— —— @ https://ntrs.nasa.gov/search.jsp?R=19940030490 2020-06-16T12:58:52+00:00Z

CR-189346
\

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-00

_

‘ i !‘Id

R R T RN R

FEBRUARY 1994

N S ——

(NASA—CR-189346) SOFTWARE N94-34996
MANAGEMENT ENVIRONMENT (SME):
COMPONENTS AND ALGORITHMS (NASA.
Goddard Space Flight Center) 133 p

AR AL I T i

unclas

G63/61 0012607

oddard Space t Center
reenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-001

SOFTWARE MANAGEMENT
ENVIRONMENT (SME)

COMPONENTS AND ALGORITHMS

FEBRUARY 1994

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and
created to investigate the effectiveness of software engineering technologies when applied to
the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The
activities, findings, and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports that includes this document.

The major contributors to this document are

Robert Hendrick (CSC)
David Kistler (CSC)
Jon Valett (GSFC)

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

PRECEDING PAGE BLANK NOT FILMED

10016975 ;i G e R
Do18975L n PacE L\ INTENTIGHALLY BLARK

ABSTRACT

This document presents the components and algorithms of the Software Management
Environment (SME), a management tool developed for the Software Engineering Branch
(Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center
(GSFC). The SME provides an integrated set of visually oriented experienced-based tools
that can assist software development managers in managing and planning software
development projects. This document describes and illustrates the analysis functions that
underlie the SME's project monitoring, estimation, and planning tools. SME Components
and Algorithms is a companion reference to SME Concepts and Architecture, and Software
Engineering Laboratory (SEL) Relationships, Models, and Management Rules.

PRECEDING PAGE BLANK NOT FRMXD \%

-

N
PAGE N INTENTIONALLY BLANK

Table of Contents

Section 1—INtroduction.......................coiiiiiiiiiiiiii e, 1
1.1 PUIDOSE ... 1
1.2 AUIENCE ...ivtiiii e e 1
1.3 OrZaNIZAtION ... c.itintitiiri vttt ettt e e eae e eneraeenas 2
1.4 NOALOM ...t 2
Section 2—COMPONENLS.civiniiiiii e e ee s 3
2.1 Project Data.c.iunieiiiiiiiii e 5
211 Project List......iuieiit i 6

212 Measure List.......coooiiiiiiiiiiiiiiiie e 7

213 Profille List.....ciiiiiniiiiiiii i 8

2.1.4 Project/Measure Availability List............cccovviiviiinieiiniininnenenes 9

2.1.5 Project/Profile Availability List................coooviiiiniiiiiiiniinnnen. 10

2.1.6 Schedule Data...........coovuviiviiiiiiiiiiiiece e 11

217 Measure Data..........oouiuiiiiiiiiiiiiii e eeea e 13

2.1.8 ProfileData................... et e e e eaes 19

2.1.9 Estimates Data.............ccovvviviiviiiiiiiiiirin e 23

- 2.1.10 Project CharaCteriStiCS...........vvurininiuineienineinenineenenenrenenenns 25

2.2 Research Dataccooviiiiiniiiiiiiin e 27
22.1 Schedule Models...........ccoevviniiiiiiiiiiiieie e, 28

222 Measure Models..........ccooeviiiiiniiiiiiiineie e 35

223 Profile Models...........cooeeiiiiiiiiiiiiiii e 51

224 Estimate Set Models...........ccooiviiniiiiiin e 61

225 Attibute Definitions...........cocviiviiviiiiiniiniiic e 68

PRECBOWNG PAGE BLANK NOT FiLMEp Vil J\

LW'“"“""""' Wizhe AL B AHK

Table of Contents

2.3 Management Rules.........covviiiiiiiiiiiiiiiiiiire 79
2.3.1 Knowledge Base.......ccovvviiiiiiniiiiiiiiiii 80

2.3.2 RuleBase......c.cooiiiiiiiiiiiiiiiiiiiiii e 106

2.4 Management Data.........cooovvviviiiiiiiiiiii e 133
241 Alternative Plans...........coociiiiiiiiiiiiiiiii e 134

2.4.2 Phase Estimates........c.coovviiiiiniiiiiiiiiiiin e 135

2.43 Subjective Data..........c.cociiiiiiiiiiniiini e 136

Section 3—Functionalityccoooiiiiiiiiiinn e 137
3.1 211 L AT e 139
3.1.1 Project Selection........ccevviiiiiiiiininiininiiiininer e 140

3.1.2 Specification of Current Project Date...............cooviiiiiininniits 145

3.2 LY (0] (V1703 o 11~ PO 147
3.2.1 Measure SeleCtion........ccouvrveiniiniiniiiiiieiiiine e 149

3.2.2 Simple Observation...........cccovivivmruvevnreienieiiiiiennnas 151

3.2.3 Comparison to a Normal Project.............oocvvveiiniiiiininin.n, 155

3.2.4 Comparison to Manager's Plan............ e irr e rer e 161

3.2.5 Comparison to Other Projects...........cccooiiiviinniiiiininnnennee. 167

326 Prediction........cococeniiiiiiniiiiiiiin e 176

) 327 Trend AnalysiS.....ccivvriininenerieiiiiiiiniiiinrini v 184
i 3.2.8 Profile Analysis........cociviiiiiiiiiiiiiie e 190
3.3 Overall ASSESSIMENLc.vuvnveieieinininiiiiinieetereritiraaraereeersrersrnrnenes 195
3.3.1 Attribute Evaluation...........ccocviiieiiinininiiiiiiiin e, 196

3.3.2 Attribute Factor Examination..............coeiiiiiiniiiniininininnnnns 199

viii

Table of Contents

3.4 PIanning oot et 201

34.1 Use of Alternative Schedules................oooiiiiiiiiinn. 202

3.4.2 Use of Alternative Estimates.............coooiiiiiniiiniiniannn. 204
Appendix A—List of Defined Services....................ooiiiii 207
Abbreviations and ACTONYIMS.ccovviiriieiitariie ettt ciaransvanianrranaanneas 209
2 = 0 4 T P 211
Standard Bibliography of SEL Literature...................cocooiiiiiienee BI-1

ix

List of lllustrations

Figure

2-1. Project List forthe SME...................... f et 6
2-2, Measure List forthe SME 7
2-3. Profile Listforthe SMEooiiiiiii e 8
2-4. Project/Measure Availability List forthe SME..............ccocoiviiiiieiiiininn. 9
2-5. Project/Profile Availability Listforthe SME.................ccooooiiiiiiiiiinnnn, 10
2-6. Schedule Data for @ Project..........cuvviuiiininiiiiie i veeee e, 11
2-7. Measure Data for a Projectooooiiiiiiiii i 13
2-8. Effort Data for an Ongoing Project..........c.cocviuiiiiiis e 15
2-9. Lines of Code Data for an Ongoing Project.........c..vviueeieneninininiieieiaeennns, 15
2-10. Module Count Data for an Ongoing Project........c..ouovveveevnieieieeeiieieienannnn, 16
2-11. Computer Hours Data for an Ongoing Projectccoviieiiinnieiinnnnnnnn.n, 16
2-12. Computer Runs Data for an Ongoing Projectoovuveuineeeneeoeieieienannnn. 17
2-13. Changed Modules Data for an Ongoing Project.............ccovvvieieiineninnnnn... 17
2-14. Reported Changes Data for an Ongoing Project..............coooovviiiiiininiin.. 18
2-15. Reported Errors Data for an Ongoing Project............oooviriiieeniioiiiiieieennnn.., 18
2-16. Profile Data for a Project.........ooiiuiei et 19
2-17. Effort to Isolate Change Data for an Ongoing Project...........c..cooveveeieenennna.., 21
2-18. Effort to Implement Change Data for an Ongoing Project............cccceeeeenen..... 21
2-19. Effort to Isolate Error Data for an Ongoing Projectco.vevivininiieennnnnnn.. 22
2-20. Effort to Correct Error Data for an Ongoing Project.............ccoeeuvvuveenennn.... 22
2-21. Estimates Data for a Project...........c.oeuiiiivniniiinni e 23
2-22. Characteristics Data for a Project.........o.ouvuiininiien e, 25
2-23. Schedule Model for IBM, FORTRAN, AGSS Projects........ccccocvuieiunennnnnnn... 28
2-24. Normalizing a Project's Schedule.............o.ooiiiiiii e, 29
2-25. Averaging Normalized Schedules.............ooooiiiiiiiiiii e, 30
2-26. Converting an Expected Phase to a Date............coueenenviovnseseeeeiin . 32
2-27. Converting a Date to an Expected Phase..............oooviiiniioie e, 33
2-28. Determining the Normal Schedule.....................ooooviiiiiiiiniii e, 34
2-29. Representative Measure Model for IBM, FORTRAN, AGSS Projects.............. 35
2-30. Effort Model for IBM, FORTRAN, AGSS Projects.........covuveueeeeeeonenennnn.n. 38
2-31. Lines of Code Model for IBM, FORTRAN, AGSS Projects.......................... 38

List of lllustrations

Figure

2-32. Module Count Model for IBM, FORTRAN, AGSS Projects...........c.ccevvvenee.. 39
2-33. Computer Hours Model for IBM, FORTRAN, AGSS Projects...................... 39
2-34. Computer Runs Model for IBM, FORTRAN, AGSS Projects...........ccvvvuvnn. 40
2-35. Changed Modules Model for IBM, FORTRAN, AGSS Projects.....................40
2-36. Reported Changes Model for IBM, FORTRAN, AGSS Projects.................... 41
2-37. Reported Errors Model for IBM, FORTRAN, AGSS Projects............cc.cc........ 41
2-38. Normalizing a Project's Measure Data.............cccooviviviniiiiniiiiiiiiinenns 43
2-39. Averaging Normalized Measure Data................coviiiiiiiiiiiiniiinicineeens 44
2-40. Converting a Phase to an Expected Measure...............cocoeevvivniiieiiniininnn.. 46
2-41. Converting a Measure to an Expected Phase............c.ccccoiiiiiiiiiiiiiinnininen, 47
2-42. Determining Normal Measure Guidelines...............ccccviviiiiiiiniiivinennn, 48
2-43. GeneratingaRate Model............oiiiiiiiii 50
2-44. Representative Profile Model for IBM, FORTRAN, AGSS Projects................. 51
2-45. Effort to Isolate Change Model for IBM, FORTRAN, AGSS Projects.............. 54
2-46. Effort to Implement Change Model for IBM, FORTRAN, AGSS Projects......... 54
2-47. Effort to Isolate Error Model for IBM, FORTRAN, AGSS Projects................ 55
2-48. Effort to Correct Error Model for IBM, FORTRAN, AGSS Projects............... 55
2-49. Normalizing a Project's Profile Data.................cccoiviiiiiinin i, 57
2-50. Averaging Normalized Profile Data.......................ooiiiiiin i, 58
2-51. Converting a Phase to a Profile Measure.................ccooeviiiiiiiiiiiiinnenens 60
2-52. Estimate Set Model for IBM, FORTRAN, AGSS Projects.......ccccovvnvnveiinnnen. 61
2-53. Normalizing a Project's Completion Values............cooeiiviiiiiiniviiiniiininnenns. 62
2-54. Averaging Normalized Completion Values..............cccovivviiiiiiiiiiniiiiiinnen. 63
2-55. Obtaining the Ratio of Completion Estimatescccovviviiiieiieniiiininnnn.. 65
2-56. Determining a Normal Estimate Set.............cccoiviiiiiiiiiiviiniiinniienaennns 66
2-57. Obtaining a Project's Magnitude............cooovviiviiiiiiiiiiiiiinc e 67
2-58. Attribute Definitions forthe SME.............coiiiiiiiiiiii 68
2-59. Attribute Defining Correctability........o.civiiviiiiiiniiinriiiieeieeieeienenens 71
2-60. Attribute Defining Maintainabilityccviiiiiiveiviiniieiieeinerereeeneanns 71
2-61. Evaluating a Factor Using Actual Data Values.................cooevviinieinineninnnen. 73
2-62. Evaluating a Factor Using Normal Model Values...............cc.cccvovvviniiiininnn.. 75

