?
How would you rate the amount of unit testing being clone on
this project?
What quality rating would you assign to unit testing on this project?

Responses
(High,Low,N ormal)

(Yes,No,N/A)
(Lots,Minimal,Normal)

(Hi_ h,Low,Normal)
(Hi_ h,Low,Normal)
(Hi; h,Low,Normal)
(Hi; h,Low,Normal)

(High,Low,Normal)

{High,Low,Normal)

(High,Low,Normal)

(Yes,No,N/A)

(Yes ,No,N/A)
(Difficult,Easy,Normal)

(High,Low,Normal
(High ,Low,Normal
(High,Low,Normal
(High,Low,Normal

(High,Low,Normal)

F/gum 2-72 (1 of 2). Reasoning for Lower than Normal Reported Errors

96

Section 2--Components

De)endent Factors

Optimum
Factor Name Underlying Faclors Hating Weight

CM/quality

devjearrVexperience

software/reliability

CM._plarVuse
librarian/use

dev._team/exp er_w/applicalion
dev_tean'Vexp er_w/e nvJron men'_
dev_t eam/exp er w.,languag e
dev_t eam/exp er_w/tools

C M/quality
code_reading/amount
cod e_reading/q uality
desigrVquali_y
desigWstabihty
source code changes/rate
specs/stability
unit_testing/arnounl
uniUesting/quality

High
High

High
High
High
High

High
High
High
High
High
Low
High
High
High

1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Figure 2-72 (2 of 2). Reasoning for Lower than Normal Reported Errors

9?

Section 2mComponents

2.3.1.2 General-Purpose Use of the Knowledge Base

The SME incorporates a set of general-purpose services commonly used with the knowledge
base. The services are referenced by SME functions to provide needed services associated
with the knowledge base. These services include

• Rate Objective Factor
• Rate Subjective Factor
• Rate Dependent Factor
• Evaluate Reason

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

=

- 98
£

Section 2--Components

2.3.1.2. 1 Rate Objective Factor

Purpose

Evaluates an objective factor as of the current date by comparing its actual value computed
from measure data to its expected model value. The factor is assigned a rating (i.e., High,
Low, Normal, or Unknown) and a certainty.

Required Data

• Objective factor

• Measure data (for any referenced measures)
• Schedule data
• Schedule model
• Estimate data
• Estimate set model

• Measure model (for referenced measures)

Steps

1.

(input value)

(in Convert Date To Phase)

(in Determine Normal Estimate Set)
(in Convert Phase To Measure)

For the expression in the factor's function, obtain the actual data value of any
referenced measure as of the current date from the measure data.

2. If the expression references a single measure, set the factor's actual value to the actual

measure value. If the expression references a ratio of two measures, set the factor's

actual value to the ratio of the two actual measure values obtained. (Actual Factor Value)

3. Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

. On the basis of the project start and end dates, use Convert Date to Phase to translate

the current date to the phase and elapsed fraction of phase that normally should be
reached on that date.

5. Use Get Project Magnitude on the current estimate data to obtain the measure and

estimated completion value for that measure which is most indicative of the project's
magnitude.

6. On the basis of that magnitude, use Determine Normal Estimate Set to create a

normal set of estimates for the project.

7. For the expression in the factor's function, use Convert Phase to Measure to obtain

the expected measure value of any referenced measures at the desired phase and

fraction of phase, given the normal completion value of the measure, from the

measure model. (Expected Measure ValueNormal)

99

Section 2---Components

°

°

Compute the upper and lower normal bounds on any expected measure values

obtained by adding and subtracting, respectively, the scaled value of the normal

deviation stored in the model from each expected measure value via

Expected Measure ValueHigh = Expected Measure ValUeNormal+

(Normal Deviation * Normal Completion Value)

Expected Measure ValueLow = Expected Measure ValUeNormal-

(Normal Deviation * Normal Completion Value)

If the expression references a single measure, set the factor's normal upper and lower

values to the expected high and low model value just obtained. If the expression
references a ratio of two measures, set the factor's normal upper and lower values to

the possible extremes of the ratio of the two model values via

Normal Measure ValueHigh _ Expected Measure ValueHigh[Numerator] /

Expected Measure ValueLow[Denominator]

Normal Measure VafueLow = Expected Measure ValueLow[Numerator] /

Expected Measure ValueHigh[Denominator]

Note: The upper bound for the normal measure value is considered infinite (or

unbounded) if the denominator of the first equation is zero. The lower bound for the
normal measure value is considered unknown (or indeterminate) if the denominator

of the second equation is zero.

10. Set the objective factor's rating as follows:

if(Normal Measure ValUeLow = Unknown) or
if(Normal Measure ValueHigh = 0.0) Factor Rating = Unknown

if (Actual Factor Value < Normal Measure ValueLow)

if (Actual Factor Value > Normal Measure ValueHigh)

otherwise Factor Rating = Normal

11. Set the objective factor's certainty as follows:

if (Factor Rating = Unknown) FactorCertainty = 0.0

Factor Rating = Low

Factor Rating = High

otherwise Factor Certainty = 1.0

100

Section 2_omponents

I Objectk,eFaclor
Name:source modulednange/amount
Functk)n:ModuleChat_s

MCH - Module Changes

Thenumberd sourcemodulechangesare,_ rrm'_lyk_'ve_tl'_ no,n'nat

STEPS

1. Obtain the actual measure

value for module changes as
of the current date.

2. Convert the current date

to an expected phase.

3. Generate a set of normal

estimates for the project to
obtain a completion estimate
for module changes.

4. For this completion value,
get the expected measure
value at the desired phase
and the normal range about
that measure value.

5. Since the actual value is
below the normal range for
module changes, rate the
factor as "Low."

Figure 2-73. Rating an Objective Factor

101

Section 2--Components

2.3.1.2.2 Rate Subjective Factor

Purpose

Evaluates a subjective factor as of the current date on the basis of the project's subjective
data supplied by the manager. The factor is assigned a rating (i.e., High, Low, Normal, or
Unknown) and a certainty.

Required Data

• Subjective factor
• Subjective data

(input value)

Steps

1. Locate the name of the input subjective factor in the subjective data supplied by the

manager for the project.

2. Translate the manager's rating for that entry in the subjective data to a factor rating of

either High, Low, Normal, or Unknown on the basis of tile allowable responses in the

input subjective factor. (Factor Rating)

3. Set the subjective factor's certainty as follows:

if(Factor Rating = Unknown) Factor Certainty = 0.0

otherwise Factor Certainty = 1.0

SubjectiveFactor

Name:prold_Wdiffcuity
Question:HowdiffcuJtiftheprobtem

thatthisprojectis_orkJngon?
Responses:Nard,Easy,Normal

!
t

Problem difficulty is rated High.

,_ STEPS

1. To rata a subjective factor
(e.g., problem/difficulty),
locate the factor by name in
the project's subjective data
and obtain its current rating.

2. Convert the factor's rating

to either High, Low, Normal,
or Unknown using the
allowable responses defined
in the factor (e.g., a value of
"Hard" for problem/difficulty
translates to a rating of
"High'%

3. If the factor was not found
in the subjective data, its
rating is set to "Unknown"

and its certainty is set to 0.0.
Otherwise, the factor's
certainty is set to 1.0.

Figure 2-74. Rating a Subjective Factor

102

Section 2--Components

2.3.1.2.3 Rate Dependent Factor

Purpose

Evaluates a dependent factor as of the current date that consists of two or more underlying
objective, subjective, or dependent factors. The factor is assigned a rating (i.e., High, Low,
Normal, or Unknown) and a certainty.

Required Data

• Dependent factor

• Factors (associated with specified dependent factor)

Steps

1.

,

(input value)

For each underlying factor associated with the input dependent factor, rate the factor

on the basis of its type. If the factor is objective, use Rate Objective Factor. If the

factor is subjective, use Rate Subjective Factor. If the factor is dependent,

recursively use this algorithm Rate Dependent Factor.

(Factor Rating[i] and Factor Certainty[i])

Assign the value of the dependent factor to the weighted average of the underlying

known factor ratings obtained for each factor, ¢ through g, using

K

_= Factor Weight[i] * Factor Certainty[i] * Same) /Factor Value = (= 1

K

(____ Factor Weight[i]* Known)

where Same compares the underlying Factor Rating [i] w_h the Optimum Rating [i] and returns
0 if Factor Rating [i] is Unknown or Normal
I if Factor Rating [i] matches Optimum Rating [i]

-1 ff Factor Rating [i] does not match Optimum Rating[i]

and where Known examines the underlying Factor Rating [i]and returns
0 if Factor Rating [i] is Unknown
1 otherwise

o

,

Set the rating for the dependent factor by rounding the value assigned to the factor as
follows:

if(Factor Value >= 0.5) Factor Rating = High

if(Factor Value <= -0.5) Factor Rating = Low

otherwise Factor Rating -- Normal

Set the certainty of the dependent factor to the weighted average of the underlying

factor certainties obtained for each factor, 1 through K, using

K

= (_._ Factor Weight[t7 * Factor Certainty[i]) /
Factor Certainty

K

(i=_ Factor Weight[iT)

103

Section 2--Components

DependentFactor
Name:dev_tean'/productiv_

ing Facto

coding/productivity

des_rVproduct_v_y

o__t_r_qu_i_

Ol_Jrnum

P_ng W_jht

High 50 =

High 30 =

H_h 20

Actual I
I_ I

_h I

Low I

I

We_gt_ed
FactorValues

50

-30

0.0

Averageis
Team Producdv_tyis rated High. _ 2/3or0.67

Figure 2-75. Rating a Dependent Factor

_] STEPS

1. Each underlying factor is
evaluated based on its type
(e.g., two objective factors
and one subjective factor).

2. The value of the depend-

ent factor is assigned to a
weighted average of 0.67
(e.g., the sum orS, -3, and 0
divided by 3).

3. The assigned value is
rounded and translated to a

rating (e.g., 0.67 is "High").

4. The certainty of the de-

pendent factor, not depicted,
Js set to a weighted average
(e.g., 1.0).

104

Section 2mComponents

2.3.1.2.4 Evaluate Reason

Purpose

Calculates the relative actual ranking as of the current date for a specified knowledge base
reason.

Required Data

. Reason

. Factor (associated with specified reason)

Steps

1.

(input value)

For the factor identified with the input reason, rate the factor on the basis of its type.

If the factor is objective, use Rate Objective Factor. If the factor is subjective, use

Rate Subjective Factor. If the factor is dependent, use Rate Dependent Factor.

(Factor Rating and Factor Certainty)

2. Set the actual rating of the reason to the rating of the factor using

Actual Rating = Factor Rating

3. Set the actual ranking of the reason on the basis of the reason's weighted rank and the

factor's certainty using

Actual Rank = Reason Rank * Factor Certainty

4. If the reason's actual rating does not match the reason's causal rating, negate the

actual ranking of the reason to indicate that it is not a reason using

ff (Causal Rating <> Actual Rating) Actual Rank = -1.0 * Actual Rank

Reason]

ReasonRank: 15
CausalRating:Fagh
Fac_ Nan.: s_ rce_module_daange/amounl
Explanation:Unstal_ecode

Forthe reason:
Actualralig__sHigh (equaltofackxra_ng]
Actualmnk_s15.0 {reasonrank'oeaaihly)

I Factor ra_ng: HighCefla_y: 1.0

Y
SincetheActua]ratingmatches'#mCausalrating,
"Unstable cxxle"is aWoE_._ reasonwitha rankof 15.0

STEPS

1. The factor for the reason
"Unstable code" is evaluated

(source module change/-
amountis rated "High" with

a certainty of 1.0).

2. The actual rating of the
reason is set to "High" (i.e.,
the factor rating) and its
actual rank to 15.0 (i.e., the
reason's rank times the

factor's certainty of 1.0).

3. Since the actual rating
matches the causal rating,
actual rank is not negated
and indicates "Unstable

code" is a likely cause.

Figure 2-76. Evaluating a Knowledge Base Reason

105

Section 2--Components

2.3.2 Rule Base

Purpose

Describes a collection of captured management experience that uses a set of rules to
evaluate the observed ratios of key pairs of measures to assess a project's current status.

Description

The rule base consists of two associated tables that (1) identify the set of rules to be

evaluated on the basis of the present life-cycle phase and the observed deviations in the ratios

of a project's measures from what is considered normal and (2) specify the interpretations to
associate with those rules. The list of rules contains a series of conditions, with each
condition associated with one or more possible interpretations. The interpretations are

encoded and map to an entry in a list of explanations used for display purposes. Each rule in
the rule base is evaluated based on the present life-cycle phase and current measure data for

the project_ If the rule's condition evaluates to true, the associated weighted interpretations
are considered valid and added to an assertion list. Attempts to duplicate an interpretation in
the assertion list result in one entry weighted to reflect both conditions. The SME rule base

currently contains rules that address deviations in nine specific ratios of project measures.

RULE-I

RULE-g0

Rules

co_t<_ k-,c,=qx_=fcn &

i Rule I
Base |

F(RUN&OC is Hi} md
('rOME_ Eat/CODEr')

IF (EFFR:=CHis L,:w)and
('nME_=ACC'r_

LP O25
HCOMPTP (_50

(_75
RC O_25

EPC O25

GTEST O25
NBd O_

O25

RTCM 025
EPC 0.50

Exp_ana6_as

Code _k_tecaqon Text

_F'TP Low produdv_H_ghcomRk_dty

MT_ST A k_tof bdl_
RC Remo_ of code

_PC Emx_oode

Figure 2-77. Rule Base for the SME

Source

Defined as part of the

based on past experience

SME

Assumptions

None

Instances

The SME has one rule base.

Structure

Two tables consisting of a rule
list and an explanation list.
The rule list defines all the
rules in the rule base. Each
record in the table describes
one rule and contains the rule

name, the condition to be

evaluated for applying the rule,
and one or more possible

interpretations to consider if the rule's condition is true. Each possible interpretation in the
rule consists of a pair of values--an encoded identifier and a weighted certainty. The

explanation list is a table with two columns--an encoded identifier for an interpretation and
the explanatory text to display for that interpretation.

106

Section 2--Components

2.3.2. 1 Captured Knowledge

The SME captures reasoning in the rule base that encompasses deviations in nine specific
ratios of measures. The deviations may be either above normal (high) or below normal
(low). This reasoning covers

Above
Below
Above
Below
Above
Below
Above
Below

Normal Computer Runs per Line of Code
Normal Computer Runs per Line of Code
Normal Computer Hours per Line of Code
Normal Computer Hours per Line of Code
Normal Reported Changes per Line of Code
Normal Reported Changes per Line of Code
Normal Total Staff Hours per Line of Code
Normal Total Staff Hours per Line of Code

Above Normal Computer Hours per Computer Run
Below Normal Computer Hours per Computer Run
Above Normal Reported Changes per Computer Run
Below Normal Reported Changes per Computer Run
Above Normal Total Staff Hours per Computer Run
Below Normal Total Staff Hours per Computer Run
Above Normal Computer Hours per Reported Change
Below Normal Computer Hours per Reported Change
Above Normal Total Staff Hours per Reported Change
Below Normal Total Staff Hours per Reported Change

The following sections describe the specific rules captured in the rule base that address

deviations in the ratios of measures and present a set of general-purpose algorithms
commonly used with the rule base.

107

Section 2--Components

2.3.2.1.1 Above Normal Computer Runs per Line of Code

The SME considers five rules that address the case where the number of computer runs per

line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-I

RULE-2

RULE-3

RULE-4

RULE-5

IF (Computer Runs per Line of Code are Above Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Low productivity (0.25)
High complexity (0.50)
A Io1 of testing (0.75)
Removal of code by testing or transporting (0.25)
Error prone code (0.75)

IF (Computer Runs per Line of Code are Above Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Low productivity (0.25)
High complexity (0.75)
A lot of testing (0.75)
Removal of code by testing or transporting (0.50)
Unstable speciv=catlons (0.50)
Error prone code (0.75)

IF (Computer Runs per Line of Code are Above Normal) and
(Project is in late code & unit test pnase_

THEN interpretations are
Low productivity (0.25)
High complexity (0.75)
A lot of testing (0.75)
Removal of code by testing or transporting (0.50)
Unstable specifications (0.50)
Error prone code (0.75)

IF (Computer Runs per Line of Code are Above Normal) and
(=Project is in system test phase)

THEN interpretations are
Low productivity (0.25)
High complexity (0.75)
A lot of testing (0.75)
Removal of code by testing or transporling (0.25)
Unstable specificat=ons (0.50)
Error prone code (0.75)

IF (Computer Runs per Line ot C.ode _e Above Normal) and
(Project is in acceptance test pnasej

THEN interpretations are
High complexity (0.75)
A for ot testing (0.50)
Unstable specifications (0.25)
Error prone code (0.75)

Figure 2-78. Rules for Above Normal Computer Runs per Line of Code

108

Section 2--Components

2.3.2.1.2 Below Normal Computer Runs per Line of Code

The SME considers five rules that address the case where the number of computer runs per

line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-6 IF (Computer Runs per Line of Code are Below Normal) and
CProject is in early code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.25)
Influx of transported code (0.75)

(0.75)Little or not enough online reeling being done
Little executable code being developed (0.25)
Computer problems, inaccessibility or environment constraints (0.25)

RULE-7 IF (Computer Runs per Line of Code are Below Normal) and
(Projec'l is in middle code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Influx of transported code (0.50)
Near build or milestone date (0.50)
Little or not enough online testing being done (0.75)
Little executable code being developed (0.50)
Computer problems, inaccessibility or environment constraints (0.75)

RULE-8 IF (Computer Runs per Line of Code are Below Normal) and
CProject is in late code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Influx of transported code (0.25)
Near build or milestone date (0.50)
Little or not enough online testing being done (0.75)
Little executable code being developed (0.25)
Computer problems, inaccessibility or environment constraints (0.75)

RULE-9 IF (Computer Runs per Line of Code are Below Normal) and
{Project is in system test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Little or not enough online testing being done (0.75)
Computer problems, inaccessibility or environment constraints (0.75)
Good testing or test plan (0.75)

RULE-10 IF (Computer Runs per Line of Code are Below Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Good solid and reliable code {0.75}
Little or not enough online testing being done (0.25)
Computer problems, inaccessibility or environment constraints (0.25)
Good testing or test plan (0.75)

Figure 2-79. Rules for Below Normal Computer Runs per Line of Code

109

Section 2mComponents

2.3.2.1.3 Above Normal Computer Hours per Line of Code

The SME considers five rules that address the case where the number of computer hours per

line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-I 1 IF (Computer Hours per Line of Code are Above Normal) and
(Project is in early code & unil test phase)

THEN interpretations are
Computation bound algorithms run or tested (0.50)
Low productivity (0.25)
A lot of testing (0.75)
Removal of code by testing or transporting (0.25)

RULE-12 IF (Computer Hours per Line of Code are Above Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Computation bound algorithms run or tested (0.75)
Low productivity (0.25)
Unstable specifications (0.25)
A lot of testing (0.75)
Unit testing being done (0.75)
Removal of code by testing or transporting (0.25)
Loose configuration management or unstructured development (0.75)
Error prone code (0.75)

RULE-13 IF (Computer Hours per Line of Code are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Computation bound algorithms run or tested (0.75)
Low productivity (0.25)
Unstable specifications (0.75)
A lot of testing (0.75)
Unit testing being done (0.75)
Removal of code by testing or transporting (0.50)
Many design changes (0.75)
Error prone code (0.75)

RULE-14 IF (Computer Hours per Line of Code are Above Normal) and
(Project is in system test phase)

THEN interpretations are
Computation bound algorithms run or tested (0.75)
Low productivity (0.25)
Unstable specifications (0.50)
A lot of testing (0.75)
Removal of code by testing or transporting (0.25)
Error prone code (0,75)

RULE-15 IF (Computer Hours per Line of Code are Above Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Computation bound algorithms run or tested (0.75)
Unstable specifications (0.50)
A tot of testing (0.75)
Error prone code (0.75)