xi

List of lllustrations

Figure

2-63. Assessing a Project Atribute.........oovveeeiiininiiiiiiiiin e 77
2-64. Knowledge Base forthe SMEivivimimvinrrrneee e 80
2-65. Reasoning for Higher than Normal CPU Hours............cooooveviiiiiniinnn. 83
2-66. Reasoning for Lower than Normal CPU Hours.............c.cooviiiiiiinninne. 84
2-67. Reasoning for Higher than Normal Total Staff Hours..........................o.... 86
2-68. Reasoning for Lower than Normal Total Staff Hours.............c.cooiiiiinnae. 88
2-69. Reasoning for Higher than Normal Lines of Code............c...ocooiiiiiiiiiie 90
2-70. Reasoning for Lower than Normal Lines of Code.........cooevvviiinininiiininian.. 92
2-71. Reasoning for Higher than Normal Reported Errors...........c.cocevviiininnnonen. 94
2-72. Reasoning for Lower than Normal Reported Errors............ccccoooviiiiinini. 96
2-73. Rating an Objective Factor............c.cooiviiiiiiiiiiiiiiii e 101
2-74. Rating a Subjective Factor.........ccvvviiiiiiiiiiiiiiiiiiiin e 102
2-75. Rating a Dependent Factor...........oooieviiiiiiininin 104
2-76. Evaluating a Knowledge Base Reason.............ccooviviiiiininiiiiiinnn., 105
2-77. Rule Base forthe SME ..ot e 106
2-78. Rules for Above Normal Computer Runs per Line of Code......................... 108
2-79. Rules for Below Normal Computer Runs per Line of Code..............c........... 109
2-80. Rules for Above Normal Computer Hours per Line of Code............ccceeeenees 110
2-81. Rules for Below Normal Computer Hours per Line of Code........................ 111
2-82. Rules for Above Normal Reported Changes per Line of Code...................... 112
2-83. Rules for Below Normal Reported Changes per Line of Code...................... 113
2-84. Rules for Above Normal Total Staff Hours per Line of Code....................... 114
2-85. Rules for Below Normal Total Staff Hours per Line of Code....................... 115
2-86. Rules for Above Normal Computer Hours per Computer Run...................... 116
2-87. Rules for Below Normal Computer Hours per Computer Run...................... 117
2-88. Rules for Above Normal Reported Changes per Computer Run.................... 118
2-89. Rules for Below Normal Reported Changes per Computer Run. 119
2-90. Rules for Above Normal Total Staff Hours per Computer Run..................... 120
2-91. Rules for Below Normal Total Staff Hours per Computer Run..................... 121
2-92. Rules for Above Normal Computer Hours per Reported Change.................. 122
2-93. Rules for Below Normal Computer Hours per Reported Change................... 123

x1i

List of lllustrations

Figure

2-94. Rules for Above Normal Total Staff Hours per Reported Change.................. 124
2-95. Rules for Below Normal Total Staff Hours per Reported Change.................. 125
2-96. Determining the Present Phase for the Rule Base.................cooooiiiiiiniin 128
2-97. Determining Measure Rates for the Rule Baseoooooiiinii, 130
2-98. Evaluating a Rule in the Rule Base..........cccoooviiiiiiiiiiiiiiinicn s 132
2-99. Representative Alternative Plan for a Project..............cooooviiiiiviinnnnnn. 134
2-100. Representative Phase Estimate for a Project................cc.cooii, 135
2-101. Subjective Data for Three Projects........c.coeviivicriiiiiiiiiiniicieanen 136
3-1. Selecting a Project of Interest........oueiviiiiiniiii i 140
3-2. Identifying Project Data for the Project...........ccoooiiiiiiiiiiiiiiiiiin, 142
3-3. Setting the Current Plan for a Project............c.ocooiiiiiiiiiiiiiiiiii e 143
3-4. Identifying Models for the Project of Interest............c.ooveiiiiiiiiiiiiiininn, 144
3-5. Changing the Current Date for a Project...........cooooiiiiiiiiiiiiiiii . 145
3-6. Selecting a Measure of INterest.........ovvoiiviiriiiiiiiiiiiiiii i 149
3-7. Observing Actual Measure Values.,.........cooeviiiiiciiiiiiiiiii i 151
3-8. Scaling the Observation Plotting Area............c.ccoeviiiiiviiiieiiininnn e enees 153
3-9. Plotting Actual Values fora Measure............ccvveviiniiiiiiiiiiviiiiii e 154
3-10. Comparing a Measure to Normal Guidelines................c...oooiiiinininnnn. 155
3-11. Scaling the Comparison to Normal Plotting Area...........c.cccoeviiiiiinenninnnn. 158
3-12. Plotting Normal Project Values for a Measure............coocvvvviiiiicriciiiinnnns 160
3-13. Comparing a Measure to the Manager's Plan...........c.coovviiiiiiiiiinnnnnn. 161
3-14. Scaling the Comparison to Plan Plotting Area............c..cccvciviiiiiiiiaininnnn, 164
3-15. Plotting Planned Project Values for a Measure.............ccceeeviiiiiiiininennnnnn. 166
3-16. Comparing a Measure to Other Projects...........ccoviviiiiiiniiiniiiininineenne. 167
3-17. Scaling the Comparison to Other Projects Plotting Area................c.oceoeennins 170
3-18. Plotting Actual Values as a Percentage of the Normal Completion Value......... 172
3-19. Selecting a Comparison Project.........c.cvivuiveiiineiieeiii e 173
3-20. Plotting Comparison Project Values for a Measure..............coccevviiiniiennnnn. 175
3-21. Representative PrediCtion........covveiiiviiinviiiiiiii e i e reaeaanene 176
3-22. Sample Phase EStIMate..........ocvieiiiiiiiiiiriie i re v e e eeees 177

Xiii

List of lllustrations

Figure

3-23. Phase Analysis for One Measure...........ccccoviiiiiiiiiiiiiiniin e 178
3-24. Averaging Phases from All Available Measures...........cccocvvveiviverneininennnn.. 179
3-25. Deriving a Phase Estimate from the Current Schedule...................cooveeeent. 180
3-26. Predicting a Completion Date.........ooevuiiiiiinniieiiinri e 181
3-27. Predicting a Measure's Completion Value.........cccoviiviiiniiiiiiiineninenennenn. 182
3-28. Predicting a Measure's Intermediate Values........ J TSRS 183
3-29. Analyzing Trends in a Measure of Interest...........coovvevivviiiiiiinniieinnnnnns 184
3-30. Analyzing Trends Using the Knowledge Base............. e rertraterrerrraaaaeaas 187
3-31. Analyzing Trends Usingthe Rule Base...........cccocviiiiiiiiiiiininineinnns 189
3-32. Analyzing Profile Data for a Measure..........c.ccceivivuineinernenneneinervernnnnnn. 190
3-33. Selecting an Available Profile..........ccoooiviiiiiiiii 192
3-34. Obtaining Actual and Normal Profile Values...........c.cocoevviiiiiiiiinininnennnn. 194
3-35. Evaluating Project AtIIDULESccvuiriiiiiniinieiieeinerenrnenreereeneeanenne 196
3-36. Computing Attribute Values..........coooviiniiiiiiiiiieirr e 197
3-37. Displaying a Bar Graph of Attribute Values...............cooooeiiiiiiiiin, 198
3-38. Examining Project Attribute Factors..........c..oooivviiiiiiiiiiiiiiiiiireieeeeene 199
3-39. Displaying a Bar Graph of Factor Values.............c.cocviviviiciiviiiiiiniennnnns 200
3-40. Sample Alternative Schedule..........ccoiiiiiiiiiiiiiii e 202
3-41. Creating a Schedule BasedonaModel..............ooiiiiiiiiiiiiiiine. 203
3-42. Sample Alternative ESIMates........covvevinvinriieiiiiii i 204
3-43. Creating an Estimate Set Based onaModel............c.ooooiiiiiiiiiiiiiiinnnn. 205

Xiv

List of Tables

Table

2-1. Major Components Used by the SME.............ccoiiiiiiiii e, 3
2-2. SME Project Data COmMPONENtS.........c.iuuiiiii it eeiee e eeaeeeeeneareneanan, 5
2-3. SME Research Data Components.............oouiiniieiiiiieiiiiee e e aenns. 27
2-4. SME Management Rules Components..........c...ovoevierviinieieeiieiiiaeneneeannn. 79
2-5. SME Management Data COmpPONentsS........coeevveriniinineiiieiieiineiinnernennennen. 133
3-1. Major Functions Provided by the SME..............ociiiiiii e, 137
3-2. Key Executive Services FUnCtions............cocveiiiiiiiiiiinii e 139
3-3. Monitoring Services FUNCHONS..........coviiviiiiiiiiiiiv e e, 148
3-4. Overall Assessment Services Functions...............ccocoiiiiiiiiiiiiiiiiiineeeanns, 195
3-5. Planning Services FUNCHONS.......couvuiuiiiiiii it 201
A-1. Cross Reference of Defined Services..........c.ooviiiiiiiiiiviiiiiiiieee s 207

XV

Section 1—Introduction

SECTION 1—INTRODUCTION

The Software Management Environment (SME) is an interactive management tool developed
under the sponsorship of the Software Engineering Laboratory (SEL) at the National
Aeronautics and Space Administration's Goddard Space Flight Center (NASA/GSFC). The
tool supports a key set of experience-based functions that utilize software metrics to assist
software development managers in actively tracking and evaluating the status of their
projects.

The SME provides a range of visually oriented features to help software managers observe
the progress of an ongoing project, compare the project to other efforts or to models of how
projects normally behave in the environment, predict the probable future behavior of the
project, analyze the project's strengths and weaknesses, assess the project's quality relative to
previous efforts, and examine "what if" scenarios by varying the project's plan. These
functions rely not only on software measurement data collected for the development project
by an ongoing SEL measurement program, but also on the organizational experience gained
on past development projects in the environment which can be used to understand and
manage current projects.

1.1 PURPOSE

This document presents a detailed description of the information and algorithms used within
the SME to perform these functions for the manager. Its main purpose is to capture how the
SME automates key management functions using local data and experience. As a result, the
document focuses primarily on the logical steps required to accomplish those functions.
Detailed implementation-specific issues (such as standard searching and sorting algorithms,
methods of generating menus and windows, or steps for obtaining user input) are not
addressed.

The material covered complements information appearing in two previously issued SEL
documents—Software Management Environment (SME) Concepts and Architecture
(Reference 1) and Software Engineering Laboratory (SEL) Relationships, Models, and
Management Rules (Reference 2). Serving as a companion reference, this document
provides a bridge between the two earlier documents by illustrating how one can use research
results and past experience within the conceptual framework of a software management tool.

1.2 AUDIENCE

This document is intended for use by individuals and organizations interested in
understanding the internal algorithms and techniques employed in SME management
functions. While the SME has been constructed specifically for the flight dynamics
environment at GSFC, the concepts and functionality described in this document readily
apply in any software development environment. The SME can serve as a model for other
software development organizations wishing to implement a similar measurement-oriented,
integrated management tool based on local experience.

Individuals who require only an executive summary of the concepts and functionality of the
SME may read the material in each section through the second-level headings. Those
readers desiring additional information about SME components and management functions

Section 1—Introduction

should read each section through the third-level headings. Those who wish to examine
detailed component information and algorithms can reference the entire document for a

comprehensive view.

1.3 ORGANIZATION

The remainder of the document is organized as follows:

¢ Section 2 discusses the major components used to represent information and
experience within the tool. These components serve as the elemental building
blocks of data referenced by the various SME functions.

¢ Section 3 describes the major management functions supported by the tool and
the algorithms used within those functions. These functions rely on the
components described in the previous section for information on an ongoing
project as well as for the collective experience from past development efforts.

* Appendix A provides an alphabetic list of all general-purpose and function-
specific services defined and referenced in the document.

1.4 NOTATION

Throughout these sections, this document uses a set of standardized conventions to help the
reader easily identify items that are discussed in another part of the document. These
conventions are as follows:

Convention Meaning

A shadowed box containing text, within a figure, is

M;zzf used to label information obtained from a major
component defined in Section 2. The text appearing in
the box identifies the name of the component.

A rounded box containing text, within a figure, is used
Procicted to label information that derives from a major

Schedule . .
component or represents an intermediate result. The
text appearing in the box identifies the related
information.

Convert Date to Phase Italicized text appearing within the steps of an

algorithm refers to a general-purpose or function-
specific service, defined elsewhere in the document,
that is used with a major component or function.
Additional information on the service may be found in
the section that addresses its associated component or
function. Appendix A cross-references all defined
services by name.

Section 2—Components

SECTION 2—COMPONENTS

Understanding the SME's functionality begins with a firm understanding of the major
components used to represent information and experience within the tool. These components
serve as the elemental building blocks of data referenced by the various SME functions.
When characterized by the source of the information they provide to the SME, these
components fall into four categories. The first is project data from the SEL database. This
data encompasses measurement and planning data collected as part of ongoing SEL
measurement activities for current projects, as well as historical measurements from past
projects. The second is research data consisting of models, relationships, and quality
definitions that describe the development environment. This information captures the
behavior of normal projects in the environment and provides the basis for predicting and
estimating key project parameters. The third is management rules that embody knowledge
from experienced managers required to analyze measurement data and determine a project's
strengths and weaknesses. These rules form the expert analysis portion of the SME and
represent lessons learned in interpreting and analyzing metrics collected on past projects.
The fourth is management data supplied interactively by users of the SME. This information
constitutes additional data intended to support what-if scenarios or to specify subjective
knowledge about projects that can only be obtained from the manager.

Table 2-1 summarizes the major components used by the SME, organized into these four
basic categories by source.

Table 2-1. Major Components Used by the SME

SOQURCE COMPONENT
Project Data Project List
Measure List
Profile List

Project/Measure Availability List
Project/Profile Availability List
Schedule Data

Measure Data

Profile Data

Estimates Data

Project Characteristics

Research Data Schedule Models
Measure Models
Profile Models
Estimate Set Models
Attribute Definitions

Management Rules Knowledge Base
Rule Base
Management Data Alternative Plans

Phase Estimates
Subjective Data

Section 2—Components

Section 2—Components

2.1 PROJECT DATA

The SME relies on the SEL database as the source of project-specific measurement and
planning data collected for all software projects within the local development environment.
In addition to planned project schedules and estimates, the SEL database includes weekly
measurements of basic items such as the effort expended on a project, the size of the ongoing
project in both lines of code and number of modules, the amount of computer resources used
on a project, the number of errors uncovered, and the number of changes made to the source
code. Other information collected and stored in the SEL database covers more detailed
measurements of development projects, including items such as number of modules
designed, number of open problem reports, the source of software changes and errors, and
the amount of time spent uncovering and repairing errors. In short, the SEL database
provides a wide spectrum of up-to-date information on current projects, as well as historical
information on past projects. Specific details on the various types of information in the
database, as well as how that information is collected, may be found in Data Collection
Procedures for the Software Engineering Laboratory (SEL) Database (Reference 3).

The SME uses project data extracted on a weekly basis from the SEL database in all of its
analysis, comparison, prediction, and assessment functions. The data provides the
fundamental information that characterizes and describes the behavior of current projects
being tracked with the SME. Furthermore, data from completed projects provides an
historical reference for making comparisons, creating models, and identifying applicable
management rules.

Table 2-2 summarizes the major components referenced by the SME as project data. Each
component maps to a particular type of data obtained from the SEL database and is identified
with a specific purpose. As a general rule, the first five components serve to identify and
locate the project data, while the last five types of components contain project-specific
information for each project.

Table 2-2. SME Project Data Components

COMPONENT PURPOSE
Project List ldentifies the names of all available projects
Measure List Identifies the set of defined software development measures
Profile List Identifies the set of defined profiles of each measure
Project/Measure Availability List Identifies what measure data exists for each project
Project/Profile Availability List Identifies what profile data exists for each project
Schedule Data Captures the manager's planned project schedule
Estimates Data Captures the manager's planned completion estimates
Measure Data Captures actual project values over time of defined measures
Profile Data Captures actual project values over time of defined profiles
Project Characteristics Captures key objective facts that characterize a project

The following sections provide detailed information on each of these components.

PREBCBOWNG PAGE BLANK NOT FILMED

Section 2—Compone

nts

2.1.1 Project List

Purpose

Identifies the names of all projects available for access through the SME.

Description

The project list is an alphabetized table containing the names of all projects, both ongoing
and completed, that may be examined using the SME. The list defines all available projects
that the user may choose as the project of interest. A project name can appear in the list if
and only if a file containing schedule data exists for that project. The SME uses the project
name as a starting point for identifying, locating, and referencing all project data associated

with a project.

Project
List

Projact Data for
PROJECT3

Project Name

PROJECT!
PROJECT2

PROJECT3
PROJECT4 o

PROJECTn

Schedule Data
Estimate Set Data
Measure Data

Prefile Data

Project Characteristics

el
\

Project Data for
PROJECT4

Schedule Data
Estimate Set Data

Figure 2-1. Project List for the SME

Instances

Source

Created by the SME during
initialization based on the
existence of project data files

Assumptions

e Each project in the list
must have a schedule

o The existence of a schedule
for a project implies the
existence of an estimate set
containing at least one
nonzero estimate

e The existence of a schedule
also implies the existence
of nonzero measure data
for at least one measure

The SME creates one project list, which exists only for the duration of the SME session.

Structure

Table with one column—project name. Each row in the table contains the name of a single

project.

Section 2—Components

2.1.2 Measure List

Purpose

Identifies the set of fundamental software development measures used by the SME.

Description

The measure list is a table containing the names (and codes) of all fundamental software
development measures that may be referenced using the SME. The SME defines a set of
eight basic measures that managers in this environment use to track and judge project
progress. The SME uses the list in locating and referencing the measure data and measure
Consolidating the names of all defined measures in one list
facilitates changing or extending the list to accommodate new measures or other

models that are available.

development environments.

Measure
List

Measure Measure
Code Name
CPU CPU Hours
EFF Total Staff Hours
LOD Lines of Code
MCH Modules Changed
MOD Module Count
RCH Reported Changes
RER Reported Errors
RUN Computer Jobs

Figure 2-2. Measure List for the SME

Structure

Source
Defined as part of the SME

Assumptions

¢ Any measure data accessed
by the SME will
correspond to one of the
defined measures in the list

e A one-to-one mapping
exists between the defined
measures and the set of
measure models used for a
given project type

e A one-to-one mapping
exists between the defined
measures and the entries in
an estimate set model

Instances

The SME defines one measure
list.

Table with two columns—measure code and measure name. Each row in the table defines a
single measure, identified by a measure code and an associated descriptive measure name.

Section 2—Components

2.1.3 Profile List

Purpose

Identifies the types of profile data used by the SME for specific measures.

Description

The profile list is a table containing the names, codes, and associated measure of all types of
profile data that may be referenced using the SME. Profile data takes an associated measure

and breaks it down into two or more discrete categories.

Thus, each profile must be

associated with a measure. The SME defines a set of four profiles that the software uses
primarily in assessing a project's overall health, stability, and reliability. These four profiles
can also be used by managers to track and judge a project's progress. The SME uses the list
in locating and referencing the profile data and models that are available. Consolidating the
names of all defined profiles in one list facilitates changing or extending the list to
accommodate new profiles or other development environments.

Profile
List

Measure
Code
cPU
EFF Profie Profile
LoD Code Name
MCH
MOD
ACH o] ACHI Effort to Isolate Change
RER - RCH2 Effort to Implement Change
RUN
TSl rer | Effortto solate Eror
RER2 Effort to Comect Error

Figure 2-3. Profile List for the SME

Source

Defined as part of the SME

Assumptions

* Any profile data accessed
by the SME will
correspond to one of the
defined profiles in the list

¢ A one-to-one mapping
exists between the defined
profiles and the set of
profile models used for a
given project type

Instances

The SME defines one profile
list.

Structure

Table with three columns—
measure code, profile code,

and profile name. Each row in the table defines a single profile, identified by a unique
profile code, its associated measure, and an associated descriptive profile name.

Section 2—Components

2.1.4 Project/Measure Availability List

Purpose

Identifies what measure data exists for each project.

Description

The project/measure availability list is a table of boolean flags that indicates what measure
data is available for each project. Each row in the table contains information related to one
project specified in the project list. Each column that is associated with a boolean flag
corresponds to one measure defined in the measure list. A measure is flagged as available
for a given project if and only if a file containing data for that particular measure and project
exists. The SME uses the list in determining what measures are available for a project.

Source

Created by the SME during
initialization based on the

ProjectM . A
existence of project data files
Assumptions
¢ A one-to-one mapping
exists between the rows in
the table and the projects in
the project list

e A one-to-one mapping

i) exists between the columns

PROECTn| T T T T T T T T of boolean flags in the
table and the measures
defined in the measure list

e Table entries flagged as
"TRUE" identify the
measures that are

Flgure 2-4. Project/Measure Availability List for the accessible by the SME for
SME a given project

Project Measures
Names
CPU EFF LOC MCH MOD RCH RER RWN

PROJECT1
PROJECT2
PROJECT3
PROJECT4

T~
o
~d
—“An—
M-
MM~

M
nA-n

Instances

The SME creates one project/measure availability list, which exists only for the duration of
the SME session.

Structure

Table of boolean flags with one row for each project in the project list and one column for
each defined measure. An individual row in the table indicates which measures are available
for the project identified for the row.

Section 2—Components

2.1.5 Project/Profile Availability List

Purpose

Identifies what profile data exists for each project.

Description

The project/profile availability list is a table of boolean flags that indicates what profile data
is available for each project. Each row in the table contains information related to one
project specified in the project list. Each column that is associated with a boolean flag
corresponds to one profile defined in the profile list. A profile is flagged as available for a
given project if and only if a file containing data for that particular profile and project exists.
The SME uses the list in determining what profiles are available for a project. Note that if
data exists for a given profile, data inherently exists for the profile's associated measure.

Source

Created by the SME, as
needed, based on the existence

Project/Profile of project data files
Availability List]
Assumptions
* A one-to-one mapping
exists between the rows in

the table and the projects in

Project Profiles
Narmes
ACH1 RCH2 RERt RER2

PROJECT1 T T F T : -

pROECT2 | F T T T the project list

PROJECT3 T T T T .
PROJECT4 F T T F ¢ A one-to-one mapping

: : exists between the columns

pROECTR | T T T T of boolean flags in the
table and the profiles
defined in the profile list

o Table entries flagged as
"TRUE" identify the
profiles that are accessible

Figure 2-5. Project/Profile Availability List for the SME by t_hetSME for a given
projec

Instances

The SME creates one project/profile availability list, which exists only for the duration of the
SME session.

Structure

Table of boolean flags with one row for each project in the project list and one column for
each defined profile. An individual row in the table indicates which profiles are available for

the project identified for the row.

10

Section 2—Components

2.1.6 Schedule Data

Purpose

Captures a chronological record of the project's schedule as planned and periodically
updated by the manager.

Description

Schedule data is a list of all schedules submitted by a manager for a project over the project's
life cycle. The individual schedules in the list are maintained in chronological order by
submission date with the most recent submission identifying the default "current” schedule.
Each schedule in the list specifies the planned start and end dates of each phase in the
software development life cycle. Since the SME follows the SEL database's use of a
traditional waterfall life cycle, the SME currently uses a set of four contiguous, non-
overlapping phases: design, code and unit testing, system testing, and acceptance testing.
By specifying phases in this manner, the schedule implicitly defines the start and end dates
for the entire project.

Source
Collected by the SEL from the
scgaeg”’el [Sutmison st « 10041 manager via Project Estimates
[St ar oo L Forms (PEFs); subsequently
—— mdll extracted from the SEL
L 4 f database for the SME
b s)
e | o | o [R Assumptions
Desox | 100am T oensse [O20 | ¢ Projects follow a
ouTe | canvms | cuoema | traditional waterfall life
cycle with four serial, non-

-— overlapping phases
oo | DESGN OODET SYSTE AGCTE e The phases in a schedule
0O 3R 01O OMRO 12258 map to the phases defined
in the schedule model for
the corresponding project

type
Instances
Figure 2-6. Schedule Data for a Project One schedule data file

required for each project.

is

Structure

Collection of schedule records. Each schedule record consists of a submission date and a
table with three columns—phase name, phase start date, and phase end date. Each row in the
table supplies the dates for a single phase.

The following section delineates a set of general-purpose services commonly associated with
schedule data.

11

Section 2—Components

2.1.6.1 General-Purpose Use of Schedule Data

The SME incorporates a set of general-purpose services commonly used with schedule data.
The services are requested by various high-level SME functions to perform specific actions
associated with schedules. These services include

e Get Scheduled Phase Dates—Obtains the start and end dates for a given phase from a
specified schedule.

e Get Project Dates—Obtains the start and end dates planned for the project from a
specified schedule.

e Get Schedule—Obtains the schedule that was in effect on a given date (if no date is
specified, obtains the most recent schedule).

12

Section 2—Components

2.1.7 Measure Data

Purpose

Captures the actual recorded behavior over time of a fundamental software development
measure such as lines of code, effort, or software errors.