Figure 2-80. Rules for Above Normal Computer Hours per Line of Code

llO

Section 2--Components

2.3.2.1.4 Below Normal Computer Hours per Line of Code

The SME considers five rules that address the case where the number of computer hours per

line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-16 IF (Computer Hours per Line of Code are Below Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Influx of transported code (0.75)
Little or not enough online testing being done (0.75)
Little executable code being developed (0.75)
Error prone code (0.25)

RULE-17 IF (Computer Hours per Line of Code are Below Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Influx of transported code (0.75)
Near build or milestone date (0.50)

(o.75)Little or not enough online testing being done
Little exeoalable code being developed (0.75)
Tight management plan or good configuration control (0.75)

RULE-18 IF (Compuler Hours per Line of Code are Below Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
influx of transported code (0.25)
Near build or milestone date (0.75)
Little or not enough online testing being done (0.75)
Little executable code being developed (0.25)

RULE-19 IF (Computer Hours per Line ot Code are Below Normal) and
[Project is in system test phase)

THEN interpretations are
Good solid and reliable code
Near build or milestone date
Little or not enough online testing being done

(0.75)
(0.25)
(o.5o)

RULE-20 IF (Computer Hours per Line of Code are Below Normal) and
[Project is in acceptance test phase)

THEN interpretations are
Good solid and reliable code (0.75)

Figure 2-81. Rules for Below Normal Computer Hours per Line of Code

111

Section 2--Components

2.3.2.1.5 Above Normal Reported Changes per Line of Code

The SME considers five rules that address the case where the number of reported changes,
per line of code for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-21

RULE-22

RULE-23

RULE-24

RULE-25

IF (Reported Changes per Line of Code are Above Normal) and
_Project is in early code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.50)
Unstable specifications (0.25)
Removal of code by testing or transporting (0.50)
Loose configuration management or unstructured development (0.50)
Near build or milestone date (0.50)

IF (Reported Changes per Line of Code are Above Normal) and
(Project is in middle code & unit test phasel

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.75)
Unstable specifications (0.50)
Removal of code by testing or transporting (0.50)
Loose configuration management or unstructured development (0.75)
Near build or milestone date (0.50)

IF (Reported Changes per Line of Code are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.75)
Unstable specifications (0.75)
Removal of code by testing or transporting (0.25)
Loose configuration management or unstructured development (0.75)
Near build or milestone date (0.50)

IF (Reported Changes per Line of Code are Above Normal) and
(Project is in system test phase)

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.75)
Unstable specifications (0.75)
Removal of code by testing or transporting (0.25)
Loose configuration management or unstructured development (0.75)
Near build or milestone date (0.25)

IF (Reported Changes per Line of Code are Above Normal) and
(project is in acceptance test phase)

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.50)
Unstable specifications (0.50)
Removal of code by testing or transporting (0.25)
Loose configuration management or unstructured development (0.50)
Near build or milestone date (0.25)

Figure 2-82. Rules for Above Normal Reported Changes per Line of Code

112

Section 2--Components

2.3.2. 1.6 Below Normal Reported Changes per Line of Code

The SME considers five rules that address the case where the number of reported changes
per line of code for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-26 IF (Reporled Changes per Line of Code are Below Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Influx of transported code (0.75)
Near build or milestone date (0.25)
Good solid and reliable code (0.50)
Poor testing (0.50)
Change backlog or holding changes (0.75)
Low complexity (0.50)
Computer problems, inaccessibility or environment constraints (0.50)
Tight management plan or good configuration control (0.50)

RULE-27 IF (Reported Changes per Line of Code are Below Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Influx of transported code (0.50)
Near build or milestone date (0.25)
Good solid and reliable code (0.75)
Poor testing (0.50)
Change backlog or holding changes (0.75)
Low complexity (0.50)
Computer problems, inaccessibility or environment constraints (0.50)
Tight management plan or good configuration control (0.75)

RULE-28 IF (Reported Changesper Line of Code are Below Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Influx of transported code (0.25)
Near build or milestone date (0.25)
Good solid and reliable code (0.75)

(0.50)Poor testing
Change backlog or holding changes (0.50)
Low complexity (0.75)
Computer problems, inaccessibility or environment constraints (0.25)
Tight management plan or good configuration control (0.75)

RULE-29 IF (Reported Changes per Line of Code are Below Normal) and
[Project is in system test phase)

THEN interpretations are
Influx of transported code (0.25)
Near build or milestone dale (0.25)
Good solid and reliable code (0.75)

(0.25)Poor testing

ChangeLowcomplexitybackl°gor holding changes /!iii(Oi25)Computer problems, inaccessibility or environment constraints
Tight management plan or good configuration control

RULE-30 IF (Reported Changes per Line of Code are Below Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Influx of transporled code (0.25)
Near build or milestone date (0.25)
Good solid and reliable code (0.75)
Poor testing (0.25)
Change backlog or holding changes (0.25)
Low complexity (0.75)
Computer problems, inaccessibility or environment constraints (0.25)
Tight management plan or good configuration control (0.25)

Figure 2-83. Rules for Below Normal Reported Changes per Line of Code

113

Section 2--Components

2.3.2.1.7 Above Normal Total Staff Hours per Line of Code

The SME considers five rules that address the case where the number of total staff hours per

line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-31

RULE-32

RULE-33

RULE-34

RULE-35

IF (Total Staff Hours per Line of Code are Above Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
High complexity (0.75)
Error prone code (0.25)
Unstable specifications (0.50)
Removal of code by testing or transporting (0.50)
Changes hard to isolate (0.25)
Changes hard to make (0.25)
Low productivity (0.50)

IF (Total Staff Hours per Line of Code are Above Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
High complexity (0.75)
Error prone cod e (0.50)
Unstable specifications (0.50)
Removal of cod e by testing or transporting (0.25)
Changes hard to isolate (0.25)
Changes hard to make (0.25)
Low productivity (0.75)

IF (Total Staff Hours per Line of Code are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
High complexity (0.75)
Error prone code (0.75)
Unstable specifications (0,50)
Removal of code by testing or transporting (0.25)
Changes hard to isolate (0.50)
Changes hard to make (0.50)
Low productivity (0.75)

IF (Total Staff Hours per Line of Code are Above Normal) and
(Project is in system test phase)

THEN interpretations are
High complexity (0.50)
Error prone code (0.75)
Unstable specifications (0.25)
Removal of code by testing or transporting (0.25)
Changes hard to isolate (0.50)
Changes hard to make (0.50)
Low productivity (0.75)

IF (Total Staff Hours per Line of Code are Above Normal) and
(Project is in acceptance test phase)

THEN interpretations are
High complexity (0.25)
Error prone code (0.50)
Unstable specifications (0.25)
Removal of code by testing or transporting (0.25)
Changes hard to isolate (0.50)
Changes hard to make (0.50)
Low productivity (0.75)

Figure 2-84. Rules for Above Normal Total Staff Hours per Line of Code

114

Section 2--Components

2.3.2.1.8 Below Normal Total Staff Hours per Line of Code

The SME considers five rules that address the case where the number of total staff hours per
line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-36

RULE-37

RULE-38

RULE-39

RULE-40

IF (Total Staff Hours per Line of Code are Below Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Influx of transporled code (0.50)
Near build or milestone dale (0.25)
Low complexity (0.75)
High productivity (0.50)
Lack of thorough testing (0.50)

IF (Total Staff Hours per Line of Code are Below Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Influx of transported code (0.50)
Near build or milestone date (0.25)
Low complexity (0.75)
High productiwty (0.75)
Lack of thorough testing (0.50)

IF (Total Staff Hours per Line of Code are Below Normal) and
(Project is in late code & unit test phase)

THE N interpretations are
Influx of transported code (0.25)
Near build or milestone date (0.25)
Low complexity (0.75)
High productivzty (0.75)
Lack of thorough testing (0.50)

IF (Total Staff Hours per Line of Code are Below Normal) and
(Project is in system lest phase)

THEN interpretations are
Influx of transported code (0.25)
Near build or milestone date (0.25)
Low complexity (0.50)
High productivity (0.75)
Lack of thorough testing (0.25)

IF (Total Staff Hours per Line of Code are Below Normal) and
(Project is in acceptance lest phase)

THEN interpretations are
Influx of transported code (0.25)
Near build or milestone date (0.25)
Low complexity (0.25)
High productivity (0.75}
Lack of thorough testing (0.25)

Figure 2-85. Rules for Below Normal Total Staff Hours per Line of Code

115

Section 2--Components

2.3.2.1.9 Above Normal Computer Hours per Computer Run

The SME considers five rules that address the case where the number of computer hours per

computer run for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE41

RULE-42

RULE-43

RULE-44

RULE-45

IF (Computer Hours per Computer Run are Above Normal) and
(Project is in early code & unit lest phase)

THEN interpretations are
System and inlegration testing started early (0.50)
Error prone code (0.25)
Computation bound algorithms run or tested (0.50)
Large reuse or early and larger test (0.50)

IF (Computer Hours per Computer Run are Above Normal) and
(Project is in middle code &unit test phase)

THEN interpretations are
System and integration testing started early (0.75)
Error prone code (0.25)
Computation bound algorithms run or tested (0.50)
Large reuse or early and larger test (0.50)

IF (Computer Hours per Computer Run are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
System and integration testing starled early (0.50)
Error prone code (0.25)
Computation bound algorithms run or tested (0.75)
Large reuse or early and larger test (0.25)

IF (Computer Hours per Computer Run are Above Normal) and
(Project is in system tesl phase)

THEN interpretations are
System and integration testing started early (0.25)
Error prone code . (0.25)
Computation bound algorithms run or tested (0.50)
Large reuse or early and larger test (0.25)

IF (Computer Hours per Computer Run are Above Normal) and
(Project is in acceptance test phase)

THEN interpretations are
System and integral/on testing started early (0.25)
Error prone code (0.25)
Computation bound algorithms run or tested (0.50)
Large reuse or early and larger test (0.25)

Figure 2-86. Rules for Above Normal Computer Hours per Computer Run

116

Section 2---Components

2.3.2. 1. 10 Below Normal Computer Hours per Computer Run

The SME considers five rules that address the case where the number of computer hours per
computer run for a project is below normal. Conditional evaluation of the rules depends

upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-46 IF (Computer Hours per Computer Run are Below Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Unit testing being done (0.25)
Easy errors or changes being found or fixed (0.25)
Simple system (0.25)
New or late development (0,25)

RULE-47 IF (Computer Hours per Computer Run are Below Normal) and
{Project is in middle code & unit test phase)

THEN interpretations are
Unit testing being done (0.50)
Easy errors or changes being found or fixed (0.25)
Simple system (0.50)
New or late development (0.50)

RULE.-48 IF (Computer Hours per Computer Run are Below Normal) and
(Project is in late code & unit test phase)

THE N Interpretations are
Unit testing being done (0.75)
Easy errors or changes being found or fixed (0.25)
Simple system (0.75)
New or late development (0.75)

RULE-49 IF (Computer Hours per Computer Run are Below Normal) and
(Project is in system lest phase)

THEN interpretations are
Unit testing being done (0.75)
Easy errors or changes being found or fixed (0.50)
Simple system (0.75)
New or late development (0.75)

RULE-50 IF (Computer Hours per Computer Run are Below Normal) and
(?roject is in acceptance test phase)

THEN interpretations are
Unit testing being done (0.25)
Easy errors or changes being found or fixed (0.50)
Simple system (0.75)
New or late development (0.75)

Figure 2-87. Rules for Below Normal Computer Hours per Computer Run

117

Section 2--Components

2.3.2.1.11 Above Normal Reported Changes per Computer Run

The SME considers five rules that address the case where the number of reported changes

per computer run for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-51 IF (Reported Changes per Computer Run are Above Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
System and integration testing started early (0.25)
Error prone code (0.50)
Near build or milestone date (0.50)
Loose configuration management or unstructured development (0.50)
Unstable specifications (0.25)

RULE-52 IF (Reported Changes per Computer Run are Above Normal) and
.(Project is in middle code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
System and integration testing started early (0.50)
Error prone code (0.75)
Near build or milestone date (0.50)
Loose configuration management or unstructured development (0.75)
Unstable specifications (0.50)

RULE-53 IF (Reported Changesper Computer Run are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
System and integration testing started early (0.25)
Error prone code (0.75)
Near build or milestone date (0.50)
Loose configuration management or unstructured development (0.75)
Unstable specifications (0.50)

RULE-54 IF (Reported Changes per Computer Run are Above Normal) and
(project is in system test phase)

THEN interpretations are
Good testing or test plan (0.25)
System and integration testing started eady (0.25)
Error prone code (0.75)
Near bu_d or milestone date (0.25)
Loose configuration management or unstructured development (0.75)
Unstable specifications (0.75)

RULE-55 IF (Reported Changes per Computer Run are Above Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Good testing or test plan (0.25)
System and integration testing started early (0.25)
Error prone code (0.75)
Near build or milestone date (0.25)
Loose configuration management or unstructured development (0.50)
Unstable specifications (0.75)

Figure 2-88. Rules for Above Normal Reported Changes per Computer Run

118

Section 2--Components

2.3.2.1.12 Below Normal Reported Changes per Computer Run

The SME considers five rules that address the case where the number of reported changes

per computer run for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-56

RULE-57

RULE-58

RULE-59

RULE-6O

IF (Reported Changes per Computer Run are Below Normal) and
(Project is in early code & unit test phase}

THEN interpretations are
Good solid and reliable code {0.50)
A lot of testing (0.50)
Poor testing (0.50)
Change backlog or holding code (0.50)
Tight management plan or good configuration control (0.50)

IF (Reported Changes per Computer Run are Below Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
A lot of testing (0.50)
Poor testing (0.75)
Change backlog or holding code . (0.50)
Tight management plan or gooo connguration control (0.75)

IF (Reported Changes per Computer Run are Below Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
A lot of testing (0.50)
Poor testing (0.50)
Change backlog or holding code (0.50)
Tight management plan or good configuration control (0.75)

IF {Reported Changes per Computer Run are Below Normal) and
(Projec_ is in system test phase)

THEN interpretations are
Good solid and reliable code (0.75)
A lot of testing (0.25)
Poor testing (0.50)
Change backlog or holding code (0.25)
Tight management plan or good contiguration control (0.75)

IF (Reported Changes per Computer Run are Below Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Good solid and reliable code (0.75)
A lot of testing (0.25)
Poor testing (0.50)
Change backlog or holding code (0.25)
Tight management plan or good configuration contro (0.50)

Figure 2-89. Rules for Below Normal Reported Changes per Computer Run

119

Section 2--Components

2.3.2.1.13 Above Normal Total Staff Hours per Computer Run

The SME considers five rules that address the case where the number of total staff hours per
computer run for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-61

RULE..62

RULE-63

RULE-64

RULE-65

IF (Total Staff Hours per Computer Run are Above Normal) and
(Project is in early code & unit test phase)

THEN interpretations are

High complexity (0.50)
Mo.dificat'._ns being made to recently transported code (0.50)
L;nangas nara to isolate (0.25)
Changes hard to make (0.25)
Late design (0.75)
Good solid and reliable code (0.50)
Unstable specifications (0.25)

IF (Total Staff Hours per Computer Run are Above Normal) and
_Project is in middle code & unit test phase)

THEN interpretations are
High complexity (0.75)
^Modifications being made to recently transported code (0.25)
L;nanges hard to isolate (0.25)
Changes hard to make (0.25)
Late design (0.75)
Good solid and reliable code (0.75)
Unstable specifications (0.25)

IF (Total Staff Hours per Computer Run are Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are

High complexity (0.75)
Modifications being made to recently transported code (0.25)
Changes hard to isolate (0.50)
Changes hard to make (0.S0)
Late design (0.25)
Good solid and reliable code (0.75)
Unstable specifications (0.50)

IF (TotalStaff Hours per Computer Run are Above Normal) and
(Project is in system test phase)

THEN interpretations are
High complexity (0.25)
^Modifications .being made to recently transported code (0.25)
_nanges naro to Isolate (0.50)
Changes hard to make (0.50)
Late design (0.25)
Good solid and reliable code (0.25)
Unstable specifications (0.75)

IF (Total Staff Hours per Computer Run are Above Normal) and
(Projecl is in acceptance test phase)

THEN interpretations are
High complexity (0.25)
Modifications being made to recently transported code (0.25)
Changes hard to isolate (0.25)
Changes hard to make (0.25)
Late design (0.25)
Good sofid and reliable code (0.25)
Unstable specifications (0.75)

Figure 2-90. Rules for Above Normal Total Staff Hours per Computer Run

120

Section 2--Components

2.3.2.1.14 Below Normal Total Staff Hours per Computer Run

The SME considers five rules that address the case where the number of total staff hours per

computer run for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE_6

RULE-67

RULE--68

RULE-69

RULE-70

IF (Total Staff Hours per Computer Run are Below Normal) and
{project is in early code & unit test phase)

THEN interpretations are
Easy errors or changes being found or fixed (0.25)(0.50)
Error prone code (0.50)
A lot of testing
Lots of terminal jockeys (0.50)
Unstable specifications (0.50)

F (Total Staff Hours per Computer Run are Below Normal) and
CProject is in middle code & unit test phase)

THEN interpretations are
Easy errors or changes being found or fixed (0.25)
Error prone code (0.75)
A lot of testing (0.75)
Lots of terminal jockeys (0.75)
Unstable specifications (0.50)

IF (Total Staff Hours per Computer Run are Below Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Easy errors or changes being found or fixed (0.25)

(0.75)
Error prone code (0.75)
A lot of testing
Lots of terminal jockeys (0.75)
Unstable specifications (0.75)

IF (Total Staff Hours per Computer Run are Below Normal) and
(Projecl is in system test phase)

THEN interpretations are
Easy errors or changes being found or fixed (0.25)
Error prone code (0.25)
A lot of testing {0.50)
Lots of terminal jockeys (0.25)
Unstable specifications (0.75)

IF (Total Staff Hours per Computer Run are Below Normal) and
(Project is in aoceptance test phase)

THEN interpretations are
Easy errors or changes being found or fixed (0.25)
Error prone cod e (0.25)
A lotof testing (0.25)
Lots of terminal jockeys (0.25)
Unstable specifications (0.50)

Figure 2-91. Rules for Below Normal Total Staff Hours per Computer Run

121

Section 2_Components

2.3.2.1.15 Above Normal Computer Hours per Reported Change

The SME considers five rules that address the case where the number of computer hours per
reported change for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-71

RULE-72

RULE-73

RULE-74

RULE-75

IF (Computer Hours per Reported Change are Above Normal) and
(Project is in early code & unit test phase)

THEN interpretations are

Good solid and reliable code (0.50)
Poor testing (0.25)
High complexity (0.25)
Changes hard to isolate (0.25)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.50)

IF (Computer Hours per Reported Change are Above Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Poor testing (0.25)
High complexity (0.50)
Changes hard to isolate (0.25)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.50)

IF (Computer Hours per Reported Change are Above Normal) and
(project is in late code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Poor testing (0.25)
High complexity (0.75)
Changes hard to isolate (0.50)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.75)

IF (Computer Hours per Reported Change are Above Normal) and
(Project is in system test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Poor testing (0.25)
High complexity (0.75)
Changes hard to isolate (0.50)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.75)

IF (Computer Hours per Reported Change are Above Normal) and
(Projecl is in acceptance test phase)

THEN interpretations are
Good solid and reliable code (0.25)
Poor testing (0.25)
High comprexity (0.25)
Changes hard to isolate (0.25)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.50)

Figure 2-92. Rules for Above Normal Computer Hours per Reported Change

=

122 [

Section 2--Components

2.3.2.1.16 Below Normal Computer Hours per Reported Change

The SME considers five rules that address the case where the number of computer hours per
reported change for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-76

RULE-77

RULE-78

RULE-79

RULE-80

IF (Computer Hours per Reported Change are Below Normal) and
(Project is in early code & unit test phase)

THEN interpretations are
Near build or milestone clare (0.25)
Good testing or test plan (0.50)
Error prone code {0.25)
Tight management plan or good configuration control (0.50)

IF (Computer Hours per Reported Change are Below Normal} and
(Project is in middle code & unit test phase)