Description

Measure data is a chronological record of the actual values collected on a project for a single
specific measure over the development life cycle. For any given project, the SME references
measure data for one or more of the eight key measures defined in the measure list. The
measure values in the data are zero at the start of a project and cumulative measure values to
date are subsequently recorded at a fixed sampling frequency. By convention, the SME uses
measure data recorded on a weekly basis to match the sampling frequency of SEL data
collection activities. The measure values stop at the most recent sampling date for ongoing
projects, but continue through the end of the project for completed projects.

Source
Collected by the SEL via
Reported Eror forms and automated data
Miodle Court collection tools; subsequently
[Lines of Code 1 000 extracted from the SEL data-
Eflot .t 3% base for the SME
boo (000 : .
S 1500 P20 gl A IS Assumptions
1881 14050 [3
102591 244,00 o e At project start, all
: : QB | =0 measure values are zero
B o [0 k| s e The measure values are
: w0 PP b £693.00 :
1ngss | 4740880 by PO recorded on a weekly basis
126/93 47477.80 b 00 3.00 .
2oam | 47atE0 oo faoo with one value per week
o7 | 47080 PO (no time gaps exist in the
12/24/93 47594.80 dat.a)

e Each project collects
measure data for at least
one measure

Figure 2-7. Measure Data for a Project Instances

One measure data file may
exist for each defined measure per project, as noted in the project/measure availability list.

Structure

Table with two columns—date of sample, measure value. Each row in the table describes
the actual cumulative value observed for the measure on the sampling date.

13

Section 2—Components

21.7.1 Representative Measure Data

The SME references measure data for one or more of the eight defined measures for each
project. This data encompasses

Effort Data

Lines of Code Data
Module Count Data
Computer Hours Data
Computer Runs Data
Changed Modules Data
Reported Changes Data
Reported Errors Data

The following sections present a representative set of data for the eight measures. The
samples depict measurements for an ongoing project.

14

Section 2—Components

2.1.7.1.1

Effort Data

Measure
Data

Date of Measure
Sample Valve
Total Staff Hours vs. Time
For PROJECTZ
o201t 1
0211581 924 50,000
. . 5 40,000F -=--=---mmm oo o - e - o m - - -

1oese | as0e = '
111382 36,281 W v
112092 3983 © 30,000f--==-==--==--=---oggecn- Fabbbddahddely
12782 39,554 > '
1200482 39734 B '
g | 3w | R0 i

: ¥

© 10,0001 -~ - gl ------r-----oome- L EREEEEEARD

02/01/91 ' ' 121852 09/10/93
Calendar Time

Figure 2-8. Effort Data for an Ongoing Project

2.1.7.1.2

Lines of Code Data

Measure
Data

Date of
Sample

Meaare
Value =

Q20191
02/1581

106582
111382
112082
112792
1204582

1211182
1211882

coo

201744
201864
201,524
201924
220182

203374

Cumulative SLOC

Lines of Code vs. Time
For PROJECTZ

250,000
200,000 === === =--mm o s oo g o oo oo o o
- v
150,000 F == =" r=wesensmvewnaw —-o--: --------- -
, = '
1]
100,000% == ===-========== o.o.... fommmmeoneq
- :
50,000 -=-====="==-= | RO ETLTTTEL EERSTELELE
- H
0 amm—— i
02/01/91 121892 0v10/93
Calendar Time

Figure 2-9. Lines of Code Data for an Ongolng Project

Effort data provides weekly
measurements of the actual
expenditure of effort in staff
hours on a project. The effort
represents all hours expended
by programmers and line
management, but excludes all
project management and
service hours. The informa-
tion is collected via SEL
Personnel Resource Forms
(PRFs).

Note: The measurements will
typically cover the entire
development life cycle from
project start through project
end.

Lines of code data provides
weekly measurements of the
actual generation of lines of
code in SLOC on a project.
This measure reflects the
number of records in the
project's controlled source
library. The information is
collected via an automated tool
that examines project libraries
and is recorded on SEL Ser-
vices/Products Forms (SPFs).

Note: The measurements will
remain at zero until the project
begins placing source code
under configuration control in
the project's source library.
This typically occurs near the
beginning of the code and unit
test phase.

15

Section 2—Components

21.7.1.3 Module Count Data
Measure)
Data
Date of Mesasure
Sample Value =
Module Count vs. Time
For PROJECTZ
020151 1]
prsirad M 1,250
. : 2 afopmr
: : e T o T b
w3 s
112082 1fg;4 = 750f=emmsemrememe=-= S IR levonvemnong
112782 1,074 ® 4
120452 1,074 > H
gim | m [§ soopreoreeeee e fresseeceos
E = :
3 250 --eeecrevecemmcscsoscmccn- Hinbebdubedeieinle
© :

121852

Calendar Time

Figure 2-10. Module Count Data for an Ongoing

2.1.7.14

Project

Computer Hours Data

Measure)
Data

Datw of Measure
Sample Value =
0201/91 0
02/08/91 0
01581 1)
1106/82 42.00
111382 4356
1172082 4428
1172732 44.40
120492 44.64
121182 4832
12n882 51.00

Cumulative CPU Hours

100

SO

SO

P P P —

S O —
H

02/01/91 121882

Calendar Time

Figure 2-11. Computer Hours Data for an Ongoing

16

Project

Module count data provides
weekly measurements of the
actual number of modules
generated on a project. This
measure reflects the number of
members in the project's
controlled source library. The
information is collected via an
automated SEL tool that
examines project libraries and
is recorded on SEL SPFs.

Note: The measurements will
remain at zero until the project
begins placing source code
under configuration control in
the project's source library.
This typically occurs near the
beginning of the code and unit
test phase.

Computer hours data provides
weekly measurements of
actual computer usage in CPU
hours by a project. This
measure reflects values from
all computers used by the
project, normalized to account
for different processor speeds.
The information is collected by
computer system accounting
software and recorded on SEL
SPFs.

Note: These measurements
are particularly sensitive to the
development process being
applied, but do exhibit useful
trends within similar classes of
projects.

Section 2—Components

2.1.7.1.5 Computer Runs Data

Measure
Data

Datbe of Moaare
Sample Vave =
ComEuter Runs vs. Time
or PROJECTZ
ol 0
021551 0 50,000
; . 2 40,000 ~-mvrTTemeTmesesmsesmssmssssossnonod
110652 23676
13 | 24182 x
1172092 24384 @ 30,000f-—--"- = rrom-m=wsssss—esosow—-—--o--d
1278 24,504 2
1204582 24768 q H
t2nme 25524 S 20,000 =--=--vr-==-rm-re=s-c=oogfieo bbby
12n8me 26220 E 20,0007 H
] H
QO 10,0001 ===========-====-—off--omn | bbbl
i
0201/91 gk 091083

Calendar Time

Figure 2-12. Computer Runs Data for an Ongoing
Project

21.7.1.6 Changed Modules Data

Measure
Data

Date of Measure

Sample Valse =
Changed Modules vs. Time
B or PROJECTZ ’
Q201891

]
020881 0
02581 0 5,000
: ; éa,ooo --------------------------------------
gl g | R
112082 3042 G 3,000 =-========--cesmreessoco [S—
112782 3,042 Py F
1204/92 3,072 ’é ;
31 T Sy W
g | Sew !
- .
5 1,000 =--e-mmecrememne g | EELEERETEE
[/ E
0210191 i Tk 09/10/83
Calendar Time

Figure 2-13. Changed Modules Data for an Ongoing
Profect

Computer runs data provides
weekly measurements of
actual computer usage in terms
of the number of jobs
submitted by a project. This
measure reflects Jobs
submitted on all computers
used by the project. The
information is collected by
computer system accounting
software and is recorded on
SEL SPFs.

Note: These measurements
are particularly sensitive to the
development process being
applied, but do exhibit useful
trends within similar classes of
projects.

Changed modaules data
provides weekly measurements
of the actual number of
module changes occurring on a
project. This measure reflects
the number of module versions
in the project's source library,
minus the number of baseline
members. The information is
collected via an automated
SEL tool that examines project
libraries and is recorded on
SEL SPFs.

Note: The measurements will
remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library. This typically
occurs in the code and unit test
phase.

17

Section 2—Components

2.1.7.1.7 Reported Changes Data

Maasure
Daia

Date of Measurs
Sampie Value =
Reported Changes vs. Time
For PROJECTZ
OZK)US: 8
02151 o 2,500
: : §>2,ooo ---------------------------------------
iRl s | 8
120082 1,584 'Q:) 1,500 ---""-"-""---------f': ----------
112782 1,584 o '
1204582 1,608 2 f i
14 W4 AN e rw e renersvwrrmnefirericcrrcveend
iz | o | §roe ;
§ 500F -~ ==--=-~-cmen-ccoodfonann LEEEEEREREE
§) '
M
020181 N 121882 0Y10/38
Calendar Time

Figure 2-14. Reported Changes Data for an Ongoing
Project

2.1.7.1.8 Reported Errors Dala

Measure|
Data

Dats of Meazxe
Sample Valuo =
Reported Errors vs. Time
For PROJECTZ
mm: 8
02151 0 1,250
: . £ 1,0004-=o-rmmmommom oo oo
e | o §
112082 618 l: 750 ========s=s=sssescmcssssmssmnseon-e-o
ihm | & £ F
A I I I F i
- ¥
3 asop-mmsseeneeees J Sl SLith
]
0270191 e 09i0/83

Calendar Time

Figure 2-15. Reported Errors Data for an Ongoing
Project

18

Reported changes data pro-
vides weekly measurements of
the actual number of logical
changes reported for a project.
This measure reflects the
number of SEL Change Report
Forms (CRFs) submitted to
date for a project.

Note: The measurements will
remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library. This typically
occurs in the code and unit test
phase.

Reported errors data provides
weekly measurements of the
actual number of logical
changes reported as being due
to an error that occurred on a
project. This measure reflects
the number of SEL CRFs
submitted to date on which the
type of change is listed as error
correction.

Note: Reported error
measurements will remain at
zero until the project begins
correcting source code that
resides under configuration
control in the project's source
library. This typically occurs
in the code and unit test phase.

Section 2—Components

2.1.8 Profile Data

Purpose

Captures the actual recorded behavior over time of a software development measure using
an associated profile such as effort to isolate changes or effort to correct errors.

Description

Profile data is a decomposition into discrete categories of a particular development measure
to further characterize that measure's behavior over the development life cycle. The profile
values in the data are zero at the start of a project and cumulative profile values to date are
subsequently recorded at a fixed sampling frequency. As with measure data, the SME uses
profile data recorded on a weekly basis to match the sampling frequency of SEL data
collection activities. The profile values stop at the most recent sampling date for ongoing
projects, but continue through the end of the project for completed projects.

Source
Collected by the SEL via
Effortto Coredt Error forms; subsequently extracted
l I from the SEL database for the
Effort to Implement Change
Effort to Isolate Change g g SME
0 .
o o ° Assumptions
101891 0 0 S o ofs o 0 o e At project start, all profile
102591 6o o o o 0 w0 values are zero
.) 12
) : 4 0 1 0 e The profile values are
iz | & % 1z 4 of2 F g g recorded on a weekly basis
e | se x4 O 500 w0 with one value per week
oo | ae w13 4 of7 O (no time gaps exist in the
1217153 8% 503 113 46 al7 o data)
12/24/83 836 503 113 46 Q
e The existence of profile
data associated with a
measure implies that
measure data exists for that
Figure 2-16. Profile Data for a Project measure
Instances

One profile data file may exist for each defined profile per project, as noted in the
project/profile availability list.

Structure

Table with multiple columns—date of sample, and one column per profile value. Each row
in the table describes the actual cumulative values observed in the profile's defined categories
on the sampling date. Additionally, the horizontal sum of the profile values taken on any
given date will equal the observed value of the associated measure on the same date.

19

Section 2—Components

2.1.8.1 Representative Profile Data

The SME references profile data for up to four defined profiles for a project. This data
encompasses

Effort to Isolate Change Data
Effort to Implement Change Data
Effort to Isolate Error Data
Effort to Correct Error Data

The following sections present a representative set of data for the four profiles. The samples
depict measurements for an ongoing project.

20

Section 2—Components

2.1.8.1.1 Effort to Isolate Change Data

Date of Profile Values
Samgle
101191 [0 [} [}
101891 0 0 0 0 o
1072691 [[+] 0] 0
. . Effortto ls?lai Change vs. Time
nazsa | sof| s n2] e [orﬁm,ed"?"
111953 836 503 13 % [}
11/26/93 836 503 13 L o M
1210383 8% 500 13 % 0
12110083 836 503 13 % 0
121788 836 S03 113 4% 0
1224503 83| S03 13 46 0

Profie 1
Deta]

10/04/91

122583

Figure 2-17. Effort to Isolate Change Data for an
Ongoing Project

2.1.8.1.2 Effort to Implement Change Data

Date of Profie Valuse
Sample
101191 0 0 [[
101891 0 0 0 [0
1072501 0 [[o [
: . Effort to Implement Change vs. Time

111283 | 828 | 423f 150 82 ° for 'qecnnge
1noma | 83 | 42| 151 84 [
112603 | sar | axs| 52| s« [
120000 | 837 | a2s] 82| 84 0
121083 { 837 | 4aos{ 52| s 0
121783 | 837 | 42s] 1s2]| a4 0
122483 | 837 45| 1s2 84 0

Profile b

Data d

100481 127253

Figure 2-18. Effort to Implement Change Data for an
Ongoing Project

Effort to isolate change data
provides weekly measurements
that record reported changes
by the effort expended in
isolating the change. The
profile partitions the reported
change data into five
categories—1 hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown. The information is
collected via SEL CRFs.

Note: The measurements will
remain at zero until the project
begins modifying source code
that resides wunder config-
uration control in the project's
source library.

Effort to implement change
data provides weekly mea-
surements that record reported
changes by the effort expended
in implementing the change.
The profile partitions the
reported change data into five
categories—1 hour or less, 1
day to 1 hour, 3 days to 1 day,
more than 3 days, and
unknown. The information is
collected via SEL CRFs.

Note: The measurements will
remain at zero until the project
begins modifying source code
that resides under config-
uration control in the project's
source library.

21

Section 2—Components

2.1.8.1.3 Effort to Isolate Error Data
Dato of Profie Values
Samgle
101181 0 0 0 0 0
101891 0 0 0 0 °
102581 0 ° 0 0 0 \
. Effort to Isolate Error vs. Time

1411283 | 437 | 178 28 18 0 for Project1
111983 | 40§ s 28| 19 0
tipems | a2 | o] 2| 19 0
120083 | s | 0} 2| 19 0
12108 | «7] 180 23| 10 0
12173 | s8] 0] 2| 19 0
t2eama | 48] 180 /| 19 0

Profile

Data

1004594 12253

Figure 2-19. Effort to Isolate Error Data for an Ongoing

Project

2.1.8.1.4 Effort to Correct Error Data
Date of Profie Valuss
Sample
10119 0 0 [
101891 [[0 [} 0 \
102591 ° 0 0 0
. Effort to Congct Emor vs. Time
11H203 | 472 130] 38 2 0 {or Project1
1ngss | a7a 32| @] 2 0
1eems | as| 12| o] = 0 T
12008 | ar9] 12| 0| 2 [
1210/83 48! 132 40 4 0 :
12178 | ea2|] 0| =2 0 H
1224m3 | 82| | W] =2 0 :
;
H
1
b 4
Profie . :
Data i i
pu ¥
—2 —,
100491 032063 122553

Figure 2-20. Effort to Correct Error Data for an

22

Ongoing Project

Effort to isolate error data
provides weekly measurements
that record reported errors by
the effort expended in isolating
the error. The profile
partitions the reported error
data into five categories—1
hour or less, 1 day to 1 hour, 3
days to 1 day, more than 3

days, and unknown. The
information is collected via
SEL CRFs.

Note: The measurements will
remain at zero until the project
begins correcting source code
that resides under config-
uration control in the project's
source library.

Effort to correct error data
provides weekly measurements
that record reported errors by
the effort expended in cor-
recting the error. The profile
partitions the reported error
data into five categories—I
hour or less, 1 day to 1 hour, 3
days to 1 day, more than 3

days, and unknown. The
information is collected via
SEL CRFs.

Note: The measurements will
remain at zero until the project
begins correcting source code
that resides under config-
uration control in the project's
source library.

Section 2—Components

2.1.9 Estimates Data

Purpose

Captures a chronological record of the project's completion estimates as planned and
periodically updated by the manager.

Description

Estimates data is a list of all completion estimates submitted by a manager for a project's
measures over the development life cycle. The individual estimate sets in the list are
maintained in chronological order by submission date, with the most recent submission
identifying the "current” set of estimates. Each estimate set in the list specifies the planned
completion values for all defined measures. The completion values for specific measures in
an estimate set may be set to zero to indicate that the manager does not plan to collect that
measure; however, at least one measure in each set of estimates must have a nonzero value.

Note: Estimates are collected from the manager for only three of the eight defined measures
(lines of code, module count, and effort). Since the SME requires a manager's estimate for
each measure, estimated completion values for the remaining five measures are derived by
applying an estimate set model to the three values collected from the manager.

Source
Collected by the SEL from the
— manager via SEL PEFs;
sutmates
Data subsequently extracted from
the SEL database for the SME
| sutmission Date = 100481
et | o0 StalfHours ve, Time Assumptions
e I H / """"""""""""""" e A completion value is
s | e [p] provided in each estimate
LA : set for all measures defined
CPU 18720 ' . .
& s7ad2. : in the measure list
LOC 225000.00 : .
MoD er4s i o e Atleast one entry in each
e e | LT 10t Tostams 12/24/98 estimate set must have a
AUN 68575.05 .
s nonzero completion value
Ectimates ' Instances
One estimates data file is
required for each project.
Figure 2-21. Estimates Data for a Project Structure

Collection of estimate set
records. Each estimate set record consists of a submission date and a table with two
columns—measure code and estimated completion value. Each row in the table supplies the
completion estimate for a single measure.

23

Section 2—Components

2.1.9.1 General-Purpose Use of Estimates Data

The SME incorporates a set of general-purpose services commonly used with estimates data.
The services are requested by various high-level SME functions to perform specific actions
associated with completion estimates. These services include

® Get Estimated Completion Value—Obtains the estimated completion value for a
given measure from a specified set of estimates.

o Get Estimates—Qbtains the set of completion estimates that was in effect on a given
date (if no date is specified, obtains the most recent set of estimates).

24

Section 2—Components

2.1.10 Project Characteristics

Purpose

Captures a collection of key objective facts about a project that helps to characterize the
project.

Description

Project characteristics data is a list of known, objective information about a project that can
help to classify the project. When taken in aggregate, the key characteristics of a project
compose the project type. The SME uses this project type to identify an appropriate set of
models that corresponds to the project. Currently, the SME recognizes three basic
characteristics—the development computer, the computer language used, and the application
area. These key characteristics serve to identify the two primary classes of development
projects found in the SEL environment—attitude ground support systems (AGSSs)
developed in FORTRAN on IBM computers, and simulators developed in Ada on DEC
computers. If the specified project characteristics fail to match these two classes or no
characteristics exist for a project, the SME uses a default set of models for that project.

Source
Extracted from the SEL data-
, base for the SME
Project
.
Project Assumptions
Lst Characteristic | Coded Type o Three key characteristics
: Name Yae provide sufficient
Profect Name COMPUTER [BM - 1BM, FORTRAN information to classify
LANGUAGE FORTRAN AGSS modeis .
PROKCTI / APPLATON | hcgs most projects and select
PROJECT2 appropriate models
PROJECTS ‘\ Charactorstc Coded e Default models can be used
: Narme Value with other projects whose
PROJECTn coMPUTER | DEC > oecapa characteristics are not
ANGUAGE | ADA | SMULATORmodeks known or do not match the
supported models
Instances
One project characteristics file

Figure 2-22. Characteristics Data for a Project may exist for each project.

Structure

Table with two columns—characteristic name and coded value. Each row in the table
supplies the coded value for a single characteristic.

25

Section 2—Components

26

Section 2—Components

2.2 RESEARCH DATA

The SME relies on information from SEL research efforts to identify ways of representing
the normal behavior of development projects in the local environment. The models and
relationships used within the SME to describe normal projects derive from numerous SEL
studies conducted over the years. A summary of representative SEL research results that
could be applied to the SME may be found in Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules (Reference 2).

In this context, the term model refers to a representation of how a given parameter of interest
normally behaves over the software development life cycle within a specific environment.
This parameter of interest may be time (as in the case of schedule models), a particular
measure (as with measure models of effort or lines of code), or even a combination of
measures (as in rate models of coding productivity or attribute models of correctability).
Typically, these models are developed by averaging historical project data for the parameter
over a set of similar, completed projects. The resultant models, normalized for project size,
subsequently may be used to represent the behavior normally expected for a class of
homogeneous projects having similar project characteristics. The SME currently
incorporates models for the two primary classes of development project found in the SEL
environment—AGSSs developed in FORTRAN on IBM computers and simulators
developed in Ada on DEC computers.

The term relationship, on the other hand, refers to a representation of the correlation between
various software development parameters at a specific point in the project life cycle. Due to
a need for accurate planning and estimation, most relationships focus on the correlation at
project completion between a pair of measures or between duration and a measure. The
SME currently incorporates the relationships that exist between the completion values of
each pair of measures via estimate set models provided for all supported classes of projects.

Table 2-3 summarizes the major components referenced by the SME as research data and
identifies each component's purpose.

Table 2-3. SME Research Data Components

COMPONENT PURPOSE

Schedule Models Describes the fractional amount of time normally spent in
each life-cycle phase

Measure Models Describes the normal behavior over time of the defined
measures

Profile Models Describes the normal behavior over time of profiles defined for
measures

Estimate Set Models Describes the relationships that exist between completion
values of measures

Attribute Definitions Describes a defined set of overall project quality attributes

The following sections provide additional detailed information on each of these components.

27

Pmc PAGE BLA""K '\‘OT F;LH‘EED MIEQME\TiCﬁMLY ELN‘K

Section 2—Components

2.2.1 Schedule Models

Purpose

Describes the amount of time normally spent in each software development life-cycle
phase as a fraction of total project duration.

Description

A schedule model is a normalized representation of the fractional amount of calendar time
typically expended during a development project as a function of life-cycle phase. Specific
points in the life cycle are identified by the combination of a phase name and an elapsed
fraction of that phase between O and 1.0 inclusive. The amount of time expected at those
points is measured from the start of the phase and is expressed as a fraction of elapsed
project duration. The sum of the total fractional time spent in all phases is 1.0.

Source

Statistical averaging of actual
schedules from a set of com-
pleted development projects

Percent of Time in Phase

Schedule Assumptions
Mode/ .
¢ The projects follow a
L N R R traditional waterfall life
Name | ofPhase | Duration cycle with four serial,
pesan | 100 2530 non-overlapping phases
CODET 1.00 0.
SYSTE 1.00 0.?;“; InStances
ACCTE 1.00 02124 .
One model exists for each
. Normal Deviation = 0,0250 project type.

n Syst est
Code & Unit Test Acceptance Test

Structure

Table with three columns—
phase name, fraction of phase,
and fraction of duration; sca-
lar value—normal deviation.
Each row in the table describes
the fractional amount of
calendar time typically expended from the start of the phase through the point in the life
cycle specified by the row's phase name and fraction of phase. The scalar value associated
with the table represents the normal allowable deviation in a project's schedule from the
tabulated fractional values.

Figure 2-23. Schedule Model for IBM, FORTRAN,
AGSS Profects

The following sections detail the steps required to create schedule models using actual data
from completed projects and present a set of general-purpose algorithms commonly used
with schedule models.

28

Section 2—Components

22.1.1 Creating a Schedule Model

The schedule models used by the SME are created by normalizing and then statistically
averaging actual project schedules observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model and should have the same number of
phases. By first normalizing the schedules, the two-step creation process gives equal weight
within the model to each contributing project regardless of size or duration.

Required Data
o Schedule data (for each project in the set)

Step 1—Normalize Each Project’s Schedule

For each project in the set, perform the following:

1. Calculate the actual number of weeks elapsed between the project start date and
project completion date found in the schedule data (Actual Weeks 1,2)-

2. For each life-cycle phase in the schedule data, calculate the actual number of weeks
elapsed between the start and end dates of the phase (Actual Weeks), ppase [1)-

3. For each life-cycle phase, normalize the amount of time spent in the phase by the
total project duration to compute the fraction of duration for that phase as
Fraction of Duration), ppase [il = Actual Weeks,, ppase [i] / Actual Weeks 1oz

Schedule @D
EI STEPS

1. Based on the schedule
ﬁ?ﬁf g:g §§i data, the project started on
08/29/87 and ended on

11/11/89 (i.e., start of first

DESGN | cazws7 | oaozss
s Sooams) phase through end of last
oot | ooouse | oaree] Actual Time phase) for a total elapsed
ACCTE | os/17i89 | 111180 \ in Weeks time of 115 weeks.
]

2. Based on the phase dates

12w L in the schedule data, the
]] 1 - actual weeks spent in each
DESGN CODET SYSTE ACCTE hase were 31 for DESGN, 44
31 weeks 44weecks 19weeks 21weeks | or CODET, 19 for SYSTE,

and 21 for ACCTE.