THEN interrelations are
Near budd or milestone date (0.25]
Good testing or test plan (0.75)
Error prone code (0.50)
Tight management plan or good configuration control (0.75)

IF (Computer Hours per Reported Change are Below Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Near build or milestone dale (0.50)
Good testing or lest plan (0.75)
Error prone code (0.75)
Tight management plan or good configuration control (0.75)

IF (Computer Hours per Reported Change are Below Normal) and
(Project is in system test phase}

THEN interpretations are
Near build or milestone date (0.50)
Good testing or test plan (0.50)
Error prone code (0.50)
Tight management plan or good configuration control (0.50)

IF (Computer Hours per Reported Change are Below Normal) and
(Project is in acceptance test phase)

THEN inlerpretations are
Near build or milestone date (0.25)
Good testing or test plan (0.25)
Error prone code (0.25)
Tight management plan or good configuration control (0,25)

Figure 2-93. Rules for Below Normal Computer Hours per Reported Change

123

Section 2--Components

2.3.2.1.17 Above Normal Total Staff Hours per Reported Change

The SME considers five rules that address the case where the number of total staff hours per

reported change for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-81

RULE-82

RULE-83

RULE-84

RULE-85

IF (Total Staff Hours per Reported Change are Above Normal) and
(Project is inearly code & unittest phase)

THEN interpretations are
Good solid and reliable code (0.50)
Poor testing (0.50)
Changes hard to isolate (0.25)
Changes hard to make (0.25)

IF (Total Staff Hours per Reported Change are Above Normal) and
(Project is in middle code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Poor testing (0.50)
Changes hard to isolate (0.50)
Changes hard to make (0.50)

IF (Total Staff Hours per Reported Change ate Above Normal) and
(Project is in late code & unit test phase)

THEN interpretations are
Good solid and reliable code (0.75)
Poor testing (0.75)
Changes hard to isolate (0.50)
Changes hard to make (0.50)

IF (Total Staff Hours per Reported Change are Above Normal) and
(Project is in system test phase)

THEN interpretations are
Good solid and reliable code (0.50)
Poor testing (0.50)
Changes hard to isolate {0.75)
Changes hard to make (0.75)

IF (Total Staff Hours per Reported Change are Above Normal) and
(Project is in acceptance test phase)

THEN interpretations are
Good solid and reliable code (o.25)
Poor testing (0.25)
Changes hard to isolate (0.50)
Changes hard to make (0.50)

Figure 2-94. Rules for Above Normal Total Staff Hours per Reported Change

124

Section 2--Components

2.3.2.1.18 Below Normal Total Staff Hours per Reported Change

The SME considers five rules that address the case where the number of total staff hours per

reported change for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RU LE-86

RULE-87

RULE-88

RULE-89

RULE-90

IF (Total Staff Hours per Reported Change are Below Normal) and
(_Project is in early code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
Near build or milestone date (0.50)
Easy errors or changes being found or fixed (0.50}
Modifications being made to recently transported code (0.50}
Error prone code (0.50)

IF (Total Staff Hours per Reported Change are Below Normal) and
(Project is in middle code & unit lest phase}

THEN interpretations are
Good testing or test plan (0.25)
Near build or milestone date (0.50)
Easy errors or changes being found or fixed (0.75)
Modifications being made to recently transported code (0.25)
Error prone code (0.75)

IF {Total Staff Hours per Reported Change are Below Normal) and
{Project is in late code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
Near build or milestone date (0.50)

Easy errors or changes being found or fixed (0.75)
Modifications being made to recently transported code (0.25)
Error prone code (0.75)

IF (Total Staff Hours per Reported Change are Below Normal) and
(Project is in system test phase)

THEN interpretations are
Good testing or test plan (0.25)
Near build or milestone date (0.25)
Easy errors or changes being found or fixed (0.50)
Modifications being made to recently transported code (0.25)
Error prone code (0.75)

IF {Total Staff Hours per Reported Change are Below Normal) and
_Project is in acceptance test phase)

THEN interpretations are
Good testing or test plan (0.25)
Near build or milestone date {0.25)

Easy errors or changes being found or fixed (0.25)
Modifications being made to recently transported code (0.25)
Error prone code (0.50)

Figure 2-95. Rules for Below Normal Total Staff Hours per Reported Change

125

Section 2--Components

2.3.2.2 General.Purpose Use of the Rule Base

The SME incorporates a set of general-purpose services commonly used with the rule base.
The services are referenced by SME functions to provide needed services associated with the
rule base. These services include

• Determine Phase for Rules
• Determine Rate for Rules
• Evaluate Rule

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

126

Section 2--Components

2.3.2.2.1 Determine Phase for Rules

Purpose

Identifies the present life-cycle phase of the current project. The result is stored in a list as
an assertion, consisting of an associated key and value pair, for subsequent use in evaluating
rules.

Required Data

• Current date
• Schedule data
• Schedule model
• Assertion list

(input value)

(in Convert Date to Phase)

Steps

1. Use Get Project Dates to obtain the planned project start and end dates from the

current schedule data.

2. On the basis of the project start and end dates, use Convert Date to Phase to translate

the current date to the phase and elapsed fraction of phase that normally should be

reached on that date. (Phase Namecurrent and Fraction of Phasecurren_

3. Set the assertion key and value to identify the present life-cycle phase as follows:

Assertion Key .. 'TIME'

if (Phase Namecurrent = 'DESGN_
if (Phase Namecurrent = 'CODER then

if (Fraction of Phasecurrent <= 0.33)
else if(Fraction of Phasecurrent <= 0.66)
else if(Fraction of Phasecurrent > 0.66)

if(Phase Namecurrent = 'SYSTE_
if (Phase Namecurrent = 'ACCTE_

Assertion Value = 'Design phase'

Assertion Value = 'Earlycode & unit test phase'
Assertion Value = 'Middlecode & unff test phase'
Assertion Value = 'Latecode & unit test phase'
Assertion Value = 'System test phase'
Assertion Value = 'Acceptance test phase'

4. Store the assertion in the rule base's assertion list.

127

Section 2---Components

CurrentDate
is

IOK)I/_
I0/04/91 12t25193

o ! o

I I ' I I !DESGN CODE-T SYSTE ACCTE
25_6_'/o 34.96% t7g0% 2145%

i

Value

I Code&Unit
M_dle

TestPhase

_) STEPS

1. The project start and end
dates are 10/4/91 and

12/25/93, respectively.

2. The current date of

10/01/92, based on the

schedule model, maps to a
point 40% into the code and
test phase.

3. Since 40% through code
and test falls into the middle

third of the phase, set an
assertion indicating that the

present phase of the project
is "Middle code & unit test

phase."

Figure 2-96. Determining the Present Phase for the Rule Base

128

Section 2mComponents

2.3.2.2.2 Determine Rate for Rules

Purpose

Compares the actual cumulative ratio of two specified measures to expected model values to
determine if the rate is above, below, or within the range of values normally expected for the

current date. The result is stored in a list as an assertion, consisting of an associated key and
value pair, for subsequent use in evaluating rules.

Required Data

• Measure name for numerator
• Measure name for denominator

• Measure data (for the two specified measures)
• Schedule data
• Schedule model

• Measure model (for two specified measures)
• Estimate set model
• Assertion list

(input value)
(input value)

(in Convert Date to Phase)
(in Generate Rate Model)
(in Get Ratio of Estimates)

Steps

1.

.

Obtain the actual data values of the two specified measures as of the current date

from the measure data. Set the actual value for the rate to the ratio of the two actual
measure values as follows:

Actual Value = Actual Measure ValUeNumerato r / Actual Measure ValueDenominato r

Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

3. On the basis of the project start and end dates, use Convert Date to Phase to translate

the current date of the measure data to the phase and elapsed fraction of phase that
normally should be reached on that date.

4. Use Generate Rate Model to create a rate model for the two input measures from the
corresponding measure models.

5. Use Get Ratio of Estimates to obtain the normal ratio of completion values for the

two input measures from the estimate set model. (Normal Completion Ratio)

6. Use Convert Phase to Measure on the rate model to obtain the normal ratio of

expected measure values for the two referenced measures at the desired phase and

fraction of phase, given the normal ratio of completion values. (Expected ValueNorrnat)

7. Compute the upper and lower normal bounds on the expected ratio of values obtained

by adding and subtracting, respectively, the scaled value of the normal deviation

stored in the rate model to or from the expected ratio as follows:

Expected ValueHig h = Expected ValUeNormal + (Normal Deviation * Normal Completion Ratio)

Expected ValueLo w = Expected ValUeNormal . (Normal Deviation * Normal Completion Ratio)

129

Section 2--Components

, Set the assertion key and value to identify the results of evaluating the ratio of the

specified measures as follows:

Assertion Key = 'Measure NameNumerator' + '/'+ 'Measure NameDenominator'

if(Actual Value > Expected ValueHigh) Assertion Value = 'Above Normal'
if (Actual Value < Expected ValueLow) Assertion Value = 'Below Normal'
otherwise AssertionValue = 'Normal'

9. Store the assertion in the rule base's assertion list.

Lines of Code per Hour

' ///L
I LOCIEFF is i

Below Normal J Key

I Nocrr_l 1

Cornpteti_

Ratio

1917

Value

SystemTestPhase
Bek_wNorrr_

STEPS

1. Obtain the current phase
using the schedule model.

2. Get the normal ratio of

completion values for the
two input measures from the
estimate set model (e.g.,
LOC to EFF is 3.917).

3. Generate a rate model for
the two measures.

4. Scaling the rate model for
the normal completion ratio,

get the expected value and
normal range of the rate for
the current phase.

5. If the actual measure ratio
falls under the normal range,
as shown, add an assertion
that the rate is below normal.

Figure 2-97. Determining Measure Rates for the Rule Base

130

Section 2--Components

2.3.2.2.3 Evaluate Rule

Purpose

Evaluates a single rule in the rule base to conditionally determine the applicability of the
rule's interpretations to the current project. If the rule's condition evaluates to true, each

associated interpretation is stored for subsequent use in a list as an assertion, consisting of an
associated key and value pair. If the rule's condition evaluates to false, no action is taken.

Required Data

• Rule
• Assertion list

(input value)

Steps

1. For each expression in the rule's condition, capture the expression as an assertion

consisting of an associated key and value pair. Locate the entry k with a matching

key in the assertion list and evaluate the individual expressions, for/equals 1 through
N, as follows:

ff (Expression Value[i] = Assertion Value[kj_ Expression[i] = TRUE
otherwise Expression[i] = FALSE

,

.

.

Evaluate the rule's condition, using boolean logic and the results obtained from

evaluating the individual expressions.

If the rule's condition is true, express each of the rule's interpretations as assertions

and determine if that interpretation already exists in the assertion list by searching for

a matching key.

For each interpretation associated with a rule whose condition is true, store the

interpretation as an assertion as follows. If the interpretation does not already exist in

the list, simply add the interpretation's key and value to the assertion list. If the

interpretation exists in the list as the k th entry, update the assertion value to reflect a

new weighted certainty for the interpretation using

Assertion Value[k] = (1 - New Certainty) * Old Certainty + New Certainty

where New Certainty is the weighted interpretation's certainty used as an Assertion Value
and Old Certainty is the origina/certainty existing in the list for that entry as Assertion Value[k]

131

Section 2--Components

Rule g0 If (EFF/RCH is Below Normal) and

.r_(TInME is Ac_:)ep_nce Test Phase)
G'_MST 0.25025

TIME
LOC_FF

EFFmCH
RUN/LOC

.c_u_rP

E_C

VALUE

T
B_ Norm4d

Bd,ow Normal
Above Non'm¢

0,75
050

0.75

RTCM 0.25

EPC 0.50

_-y

A'fter

VALUE

Assertion List

TIME Acceptenee Tee

LOC_JEFF Below Nom_al
EFF/RCH Below Norm=
_LOC Above Normal

HCOMPI_ 0.75

k,rncs'r 0,50
r ' "B:,C l_/s"

: GTEST 02S
, _ 025
i EASY 0.25

i RTC.M 0.25

i
i
i
L

STEPS

1. Each expression in the
rule's conddion is located in
the assertion list and
evaluated.

2. The rule's condition is
evaluated using boolean
logic and the evaluation of
the individual expressions.

3. If the rule is true, each of
the rule's interpretations is
expressed as an assertion
and searched for in the
assertion list.

4. If that assertion is already
in the list, the assertion's
associated weight is
updated. Otherwise, it is
added to the assertion list.

Figure 2-98. Evaluating a Rule in the Rule Base

132

Section 2--Components

2.4 MANAGEMENT DATA

At times, the SME must rely on the manager using the system for additional information

needed to perform a given function. This situation arises in three specific instances where
the SME permits the user to interactively specify the required data. The first case involves
permitting the manager to modify the project's plan by changing the current schedule and
estimates for use in analyzing what-if scenarios. The second case lets a manager specify an
estimate of the current phase (presumably based on information that is unavailable to the
SME) for use in making predictions. Lastly, the third case solicits subjective information

about a project from the manager to augment the known objective data contained in the
knowledge base on the project. In each of these cases, the SME can store the information for
future reference.

Table 2-5 summarizes the major components referenced by the SME as management data.
Each component maps to a particular type of information obtained from SME users and is

identified with a specific purpose.

Table 2-5. SME Management Data Components

COMPONENT PURPOSE

Alternative Plans

Phase Estimates

Subjective Data

Identifies sets of project schedules and estimates supplied by
the user to support what-if scenarios
Identifies where a project is in the development life cycle on a
g ven date as a basis for making predictions
Identifies the manager's ratings of a set of subjective factors
that supply additional knowledge about a project

The following sections provide additional detailed information on each of these components.

133

Section 2mComponents

2.4.1 Alternative Plans

Purpose

I Enables the user to the effects ofinvestigate changing project plans.

Description

Alternative plans are created by the manager interactively during sessions with the SME

planning function. An alternative plan consists of a schedule and a set of completion
estimates that have been modified by the user in some way. The schedule has the same
format as the project's current schedule, but the user might have modified one or all of the
development life-cycle phase dates. Similarly, the set of completion estimates has the same
format as the current completion estimates, but the user might have modified one or all of the
estimated completion values. The SME provides the user with two distinct methods for

creating an alternative plan, as detailed in Section 3 under planning services. Once created,
the plan may be used in subsequent monitoring and overall assessment functions to
investigate the effects of modifying scheduled phase dates or completion estimates.

I i

I(

I :

Current Plan]

..I s. I _ I

i i i

XET I 06n3R2 I (_J13_3 I

¢S'TE | 1_2/13R_3 I 04,24,931
:_CTEI 0_4R01 1_ I

M_sur* i COml:_ldon

!

C.PU I 187.20

EFF | 57442.05
LOC I 2250_.00

MCH I 3_t 40

MOO I 1T81._
RCH I 191Z73

I _84.S0
RUN I (_'75.05

AlternativePlan }

E_GN t 0104._1 06/13,92

cc'nE I 06t24R3 I 01Q4_93 I

M_ur. I
!

I=R= I _100.00
LOC ! 250000.00

MCH I 4360,00
M¢_ l 1300,00
RC_ 1 2100.00

I 1085.00
RUN I 754_1.00

Figure 2-99. Representative Alternative Plan for a
Project

Source

Created interactively by the
manager using one of two
methods. May be input inter-
actively by the user, or derived
from the schedule and estimate
set models.

Assumptions

• The alternative schedule
and estimate set will

conform to the standard
SME formats for schedules
and estimates

• A change to either a
project's schedule or its
estimates constitutes an

alternative plan

Instances

Multiple alternative plans can
exist for any given project.

Each alternative plan belongs to the manager who originally created the plan.

Structure

A schedule table with three columns---phase name, phase start date, and phase end date; an
estimates table with two columns--measure code and estimated completion value.

134

Section 2--Components

2.4.2 Phase Estimates

Purpose

Indicates where a project is in its life cycle on a given date.

Description

Phase estimates are created by the manager interactively during sessions with the SME
prediction function. A phase estimate reflects an assessment of exactly where a project is in
the development life cycle on a specific date. A phase estimate contains the current date, the
current phase, and the completed fraction of that phase. The SME uses a phase estimate for a
given project as the basis for predicting the expected completion date and value of the
measure of interest for the current project. The SME provides three distinct methods of
obtaining a phase estimate, as detailed in Section 3 under the prediction function. The user
may select which method should be used for the prediction.

DESGN CODET SYSTE

i 50 percent _rough the .
Coding & Testing phase. !

ACCTE

04/07/8911/21/87 09,,15/90

Figure 2-100. Representative Phase Estimate for a
Project

Source

Selected interactively by the
manager from three choices.
The phase estimate may be
calculated by the SME,
derived from the current

schedule, or input interactively
by the user.

Assumptions

• The date specified in the
phase estimate must be
between the project start
date and the current project
date

Instances

Multiple phase estimates can
exist for any given project.
Each phase estimate belongs to

the manager who originally created and used the estimate as the basis for a prediction.

Structure

Table with three columns---date, phase name, and fraction of phase complete.

135

Section 2--Components

2.4.3 Subjective Data

Purpose

1 Represents the manager's ratings of software development factors for a given project.

Description

Subjective data currently is collected from the manager interactively during sessions with the
SME trend analysis function. The data consists of ratings associated with specific factors
that potentially affect the software development process, such as development team
experience, problem complexity, and tool usage. The SME uses these ratings in the expert
system software.

[Subjec_veData

Pro_:_n I

=,N,_,, I _._ I

I ,
F.=._... _r_ p'_, r' I

ProblemConc4axty Average t
_o_s_,_ _ I
Reqs.Q_y

Figure 2-101. Subjective Data for Three Projects

the knowledge base.
unknown.

Source

Collected interactively
the manager

from

Assumptions

• Each project's manager is
responsible for providing
subjective data on their
own project that can be
referenced by all SME
users

Instances

One set of subjective data may
exist for each project.

Structure

Table with two columns---

factor name and rating. Each
row in the table describes one

subjective factor that exists in

The rating is a value that translates to either high, normal, low, or

136

Section 3--Functionality

SECTION 3--FUNCTIONALITY

The SME supports a key set of experience-based functions intended to assist software
development managers in actively tracking and evaluating the status of their projects. These
functions rely on the components described in the previous section for information on an
ongoing project as well as for the collective experience from past development efforts that
can be used to understand and manage the project. When organized by the type of service
they provide for the user, these functions fall into four categories. The first relates to
executive services. These functions include general high-level features that permit a user to
choose a project to examine and optionally to go back in time to an earlier point in that
project's life cycle. In short, these services establish the scope and context in which all
subsequent SME functions will be performed. The second encompasses various monitoring
services that focus on a specific measure selected by the user. These functions permit a user
to observe, compare, predict, and analyze the behavior of the measure of interest. The third
covers assessment services pertaining to the overall quality of the project. These functions
allow a user to objectively evaluate and examine high-level quality attributes, such as
correctability and maintainability, with respect to a normal project in the environment. The
fourth category contains planning services that support the creation and use of ahernative
schedules and estimates. These functions are used for performing "what if" scenarios to
explore the effects of changing a project's plan.

Table 3-1 summarizes the major functions provided by the SME, organized into four basic
service categories.

Table 3-1. Major Functions Provided by the SME

SERVICE FUNCTION

Executive

Monitoring

Overall Assessment

Planning

Project Selection
Specification of CurrentProject Date

Measure Selection
Simple Observation
Comparison to a Normal Project
Comparison to Manager's Plan
Comparison to Other Projects
Prediction
Trend Analysis
Profile Analysis

Attribute Evaluation
Attribute Factor Examination

Use of Alternative Schedules
Use of Alternative Estimates

137

Section 3--Functionality

138

Section 3_Functionality

3.1 EXECUTIVE

The executive services provided by the SME serve to establish the context in which all

subsequent functions will be performed. Primarily, this involves permitting the manager to
identify a project to examine by choosing one from a list of all available projects. Once the
manager specifies a project of interest, any SME functions requested will reference that
project.

To the user, selecting the project of interest is a simple case of choosing the name of the
desired project from a list. This action, however, causes the SME to initialize a contextual
environment for performing SME functions that incorporates a wide range of information
related to the project of interest. This initialization includes locating and obtaining all data
captured for the project, choosing the manager's current plan from the list of all submitted
schedules and estimates based on the current project date, and identifying an appropriate set
of models to use with the project given its known characteristics. The manager may switch
to a different project at any time by choosing a new project of interest.

A second key service permits the manager to change the current date of the project of interest
to view the project as it appeared at some earlier time. By default, when a project is first
selected as the project of interest, the current project date is set to the latest date for which
measure data exists. This lets the manager obtain the latest picture of the project from the
most current information available. At times, however, the manager may wish to view the
project as it appeared at an earlier point in the software development life cycle. To
accommodate this, the SME allows the manager to override the default current value to
effect going back in time to an earlier project date. Specifying a different project date causes
the SME to update the current plan to reflect the manager's schedule and estimates in effect

on that date. All subsequent SME functions requested by the manager reference that plan
and artificially truncate the project's measure and profile data. The resultant picture of the
project reflects what the SME would have shown on the specified date.

Table 3-2 summarizes the major functions supported by the SME under executive services.

Table 3-2. Key Executive Services Functions

FUNCTION PURPOSE

Project Selection Lets user select a project as the current project of interest
for performing all subsequent SME functions

Specification of Current Project Date Lets user change the current date of the project of interest
to viewthe project as it appeared at some earlier time

The following sections provide additional detailed information on each of these functions.

FAGE BLANK lYOT FILI_IEIO 139

Section 3---Functionality

3.1.1 Project Selection

Purpose

Lets the user select a single project as the project of interest for any subsequent SME
functions.

Description

The project selection function displays a list of all available projects and permits the user to
choose a project of interest. The SME performs its functions within the context of this

particular project. Selecting a project of interest causes the SME to identify and locate for
future reference all data captured for the project, the manager's current plan submitted for the

project, and the appropriate models to apply to the project.

Da_ _1 rrcKJ_ to use for PROJECT2

Current Schedule Meas,,.w_Data

I PROJECTI_ CurrentEStimatesProjectCharacteristics Profile Data

I PROJECT2'I "_ L

e Set Model I Mc_Is

Figure 3-1. Selecting a Project of Interest

The figure illustrates the
selection of a project of
interest from the list of

available projects. This

example shows that if a user
chooses PROJECt2 from the

list, the SME identifies the
project data associated with
that project and references an
appropriate set of models that
match the key characteristics
of the project.

Note that research data such
as attribute definitions and

management rules can apply
to any project regardless of
the project's characteristics.

Required Information

• List of available projects
• List of defined measures

• List of defined profiles
• List of available measures for projects
• List of available profiles for projects
• Planned schedule for the project
• Planned completion values for measures

(project list)
(measure list)

(profile list)
(project/measure availability list)
(project/profile availability list)
(schedule data)
(estimates data)

Actual data values for the available measures (measure data)

Actual data values for the available profiles (profile data)

140

Section 3--Functionality

• Key characteristics of the project

• Model of the schedule for similar projects
• Model of completion estimates for similar projects
• Models of measure behavior for similar projects
• Models of profile behavior for similar projects

(project characteristics)
(schedule model)
(estimate set model)
(measure models)
(profile models)

Key Steps

1. Select a project of interest and locate all available project data for the project.
2. Set the current plan to reflect the most recent schedule and estimates for the

project.

3. Identify a set of appropriate models to use with the selected project.

141

Section 3--Functionality

3.1.1.1 Select a Project of Interest

Purpose

Allows the user to select a project from the list of all

locates all project data for the selected project.

available projects. Identifies and

Required Data

• Project list
• Project/measure availability list
• Project/profile availability list
• Schedule data (for project of interest)
• Estimates data (for project of interest)
• Measure data (for project of interest)

• Profile data (for project of interest)
• Project characteristics (for project of interest)

Steps

1. Display the list of available projects appearing in the project list and permit the user

to select a project of interest.

2. Reference the project/measure availability list to identify the measures with data for

the project. Locate the data for each available measure.

3. For each available measure, reference the project/profile availability list to identify

the measure profiles with data for the project. Locate the profile data for each

available profile.

4. Locate the schedule data, estimates data, and project characteristics for the project.

Project/Profi/eAvailability Ust

STEPS

1. Generate a list containing
the names of all projects,
and let the user select a
project.

2. Identify the measures for
which there is available data
for the project, and locate
that measure data.

3. Identify the profiles for
which there is available data
for the project, and locate
that profile data.

4. Locate the schedule,
estimates, and project
characteristic= for the
project.

Figure 3-2. Identifying Project Data for the Project

142

Section 3_Functionality

3.1.1.2 Set Current Plan for Project

Purpose

Examines all schedules and estimates submitted by the manager for the project of interest
over the development life cycle to obtain the ones that were in effect on a specified date.
The identified schedule and set of completion estimates become, respectively, the current
schedule and the current estimates for the project. When considered together, the selected
schedule and estimates constitute the current plan submitted by the manager.

Note: When a project of interest is ftrst selected, this service causes the most recent plan
submitted by the manager to be chosen as a default. If the user subsequently changes the
current project date to effect going back in time to an earlier date, that date is specified to
choose a "current" plan from the past.

Required Data

a Current project date
a Schedule data (for project of interest)
• Estimates data (for project of interest)

(input value)

Steps

l.

.

°

Use Get Schedule with the input project date to obtain the most recent schedule

submitted on or prior to the specified date.

Use Get Estimates with the input project date to obtain the most recent set of

completion estimates submitted on or prior to the specified date.

Remember the resultant schedule and set of estimates, respectively, as the current

schedule and current estimates for the project of interest.

i _o.Dal,.o_ i ill PR_ECT2
I s_e 'u/eIF
I Oa, | _ _" IIII r Currer_ i

I Dab I Date _I LPI / Schedu/e knis,r.onDale-04/16,_3 I

I
'9 e /I I I IIJ I 0_GN I _oro,_t I 0_2 I

ou21,,,_ /' ' t"" I eo_ I _,_nl _ I
' I SYSTE I o't_,_zI _ I

¢ _ I _I _'_ I

• ,' I Current I' ' I_
IEs#ma es _ _. o_u93 I Es_'mates _ om. (_uls_

I oat_ L. c._ L J I co_ol,_

CPU I 18720
Cl_ 18720 EFF i 57442.05
EIrF 57442.(_5 LOC I _25000.00

LOC 225000.00 U,r.H I _ 40
MCH ._.'s,z, _ I 1181:48

MOO 1181.48 RC,,H i 1912.73RCH 191Z73 _ 98460

I

_] STEPS

1. Relative to the current

project date, get the most
recent schedule submitted

by the manager.

2. Relative to the current

project date, get the most
recent estimate set

submitted by the manager.

3. Mark the schedule and
estimate set as the current
schedule and estimate set.

Figure 3-3. Setting the Current Plan for a Project

143

Section 3---Functionality

_1.1.3 Identify Models to Use for Project

Purpose

Identifies and locates an appropriate set of models to use with the project of interest.

Required Data

• Project characteristics (for project of interest)
a Measure list
a Profile list

a Schedule model (suitable for the type of project)
a Measure models (suitable for the type of project)
• Profile models (suitable for the type of project)
• Estimate set model (suitable for the type of project)

Steps

1.

.

.

.

Obtain the characteristics of the selected project of interest from its project

characteristics data.

Concatenate the characteristics to produce a project type that identifies the

appropriate models to use for the project.

Identify and locate the schedule model and the estimate set model that match the

project type of the project of interest. (Use default models if no match exists.)

For each measure defined in the measure list and each profile defined in the profile

list, identify and locate the measure and profile models that match the project type of

the project of interest. (Use default models if no match exists.)

PROJECT2

Characteristic Coded
Name Value

COMPUTER IBM
LANGUAGE FORTRAN
APPLICATION AGSS

I Modelsfor 1
IBM,FORTRAN,AGSS

Proi_s

ScheduleModel
EstimateSetMode_
MeasureModels

ComputerHours
Effort
LinesofCode

I P_ecz i
Characteristics ProfileMo_ls

Effortto isolateChange

Figure 3-4. Identifying Models for the Project of Interest

_] STEPS

1. Get the project charac-
teristics of the current
project.

2. Using these project
characteristics, generate a
project type that identifies
the appropriate model set to
reference.

3. Locate the schedule and
estimate set models corre-

sponding to that project

type.

4. Check the measure and

dPrOfile lists and locate all
efined measure and profile

models for the project type.

144

Section 3--Functionality

3.1.2 Specification of Current Project Date

Purpose

Lets the user change the current date of the project of interest to view the project
as it appeared at some earlier time.

Description

The function permits the user to change the current project date to effect going back in time
to an earlier point in the development life cycle. The user-specified date must fall between
the project start date and the last date for which measure data exists (i.e., the original project
date considered current). Changing the current date of the project of interest causes the SME
to update the current plan to reflect the manager's schedule and completion estimates that
were in effect on the specified date. Until the date is reset or the project is changed, all
subsequent SME functions requested by the user for the project will reference the adjusted
current date to artificially truncate any measure or profile data.

| . i

i i
|
i
|
i

i

i
i
|
!
i
|
!

10/04/91 03t1,_3

Currenl_o_ctDa_ "_

12_5_3

i !
i !
i i
| i
i I
! i
w i

1 .
I |o

1 II
i|

i I i

The figure illustrates
changing the current date of
the project of interest to
reflect an earlier point in
time.

Note that since an historical

record of the subjective
ratings used with the
knowledge base for a project
are not maintained over time,

any updates made to these
ratings can not be restored to
reflect a change in the current
project date.

Figure 3-5. Changing the Current Date for a Project

Required Information

• Last date for which measure data exists

• All planned schedules for the project
• All planned completion values for measures

(current project date)
(schedule data)
(estimates data)

145

Section 3---Functionality

Key Steps

1. Obtain, validate, and remember the new date requested by the user.
2. Use Set Current Plan for Project (see project selection) to update the current

schedule and current estimates to reflect the plan in effect on that date.

146

Section 3--Functionality

3.2 MONITORING

The monitoring services provided by the SME focus on a specific measure of interest chosen
by the manager for the current project. This measure of interest may be an individual
measure selected from the list of defined measures for which data exists or it may be the ratio

of any two of those measures. Once the manager specifies the measure (or ratio of measures)
to examine, any SME monitor functions requested will reference that measure. The manager
may switch to a different measure at any time by choosing a new measure of interest.

At a basic level, the SME supports observation of the selected measure of interest by plotting
its collected values as a function of time over the manager's schedule. While useful in

tracking the actual work accomplished to date, this feature gives no indication of whether the
project is on schedule or what work should have been accomplished. To provide such a
yardstick for monitoring progress, the SME incorporates three methods of graphically
comparing the observed measure values to the likely behavior of the measure based on past
experience in the environment. These methods are comparison to normal project guidelines
derived from models of the measure's past behavior on similar projects, comparison to a
model of the measure adjusted to fit the manager's current plan, and comparison to actual
measure values observed on one or more past projects.

The SME also allows the manager to predict the future behavior of the measure of interest

over the project life cycle. This prediction is performed by fitting models of normal project
behavior to the actual data collected on the project, thereby forecasting the probable

completion date and expected completion value of the measure.

Additional monitoring services help managers identify a project's strengths and weaknesses

by analyzing the current value of the measure of interest. The SME supports this monitoring
function through trend analysis and profile analysis.

Trend analysis compares the current value of the selected measure to a model of the measure
and uses expert systems techniques to reach conclusions that explain any deviations from the
norm. This analysis uses two discrete approaches for interpreting the captured management
experience and providing expert assistance to the manager. If the measure of interest is a
single defined measure, the analysis relies on the knowledge base for the necessary
management rules; if the measure of interest is a ratio of two measures, the analysis uses the
rule base. In either case, the function examines not only the measure of interest, but a wide

range of current data for the project, to reach its conclusions.

Profile analysis, on the other hand, lets managers examine and interpret the current value of
the measure of interest in more detail to detect potential problems and identify improvement
areas. This function displays a detailed distribution of the current measure value broken
down into discrete, defined categories. Multiple profiles, or ways of categorizing the data,

may be defined for each measure.

Table 3-3 summarizes the major functions supported by the SME under monitoring services.

147

Section 3---Functionality

Table 3-3. Monitoring Services Functions

FUNCTION PURPOSE

Measure Selection

Simple Observation

Comparison to a Normal Project

Comparison to Manager's Plan

Comparison to Other Projects

Prediction

Trend Analysis

Profile Analysis

Lets the user select an available measure as the current
measure of interest for performing SME monitor functions
Displays the actual values observed for a measure of
interest as a function of calendar time
Compares the actual values observed for a measure of
interest to a model of the measure's normal behavior
Compares the actual values observed for a measure of
interest to its expected behavior given the manager's plan
Compares the actual values observed for a measure of
interest to the measure's behavior on other projects
Forecasts the probable completion date andthe expected
completion value of the measure of interest
Displays a list of possible reasons to explain an observed
deviation in the measure of interest
Displays a distribution of actual measure values within two
or more discrete categories for detailed user examination

The SME provides the full range of monitoring services whenever the user selects a single
measure as the measure of interest. When the user chooses to monitor a ratio of two

measures, however, the SME limits the available monitoring services to observation,

comparison, and trend analysis functions. This limitation arises because (1) the concept of

profile analysis inherently applies only to individual measures and (2) the algorithms used in

prediction currently do not accommodate the non-monotonically increasing behavior
exhibited by ratios of measures.

The following sections provide additional detailed information on each of these functions.

148

Section 3--Functionality

3.2.1 Measure Selection

Purpose

Lets the user select a single measure, or a ratio of two measures, as the measure of interest
for any subsequent SME monitor functions.

Description

The measure selection function displays a list of all available measures and permits the user
to choose a measure of interest for the current project. This measure of interest may be either
a single measure for which data exists or a ratio of two such measures from the list. The
SME performs all monitor functions for the current project within the context of this measure
of interest. Selecting a single measure as the measure of interest simply causes the SME to
identify the appropriate measure data and measure model to use in the future. Selecting two
measures to serve as a ratio for the measure of interest, however, causes the SME to
construct a set of measure data and a measure model for future reference that reflects the

ratio of the identified measures. In this case, the SME creates the needed set of measure data

from the cumulative ratios of the values recorded for the individual measures. Similarly, the
SME generates a measure model to use with the ratio by combining the two models that
correspond to the selected measures.

I List of Available 1Measures for Project1

CPU CPU Hours

'"L_" "_._7__T_:X_......
MCH Modutes Changed
IvlOD Module Count

RCH Reported Changes
RER Repo¢led Errors

RUN _ef Jobs

I Effort Data for

Projsctl

_--[Effort Model Ifor Project1

The figure depicts the
selection of a measure of
interest from the list of
available measures. This

example shows that if a user
chooses "Total Staff Hours"

from the list, the SME
identifies the corresponding
effort data and appropriate
effort model for use in

subsequent monitor
functions.

Note that choosing two
measures results in the SME

combining the data and
models of the individual

measures to generate a
composite set of data and a
model for use with the ratio.

Figure 3-6. Selecting a Measure of Interest

149

Section 3--Functionality

Required Information

• List of defined measures

• List of available measures for the current project

• Actual data values of measures (for ratios)
• Models of measure behavior (for ratios)

(measure list)

(project/measure availability
list)

(measure data)
(measure models)

Key Steps

1. Display a list of available measures for the current project and allow the user to
select a measure of interest.

2. If the user selects an individual measure, identify the corresponding measure data
and measure model to use.

3. If the user chooses two measures, construct the measure data for the ratio and use

Generate Rate Model on the two measure models to create an appropriate model.

150

Section 3--Functionality

3.2.2 Simple Observation

Purpose

Displays the actual cumulative values of a measure of interest, such as effort or
lines of code, as a function of calendar time.

Description

The observation function displays the actual recorded behavior of the measure of interest for

the current project. The results are depicted graphically as a plot of the current measure with

actual data values shown from project start through the current date. The manager's
estimated completion value also appears for reference as a targeted planning value.

I Current

Estimates J

I Current)Schedule

60O
Reported Errors for Project1

500 "--°-°-- ---,
525Planned

322 Actual

12/25.'93

Un_ of Cede per Hour for Project1
6

5 -----°o_i. ---

a --t_---)-w- L.........
I

I
.......... --41,I.

J i

1(05/91

4,26 Actual

3.50 Planned

<;st21_ 12,"25/93

Note that observation applies
to a ratio of two measures, as
well as to a single, individual

measure. This lets managers
view an extended set of

measures such as LOC per
hour (coding productivity)
and reported errors per LOC
(error density).

The upper plot in the figure
shows a representative
observation plot of reported
errors for a sample project.
This example indicates that
the project has reported a

total of 322 errors through
the current date of 05/21/93.
The manager expects to see a
total of 525 errors at the end

of the project.

The lower plot in the figure
shows a representative plot of
the ratio of two measures,
LOC to effort, for a sample
project. This plot indicates
that the project has produced
4.26 lines of code per hour
through the current date. The

manager plans to generate
3.50 lines of code per hour
over the entire project.

Figure 3-7. Observing Actual Measure Values

151

Section 3---Functionality

Required Information

• Project start and end dates
• Actual data values for the measure of interest

• Estimated completion value of the measure
of interest

(current schedule)
(measure data)

(current estimates)

Key Steps

1. Scale and display the basic plotting area to use for observation.
2. Plot the actual measure values and the manager's planned completion value.

152

Section 3--Functionality

3.2.2.1 Scale and Display Plot Area for Observation

Purpose

Scales the plotting area to use for observation and generates the plot axes, labels, and title.

Required Data

• Current schedule

• Current estimates

• Measure data (for measure of interest)

Steps

1. Use Get Project Dates with the current schedule to obtain the project start and end

date. Calculate the number of weeks planned between these dates (Planned WeekSTota _.

2. Scale the plot's x-axis to the number of weeks in the project's planned schedule

X-Axis Scale = Planned WeekSTotaI

3. Use Get Estimated Completion Value with the current estimates to obtain the

manager's planned completion value for the measure (Planned Valuecomptetion).

4. Scale the plot's y-axis to the maximum of either the manager's planned completion
value or the current measure value found in the measure data.

Y-Axis Scale = Maximum (Planned Valuecompletion , Actual Valuecurrent)

5. Display the basic plotting area with appropriate axes, labels, and tide.

500

400

3OO

200

100"

10/05_91

Schedule

Figure 3-8.

Reported Errors for Project1

116weekstotal

525 Phoned

168Actual

12r25/93

Scaling the Observation Plotting Area

STEPS

1. The x-axis is scaled to

the Iproject duration of 116
weeks,

2. Given an estimate of 525
,errors in the current esti-

mate set, the manager's
planned completion value is
set to 525.

3. Based on an actual value
to date of 168 errors and a

1anned completion value of
, the y-axis is scaled to

show 525 errors (i.e., the
maximum value).

4. After mapping the fixed-
sized plotting area to the
computed x and y scaling
factors, the basic plot is
displayed.

153

Section 3--Functionality

3.2.2.2 Plot Actual Data for a Measure

Purpose

Plots the actual data values of the measure of interest from project start through the current
date. Adds a label to the plot for the actual measure value to date.

Required Data

• Current schedule

• Measure data (for measure of interest)

Steps

1. Initialize the starting point for plotting the actual measure data as a function of week

number, to indicate the measure value is zero at week number zero using

X-Value[O] = o and Y-Value[O] = o

2. For each entry in the measure data through the current date, set the x and y values of

the next point to plot to the week number of the sample date and its corresponding
measure value as follows:

X-Value[I] = Week(i) and Y-Value[i] = Measure Value[i]

for the I_h entry in the measure data, where Week(i) is the relative week number of the ith entry

3. Plot the data points computed for the actual measure data by week number, from 0

through the current week N, as a step function (i.e., plot the rise and then the run)

4. Label the x-axis with the project start and end dates from the current schedule.

5. Label the actual measure value observed on the current date at its correct height on

the right side of the plotting area. (Actual Valuecurren _

I Current 1Schedule

Reported Errors for Project1

.......o°

I.