Normalized i 1 3. Dividing ctl'\'e ﬁclua!l’ time
' ' ! spent in each phase by a
Zmooh oW oem 1o total duration of 115 weeks
) ') gives normalized values of
0.2696, 0.3826, 0.1652, and
0.1826 for the defined
phases (i.e., 26.96% DESGN,

38.26% CODET, 16.52%
SYSTE, and 18.26% ACCTE).

- —0
1l

Figure 2-24. Normalizing a Project's Schedule

29

Section 2—Components

Step 2—Average the Normalized Project Schedules

Using the intermediate results from the first step, calculate the normal values to be stored in
the schedule model as follows:

1. For each life-cycle phase, average the normalized values calculated for the amount of
time spent in that phase by the selected projects using

N
Normal Fraction of Duration, ppase [1] = (Z Fraction of Duration), ppase [ijl) I N
Jj=

for the " phase, where j refers to projects 1 through N

2. For each life-cycle phase, also determine the standard deviation in the normalized
values calculated for the amount of time spent in phase from the average for the set of

projects using

N
Standard Deviation, ppase [l = \ﬁ 27)(L) 7 (N-1)
]=

where X [i,j] = (Fraction of Duration;,, ppase [i,j] - Normal Fraction of Duration), ppase [i])2

3. Calculate the normal deviation in the model by averaging the values of the standard
deviation computed for each phase, 7 through K, using

K
Normal Deviation = (Z1Standard Deviationy, ppase [i1) / K
f=

Normalized Q !]
Time STEPS
DESGN CODET SYSTE ACCTE

1. For each life-cycle phase,
26.96% 88.26% 416'52% 1 1826% the average amount of time ’
L] T

spent in the phase is
calculated. SYSTE phase
values of 16.52%, 20.69%,
and 16.49% for the three
projects result in an average
of 17.90% for that phase.

-
L.

Project_A

| _

26.72% 26.72% , 206%%, 2586%

Project_B

28.40% 3080% ,164%%, 2021%
1

Project_C }

[]
; | 2. For each phase, the
1 I standard deviation in the
normalized project values
* * from the average is also
Schedule N H calculated. Given the three
Model DESGN ' CODET SYSTE ! ACCTE valqes_ in SYSTE, a standard
Average 25.69% 2496% 17.90% 21.45% devla"ondoff 1.97% l‘?ay be
Standard Deviation 162% 5.86% 197% 322% computed for the phase.

Normal Deviation = 3.17% (averaged) 3. Averaging the standard
deviation computed for each

phase (i.e., 1.62%, 5.86%,
1.97%, and 3.22%) results in
a normal deviation of 3.17%
for the model.

e ——— e
r—d—-—-—-
i PR Sp—

Figure 2-25. Averaging Normalized Schedules

30

Section 2—Components

2212 General-Purpose Use of Schedule Models

The SME incorporates a set of general-purpose services commonly used with schedule
models. These services are referenced freely throughout various high-level SME functions
to provide needed functions associated with schedule models. The services include

o (Convert Phase to Date
o (Convert Date to Phase
o Determine Normal Schedule

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

31

wn

Section 2—Components

2.2.1.2.1 Convert Phase to Date

Purpose

Translates a phase name and elapsed fraction of phase into the calendar date on which the

project can normally be expected to reach that phase.

Required Data
e Phase name and elapsed fraction of phase (input value)
e Project start and end dates (input value)
e Schedule model
Steps
1. Referencing the schedule model, calculate the total cumulative fraction of the

project's duration normally expected through the specified phase as
k-1

Cumulative Fraction of Duration = 2 Fraction of Durationy, ppase [i]

=1 + F * Fraction of Duration [K]
for the kth phase and an elapsed fraction of phase equal to F In Phase

Calculate the planned project duration as the number of weeks between the project
start and end dates. Scale the fractional value from the model by the duration in
weeks to obtain the expected number of weeks into the project.

Expected Weekst, ppase = Cumulative Fraction of Duration * Project Weeks 1ot

Add the expected weeks to the project start date to get the expected calendar date.

@) STEPS

Schedule — ¥
Model oy SoneT 1. Based on the schedule
-) : model, 35% through accept-
ance testing is normally
DESGN CODET 86.2% of the total project
duration (i.e., DESGN at
25.69% plus CODET at
A5% twraugh AGCTE 34.96% plus SYSTE at
17.90% plus 35% of ACCTE
86% of the project at 21.45%).
2. Scaling this value by a
100 wesks project duration of 116
weeks, translates to 100
weeks into the project.

‘
Duratio
uraton Novoss ol 3. Adding the 100 weeks to

1010591 12125/ the known project start date
results in an expected
calendar date of 09/04/93 for
the specified phase.

Figure 2-26. Converting an Expected Phase to a Date

32

Section 2—Components

2.2.1.2.2

Purpose

Convert Date to Phase

Translates a calendar date specified between the project start and end dates into the phase
name and elapsed fraction of phase that normally should be reached on that date.

Required Data

e (alendar date
¢ Project start and end dates
e Schedule model

(input value)
(input value)

1. Divide the weeks between the project start date and the calendar date by the total
weeks between the project start and end dates to obtain the fraction of duration.

Fraction of Durationy, page = Project Weekst, pawe / Project Weekstya;

2. Identify the phase in which the calendar date falls by serially examining the schedule
model to locate the first phase k that satisfies the following:

Fraction of DurationT, pate <= z Fraction of Durationy, ppase {i]

k

i=1

3. Linearly interpolate the fraction of phase k that corresponds to the calendar date as

k-1

Fraction of Phase = (Fraction of Durationt, pate - Z Fraction of Duration, ppase [i}) /

=1

Project 116 woeks total -
Duration 10051 1272583

Schedule
Model

Figure 2-27. Converting a Date to an Expected Phase

DESGN CODET SYSTE Apcre
100 weeks
B6% of the praject
35% trough ACCTE
N + ' .
DESGN CODET SYSTE ACCTE
25.69% 3496% 1790% 2145%

Fraction of Durationy,, ppase [k]

ﬁfn STEPS

1. Given the project start
and end dates, 09/04/33
occurs after 100 weeks; this
corresponds to 86.2% of the
116-week project duration.

2. The schedule model
shows 86.2% of the project
duration falling in ACCTE.

3. Since 86.2% of the project
duration exceeds the end of
SYSTE by 7.6% (i.e., 86.2%
minus DESGN at 25.69%
minus CODET at 34.96%
minus SYSTE at 17.90%), the
date should occur at a point
35% into ACCTE (i.e., 7.6%
divided by 21.45% in
ACCTE).

33

Section 2—Components

221.2.3 Determine Normal Schedule

Purpose

Scales the schedule model on the basis of a project's planned duration to generate a schedule
that is considered normal for the project.

Required Data

e Project start and end dates (input value)
o Schedule model

Steps
1. Calculate the planned project duration as the number of weeks between the project
start and end dates (Project Weeks1o4a))-

2. For each life-cycle phase, scale the fraction of duration found in the schedule model
for the phase by the planned project duration to obtain the number of weeks normally
spent in the phase.

Normal Weeks,,, pnaselil = Fraction of Duration, praseli] * Project Weeks o
3. Beginning with the project start date, iteratively calculate the start and end dates of

the life-cycle phases by incrementing the dates to account for the number of weeks
normally spent in each phase.

Schedule — + + $ 4 |@
Model DESGN coDET SYSTE = AGCTE NOTE
2569 3496% 1790% 21 45%

The figure depicts scaling a

. schedule model to reflect an
Project 100591 116 woeks total »"m“ expected total project
Duration duration of 116 weeks. In
DESGN

CODET SYSTE | ACCTE this instance, the schedule
model is applied directly, as
Rl if it were a template, to the
given project duration to

40 woeks produce a schedule thatis
considered normal. The

Nomal Schedue l 21 wesks. resultant normal schedule

o Woeks —— indicates that if the project is
25 wonks typical, the DESGN, CODET,
- SYSTE, and ACCTE phases
should take 30, 40, 21, and
Normal 100691 040282 020683 070083 122693 25 weeks, respectively.

Schedule

Given a project start date of
10/05/91, this results in the
following end date for each
phase: DESGN 4/02/92,
CODET 2/06/93, SYSTE
7/03/93, and ACCTE 12/25/93.

Figure 2-28. Determining the Normal Schedule

34

Section 2—Components

2.2.2 Measure Models

Purpose

Describes the normal behavior over time of a fundamental software development
measure such as lines of code, effort, or software errors.

Description

A measure model is a normalized representation of the typical behavior of a single specific
measure as a function of life-cycle phase. The SME uses a set of eight basic measure models
to describe a given type of project. These models map to eight key measures defined for use
with the SME that managers in this environment use to track and judge project progress. As
with schedule models, specific points in the life cycle are identified by the combination of a
phase name and an elapsed fraction of that phase between 0 and 1.0 inclusive. The measure
value expected at those points is measured from the start of the phase and is expressed as a
fraction of the total measure value at project completion. The sum across all phases of the
total fractional measure value in each phase is 1.0.

Note: The SME models the ratio of any two individual measures (for example, lines of code
per hour) by mathematically combining the appropriate pair of measure models to produce a
resultant measure model known as a rate model. Section 2.2.2.3.4 details the steps involved
in generating rate models.

Source
Statistical averaging of actual
Measore measure data from a set of
Percent of Total Effort In Phase Model gompletcd development pro-
jects
Fraction Fracton of
of Phase Measure .
12%4 Assumptions
025 oot e Measure data behavior is
0.50 0.0656 1. f 1
o o7s 3 dependent on life-cycle
§§ gézg phase
o 190 0.6 e At project start, all
0.50 0.1010
1% g7 measure values are zero
o | o Instances
0%A 1.00 01300
One model exists for each
Nomal Deviafon = 0.0270 defined measure, for each
project type.
Structure

Figure 2-29. Representative Measure Model for IBM,]
FORTRAN, AGSS Projects Table with three columns—
phase name, fraction of phase,

and fraction of measure; scalar
value—normal deviation. Each row in the table describes the fractional amount of the
measure typically observed from the start of the phase through the point in the life cycle

35

Section 2—Components

specified by the row's phase name and fraction of phase. Since measures typically do not
exhibit linear behavior within a phase, each phase is broken into multiple intervals for a total
of 14 segments with one per row. The scalar value associated with the table represents the
normal allowable deviation in the measure from the tabulated fractional values.

The following sections describe a representative set of measure models, detail the steps

required to create any measure model using actual data from completed projects, and present
a set of general-purpose algorithms commonly used with measure models.

36

Section 2—Components

2221 Defined Measure Models

The SME defines a set of eight measure models for each supported project type. These
models are

Effort Model

Lines of Code Model
Module Count Model
Computer Hours Model
Computer Runs Model
Changed Modules Model
Reported Changes Model
Reported Errors Model

The sample measure models presented below illustrate a complete set of these models for
one of the supported project types—IBM, FORTRAN, AGSS projects.

37

Section 2—Components

222.1.1 Effort Model
Measure
Model
Fhase Fracton Frachion :
Name | offfase | ofMessrs Cumulative Effort Model
over Life Cycle
10
DESGN 0.5 00182
0.50 0.0655
7S 013
1.00 0210t
CODET 025 0.125¢
0.50
0.75 03708
1.00 0.
SYSTE 0.50 01029
1.00 01795
accTE| 02 00421
050 o
0.75 om3
1.00 01278
- Design System Test
Normal Deviation « 0.026830 Code & Unit Test “Acceptance Test

Figure 2-30. Effort Model for IBM, FORTRAN, AGSS

Projects
22212 Lines of Code Model
Measure
Mode!
Rame | oiPraas | otwesaeee Cumulative Lines of Code Model
over Life Cycle
pesGN | 025 00000 / = 1o
050 0.0000
075 0.0000
1.00 00000 | 4=crevcccdurcrnceccenhanccndennnan
CODET 05 00875
0.50 0.3837
oS 06018
1.00 08072 { l.ocvenccaldercnanayornadaccccedsenaan
SYSTE 0.50 0.0829
1.00 0.1492
accTe] 0= 00181
0.50 0.0275
75 00413 h Gehdubehdainbds iadeed Aedebeinbiiels pheinbiaial hiahdiniy
1.00 0.0436
Normal Deviakion = 0.065381 Design Gode & Unit Test wTﬁAome

Figure 2-31. Lines of Code Model for IBM, FORTRAN,
AGSS Projects

38

An effort model describes how
effort is normally expended as
a function of life-cycle phase
on a given type of project. The
effort represents all staff hours
expended by programmers and
line management, but excludes
all project management and
service hours. Each supported
effort model is created by
statistically averaging actual
data from a set of similar,
completed projects.