02/01/91

525 Planned

168Actual

t_ 0_1(_33

STEPS

1. The x- and y-values serve
as week numbers and actual

data values, respectively, for
the measure data. They are
initialized to zero.

2. The x-values are set to

successive week numbers,
while the y-values are set to
the measure values for each
week.

3. The_points are plotted as
a step lunction (i.e., rise and
then run).

4. The actual measure value
to date is labeled.

Figure 3-9. Plotting Actual Values for a Measure

154

Section 3--Functionality

3.2.3 Comparison to a Normal Project

Purpose

Compares the actual cumulative values of a measure of interest for the current project to
guidelines derived from models of the measure's normal behavior.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the current project with guidelines of the measure's expected behavior for a

normal project. The comparison is depicted graphically by)'superimposing" a reference plot
representing a normal project on an observational plot containing actual measure values.

I Currenf)Schedule

Reported Errors for Project1

10/04,91 1_

6O0

500"

DESGN CODEr

200"

100"

168 Aclual

I Schedule I
Model II io_4_

Unes of Code I:_r Effort
for Project1

! i i
i i i

| !

|1!||_°_|l |!11"'_ i

4.00

&'75 Normal

2.85_

0_1_ 0_13_0 04t2,1_3 |Z/2_

Derived from models, the

guidelines on the plot show
the normal range of expected
measure values as a function
of a normal schedule. The
normal values are scaled to
reflect the size and duration

of the current project. Note
that comparison applies to a
ratio of two measures, as well

as to a single measure.

The upper plot in the figure
shows a representative
comparison plot of reported
errors for a sample project.
This example indicates (1)
the project's 168 reported
errors are below what is

normally expected for the
current date and (2) typical

projects of the same size
normally have 450 errors at

project completion.

The lower plot in the figure
compares the ratio of two
measures to normal. This

plot shows (1) the project's
coding productivity of 2.85
LOC per hour is below
normal and (2) projects of the
same size normally produce
3.75 LOC per hour overall.

Figure 3-10. Comparing a Measure to Normal Guidelines

155

Section 3--Functionality

Required Information

• Project start and end dates
• Actual data values for the measure of interest

• Estimated completion value of the measure
of interest

• Model of the schedule for similar projects
• Model of the measure of interest for similar

projects

• Model of completion estimates for similar projects

Key Steps

l.

.

3.

(current schedule)
(measure data)

(current estimates)
(schedule model)

(measure model)
(estimate set model)

Scale and display the basic plotting area to use for comparisons with normal
projects.

Plot the normal measure guidelines and schedule to expect for a similar project.
Use Plot Actual Data for a Measure, as in simple observation, to overlay the
actual measure values and the manager's planned completion value on the plot.

156

Section 3_Functionality

3.2.3.1 Scale and Display Plot Area for Comparison to Normal

Purpose

Scales the plotting area to use for comparing
generates the plot axes, labels, and ride.

Required Data

• Current schedule
• Current estimates

• Measure data (for measure of interest)
• Measure model
• Estimate set model

a measure to normal project behavior and

Steps

1. Use Get Project Dates with the current schedule to obtain the project start and end

date. Calculate the number of weeks planned between these dates (Planned Weeksrota _.

2. Scale the plot's x-axis to the number of weeks in the project's planned schedule

X-Axis Scale = Planned WeekSTotaI

3. Use Get Estimated Completion Value with the current estimates to obtain the

manager's planned completion value for the measure (Planned Valuecompletion).

4. Use Get Project Magnitude with the current estimates to obtain the measure and

estimated completion value for that measure which is most indicative of the project's

magnitude.

5. On the basis of that magnitude, use Determine Normal Estimate Set with the estimate

set model to create a normal set of estimates for the project.

6. Use Get Estimated Completion Value with the normal estimates to obtain the normal

completion value for the measure (Normal Value completion).

7. Examine the measure model for the measure of interest and obtain the maximum

fractional value expected for the measure at any point in the life cycle (Maximum

ValueModel).

8. Compute the maximum value that the upper bound of the normal measure guidelines

would attain over the life cycle as

Maximum Upper Range = Normal Valuecompletion* (Maximum ValueModeI + Normal Deviation)

9. Scale the plot's y-axis to the maximum of either the manager's planned completion

value or the current measure value found in the measure data or maximum upper

bound value of the normal measure guidelines.

Y-AxisScale = Maximum (Planned Valuecompletion,Actual Valuecurrent,Maximum Upper Range)

10. Display the basic plotting area with appropriate axes, labels, and tide.

157

Section 3--Functionality

Current 1Schedule
1olo4,_1

Reported Errors for Project1

CODEr $YS'rE /_.¢'rE
6O0

500"

dOO-

3(X)-

200"

100"

10/04,91

12rZ#93

STEPS

1. The plot's x-axis is scaled
to the project duration of 116
weeks.

2. Based on the project's
magnitude, a set of normal
estimates is generated.
From this set of estimates, a
completion estimate of 450
errors is obtained.

3. The y-axis plot is scaled
to either the maximum model

value, the manager's planned
completion estimate, or the
current measure value,
whichever is greatest.

4. The plot is displayed with
appropriate labels and titles.

Figure 3-11. Scaling the Comparison to Normal Plotting Area

158

Section 3---Functionality

3.2.3.2 Plot Normal Project Data for a Measure

Purpose

Plots the normal measure and schedule values to expect over the development life cycle as

guidelines for the measure of interest. Adds labels to the plot for calendar dates associated
with the normal schedule and for the normal measure value to expect at completion.

Required Data

• Project start and end dates
• Normal measure value at completion date
• Schedule model

• Measure model (for measure of interest)

(input value)
(input value)

Steps

I. Use Determine Normal Schedule with the input project start and end dates to scale the

schedule model to match the project's duration and generate a normal schedule for the

current project.

2. For each phase in the normal schedule, draw a vertical line through the plotting area

representing the end date of each phase. Label the names of the phases in the normal

schedule across the top of the plotting area. Label relevant calendar dates under the

x-axis of the plot to identify the project start date, the project end date, and the end

date of each phase.

3. Use Determine Normal Measure Guidelines with the input normal completion value

to scale the measure model and generate expected measure values, with upper and

lower normal bounds on those values, as a function of schedule for the current

project.

3. Plot the values computed for the normal measure guidelines over the life cycle as a

shaded area consisting of three related curves--the upper bound expected for the

measure, the normal measure value expected, and the lower bound expected for the

measure.

4. Label the normal completion value for the measure at its correct height on the right

side of the plotting area. (Normal Valuecomple_.on)

159

Section 3--Functionality

| |

_, _ Repode_:l Errors for Project1

i i ! | | ' 52S

I

_] STEPS

1. The project's start and
end dates are used to scale
the schedule model and
generate a normal schedule.

2. The phase names and end
dates are added to the
display. A vertical line is
also drawn corresponding to
each phese's end date.

3. The measure model is
scaled by the normal
completion value for the
measure, with upper and
lower bounds added.

4. The normal measure
guidelines are plotted as
three curves shaded in
between.

Figure 3-12. Plotting Normal Project Values for a Measure

160

Section 3--Functionality

3.2.4 Comparison to Manager's Plan

Purpose

Compares the actual cumulative values of a measure of interest for the current project to
the measure's expected behavior given the managers current plan.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the current project with the measure's expected behavior given the manager's
current schedule and estimates. The comparison is depicted graphically by "superimposing"
a reference plot representing the planned project behavior on an observational plot containing
the actual measure values. Derived from the current schedule and a measure model, the

reference plot shows the expected measure values as a function of planned schedule. The
measure and schedule values reflect the planned size and duration of the project.

Reported Errors for Project1

I Current) t0_4_1Schedule DeiGN

So0

500.

400.

3O0

HY_I

COD_-"r _ ACCTE

o,"
s"

I'

525Planned

168Ao_ual

Note that the comparison also
applies to the ratio of any two
such measures. This permits
examining an extended set of
measures such as LOC per

hour (coding productivity).

The figure shows a
representative comparison
plot of reported errors for a
sample project. This
example indicates (1) the
project's 168 reported errors
are below what can be

expected as of 10/12/92
given the manager's current
plan and (2) the manager
plans to see 525 errors at
project completion.

Figure 3-13. Comparing a Measure to the Manager's Plan

Required Information

• Planned start and end dates of each phase
• Actual data values for the measure of interest

• Estimated completion value of the measure of
interest

• Model of the measure of interest for similar

projects

(current schedule)
(measure data)

(current estimates)

(measure model)

161

Section 3_Functionality

Key Steps

1. Scale and display the basic plotting area to use for comparisons with the
manager's plan.

2. Plot the expected measure values and current schedule given the manager's plan
for the project.

3. Use Plot Actual Data for a Measure, as in simple observation, to overlay the
actual measure values and the manager's planned completion value on the plot.

162

Section :)--Functionality

3.2.4.1 Scale and Display Plot Area for Comparison to Plan

Purpose

Scales the plotting area to use for comparing a measure to planned project behavior and

generates the plot axes, labels, and tide.

Required Data

• Current schedule
• Current estimates

• Measure data (for measure of interest)
• Measure model

Steps

1. Use Get Project Dates with the current schedule to obtain the project start and end

date. Calculate the number of weeks planned between these dates (Planned Weegsrota_.

2. Scale the plot's x-axis to the number of weeks in the project's planned schedule

X-Axis Scale = Planned WeeksrotaI

3. Use Get Estimated Completion Value with the current estimates to obtain the

manager's planned completion value for the measure (Planned Valuecomple_bn).

4. Examine the measure model for the measure of interest and obtain the maximum

fractional value expected for the measure at any point in the life cycle (Maximum

Value Model).

5. Compute the maximum value that the planned measure would attain over the life

cycle as

Maximum Expected Value = Planned ValuecornpleOon * Maximum ValueMode I

6. Scale the plot's y-axis to the maximum of either the maximum expected measure

value given the manager's planned completion value or the current measure value

found in the measure data.

Y-Axis Scale = Maximum (Maximum Expected Value, Actual Valuecurren t)

7. Display the basic plotting area with appropriate axes, labels, and tide.

163

Section 3_Functionality

I Curr_r 1Schedule

Figure 3-14.

Reported Errors for Project1

11(;WeeksT0tad

STEPS

1. The plot's x-axis is scaled
to the project duration of 116
weeks.

2. The manager's planned
completion estimate, of 525
reported errors, is obtained.

3. The maximum value of the

model over the life cycle is
obtained. Using this value,

the maximum value to expect
for the planned measure is
calculated.

4. The y-axis of the plot is
scaled to the maximum

planned measure value, the

manager's planned comple-
tion value, or the actual
measure value, whichever is
greatest.

5. The plot is displayed with
labels and titles.

Scaling the Comparison to Plan Plotting Area

164

Section 3--Functionality

3.2.4.2 Plot Planned Project Data for a Measure

Purpose

Plots the planned measure and schedule values to expect over the development life cycle for
the measure of interest. Adds labels to the plot for calendar dates associated with the current

schedule and for the planned measure value at project completion.

Required Data

• Current schedule

• Estimated measure value at completion
• Measure model (for measure of interest)

(input value)

Steps

1. Using the dates in the current schedule, label the top of the plotting area to identify

the project start date, the project end date, and the end date of each phase.

2. Calculate the planned number of weeks between the project start and end dates found

in the current schedule (Planned Weeksrotal).

3. For each life-cycle phase in the current schedule, calculate the number of weeks

planned between the start and end dates of the phase (Planned Weeksln Phase [i1).

4. For each life-cycle phase, normalize the amount of time planned for the phase by the

total project duration to compute the fraction of duration planned for that phase as
Fraction of Durationln Phase [i] = Planned Weeksln Phase [i] / Planned WeekSTota I

5. Using these fractional values, create a schedule model that models the current

project's schedule as planned by the manager.

6. Use Convert Phase to Date on this model of the planned schedule, specifying as input

the project start and end dates, to determine the calendar dates associated with each

phase and phase segment defined in the measure model (Expected Calendar Date [i]).

7. For each calendar date calculated, compute the date's relative week number as the

number of weeks between the project start date and the date itself (Expected Week [i]).

8. Also for each phase and phase segment, use Convert Phase to Measure on the

measure model, specifying as input the estimated completion value as planned by the

manager, to determine the expected measure values that correspond to the computed

dates (Expected Measure Value [i]).

9. Show the planned behavior of the measure of interest over the life cycle as a curve

through the points just computed for each phase and phase segment by plotting

expected measure value as a function of expected week.

10. Label the planned completion value for the measure at its correct height on the right

side of the plotting area. (Planned Valuecomple_on)

165

Section 3--Functionality

10_4,91

I

0_J13_3 1_

±

I
4

I:lepo_ed Errors for Project1

10 _ O2/13,'90 1Z,'25_

' V
' I_i

loo'

5

_/

STEPS

1. The manager's schedule
is modeled based on the
fraction of the total project
duration to be spent in each

hase. For this project, the
actions are DESGN 0.26,

CODET 0.34, SYSTE 0.16,
and ACCTE 0.22.

2. The start and end dates
for each phase are deter-
mined and their relative week
numbers are calculated.

3. Expected measure values
at each phase segment are
calculated, relative to the
final completion estimate.

4. The planned behavior of
the measure is plotted and
labeled.

Figure 3-15. Plotting Planned Project Values for a Measure

166

Section 3--Functionality

3.2.5 Comparison to Other Projects

Purpose

Compares the actual cumulative values of a measure of interest for the current project to
the measure's behavior on another project.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the current project with the measure's behavior as observed on other projects.
The comparison is depicted graphically by overlaying reference plots of measure data from
one or more selected comparison projects on an observational plot containing actual measure
values for the current project. To eliminate the effects of project size, the measure values
plotted for the current project and any selected comparison projects are scaled to reflect a
percentage of that project's normal completion value expected for the measure. Similarly,
the schedules of all comparison projects are scaled to match the duration of the current
project. A comparison project may be either a completed project that reflects an earlier
development effort or an ongoing project.

I CurrentEstimates

Reported Errors for Project1
as a Percentage of Normal Completion Value

1 (_4J91 12_2:5/g3

500.

I00'

I_I

06/13/g2 02113,_3 04/24,93 12,'_5_Q

I I 7% R_,'u'_ed

I(XT'A,Normal

37% A¢t_

Note that the comparison also
applies to the ratio of any two
such measures. In this case,

however, the measure values
are plotted as absolute values
and need not be scaled to

reflect a percentage of the
normal completion value.

The figure shows a sample
plot of reported errors for
Projectl and a comparison
project, Project2. This
example indicates (1) errors
for Projectl are 37% of the
total number normally

expected at completion and
(2) relatively more errors
were reported on Project2.

Figure 3-16. Comparing a Measure to Other Projects

Required Information

• Project start and end dates
• Actual data values for the measure of interest

• Estimated completion values for all measures
• Model of the measure of interest for similar

projects

(current schedule)
(measure data)
(current estimates)

(measure model)

167

Section 3--Functionality

• Model of completion estimates for similar projects
* List of projects with data available for the measure

• Characteristics data for the comparison project
• Project start and end dates for comparison project
• Actual data values of measure for comparison

project

• Estimated completion values for comparison
project

• Model of the measure of interest for comparison
project

• Model of completion estimates for comparison
project

(estimate set model)

(project/measure availability
list)

(project characteristics)
(current schedule)

(measure data)

(current estimates)

(measure model)

(estimate set model)

Key Steps

1. Scale and display the basic plotting area to use for comparisons with other
projects.

2. Scale and plot the actual measure values for the current project.
3. Select a comparison project with data available for the measure of interest.

4. Scale and plot the actual measure values for the comparison project.

168

Section 3---Functionality

3.2.5.1 Scale and Display Plot Area for Comparison to Other Project

Purpose

Scales the plotting area to use for comparing a measure to actual data from other projects and

generates the plot axes, labels, and rifle.

Required Data

• Current schedule
• Current estimates

• Measure data (for measure of interest)
• Estimate set model

Steps

1. Use Get Project Dates with the current schedule to obtain the project start and end

date. Calculate the number of weeks planned between these dates (Planned Weegsrota _.

2. Scale the plot's x-axis to the number of weeks in the current project's schedule.

X-Axis Scale = Planned WeeksrotaI

3. Use Get Project Magnitude with the current estimates to obtain the measure and

estimated completion value for the measure that is most indicative of the current

project's magnitude.

4. On the basis of that magnitude, use Determine Normal Estimate Set with the estimate

set model to create a normal set of estimates for the project.

5. Use Get Estimated Completion Value with the normal estimates to obtain the normal

completion value for the measure (Normal Valuecompletion).

6. Use Get Estimated Completion Value with the current estimates to obtain the

manager's planned completion value for the measure (Planned Vatuecompteaon).

7. Divide the manager's planned completion value by the normal completion value

computed for the measure to determine the planned value as a percentage of the

normal value at completion using

Planned Percentcompledon = (Planned Valuecompletion/ Normal Valuecomple_-on)* 100

8. Divide the current measure value found in the measure data by the normal completion

value computed for the measure to determine the percentage of the normal

completion value seen to date using

Actual Percentcurrent = (Actual Valuecurrent] Normal Valuecompletion)* 100

9. Scale the plot's y-axis to the maximum of either 100% of the normal completion
value for the measure, the current measure value found in the measure data expressed

as a percentage, or the planned completion percentage.

Y-AxisScale = Maximum (100, Actual Percentcurrent, Planned Percentcompletion)

169

Section 3--Functionality

10. Display the basic plotting area with appropriate axes, labels, and title.

100'

80

60,

40

20"

10/G5'91

RepodedErrorsforProjectl
as a Pecentage ofNormalCompletionValue

116weekstotal

117°/.Planned

100"/ohlom_

37% Actual

1225/93

v

STEPS

1. The x-axis is scaled to the

project duration of 116
weeks.

2. Based on the project's
magnitude, a normal set of
estimates is generated.
From these estimates, the

normal completion estimate
is obtained.

3. The manager's planned
completion value and the
current measure value are
obtained and converted to a

percentage of the normal
completion value.

4. The y-axis is scaled to the
maximum of: 100% of the

normal completion value, the
manager's planned comple-
tion percentage, or the
currant measure value.

Figure 3-17. Scaling the Comparison to Other Projects
Plotting Area

170

Section 3--Functionality

3.2.5.2 Plot Actual Data for Current Project

Purpose

Plots the actual data values of the measure of interest from project start through the current

date as a percentage of the normal completion value. Adds labels to the plot to identify the
percentages for the actual measure value to date, the normal measure value at completion,
and the planned completion value.

Required Data

• Normal completion value
• Current schedule
• Current estimates

• Measure data (for measure of interest)

(input value)

Steps

1. Initialize the starting point for plotting the actual measure data as a function of week

number to indicate the measure value is zero at week number zero using

X- Value[O] = 0 and Y-Value[O]= 0

2. For each entry in the measure data through the current date, set the x and y values of

the next point to plot to the week number of the sampIe date and its corresponding

measure value as follows:

X-Value[i] = Week(i) and Y-Value[i] = Measure Value[i]

for the i_ entry in the measure data, where Week(i) is the relative week number of the t_thentry

3. Scale each y value to reflect the actual measure value expressed as a percentage of

the normal completion value for the measure using

Y-Value[i] = (Y-Value[i]� Normal ValuecompleOon)* 100

4. Plot the percentages computed for the actual measure data by week number, from 0

through the current week N, as a step function (i.e., between any two points plot the

rise and then the run)

5. Label the x-axis with the project start and end dates from the current schedule.

6. Use Get Estimated Completion Value with the current estimates to obtain the

manager's planned completion value for the measure (Planned Value completion). Scale

the planned completion value to express it as a percentage of the normal value at

completion using

Planned Percentcompletion = (Planned Valuecompletion/ Normal Valuecompletion)* I00

7. Label the manager's planned completion value for the measure as a percentage at its

correct height on the right side of the plotting area. (Planned Percentcompletion)

171

Section 3--Functionality

. Label the actual measure value observed on the current date as a percentage of the

normal completion value at its correct height on the right side of the plotting area.
(Y- Value[N])

Current 1Schedule 02/01/91

Reported Errors for Project1

as a Percentage of Normal Completion Value

l_a,_ 0_1 (:1/93

117"/. Planned

100% Normal

170/. Actual

STEPS

1. The x-values are set to

successive week numbers,
while the y-values are set to
each week's corresponding
measure value.

2. The y-valuas are scaled to
reflect the actual measure

value expressed as a
percentage of the normal
completion value.

3. The points are plotted as
a step function.

4. The manager's planned
completion value is scaled to

a percentage of the normal
completion value for the
measure and displayed.

Figure 3-18. Plotting Actual Values as a Percentage of the
Normal Completion Value

172

Section 3--Functionality

3.2.5.3 Select a Comparison Project

Purpose

Allows the user to select a project from a list of comparison projects that have data for the
measure of interest. Identifies appropriate models, as needed, for the selected comparison
project whenever the project has different project characteristics from the current project of
interest.

Required Data

• Project/measure availability list
• Project characteristics (for selected comparison project)
• Project characteristics (for current project of interest)

Steps

l. Examine the project/measure availability list to obtain a list of all projects that have

measure data for the measure of interest.

2. Display the list of potential comparison projects and permit the user to select a project

from the list.

3. Obtain the characteristics of the selected project from its project characteristics data.

4. Concatenate the characteristics to produce a project type that identifies the

appropriate models for the comparison project.

5. If the project type of the comparison project differs from that of the current project,

identify and locate suitable models for temporary use with the comparison project.

Project/Measure IAvailability List

Name CPU EFF RER

Proj_l T
Projed2 T
Project3 F
Project4 T
Prcjec(5 F

Pr_,

I Compariso_Pro_'ts 1withRERdata

.... [. . .P.rd_ l . . ,

I;...P.=_....:

Z Pr°led4

CaJrrerdMeasure _"
isReportedErrors I

(PER))

STEPS

1. A list of all projects
having data for reported
errors is generated. The
user selects a project from
this list.

2. Once the user selects a

project, a project type is
generated from the project
characteristics of the

comparison project.

3. If the project type of the
comparison project differs
from that of the current

roject, suitable models are
entitled and located for use

with the comparison project.

Figure 3-19. Selecting a Comparison Project

173

Section 3--Functionality

3.2.5.4 Plot a Comparison Project for a Measure

Purpose

Plots the actual data values for a comparison project of the measure of interest as a

percentage of its normal completion value. Scales the duration of the comparison project to
match the planned duration of the current project of interest.

Required Data

• Planned duration in weeks (for current project of interest)
• Current schedule (for selected comparison project)
• Current estimates (for selected comparison project)
• Measure data (for selected comparison project)
• Estimate set model (for selected comparison project)

Steps

(input value)

1. Initialize the starting point for plotting the actual measure data of the comparison

project as a function of week number to indicate the measure value is zero at week

number zero using

X-Value[O] = 0 and Y-Value[O] = 0

2. For each entry in the measure data of the comparison project, set the x and y values of

the next point to plot to the week number of the sample date and its corresponding
measure value as follows:

X-Value[i] = Week(i) and Y-Value[i] = Measure Value[i]

for the I_h entry in the measure data, where Week(i) is the relative week number of the ith entry

3. Calculate the number of weeks between the project start and end dates found in the

current schedule for the comparison project (Number Of Weeksrotal).

4. Scale each x value to force the duration of the comparison project to match the input

planned duration of the current project of interest using

X-Value[i] = X- Value[i] * (Planned Duration project Of Interest / Number of WeekS Total)

5. Use Get Project Magnitude with the current estimates to obtain the measure and

estimated completion value for that measure which is most indicative of the

comparison project's magnitude.

6. On the basis of that magnitude, use Determine Normal Estimate Set with the estimate

set model to create a normal set of estimates for the comparison project.

7. Use Get Estimated Completion Value with the normal estimates to obtain the

comparison project's normal completion value for the measure (Normal Valuecompleaon).

8. Scale each y value to reflect the actual measure value expressed as a percentage of its

normal completion value for the measure using

Y-Value[i] = (Y-Value[i] / Normal Valuecomple_on) * 100

174

Section 3---Functionality

9. Plot the percentages computed for the actual measure data by its scaled week number,

for each data point 0 through N.

I Current 1Estimates

Reported ErrorsforProjectl

IOO wNk.s

100% Normal

1 325 e_rom

STEPS

1. The x-valuas are set to
successive week numbers,

while the _,.,values are set to
each week's measure value.

2. The duration of the

comparison project is scaled
to match the current project.

3. Based on the comparison

project's magnitude, a
normal set ot estimates is
created for it.

4. The normal completion
value for the comparison

project's measure is ob-
tained from the estimates.

5. The y-values are scaled to
a percentage of the compar-
ison project's normal value

and plotted.

Figure 3-20. Plotting Comparison Project Values for a
Measure

175

Section 3---Functionality

3.2.6 Prediction

Purpose

Forecasts the probable completion date and the expected completion value of a
fundamental software development measure for a given project.

Description

The prediction function forecasts the probable future behavior of the measure of interest for
the current project. To accomplish this, the SME fits schedule and measure models of

typical project behavior to the actual data collected for the project. The results are depicted
as an extension to the observational plot for the current measure with predicted data values
shown through a predicted completion date.

.... Note that predictions may be
made for any measure of

1005/91

500

400

3OO

2O0

100

05/23/_

Reported Errors for Project1

DESGN cotter [S_STE; ACCrE

525 P/_ned

,/" I I

10/1 2,'g2 o3_ _v_ os#s_3 o_z_s,_

interest defined by the SME
provided actual data has been
collected for that measure.

The figure shows a
representatave prediction of

.................... a sample
project. This example
indicates that the SME

expects the project to finish 3
weeks behind schedule with

approximately 83 fewer

errors than currently planned.

Figure 3-21. Representative Prediction

Required Information

• Project start date (current schedule)
• Actual data values for the measure of interest (measure data)
• Model of the schedule for similar projects (schedule model)
,, Model of the measure of interest for similar projects (measure model)
• Estimate of the life-cycle phase on a given date (phase estimate)

Key Steps

1. Obtain a phase estimate to serve as the basis for making the prediction.
2. Predict the probable completion date of the project.
3. Predict the expected measure value at project completion.

4. Predict the future measure values expected through project completion.

176

Section 3--Functionality

3.2.6.1 Obtain a Phase Estimate

Purpose

Obtains a phase estimate, based on any one of three discrete methods, that identifies where
the project was in the development life cycle on a specific date.

Required Data

• Current schedule
• Current estimates

• Measure data (for each measure)
• Schedule model

• Measure model (for each measure)

(Methods 1 and 2)
(Method 1 only)

(Method 1 only)
(Method 1 only)
(Method 1 only)

Steps

1.

.

°

Use Method 1 to analyze all available measures and calculate an overall average

phase estimate for the current date.

Use Method 2 to examine the current schedule and derive a phase estimate from the

most recently completed phase prior to the current date.

Allow the user to select the phase estimate resulting from either Method 1 or

Method 2, or let the user interactively specify the values for the phase estimate

(Method 3).

Note: To serve as a valid basis for a prediction, a phase estimate must satisfy two
requirements. First, the date specified in the phase estimate must be between the project start
date and the current date. Second, the value of the measure of interest as of the date

specified in the phase estimate must be non-zero. These requirements ensure the existence of
an objective measurement that can be extrapolated into the future.

DESGN

11/21/87

Figure 3-22.

CODET SYSTE ACCTE

On 04/07/89, the project was
50 percent _rough _e

Coding & Testing phase.

041O7/89 09/159O

Sample Phase Estimate

NOTE

The figure depicts a sample
phase estimate for an
ongoing project. The phase
estimate consists of a
specific date, the life-cycle

phase on that date, and the
completed percentage of that
phase. Non-zero measure
data should exist on the

specified date before the
phase estimate can be used
m a prediction.

Notice that the date specified
does not fall exactlyin the
middle (at 50%) of the
CODET phase, but instead
indicates that the project is
slightly behind schedule.

177

Section 3--Functionality

Method 1--Calculated by the SME Usinq Phase Analysis

For each available measure, calculate the week number corresponding to the phase at which
the measure normally attains its current value as follows:

1. Determine the current value for the measure from the project's measure data.

2. Determine the expected completion value for the measure from the project's estimates
data.

3. Use Convert Measure to Phase with these valuesto obtain the phase and fraction of

phase that is characteristic of the measure's current value from the measure model.

4. Given the project start and end dates from the current schedule, use Convert Phase to

Date on the schedule model to determine the calendar date that matches the

calculated phase and fraction of phase.

5. Compute the relative week number of this date as the number of weeks between the

project start date and the calendar date (Week Number[i]).

Note: A measure must meet three conditions to be considered an available measure for

this algorithm. These conditions are (1) data must exist for the measure as indicated by

the project/measure availability list, (2) the expected completion value for the measure

contained in the current estimates must be non-zero, and (3) the current value of the

measure must show a positive trend by exceeding 10% of its estimated completion value.

Schedule

Reported Errors for Project1

I0_._91 06/1:3_ 0_I_ 04r_4/o_ 12/25/93

! ! g
DE:_GN = CODET SY_TE ACCTE

be atlz_ed at _a_

"__: J _ H._,li _Measure II l_J_u=

.| J i
! w e
! ! |

l

_ 1 _ I_5,1_

w_vx4o

STEPS

1. The current value for the
measure is 168.

2, The expected completion
value for the measure is 525.

3. The measure model

indicates that this value,
relative to the expected
completion value, is
characteristic of 25%

through CODET.

4. The schedule model

indicates that, relative to the
project start and end dates,
25% through CODET would
be 8/27/92, or 40 weeks from

the project start date.

Figure 3-23. Phase Analysis for One Measure

178

Section 3---Functionality

Using the intermediate results calculated for each available measure above, obtain an overall
averaged phase estimate for the current date as follows:

1. Average the week numbers computed for each available measure as indicative of the

project's phase using
K

Average Week ,, (i_=1=WeekNumber[i]) / K

where i refers to the available measures 1 through K

2. Obtain the calendar date corresponding to the averaged week number by adding it to

the project start date.

3. Given the project start and end dates from the current schedule, use Convert Date to

Phase on the schedule model to determine the average phase and fraction of phase

that matches this calculated calendar date.

4. Set the phase estimate to reflect the averaged phase and fraction of phase as of the

current date.

I Schedule IModel |

Measure Week DESC-:-_ I COOEr I SYSTE I ACCTE

EFF 6O I
CPU 56 I
RUN 40 I
MOO 50 I
LOC _ I
MCH 48 |
RCH 47 I
RER 49 I

10/05i91 + 12/25/¢_
Averageweek:50

w-as50pen:_or_t_ _h il'_e
CodeandIJnitTestPhase.

STEPS

1. The average week
numbers computed for each
available measure indicates

week 50 of the project.

2. The calendar date corre-

sponding to the averaged
week number is 11/13/92.

3. The calendar date, relative
to the start and end dates for

the project, is characteristic
of 50% of CODET.

4. The phase estimate is set
to 50% of CODET.

Figure 3-24. Averaging Phases from All Available Measures

179

Section 3---Functionality

Method 2--Derived from the Current Schedule

Assuming that the project's schedule is accurate and up-to-date, obtain the phase estimate
from the current schedule as follows:

1. Identify the most recently completed phase prior to the current date by iteratively

using Get Scheduled Phase Dates on each phase in the current schedule to locate the

last phase whose end date satisfies the following

Phase End Date [k] <= Current Date

2. Set the phase estimate to reflect that the identified phase was 100% complete on its
scheduled end date.

OESON

Reported Errors for Project1
0_13R_3 04/24R_ 12,25._

CODEr SYSTE ACCTE

p

irD_A_W

12r_

......... _m. _IL

J_ STEPS

1. The most recently
completed phase pr, or to
10/12/92 is the design phase.

2. Assuming the schedule is
accurate and up-to-date, set
the phase estimate to show
the design phase was 100%
complete on its scheduled
end date.

Figure 3-25. Deriving a Phase Estimate from the Current
Schedule

180

Section 3--Functionality

3.2.6.2 Predict Completion Date of Project

Purpose

Predicts the probable completion date of a project on the basis of the amount of time actually
expended through a known point in the project's life cycle.

Required Data

= Phase estimate
• Current schedule
• Schedule model

(input value)

Steps

l. Calculate the actual number of weeks from the project start date in the current

schedule through the reference date in the phase estimate (Actual weogsro Date.).

2. Using the schedule model, calculate the fraction of the total project duration normally

expended through the reference phase and fraction of phase in the phase estimate as

k-1

Normal Fraction of DurationTo Date = 2 Fraction of Durationln Phase [i]

i= I + F * Fraction of Durationln Phase [k]

for the k th phase and an elapsed fraction of phase equal to F

3. Linearly extrapolate the total number of weeks expected to be required to complete

the project as

Predicted Weeksrota I = Actual Weeksro Date / Normal Fraction of DurationTo Date

4. Obtain the predicted completion date by adding the total number of weeks predicted

to the project start date.

I Current I 0Schedule 10/05/91

v

49 weeks to date
.................... O

I OnOP/12/92,_eprojoctvcas 1
50 percent _rough the

Coding & Testing phase.

l
I I v I ! I

DESGN CODEr SYSTE ACCTE
25.3% 35.8*/0 17.7"/. 21.2%

43.2% to date

_f Predicted Duration is 114 weeks i

l or _brough 12/11,,93 J
v

STEPS

1. Based on the project start
date of 10105/91, the actual

time elapsed through
09112/92 is 49 weeks.

2. Based on the schedule

model, the normal amount of
time expended through 50%
of the CODET phase is 43.2%
of the total project duration.

3. Extrapolating from this,
the total duration may be
predicted as 114 weeks(i.e.,
49 weeks divided by 0.432).

4. Adding 114 weeks to the
start date of 10105/91 results

in a predicted completion
date of 12/11/93.

Figure 3-26. Predicting a Completion Date

181

Section 3_Functionality

3.2.6.3 Predict Measure Value at Completion

Purpose

Predicts the expected measure value at project completion on the basis of the value of the
measure actually observed at a known point in the project's life cycle.

Required Data

• Phase estimate
• Measure data
• Measure model

(input value)

Steps

1. Obtain the actual cumulative value for the measure on the reference date in the phase

estimate from the measure data (Actual MeasureTo Date).

2. Use Convert Phase to Measure to determine the fraction of the total measure

tabulated in the measure model as normally observed through the reference phase and

fraction of phase in the phase estimate (Normal Fraction otMeasuroTo Oats).

Note: Specify an expected completion value of 1.0 for Convert Phase to Measure to

obtain fractional, as opposed to absolute, measure values for the phase.

3. Linearly extrapolate the measure value to be expected at project completion as

Predicted MeasureTota I = Actual MeasureTo Date / Normal Fraction of MeasureTo Date

DEaN

/

CODET

I

SYSTE ACCTE

r

f
I

......... I

1.00

0.38

Reported Errors

10/04/91 0 errors

10/11/91 O errots

10/18/91 O etrots

i I lOn I0/12/92, the project was

50 p_c_t through ffTe
Coring & TesO"ngphase.

STEPS

1. Based on the measure

data for the project, the
actual cumulative value for

the measure through
10/12/92 is 168 errors.

2. Based on the measure

model for errors, the number

of reported errors normally
seen through 50% of the

CODET phase is 38% of the
total number expected at
project completion.

3. Extrapolating from these
values, the totalnumber of
reported errors at project
completion may be predicted
as 442 errors (i.e., 168 errors
divided by 0.38).

Figure 3-27. Predicting a Measure's Completion Value

182

Section 3---Functionality

3.2.6.4 Predict Intermediate Values Through Completion

Purpose

Calculates predicted data values for the measure between the date specified in the phase

estimate and the predicted completion date.

Required Data

• Phase estimate

• Predicted completion date
s Predicted measure value at completion
• Current schedule
a Schedule model
• Measure model

(input value)
(input value)
(input value)

Steps

For each data point to be predicted between the date specified in the phase estimate and

the predicted completion date, the SME performs the following computation:

1. Given the project start date and the predicted completion date, use Convert Date to
Phase with the schedule model to translate the date of the desired data point into a

phase and fraction of phase.

2. Given the phase and fraction of phase matching the desired date and the predicted

measure value at completion, use Convert Phase to Measure with the measure model

to determine the predicted measure value to expect at that point in the life cycle.

Note: Conceptually, this algorithm would be used to predict values for each week. In
reality, however, one need only address points matching the granularity of the models.

10/12/92 12,04/93

v
114 weeks

4t42 errors

I Predicred 1Data

PredictedErrors

10/12/92 168 errors

10/19/92 175errors

10/'Z6/92 181 errors

STEPS

1. Scale the schedule model
to 114 weeks on the basis of
the p.roject start date and the
predicted completion date.

2. Use the scaled schedule
model to obtain the date,

haSe, and fraction of phase
r each desired data point

from 10/12/92 through
12/4/93 (predicted
completion date).

3, Multiply the fractional
value found in the measure
model for that time by the
predicted completion value
of 422 total errors to get the
predicted measure value for
the point.

Figure 3-28. Predicting a Measure's Intermediate Values

183

Section 3---Functionality

3.2.7 Trend Analysis

Purpose

Displays a list of possible reasons to explain an observed deviation in the measure of
interest for the current project.

Description

The trend analysis function uses expert systems techniques to identify the probable causes of
a deviation in the measure of interest. The analysis compares the current value of the
measure to a model of the measure and determines if the measure's value is within an

acceptable range of its expected value. If the measure falls outside of the acceptable range,
the function uses captured management experience to evaluate various known information
about the project and to reach conclusions to explain the deviation. The SME supports two
discrete approaches for performing the analysis, a knowledge base used with individual
measures and a rule base used with ratios of measures.

06/13_2 01t13/93 04/24_3 1;_5_g3

The figure illustrates trend
analysis of a measure of
interest. This example shows
a list of probable causes of a
lower than normal value for

reported errors. Since the
measure of interest is a single
measure, the knowledge base
is used to consider not only
the current measure, but also
other measure values and

subjective data, in reaching
these conclusions.

If the measure of interest is a

ratio of two measures, the
rule base is used instead of

the knowledge base.

Figure 3-29. Analyzing Trends in a Measure of Interest

Required Information

• Management experience for interpreting trends

• Actual data values for the available measures

• Planned schedule for the project
• Planned completion values for measures
• Models of measure behavior for similar projects
• Model of the schedule for similar projects

(knowledge base,
rule base)

(measure data)
(schedule data)
(estimates data)
(measure models)
(schedule model)

184

Section 3_Functionality

• Model of completion estimates for similar projects (estimate set model)
• Subjective information about the project (subjective data)

Key Steps

1. Use the knowledge base to analyze trends if the measure of interest is one
measure.

2. Use the rule base to analyze trends if the measure of interest is a ratio of
measures.

185

Section 3_Functionality

3.2.7.1 Analyze Trends for a Single Measure of Interest

Purpose

Uses the management experience captured in the knowledge base to identify and display the
probable causes of an observed deviation in a measure from its expected value.

Required Data

• Knowledge base
• Measure data (for all measures)
• Current schedule
• Current estimates

• Measure models (for all measures)
• Schedule model
• Estimate set model

• Subjective data

Steps

1.

.

,

Use Rate Objective Factor to rate the current value of the measure of interest as

either high, low, or normal with respect to its expected model guidelines. (Treat the

measure of interest as an objective factor defined in the knowledge base.)

If the resultant rating is normal, indicate that trend analysis can not be performed

when the measure of interest is within the acceptable range of normal values and quit.

For each reason in the knowledge base that applies to the observed deviation in the

measure of interest (either lower or higher than normal), use Evaluate Reason to

assess the probable validity and relative merit of the reason.