Note: The accumulation of
effort over the life cycle
inherently exhibits the beha-
vior of a monotonically
increasing function.

A lines of code model de-
scribes how lines of code are
normally generated as a
function of life-cycle phase on
a given type of project. This
measure reflects the number of
records in the project's source
code library. Each supported
model s created by
statistically averaging actual
data from a set of similar,
completed projects.

Note: The number of lines of
code is expected to be zero
until the beginning of the
code and test phase. With
some projects, the cumulative
growth in lines of code may
drop due to deletion of obso-
lete components near the end
of the project.

Section 2—Components

2221.3 Module Count Mode!

Measure
Model
Phase | Fraction Fracton .
Name | cfPhase | of Measure Cumulative Module Count Mode!
over Life Cyde
10
DESGN [025 0.0000
0.5 0.0000
075 00000
1.00 00000 | d--emmrmcedeccccnmnama T LT
CODET | o025 0.1699
0.50 04498
075 08404
1.00 [orod N USRI SPRIP ARE WY (R—
SYSTE| 050 00743
1.00 01397
ACCTE 025 0.0085
0.50 0.0108
2% by - I EETTITTE Oy ARSENI RPN IS
1.00 00140
Normal Deviaion = 0.087378 Dedig Coded UnitTest T“Accephna'fes(

Figure 2-32. Module Count Model for IBM, FORTRAN,
AGSS Projects

22214 Computer Hours Model

Measure
Model
Phase Fracion Frackon
Name | offhess | of Measire Cumulative Computer Hours Model
over Ll% Cyde
DESGN 0.5 0.0004
0.50 0.0026
075 00108
1.00 00253
CODET 025 0.081S
050 01776
075 0.3254
1.00 0.4526
SYSTE 0.50 01124
1.00 02083
ACCTE 025 0.0852
050 0.1810
075 02785
1.00 03128
4 — e
Test
Normal Devialion = 0.074853 Dedn Code & Unit Test System Acceptance Test

Figure 2-33. Computer Hours Model for IBM,
FORTRAN, AGSS Projects

A module count model
describes how the number of
components normally grows as
a function of life-cycle phase
on a given type of project.
This measure reflects the
number of members in the
project's source code library.
Each supported model is
created by statistically
averaging actual data from a
set of similar, completed
projects.

Note: The module count is
expected to be zero until the
code and test phase. With
some projects, the cumulative
count may drop due to deletion
of obsolete components near
the end of the project.

A computer hours model
describes the normal usage of
computer time in CPU hours
as a function of life-cycle
phase on a given type of
project. This measure reflects
values from all computers used
by the project, normalized to
account for processor speed.
Each supported model is
created by statistically aver-
aging actual data from a set of
similar, completed projects.

Note: The accumulation of
computer hours over the life
cycle inherently exhibits the
behavior of a monotonically
increasing function.

39

Section 2—Components

2.22.1.5

Computer Runs Model

Measure

Cumulative Com

over Lite Cycle

r Runs Model

OESGN 025 0.0008
050 0.0030
075 00117
1.00 040291
CODET 025 00792
050 02180
0.75 0374
1.00 oshe
SYSTE 050 0.1138
1.00 02208
ACCTE 035 0.0739
[} 0.§443
075 02108
1.00 0.2385

Normal Deviation = 0.053370

Figure 2-34. Computer Runs Model for IBM,

FORTRAN, AGSS Projects
22216 Changed Modules Model
Measure
Modsl
Ree | aitrees | oftimases | Cumulative Changed Modules Model
over Cyde
DESGN 025 0.0000
050 0.0000
075 0.0000
1.00 00000 | 4oc=====~ EELEE LTI EIRLE
CODET 05 Q0070
050 0.1066
o 02157
1.00 037118 | L ocenenenfeccccenman=ed
SYSTE 050 02288
1.00 0.3585
ACCTE 025 fala <t]
0.50 1728
075 ozasz | 1=t M T T T
100 02699 /
Normal Deviaton = 0088514 Decign CodebtritTast Tk Test

40

Figure 2-35. Changed Modules Model for IBM,
FORTRAN, AGSS Projects

A computer runs model
describes the number of
computer runs normally
observed as a function of life-
cycle phase on a given type of
project. This measure of
computer resource usage
reflects the number of jobs
submitted on all computers by
the project. Each supported
model is created by
statistically averaging actual
data from a set of similar,
completed projects.

Note: The accumulation of
computer runs over the life
cycle inherently exhibits the
behavior of a monotonically
increasing function.

A changed modules model
describes how the number of
changes normally made to
modules varies as a function of
life-cycle phase on a given
type of project. This measure
reflects the number of versions
of individual modules in the
project's source code library,
minus the number of base
versions. Each supported
model is created by sta-
tistically averaging actual data
from a set of similar, com-
pleted projects. '

Note: The number of changed
modules is expected to be zero
until the beginning of the code
and test phase.

Section 2—Components

22217 Reported Changes Model

i
b
5

over

p 1.0

DESGN 0.5 0.0000 /7

0.50 0.0000

075 0.0000

1.00 0.0000 denvrwemndecccwrmasnrecdhanevadfan oo
CODET 05 00124 /

050 01120

075 02409

1.00 03888 L R L L Ll LT L T T T ysupnpeyu Jy Sty PRp——
SYSTE 0.50 02118

1.00 03483
ACCTE 02 0.0855

0.50 0.1644

R o5 [P M e T RN—

1.00 02619 //

Normal Deviaton = 0.091881 Dedgn Code & Unit Test Acosptance Test

ofPhase | of Measure Cumulative Reported Changes Model
Life Cycle 9e

Figure 2-36. Reported Changes Model for IBM,
FORTRAN, AGSS Projects

222.1.8 Reported Errors Model

Measure
Model
Phase Fracton FracSon 8
Name | ofPhase | ofMessure Cumulative Reported Errors Model
over Life Cycle
1.0
DESGN 025 0.0000
0.50 0.0000
075 0.0000
1.00 00000 | orrereredreccncmacmerdeanawad/ocnued

Narmal Deviaton = 0.097305 ¢ Code & Unit Test Acceptance Test

Figure 2-37. Reported Errors Model for IBM,
FORTRAN, AGSS Projects

A reported changes model
describes the number of logical
changes normally made to the
software as a function of life-
cycle phase on a given type of
project. This measure reflects
the number of forms submitted
to report a logical change to
one or more related
components. Each supported
model is created by
statistically averaging actual
data from a set of similar,
completed projects.

Note: The accumulation of
the number of reported
changes is expected to be zero
until the beginning of the code
and test phase.

A reported errors model
describes the number of logical
errors normally found in the
software as a function of life-
cycle phase on a given type of
project. This measure reflects
the number of forms submitted
to report a logical change that
indicate the change was due to
an error. Each supported
model 1is created by sta-
tistically averaging actual data
from a set of similar,
completed projects.

Note: The accumulation of
the number of reported errors
is expected to be zero until the
beginning of the code and test
phase.

4]

Section 2—Components

2222 Creating a Measure Model

The measure models used by the SME are created by normalizing and then statistically
averaging actual project measure data observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model. The algorithm may be applied to any
defined measure with data. By first normalizing the measurements, the creation process
gives equal weight within the model to each contributing project regardless of size or
duration.

Required Data

e Schedule data (for each project in the set)
e Measure data (for the measure of interest, for each project in the set)

42

Section 2—Components

Step 1—Normalize Each Project's Measure Data

For each project in the set, perform the following:

1.

For each life-cycle phase in the schedule data, determine the actual number of weeks
from the project start date through the start date of the phase (Actual Weeks 1, prase [il)
and calculate the actual number of weeks elapsed between the start and end dates of
the phase (Actual Weeksy, ppase [i])-
For each phase segment to include in the model, calculate the actual number of weeks
from project start through the segment as
Week Numbergegment [ij] = Actual Weekst, ppase [i] + F(j) * Actual Weeks), ppase
for the " phase and i segment, where F(j) refers to the fraction of phase of the ' segment
For each calculated week number corresponding to the desired phase segments,
normalize the actual measure value for that week, measured cumulatively from
project start, by the actual total measure value at project completion
Fraction of Measuregggmen: [ij] = Actual Measureg,, week [ij] / Actual Measureyygy
Adjust each computed fraction of measure value to be cumulative within phase using
Fraction of Measure, ppase [ij] = Fraction of Measureg,, i
1 PRase ™ Fraction of MeasureSeg,ane,rﬁJ , JMax(i-1)]
for the ™ phase and jth segment, where i > 1 and JMax(i-1) is the last segment in the (i-1)t" phase
Cumulative M Data Measurs Data £
mautativ re
OvereLifeeg)jl(':le = STEPS
7 T T 1. The number of weeks in
; : Amsl Cumatve | Nommalizéd | Fracion thedDAEcScGr?é, ChO DET, SY?JE ’
: : sl I an phases are 30,
H e Moasire Meser Prase 40, 21, and 25, respectively.
Measure & !
l Data I : 2. Each phase is broken
: OESNIE | xero | osme | ooze down into 4, 4,2, and 4
H 075 73767 01550 0.1550 segments, respectively.
[1.00 1iota1 02314 02314
CODET 025 153623 03228 0.0814 i
0% | 1e85a0 odize a1e78 3. 1;|he cumul:apvs_\:;;:‘e‘ gty
g y y eacn segment is ai
1008581 12 w2t SYSTE :u'% %E §le4§ gzé 47594,.89,g the cumulative total.
ATENS | &) o828 0088 4. Each f’egment'ls va:Iue is
e 075 471238 0.9901 0.1441 converted to a value that is
chaegue 1o ATeds 10000 | ot cumulative within phase.

Figure 2-38. Normalizing a Project's Measure Data

43

Section 2—Components

Step 2—Averaqge the Normalized Measure Data

Using the intermediate results from the first step, calculate the normal values to be stored in
the measure model as follows:

1. For each life-cycle phase and segment, average the normalized values calculated for
the fraction of measure within phase as observed by the selected projects using

N
Normal Fraction of Measurey, ppase lii] = (k21 Fraction of Measure), ppase [iiK]) / N

for the ¥ phase and /" segment, where k refers to projects 1 through N

2. For each life-cycle phase, also determine the standard deviation in the normalized
values calculated for the fraction of measure observed within phase from the average
for the set of projects using

N
Standard Deviation, ppase lif] = \/ (;1X[i,',k]) 1 (N1)

where X [i,k] = Fraction of Measurej, phase [i,k] - Normal Fraction of Measurey, ppase [1])2

3. Calculate the normal deviation in the model by averaging the values of the standard
deviation computed for each phase segment, 7 through M, using

M
Normal Deviation = (strandard Deviation;, ppase [if]} | M
=

Measure
(Normalized Measure Values J Model m STEPS
Phase Project 1 Project2 joct 3 z
et oject2 | _Project Average Deviston 1. The normalized measure
values at each segment for
DESGN 025 0,023 0.0164 00174 0.0162 0.0033 ‘he three pro]eCts are
0 cosat | o oossz | =W 00ess 00125 averaged.
075 0.1550 0.1224 01168 0.1313 0.0168
1.00 02314 02119 01873 02102 0.0180 e
CODET 025 | 0328 0.37% 03118 0.3361 0.0269 2. The standard dev'a,t,',o,n of
050 | ost@ | oass2 | oasas Qa2 guase each segment value from the
a7s o521 0.6120 06085 & & i
1.00 061 0.7340 07316 0.6829 0.0563 respeCthe average is
systEoso | o740 | oses | osser 07958 0.0381 calculated.
1.00 0. 0.8703 0.9005 8% g%
AccTE 025 | osser | osis4 | o09s0 . !
0s0 | osss | owae | osser 09549 0.0405 3. The average of the
075 | 09901 | ogres | osexs 09837 0.0047 standard deviations is
100§ 10000 | 10000 | 10000 1.0000 1.0000 calculated to derive a normal
deviation of 0.0944.

Nomal Deviaon = 0.0848 L (Averaged)

Figure 2-39. Averaging Normalized Measure Data

Section 2—Components

2223 General-Purpose Use of Measure Models

The SME incorporates a set of general-purpose services commonly used with measure
models. The services are referenced freely throughout various high-level SME functions to
provide needed functions associated with measure models. These services include

Convert Phase to Measure

Convert Measure to Phase

Determine Normal Measure Guidelines
Generate Rate Model

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

45

Section 2—Components

22231 Convert Phase to Measure

Purpose

Calculates the cumulative measure value that can normally be expected at a given point in
the life cycle specified by a phase name and elapsed fraction of phase.