4. Sort the applicable reasons for the deviation by their computed relative ranking.

.

Note: As computed by Evaluate Reason, a positive value for actual rank indicates

the reason is a likely cause of the deviation in the measure. A zero value for actual

rank indicates the reason is a potential cause of the deviation, but the evaluation was

inconclusive. A negative value indicates the reason is not a likely cause.

Translate the encoded reasons into descriptive text, using the knowledge base's list of

explanations, and display the sorted list of reasons and rankings for the user.

186

Section 3--Functionality

I KnowledgeBase

Dee/mllo_

C,PU_h_

Rank

RE_tAo 5

P_:t/Io 10
PEPAo 10

Rb"RAo 15
20

F_5=t_o 3O
REP.4o 4O

Cau_ Rarm9 and Fa<_0r

k:_ prot_m_ifk:,_ty
h_h r,_xce_mod_e_reus_ameunt

-5_0
Normal 0.0

6.7
_1._r,c_ar_re_tYdevbw,_q_rW_e H_ _0.3

I F_ En.orsaroB#,owNom_,albecause:
10.3

3. Re6able so4'0_ee _.'7

_) STEPS

1. if reported errors (RER)
are observed to be "Low,"a
total of seven reasons can
be found in the knowledge
base to match that deviation.

2. Each possible reason,
identified as a causal rating
and factor pair, is evaluated

to produce the reason's
actual rating and rank (e.g.,
low system testing/amount
is indeed "Cow" with a rank

of 20.0).

3. The explanations that

correspond to reasons with
the highest actual rank are

displayed for the user in
descending rank order as
likely or possible causes.

Figure 3-30. Analyzing Trends Using the Knowledge Base

187

Section 3_Functionality

3.2.7.2 Analyze Trends for a Ratio of Two Measures

Purpose

Uses the management experience captured in the rule base to identify and display the
probable causes of an observed deviation from the expected value in a ratio of two measures.

Required Data

• Rule base

• Measure data (for all measures)
• Current schedule

• Measure models (for all measures)
• Schedule model

• Estimate set model

Steps

1. Use Determine Rate for Rules to rate the current value of the measure of interest (the

ratio of the two measures) as either high, low, or normal with respect to its expected
model guidelines.

2. If the resultant rating is normal, indicate that trend analysis can not be performed

when the measure of interest is within the acceptable range of normal values and quit.

3. Use Determine Phase for Rules to identify the life-cycle phase that should correspond
to the current date. (The result will be stored as the ftrst assertion in a list for

subsequent use in evaluating rules.)

4. For each of the nine specific ratios of measures referenced by the rule base, use

Determine Rate for Rules to determine if the ratio is above, below, or within the

range of values normally expected on the current date. (The results will be stored in

the assertion list for later use.)

Note: The nine ratios of measures referenced are RUN/LOC, CPU/LOC, RCH/LOC,

EFF/LOC, CPU/RUN, RCH/RUN, EFF/RUN, CPU/RCH, and EFF/RCH.

5. Use Evaluate Rule to evaluate each rule captured in the rule base and conditionally
determine the applicability of the rule's interpretations. (Each rule that evaluates to

true will have its interpretations stored in the assertion list.)

6. Sort the interpretations contained in the assertion list by their calculated certainties.

7. Translate the encoded interpretations into descriptive text, using the rule base's list of

explanations, and display the sorted list of interpretations and certainties for the user.

188

=

Section 3--Functionality

Assedlons

Ph_e

RaM

_af_s

----I=,-

TIME _ T_
L_ _d

E]_ _ _

CPU&_ _al

0.75O
0.500

0.875
025O

NB_ 025O

O.25O
RTCM 0.250

_ H_hComp_ty 0.TS0.50

. o.2s
5. Neenbuik:lcamlle_toned_B 0.25

6. Ea_erm_xo'umg_ 025
7. FV_ey_ar,_wtod_b_3ch_ 02S

Figure 3-31. Analyzing Trends Using the Rule Base

STEPS

1. If the current ratio of

measures is deviating, from
normal, the rule base is
evaluated.

2. Evaluating the rule base

(i.e., getting the current
phase, evaluating nine given
ratios of measures, and
evaluating each rule in the
rule base) results in a set of
assertions.

3. In the assertions, each
interpretation {e.g., a code of
EPC and a certainty of 0.875)
is the result of one or more
rules that were true.

4. These encoded interpreta-
tions ere translated, ordered

by decreasing certainty, and
dmsplayed as conclusions to
explain the deviation.

i

189

Section 3--Functionality

3.2.8 Profile Analysis

Purpose

Displays a distribution of the actual values recorded to date for the measure of interest
within two or more discrete categories that constitute a def'med profile.

Description

The profile analysis function lets users examine profile data associated with the measure of
interest for the current project. Each set of profile data serves to break down the actual

values of the measure into discrete categories. In effect, each profile constitutes one way of
categorizing and viewing the measure's values in additional detail. Furthermore, multiple
defined profiles may exist for a given measure. (The number of reported changes, for
example, could be categorized based on the amount of effort required to implement the
change, as well as based on the reason for the change.) The user may select any profile
associated with the current measure for which profile data exists. Once a profile of interest is
selected, the function obtains the current measure values in each category, the expected
profile values on the current date, and the estimated prof'de values at project completion.
The results are depicted graphically as a bar chart showing the distribution of values over the
profile's defined categories.

Profile of 'Effort _o Cotroet Errors' for Project1

|

"7,5 :

o

)

)_

i I f_ [

Key:

i

80.0_0.0 40,0 _0.0

% o/'Repoa_ _o_' _imale

The figure illustrates profile
analysis of a measure of

interest. This example shows
a profile of the number of

reported errors categorized
into five bins by the amount
of effort required to correct
the error. For errors taking
less than 1 hour to correct,
the display indicates that (1)
as of the current date 60

errors have been reported in
this category while 55 errors
are normally expected and
(2) at project completion one
should expect 84 errors in
this category or 63% of the
total.

Figure 3-32. Analyzing Profile Data for a Measure

Required Information

• List of available profiles for the project

• Actual data values for the available profiles
• Planned schedule for the project

(project/profile
availability list)

(profile data)
(schedule data)

190

Section 3_Functionality

• Planned completion values for measures
• Models of profile behavior for similar projects
• Model of the schedule for similar projects

• Model of completion estimates for similar projects

(estimates data)
(profile models)
(schedule model)
(estimate set model)

Key Steps

1. Let the user select a profile defined for the current measure of interest.
2. Obtain the selected profile's actual and expected values for the current date and its

estimated values at completion.
3. Display the distribution of values in each of the profile's defined categories.

191

Section 3---Functionality

3.2.8. 1 Select a Profile of Interest

Purpose

Allows the user to select a profile of interest from the list of all available profiles associated
with the current measure.

Required Data
=

• Project/profile availability list

Steps

l. Examine the project/profile availability list to identify all profiles associated with the

measure of interest that have data for the current project.

2. Display the list of available profiles and permit the user to select a profile of interest
for subsequent examination.

3. Locate the selected profile data and profile models for the project.

Project: PROJECT1

k
Measure: RER

Project/Profile

AvailabilityUst I I RER1 I RER21 ""l["T I _ I...I

AvailableProfiles

for_

RERI - Effod to Isolate Error

RER2 - Effod to Correct Error

STEPS

1. The profile availability list
is examined to identify what
profile data, associated with
the measure of interest, is
available for the current
project.

2. The list of available

profiles is displayed and the
user selects one of the
profiles.

3. The selected profile data
and models are located.

Figure 3-33. Selecting an Available Profile

192

Section 3--Functionality

3.2.8.2 Obtain A ctual and Normal Pro file Values

Purpose

Obtains a profile's actual and expected values for the current date and its estimated values at

project completion.

Required Data

• Current project date
• Profile data (for profile of interest)
• Current schedule
• Current estimates

• Profile model (for profile of interest)
• Schedule model
• Estimate set model

(input value)

Steps

1. Obtain the actual values observed through the current project date for the profile of

interest in each of its defined categories (Actual ProfileTo Date[i]).

2. Use Get Project Magnitude with the current estimates to obtain the measure and

estimated completion value for that measure which is most indicative of the project's

magnitude.

3. On the basis of that magnitude, use Determine Normal Estimate Set with the estimate

set model to create a normal set of estimates for the project.

4. Use Get Estimated Completion Value with the normal estimates to obtain the normal

completion value for the profile's measure (Normal Measure ValuecompleOon).

5. Use Get Project Dates with the current schedule to obtain the project start and end

date.

6. Given the project start and end dates, use Convert Date to Phase with the schedule

model to translate the current project date into a phase and fraction of phase.

7. For this phase and fraction of phase, use Convert Phase to Profile Measure with the

profile model, specifying the normal measure value at completion as an input scaling

factor, to determine the expected profile values for the current date

(Expected ProfileTo Date [i]).

8. Given the project start and end dates, use Convert Date to Phase with the schedu]e

model to translate the project end date into a phase and fraction of phase.

9. For this phase and fraction of phase, use Convert Phase to Profile Measure with the

profile model, specifying the normal measure value at completion as an input scaling
factor, to determine the estimated profile values at project completion

(Estimated Profile cornple_on [i]) .

193

Section 3--Functionality

I Effor_to Co_ect Error

i48 11:0

I

i

toOa_ 60 15 0 I 0 0

t.O
/

,. .,J

Is, !

4 I 1 0

9 I 3 0

Estimates

NormaH:_R at end. 135

To_

75

82

135

STEPS

1. Based on the project's
magnitude, a normal set of
estimates is generated.
From this set of estimates,
the completion estimate of
135 errors is obtained.

2. The current project date,
3/20/93, is converted to a
phase and fraction of phase.

3. The expected value for
each profile component on
the current project date is
calculated.

4. Using the phase and frac-
tion of phase of the project's
end date, the expected com-
pletion value of each profile
component is calculated.

Figure 3-34. Obtaining Actual and Normal Profile Values

194

Section 3--Functionality

3.3 OVERALL ASSESSMENT

The SME enables the user to view the results of an overall project assessment of high-level

quality attributes such as correctability, maintainability, and reliability. The function uses
current project data along with algorithms to compute a rating for each quality attribute. The
SME compares a project's objective data with models and, based on the comparisons, assigns
a relative value to each one in a series of factors. Combinations of these factors are in turn

evaluated to produce the attributes' overall relative quality indexes.

Table 3-4 summarizes the major functions supported by overall assessment and identifies

each function's purpose.

Table 3-4. Overall Assessment Services Functions

FUNCTION

Attribute Evaluation

Attribute Factor Examination

PURPOSE

Lets user perform an overall assessment of project quality
attributes
Lets user investigate the reasons the SME computed a
particular attribute rating

The following sections provide additional detailed information on each of these functions.

195

Section 3--Functionality

3.3.1 Attribute Evaluation

Purpose

Assigns and displays ratings of quality attributes using objective measurement data
collected for the project.

Description

The attribute evaluation function uses current project data along with models and an

evaluation algorithm to compute a relative value for each attribute. The values can range
from negative to positive, with zero being the normal relative index. The results of the

evaluation are depicted graphically as a series of vertical bars, with one bar representing each
attribute. Each bar is labeled with the result of the associated attribute's evaluation.

+10

0

Attribute Assessment for Project1

Attn'butes

8.9

8.5

Correctabi_ Mair_a_nablity

The figure shows a

representative project
attribute evaluation graph.
This example depicts the
evaluation of two attributes,
correctability and
maintainability. The
correctability and
maintainability attributes
have been evaluated at 8.5

and 8.9, respectively.

Note that the scale in the

figure ranges from a low
rating of-10 to a high rating
of + 10, with zero considered
normal.

Figure 3-35. Evaluating Project Attributes

2

Required Information

• List of attribute and factor definitions
• Actual data values for the available measures

• Actual data values for the available prof'des
• Models for the available measures

• Models for the available profiles

Key Steps

1. Compute the relative values for each attribute.
2.

(attribute def'mitions)
(measure data)
(profile data)
(measure models)
(profile models)

Scale, display, and label the vertical bar graph in the plotting area.

196

Section 3_Functionality

3.3.1.1 Compute Relative Attribute Values

Purpose

Evaluates all defined attributes and computes their relative values.

Required Data

• Attribute definitions
• Measure data
• Profile data
• Measure models
• Profile models

(in Assess Attribute)
On Assess Attribute)
(in Assess Attribute)
(in Assess Attribute)

Steps

For each attribute defined in the attribute definitions:

1. Use Assess Attribute tO calculate a relative rating for the specified project quality

attribute.

Note: The algorithm in Assess Attribute relies (1) on Evaluate Actual Factor Value to

evaluate the function defined for any underlying factors using actual project data

values and (2) on Evaluate Expected Factor Values to evaluate the function defined

for any underlying factors using normal model values. The results of these

evaluations are combined and scaled to produce a relative rating for each attribute.

-,_I I
i i I I

P_ I o I I IEvaluaTionJI Iol I _. 8.,_
,o_,,Io I° I,. J. -
It_I_/911 o I " I "_ • /If
'_'_I° I 'I -'- -"
• I• I,_I f l

STEPS

1. Based on the measure
data for the project, the
actual cumulative value for
the measure through
10/12/92 is 168 errors. Based
on the profile data for the
project, 163 of these
reported errors were isolated
in less than I day, and 165 of
these errors were corrected
in less than I day.

2. Using information in the
attribute definitions, these
values are used to produce
an attribute evaluation of
8.46 for correctability.

Figure 3-36. Computing Attribute Values

197

Section 3--Functionality

3.3.1.2 Scale and Display Attribute Bar Graph

Purpose

Scales and displays project attribute values and generates the plot axes, labels, and title.

Required Data

• Attribute definitions
* Attribute values

Steps

1.

.

.

4.

(input values)

Scale the plot's x-axis to the number of attributes, represented by vertical bars, to be
displayed for the project.

X-Axis Scale = Number of BarSTota 1

Set the plot's y-axis on a scale based on the minimum and maximum attribute values,
with the average y value considered normal.

Y-Minimum = Bar ValueMinimu m

Y-Maximum = Bar ValueMaximu m

Y-Axis Range = Bar ValueMaximu m - Bar ValueMinimu m

Normal Y-value = (Bar ValueMaximu m + Bar ValueMinimum) / 2

Display the basic plotting area with appropriate axes, labels, and title.

Display and label vertical bars, and display respective attribute values.

+10

-10

Attrl0ute Assessmer_ for Project I

Correctabgity Maintainability

T
2O

Figure 3-37. Displaying a Bar Graph of Attribute Values

_) STEPS

1. Based on the information
in the attribute definitions,
there me two attributes to be
displayed.

2. The minimum and
maximum values contained
in the factor definition list
are -10 and +10, respectively.
This defines a range of 20,
with 0 being normal.

3. The basic plot is
displayed on the screen with
titles and labels.

4. The vertical bars are
displayed on the screen,
along with associated
attribute values and labels.

198

Section 3--Functionality

3.3.2 Attribute Factor Examination

Purpose

I Displays ratings for factors that contribute to a particular attribute evaluation.

Description

The attribute factor examination function generates a vertical bar graph displaying the factors

that were analyzed in arriving at the relative index of a given attribute.

The figure shows a

representative project
attribute factor graph. This

example depicts the display

Factor_x_,_o_p,_,_l of two factors, percentage of
+1o _ ,_o0 errors isolated in less than 1day, and percentage of errors

corrected in less than 1 day.

The factors have been rated

at 5.83 and 11.09,o respectively.

Note that the scale in the

figure ranges from a low

rating of -10 to a high rating.lo of +10, with zero considered
*/.Errors isolat_l _'._ors corrected

within 1 day within 1 da_ normal.

Figure 3-38. Examining Project Attribute Factors

Required Information

• List of attribute and factor definitions
• Actual data values for the available profiles
• Models for the available profiles

(attribute definitions)
(profile data)
(profile models)

Key Steps

1. Scale, display, and label vertical bar graph in plotting area.

199

Section 3--Functionality

3.3.2.1 Scale and Display Factor Bar Graph

Purpose

Scales and displays attribute factor values and generates the plot axes, labels, and title.

Required Data

• Attribute definitions
• Attribute factor values

steps
1.

(input values)

Scale the plot's x-axis to the number of factors, represented by vertical bars, to be
displayed for the project.

X-Axis Scale = Number of BarSTotaI

2. Set the plot's y-axis on a scale based on the minimum and maximum factor values,
with the average y value considered normal.

Y-Minimum = Bar ValueMinimu m

Y-Maximum = Bar ValueMaximu m

Y-Axis Range = Bar ValueMaximu m . Bar ValUeMinimu m

Normal Y-value = (Bar ValueMaximu m + Bar ValuaMinimum) / 2

3. Display the basic plotting area with appropriate axes, labels, and title.

4. Display and label vertical bars, and display respective factor values.

+10

-10

Figure 3-39.

Factor Examination for Project1

>100

°/,Erro_ isolate, %Erromcorrecled
within1day within1day

2O

l
Displaying a Bar Graph of Factor Values

RI

STEPS

1. Based on the information

in the •ttribute definitions,
there are two factors to be

displayed.

2. The minimum and

maximum values contained
in the factor definition list

are-10 and +10, respectively.
This defines a range of 20,
with 0 being normal.

3. The basic plot is
displayed on the screen with
titles and labels.

4. The vertical bars are

displayed, along with
aasoclated factor values and
labels.

200

Section 3--Functionality

3.4 PLANNING

The SME enables the user to select, create, and modify alternative plans. An alternative plan
consists of a schedule and a set of completion estimates. Alternative plans are created and

modified by the user to investigate the effects of changing schedules and estimates. Project

plans are used by the monitoring and assessment functions. The user can see the results of
using an alternative plan by reexecuting these functions.

Table 3-5 summarizes the major functions supported by the planning feature and identifies

each function's purpose.

Table 3-5. Planning Services Functions

FUNCTION PURPOSE

Use of Alternative Schedules Lets user modify phase start and end dates
Use of Alternative Estimates Lets user modify estimated completion values

The following sections provide additional detailed information on each of these functions.

201

Section 3--Functionality

3.4,1 Use of Alternative Schedules

Purpose

Lets the user modify the phase start and end dates specified in the current schedule for use
in "what-if" scenarios.

Description

A schedule is a list of serial, non-overlapping phases and their start and end dates. An

alternative schedule has the same format and usage, but is created interactively by the user.
Creating an alternative schedule enables the user to see the possible effects of changing some
aspect of a project's schedule. Once selected, the alternative schedule becomes the current
schedule for the project of interest and will be used in subsequent monitor and assessment
functions. The SME provides two independent methods for creating these schedules.

Pha_ S_ End

ICam_ Date DUD

/
I I I I I

10t04._I 0_'13,_2 02rl3,_3 04/24_J3 1_

I f t I I

10K)4_I OG'I_ 0,_ :_'_3 0_24/93 01FZ4J94

/

[]'-'"Schedule DI_GN T_4._! 0S,'I 1_

COOEr 06tt3_ 040 3,_

04/13R_ 0sr24_3
ACCTE _ 01t24_J4

Figure 3-40. Sample Alternative Schedule

The figure depicts updating a
project schedule to create an
alternative schedule. This
example illustrates a case
where the end dates of two

phases, CODET and SYSTE,
have slipped approximately
2 months, and the end of the
ACCTE phase has been
extended by I month.

Such a situation could arise

due to problems or to
periodic reassessments of the

plan. Creating an alternative
schedule helps the user
investigate the effects of
adjusting the schedule.

Required Information

• Planned start and end dates of each phase (current schedule)
• Model of the schedule for similar projects (schedule model)

Key Steps

1. Use Method 1 to allow the user to interactively specify end dates for each phase.
2. Use Method 2 to generate dates for each phase based on the schedule model.

Note: To serve as a valid alternative schedule, phase dates must be in chronological order by
phase, and the project end date may not fall before the current date of the project.
Additionally, the project start date is considered fixed and may not be altered.

L

z

202

Section 3---Functiona!ity

Method l--Entered by the User Interactively

Obtain any new phase end dates interactively from the user and create an alternative schedule

as follows:

1. Display the project start date and the end dates of all development life-cycle phases in

the current schedule.

2. Allow the user to update the end dates of one or more phases. After the user enters a

revised end date, validate and remember the entry.

3. When the user finishes updating the schedule, check all the entries to ensure that the

phase dates are in chronological order and that the end date of the last phase does not

precede the current project date.

Method 2--Derived from the Schedule Model

Obtain a new project end date for the project from the user and create an alternative schedule
as follows:

1. Display the project start date and end date from the current schedule.

2. Allow the user to revise the end date of the project. After the user enters a new

completion date, validate the entry and ensure that the date entered does not precede

the current project date.

3. Using the original project start date and the new project completion date, use
Determine Normal Schedule with the schedule model to calculate new phase dates for

each life-cycle phase.

I Current 1Schedule I oe13,_ 1 I I
0_3/g3 04_24,'g3 1_10_05_gl

f

A,_o'd I i

TherevisedProjectEndDateis 03_/°J.

I I I !
DESGN CODEr _ ACCTE

25.69% 34.!iI_% I790% 21.4S%

I I I I

06,27,92 04R9,93 08t'z0_

STEPS

1. The current end date of

the project is 12/25/93.

2. The user enters 03/05/94
as a revised completion date

for the project.

3. The schedule model is
scaled based on the revised

project duration to produce a
new schedule.

4. The new end dates for the
DESGN, CODET, SYSTE, and

ACCTE phases are 6/27/92,
4/09/93, 8/20/93, and 3/05/94,
respectively.

Figure 3-41. Creating a Schedule Based on a Model

203

Section 3--Functionality

3.4.2 Use of Alternative Estimates

Purpose

Lets the user modify the estimated completion values of one or more measures for use in [1
"what-if' scenarios. Jt

Description

Completion estimates are a set of expected measure data values at project completion.
Alternative estimates have the same format and usage, but are created interactively by the
user. Creating a set of alternative estimates enables the user to see the possible results of
changing any of the project completion estimates. Once selected, the alternative estimates
become the current estimates and will be used in subsequent monitor and assessment
functions. The SME provides two independent methods for creating these estimates.

,Sobmi_a_m I_ll. 04/1 _

¢,odo E_lmab

CPU 187.20

EFF 57442.05

LOC 225000,00

MO-I 3_5.40
MOD 1181.48
RCH 1912.73

.

I Current 1Estimates

¢Pu

Alternative _ LOC

Estimates MCH
MOD
RCH

RUN

Co_oa

20G.O0
63100.00

2G(kX)O.O0

1_30r.).00
21CK).00

108G.00

Figure 3-42. Sample Alternative Estimates

The figure depicts updating a
set of project estimates to
create alternative estimates.

This example illustrates a
case where all estimated

completion values have been
revised upward by a factor of

about 10% over their original
values.

Such a situation could arise

due to growth or to periodic
reestimation of targeted

completion values. Creating
alternative estimates helps
the user investigate the
effects of changing one or
more project completion
estimate(s).

Required Information

• Planned completion value for each project measure (current estimates)
• Model of estimates for similar projects (estimate set model)

Key Steps

1. Use Method 1 to allow the user to interactively specify estimated completion
values for each measure.

2. Use Method 2 to generate completion estimates for each measure based on the
estimate set model.

204

Section 3_Functionality

Note: To serve as a valid set of alternative estimates, each estimated completion value must
be a non-negative numeric value.

Method 1--Entered by the User Interactivelv

Obtain any new estimated completion values from the user and create a set of alternative
estimates as follows:

l. Display the estimated completion values of all measures in the set of current

estimates.

. Allow the user to update the estimates for one or more measures. After the user

enters a revised completion estimate, validate the entry to ensure that the value is

numeric and non-negative.

Method 2--Derived from the Estimate Set Model

Obtain a new estimated completion value for one of the measures from the user and create an
alternative estimate set as follows:

1. Display the estimated completion values of all measures in the set of current
estimates.

2. Allow the user to choose one of the measures and to supply a new estimated

completion value for that measure. After the user enters a new estimate, ensure that

the value is numeric and non-negative.

3. For the chosen measure and new estimated completion value, use Determine Normal

Estimate Set to scale the estimate set model and calculate new estimated completion

values for each project measure.

I Estimate SetModel
Ct..

, V_

0.832

LOC 1000._1

17._4
MOO 5.251

RER 4.376

304.778

c,<m_*on
Esb'_a_

205_0

63100.00
25(_000.00

,It_.O0

13XI.iO0
ZIIX).O0

106&_)
75400.00

STEPS

1. The user chooses a

measure, in this case LOC,
and enters 250000 as a new

estimated completion value
for that measure.

2. This estimate provides an
indicator of the magnitude of
the current project (e.g., the
project is 250000 lines of
code).

3. The estimate set model is

scaled to the specified value
to produce a new set of
completion estimates sized
to the current project.

Figure 3-43. Creating an Estimate Set Based on a Model

205

i

Section 3--Functionality

206

Appendix A

APPENDIX A--LIST OF DEFINED SERVICES

This appendix provides an alphabetic listing (Table A-l) of all general-purpose and function-

specific services defined and referenced in the document. The list can facilitate locating
where a specific service is described in this document when only its name is known.

Table A-1. Cross Reference of Defined Services

NAME OF SERVICE

Analyze Trends for a Ratio of Two Measures
Analyze Trends for a Single Measure of Interest
Assess Attribute
Compute Relative Attribute Values
Convert Date to Phase
Convert Measure to Phase
Convert Phase to Date
Convert Phase to Measure
Convert Phase to Profile Measure
Determine Normal Estimate Set
Determine Normal Measure Guidelines
Determine Normal Schedule
Determine Phase for Rules
Determine Rate for Rules
Evaluate Actual Factor Value
Evaluate Expected Factor Values
Evaluate Reason
Evaluate Rule
Generate Rate Model
Get Estimated Completion Value
Get Estimates
Get Project Dates
Get Project Magnitude
Get Schedule
Get Scheduled Phase Dates
Get Ratio of Estimates
Identify Models to Use for Project
Obtain Actual and Normal Profile Values
Obtain a Phase Estimate
Predict Completion Date of Project
Predict Measure Value at Completion
Predict Intermediate Values Through Completion
Plot a Comparison Project for a Measure
Plot Actual Data for a Measure
Plot Actual Data for Current Project
Plot Normal Project Data for a Measure
Plot Planned Project Data for a Measure
Rate Dependent Factor
Rate Objective Factor
Rate Subjective Factor
Sca e and Display Plot Area for Observation
Scale and Display Plot Area for Comparison to Normal
Sca e and Display Plot Area for Comparison to Other Project
Scale and Display Plot Area for Comparison to Plan
Scale and Display Attribute Bar Graph
Scale and Display Factor Bar Graph
Select a Comparison Project
Select a Profile of Interest
Select a Project of Interest
Set Current Plan for Project

SECTION

3.2.7
3.2.7
2.2.5
3.3.1
2.2.1
2.2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.2
2.2.1
2.3.2
2.3.2
2.2.5
2.2.5
2.3.1
2.3.2
2.2.2
2.1.9
2.1.9
2.1.6
2.2.4
2.1.6
2.1.6
2.2.4
3.1.1
3.2.8
3.2.6
3,2.6
3.2.6
3.2.6
3.2.5
3.2.2
3.2.5
3.2.3
3.2.4
2.3.1
2.3.1
2.3.1
3.2.2
3.2.3
3.2.5
3.2.4
3.3.1
3.3.2
3.2.5
3.2.8
3.1.1
3.1.1

COMPONENT/FUNCTION

Trend Analysis
Trend Analysis
Attribute Definitions
Attribute Evaluation
Schedule Models
Measure Models
Schedule Models
Measure Models
Profile Models
Estimate Set Models
Measure Models
Schedule Models
Rule Base
Rule Base
Attribute Definitions
Attribute Definitions
Knowledge Base
Rule Base
Measure Models
Estimates Data
Estimates Data
Schedule Data
Estimate Set Models
Schedule Data
Schedule Data
Estimate Set Models
Project Selection
Profile Analysis
Prediction
Prediction
Prediction
Prediction
Comparison to Other Projects
Simple Observation
Comparison to Other Projects
Comparison to a Normal Project
Comparison to Manager's Plan
Knowledge Base
Knowledge Base
Knowledge Base
Simple Observation
Comparison to a Normal Project
Comparison to Other Projects
Comparison to Manager's Plan
Attribute Evaluation
Attr_ute Factor Examination
Comparison to Other Projects
Profile Analysis
Project Selection
Project Selection

Pilk3£,ll)i¢_ PAGE BLANK NOT FILMED

207

Appendix A

I

208

Abbreviations and Acronyms

AGSS

CDR

CPU

CRF

EFF

FDD

GSFC

LOC

MCH

MOD

NASA

PEF

PRF

RCH

RER

RID

RUN

SEL

SLOC

SME

SPF

TBD

ABBREVIATIONS AND ACRONYMS

attitude ground support system

critical design review

computer hours

change report form

total staff hours

Flight Dynamics Division

Goddard Space Flight Center

lines of code

modules changed

module count

National Aeronautics and Space Administration

project estimates form

personnel resources form

reported changes

reported errors

review item disposition

computer runs

Software Engineering Laboratory

source lines of code

Software Management Environment

services/products form

to be determined

mAGE BLANK NOT FE_IED 209

Abbreviations and Acronyms

210

References

o

*

o

°

o

,

REFERENCES

SEL 89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and

Management Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL 92-002, Data Collection Procedures for the Software Engineering Laboratory

(SEL) Database, G. Heller, J. Valett, and M. Wild, March 1992

J. Valett and A. Raskin, "DEASEL: An Expert System for Software Engineering,"

Proceedings of the Tenth Annual Software Engineering Workshop, SEL-85-006,

December 1985

University of Maryland, Technical Report TR-1708, "An Evaluation of Expert

Systems for Software Engineering Management," C. Ramsey and V. Basili,

September 1986

SEL 84-101, Manager's Handbook for Software Development (Revision 1),

L. Landis, F. McGarry, S. Waligora, et al., November 1990

References

212

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL

activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,

P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the RayIeigh Curve to the SEL Environment, T. E. Mapp,

December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,

K. Freburger and V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,

November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005,A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,

November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. E Cook and E E. McGarry, December 1980

10O00229
O207/1g94

BI-1

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Decem-
ber 1981

SEL-81-014,Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September
1981

SEL-81-101, Guide toData Collection, V. E. Church, D. N. Card, E E. McGarry, et al.,
August 1982

_ _ _-- _:_ : _ _

SEL-81-104, The Software Engineering Laboratory, D.N. Card, F.E. McGarry,
G. Page, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-
ology for Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora,
E E. McGarry, et al., June 1992

SEL-81-305SP 1, Ada Developers' Supplement to the Recommended Approach, R. Kes-
ter and L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and E E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and E E. McGarry, October 1983

SEL-82-1106, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1992

1OOOO229

020711994

BI-2

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, E E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,

November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labo-

ratory (SEL), W. W. Agresti, V. E. Church, and E E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,

November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,

E E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume Ill, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, E McGarry,

and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,

December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,

R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

lOOe_y'_

0"20"f/1_,4

BI-3

SEL-86-003,Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1_, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-OO2,Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada ® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume 1/7, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production

S. Godfrey and C. Brophy, September 1989
Ada Project: The GRODY Study,

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and E McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

L

100OO229

020711994

BI-4

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,

November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's

Guide (Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of an Ada System in the Software Engineering Lab-

oratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,

November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,

S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

December 1991

SEL -91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler

and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, J. Valett, and M. Wild, March 1992

1OOOO229
0207/1994

BI-5

SEL-92-003,Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,
December 1992

SEL-93-001, Collected Software Engineering Papers: Volume X/', November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie,
M. Stark, et al., November 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-RELATED LITERATURE

l°Abd-EI-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-

ellite Simulation: A Case Study," Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"

Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

iBailey, J. W., and V. R. Basili, '_ Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving P0stDevelopment
R • , 9, • • o

eusablhty, Proceedings of the Eighth Annual Nattonal Conference on Ada Technology,
March 1990

1°Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and
Reuse," Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the
First Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

1OOOO229
O207119G4

BI-6

7Basili,V.R., SoftwareDeveIopment: A Paradigmforthe Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

IEEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, '_%Reference Architecture for the Compo-

nent Factory,"ACM Transactions on Software Engineering and Methodology, January
1992

10Basili, V., G. Caldiera, E McGarry, et al., "The Software Engineering Laboratorym

An Operational Software Experience Factory," Proceedings of the Fourteenth Interna-

tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V.R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and ReliabiIity Assessment in

the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, '5%_RROWSMITH-P--A Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems

in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals
and Environments," Proceedings of the 9th International Conference on Software Engi-

neering, March 1987

1000_29
0207/1994

BI-7

5Basili,V. R., andH. D. Rombach,"T A M E: Tailoring anAda MeasurementEnvi-
ronment," Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Integrating Measurement Into Software

Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-

Oriented Software Environments," IEEE Transactions on Software Engineering, June
1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Software En-
gineering Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-

teristic Software Metric Set," Proceedings ofthe Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strat-
egies," IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NA TO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-

gies," 1EEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss,A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, '_ Methodology for Collecting Valid Software Engi-

neering Data," 1EEE Transactions on Software Engineering, November 1984

10000229

0207119_4

BI-8

1Basili,V. R., and M. V. Zelkowitz, "The SoftwareEngineering Laboratory: Objec-
tives,"Proceedings of the Fifteenth Annual Conference on Computer PersonneI Research,

August 1977
• t "

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experlmen,

Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August

1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics

in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, '_aaalyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance

Study--Results and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

Classification Procedure for the Effective Manage-
10Briand, L. C., and V. R. Basili," " "
ment of Changes During the Maintenance Process," Proceedings of the 19921EEE Con-

ference on Software Maintenance (CSM 92), November 1992

10Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for" ed
Optimizing the Verification and Testing Phases of Software Development, Proce -
ings of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

11Briand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with

Optimized Set Reduction for Identifying High Risk Software Components, TR-3048,

University of Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern Recognition Approach for Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

llBriand, L. C., S. Morasca, and V. R. Basili,"Measuring and Assessing Maintainability

at the End of High Level Design," Proceedings of the 1993 IEEE Conference on Software

Maintenance (CSM 93), November 1993

11Briand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk

Early in Software Development," Proceedings of the Fifteenth International Conference

on Software Engineering (ICSE 93), May 1993

B1-9

O20711994

5Brophy, C.E., W. W. Agresti, and V.. R. Basili, "Lessons Learned in Use of Ada-

Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D.N., ompanson of Regression Modeling Techniques for Resource Estima-
_'C °

tion," Computer Sciences Corporation, Technical Memisrandum, November 1982

3Card, D.N., '_ Software Technology Evaluation Program," Annais do XVIll
Congresso Nacional de lnformatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the
of Systems and Software, 1987 Software Science Anomaly," Journal

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of
Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, '_ariEmpirical Study of Software Design
Practices," 1EEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, '_ Software Engineering
View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., E E. McGarry, and G. T. Page, "Evaluating Software Engineering
Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T Page, and E E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q.L. Jordan, '_aa Approach for

Assessing Software Prototypes,"A CM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through

Dynamic Variables," Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

0207/1OO4

BI-10

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

5jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848, May

1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-

ceedings of the Tenth International Conference on Software Engineering, April 1988

11Li, N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Manage-
ment Estimation and Prediction,"Proceedings of the Second International Conference on

Information Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications," Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

7McGarry, E, L. Esker, and K. Quimby,"Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

3McGarry, E E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource

Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

3page, G., E E. McGarry, and D. N. Card, '_ Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, '_a Evaluation of Expert Systems for Software Engi-

neering Management," IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, '_nalyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., '_ Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

BI-11

100(_29
020711_

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

l°Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control:

Adding Maintenance Measurement to the SEL," Journal of Systems and Software,
May 1992 : :-_

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings
ofthe 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life

Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., _ect-Onented Programming Through Type Extension in Ada 9X,"
"Ob"

Ada Letters, March/April 1991

l°Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters,
March/April 1992

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, '_kn Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the
Seventh Washington Ada Symposium, June 1990

0207/1994

BI-12

11Stark,M., "Impacts of Object-Oriented Technologies:SevenYearsof SEL Studies,"
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

10Straub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Soft-

ware Specification Process," Proceedings of the Sixteenth International Computer Soft-

ware and AppIications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for

Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Society, July 1990

7Sunazuka , T., and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

10Tian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of

High Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings

of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

10Valett, J. D., "Automated Support for Experience-Based Software Management,"

Proceedings of the Second Irvine Software Symposium (ISS '92), March 1992

5Valett, J. D., and F. E. McGarry, ''A Summary of Software Measurement Experiences
in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, ''A Structure Coverage Tool for Ada Software Sys-

tems," Proceedings of the]oint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

BI-13

1000O229
020711994

2Zelkowitz, M.V., "Data Collection and Evaluation for Experimental Computer

Science Rese arch," Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

6Zelkowitz, M. V.., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of
Systems and Software, 1988

SZelkowitz, M. V., "Evolution Towards Specifications Envaronment: Experiences With
Syntax Editors," Information and Software Technology, April 1990

_0000229
020711904

BI-14

NOTES:

1This article also appears in SEL-82-004, Collected Software Engmeenng Papers:

Volume I, July 1982.

2This article also appears m SEL-83-003, Collected Software Engmeenng Papers:

Volume II, November 1983.

3This article also appears m SEL-85-003, Collected Software Engmeenng Papers:

Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Software Engmeenng Papers:

Volume IV,, November 1986.

5This article also appears m SEL-87-009, Collected Software Engmeenng Papers:

Volume V, November 1987.

(rI'his article also appears in SEL-88-002, Collected Software Engmeenng Papers:

Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Software Engineering Papers:

Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers:

Volume VIII, November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers:

Volume IX, November 1991.

t0This article also appears in SEL-92-003, Collected Software Engineering Papers:

Volume X, November 1992.

11This article also appears in SEL-93-001, Collected Software Engineering Papers:

Volume XI, November 1993.

1O000229
020711994

BI-15

Form Approved

REPORT DOCUMENTATION PAGE oMBNo.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching extsting data sources, gathering
• viewin the collection of information Send comments regarding this burden estimate or any other aspect of this collection of

and maintaining the data needed, and completing and re g . - _ _,._ r_ ,_ _t_l_ f_r nf_rn3;_t'o ODe i nd Rel_orts 1215 Jefferson Davis Highway, Suite

information, including suggestions for reducing this burden, to Washington Heaoquarters _,.i _ i_n _ rat ons e _ ,

1204, Arlin_lton. VA 22202-4302, and to the Office of Management and Bud_let, Paperwork Reduction Proiect I0704-0188). Washin_lton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVz-RED
February 1994 Contractor Report

' 5. FUNDING NUMBERS
4. TITLE AND SUBTITLE

Software Management Environment (SME)

Components and Algorithms

6. AUTHOR(S)

Software Engineering Laboratory

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Branch

Code 552

Goddard Space Flight Center
Greenbelt, Maryland

9. SPONSORINGJMONITORING AGENCY NAME(S) AND AOORESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546--0001

552

8. PERFORMING ORGANIZATION

REPORT NUMBER

SEL-94-001

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

CR-189346

11. SUPPLEMENTARY NOTES

12a. DISTRIB UTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Ma)a'mum 200 words)

This document presents the components and algorithms of the Software Management Environment (SME), a manage-

ment tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the

Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based
tools that can assist software development managers in managing and planning software development projects. This

document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and

planning tools. SME Components and Algorithms is a companion reference to SME Concepts and Architecture, and

Software Engineering Laboratory (SEL) Relationships, Models, and Managenwnt Rules.

14. SUBJECT TERMS

17. SECURITY CLASSIRCATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

15. NUMBER OF PAGES

226

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

• L

x_ _¸¸_ _ _ _ i

I

m

i

Em

_m

z

lm
_mm

m

E

|
m

m:=

4 __