Required Data
e Phase name and elapsed fraction of phase (input value)
e Expected measure value at project completion (input value)

e Measure model

Steps
1. Referencing the measure model, linearly interpolate the cumulative fraction of the
measure's value normally expected within the specified phase as

Fraction of Measurey,, prase [k] = Fraction of Measurej, ppase [Kj-1] +
(Fraction of Measurey, ppase [K.j] - Fraction of Measurey, ppase lk.j-1]) * (F-F(-1))}/ (F() - F(-1))

for the kth phase, the segment, and an elapsed fraction of phase, F, where F(j-1) < F <= F(j)

2. Also, from the model, calculate the cumulative fraction of the measure's value
normally expected in any earlier phases occurring before the specified phase as
k-1
Fraction of Measureggforg Phase (K] = Z Fraction of Measurej,, ppase [l JMax(i)]
i=1
where JMax(i) is the last segment in the ! phase
3. Obtain the expected measure value by scaling the sum of these two computed values
by the specified expected measure value at project completion

-

Expected Measure Value = Expected Completion Value
(Fraction of Measurej, ppase [k] + Fraction of Measuregefore phase [K])

@ STEPS

Expected
Campieon Vabe 1. Using the measure model,
at 65% through CODET the
| __—1 10 150000 measure will normally attain
Measure / a cumulative measure value
equal to 48% of the expected
Model value at project completion.

2. Given an expected project
Y S ce—-pm]o4s 72000 5
0000

completion value of 1

for the measure, the normal
measure value to expect at
this point in the project
schedule is 72000 (i.e., 48%
of 150000).

SO

Figure 2-40. Converting a Phase to an Expected Measure

46

Section 2—Components

2.2.2.3.2 Convert Measure to Phase

Purpose

Calculates an expected phase, specified by a phase name and elapsed fraction of phase, that
will normally be reached when the measure of interest attains a given value.

Required Data
e (Cumulative measure value (input value)
e Expected measure value at project completion (input value)

e Measure model

Steps

1. Divide the camulative measure value by the expected measure value at project
completion to obtain the fraction of measure at the desired point in the life cycle.

Fraction of Measurert, pae = Measure Valuet, pae / Expected Completion Value

2. Identify the phase and segment in which the fraction of measure falls by serially
examining the measure model to locate the first phase k and segment j that satisfies
the following

k-1
Fraction of Measuret, pate <= Z Fraction of Measure, ppase [i, JMax(i}]
f=1 + Fraction of Measurey, ppase [K.j]

3. Linearly interpolate the fraction of phase k, in segment j, that corresponds to the

fractional measure value as

Fraction of Phase = (F(j) - F(j-1)) * Fraction of Measuret, pate
/ (Fraction of Measure;, ppase [k.j] - Fraction of Measure,,, Phase [Kj-1])

A stees

Expacted 1. Dividing a cumulative
CompletonVabe measure value of 72000 by
the completion estimate of
—1 10 150000 150000 yields a value of 0.48.

Measure /

Mode! 2. The fraction of measure

matching a cumulative value
of 0.48 in the measure model
R R PR 048 72000 falls within the code and test
phase.

Linearly interpolating
between the fractional
lﬂﬂstflil’e values "ésthe model
identifies a point 65% into
5 percent beauih the code and test phase.

‘---

Figure 2-41. Converting a Measure to an Expected Phase

47

Section 2—Components

22233 Determine Normal Measure Guidelines

Purpose

Calculates expected cumulative measure values, with upper and lower normal bounds on the
values, as a function of project schedule.

Required Data
¢ Project start and end dates (input value)
o Expected measure value at project completion (input value)
e Schedule model
e Measure model

Steps
1. Use the schedule model routine Convert Phase to Date with the specified project start
and end dates to determine the calendar dates associated with each phase and phase
segment defined in the model (Expected Calendar Date [if], for the ith phase and P segment).

2. Also for each phase and phase segment, use the measure model routine Convert
Phase to Measure with the expected completion value to determine the expected
cumulative measure value for those dates from the model (Expected Measure Value [ijf).

3. Compute the upper and lower normal bounds on the measure values by adding and
subtracting, respectively, the normal deviation stored in the measure model from each
expected measure value.

Normal Range [ij] = Expected Measure Value [ij]+ (Normal Deviation * Expected Completion Value)

ﬁn STEPS

1. For a start date and end
date of 10/05/91 and 12/25/93,
applying the schedule model
resuits in intermediate phase
dates of 04/02/92, 02/06/93,
and 07/03/93.

2. For a completion value of
225000, applying the
measure model results in

intermediate values of 57802,
-4 136463, and 176736 at these
Lk . phase boundaries.
- 3. The normal range results
100591 04022 20653 [e— 12255 from scaling the standard

deviation in the measure
model by 225000. Upper and
lower bounds for the range
are the expected measure
values at each date plus or
minus the scaled value.

Figure 2-42. Determining Normal Measure Guidelines

48

Section 2—Components

22234 Generate Rate Model

Purpose

Generates a measure model, known as a rate model, that captures the typical behavior of the
cumulative ratio of any two specified measures as a function of life-cycle phase.

Required Data
® Measure name for numerator (input value)
® Measure name for denominator (input value)

Measure models (for the two specified measures)

For each phase and phase segment in the measure models of both the specified
numerator and denominator, adjust the expected fraction of measure values to be
cumulative from project start using

Fraction of Measurepae From Start [ii] = Fraction of Measurey,, ppase [if] +
i-1

z Fraction of Measure,, ppase [N, JMax(n)]
n=1

for the " phase and jth segment, where i > 1 and JMax(i-1) is the last segment in the (i-1)th phase

Divide the fraction of measure values for the numerator by the corresponding
denominator values to obtain expected rate values at each phase and segment.
Adjust each computed fraction of measure value to be cumulative within phase using
Fraction of Measuregasg i, phase [ii] = Fraction of Measuregag From start li]

- Fraction of Measuregae From Start [i-1, JMax(i-1)]

Set the normal deviation for the rate model to the maximum absolute deviation to
expect from the two individual measure models using

1 + Normal Deviationy, 1 - Normal Deviationy
Normal Deviation = Max{ | 1- - um 1 71- — am
1 - Normal Deviationpgpom 1+ Normal Deviationpanom

49

Section 2—Components

Measure Mode!
({for Numerator)
. . Phase Fraction Cumulatve
Cumulative Lines of Code Model Name | ofPhess | Measre
over Life Cycle
p10
/ 4 DESGN 025 0.0000
050 0.0000
Q.75 0.0000
B e < e Lt CEE TR 1.00 0.0000
copET | 025 0.0875
0.50 0.3837
0.75 0.6018
B PP MY AR NN 100 0.8072
SYSTE 0.50 08811
1.00 0.9664
ACCTE | 025 0.9745
050 0.9838
................................... b4 o
1.00 1.0000
Design System Test
Code & Unit Test Acceptance Teet Normal Deviation = 0.085381
Measure Model
(for Denominator)
Phase Fraction Cumulatve
Cumulative Effort Model Name | ofPhase | Measro
over Life Cycle
10
DESGN 025 00192
050 00685
075 01313
1.00 o1
COQDET 025 03350
0.50 04523
075 05808
1.00 06929
SYSTE 050 7958
1.00 08724
ACCTE 025 08145
0.50 09518
0.78 09837
1.00 1.0000
; System Test
Design Code & Uniz Test ‘Acosptancs Teet Nomnal Deviaion = 0.026830
Rate
Model
Phase | Fracken | Cumuaive Cumuiative Lines of Code per Effort
Nam Phase H y
il B Pak over Life Cycle
DESGN 025 0.0000
0.50 0.0000
075 0.0000
100 00000 | Fremmmmmmedeeee-- <] N 10
coDET | 025 02902
0.50 0.8703
Q75 1.0357
1.00 11648 | feewro---d T YY // [ty YA R ———
SYSTE 0.50 11187
1.00 1.0963
ACCTE 025 1.0658
0.50 109 | Jesccacee- SR/ / B S SR
075 1.0142
1.00 1.0000
Design Toet
Normal Deviaton = 0.094366 Code & Unit Test Acceptance Test

Figure 2-43. Generating a Rate Model

50

@ STEPS

Generating any rate model
proceeds as follows:

1. Adjust the expected
fraction of measure values in
both the numerator's and the
denominator’s measure
model to be cumulative from
the start of the project.

2. To compute rate model
values, divide the expected
value for the numerator at
each model segment by its
corresponding expected
value for the denominator.

3. Adjust the cumulative rate
model values, calculated
above, to be fractional
values within each phase.

4. Calculate the rate model's
normal deviation based on
the worst case allowed by
the two individual models,

The specific example shown
here illustrates generating a
rate model for lines of code
per hour (i.e., LOC/EFF):

The upper figure shows
adjusting the measure model
for LOC (i.e., the numerator
of the rate) to be cumulative
from the project start.

The middle figure shows
adjusting the measure model!
for effort (i.e., the denom-
inator of the rate) to be
cumulative from the project
start.

The bottom figure shows the
cumulative rate model that
results from dividing the
LOC values by the effort
values at each model
segment.

Note that the rate model's
normal deviation is depicted
in the bottom figure as
guidelines about the normal
values.

Section 2—Components

2.2.3 Profile Models

Purpose

Describes the normal behavior over time of a software development measure using an
associated profile such as effort to isolate change or effort to correct error.

Description

A profile is a breakdown of a basic measure into discrete categories that describe the
behavior of the measure in greater detail. A profile model is a normalized representation of
the typical behavior of a profile as a function of life-cycle phase. The SME uses four profile
models to describe a given type of project. These four profile models correspond to two of
the eight key measures defined for use with the SME. As with other SME models, specific
points in the life cycle are identified by the combination of a phase name and an elapsed
fraction of that phase between 0 and 1.0 inclusive. The value of each component expected at
those points is measured from the start of the phase and is expressed as a fraction of the total
component value at project completion. The sum of all components across all phases of the
total fractional profile value in a phase is 1.0.

Source
Statistical averaging of actual
NemofFrackon Jracten profile data from a set of
e completed development proj-
DESGN | 025 {00000 { 0.0000 | 0.0000 § 0.0000 Wts
070 | Soos0 | o0m0o | 00000 | coo0
Percent in Phase of 1.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 Assumptions
Effort to Isolate Change CoDET | 028 | 0008 | 0000 | onas | So0ea S p L.
25% g1e91 | oosse | ooed | 00043 e Profile data behavior is
- §‘£§i §§ §§§ §:ﬂ“§ dependent on life-cycle
° 00709 | 00575 | oots4 | oco7s phase
0,111 | 0.0859 | 0.0300 | 0.0109 . -
15%A 01214 | 00061 | 00324 | 00120 o At pI'O]CCt start, all proflle
values are zero
10%:
Instances
5% .
One model exists for each
0% defined profile for each project
type.
Structure

Figure 2-44. Representative Profile Model for IBM,)
FORTRAN, AGSS Projects Table with two fixed
columns—phase name and

fraction of phase—and a col-
umn for each defined component containing its fraction of measure; list of text values
describing what each component represents. Each row in the table describes the fractional
amount of the profile typically observed from the start of the phase through the point in the
life cycle specified by the row's phase name and fraction of phase, broken down by
component. As with measure models, each phase is broken into multiple intervals for a total
of 14 segments with one per row.

51

Section 2—Components

The following sections describe a representative set of profile models, detail the steps
required to create any profile model using actual data from completed projects, and present a
set of general-purpose algorithms commonly used with profile models.

52

Section 2—Components

2.2.3.1 Defined Profile Models

The SME defines a set of four specific profile models for each supported project type. These
models are

Effort to Isolate Change Model
Effort to Implement Change Model
Effort to Isolate Error Model
Effort to Correct Error Model

The sample profile models presented below illustrate a complete set of these models for one
of the supported project types—IBM, FORTRAN, AGSS projects.

53

Section 2—Components

223.1.1 Effort to Isolate Change Model

Effort to Isolate Change
for Reported Changes

Fraction of Measure

ACCTE 025

Figure 2-45. Effort to Isolate Change Model for IBM,
FORTRAN, AGSS Projects

223.1.2 Effort to Implement Change Model

Effort to Implement Change
S

for Reported Change
Name/Fracton of Phase Fraction of Measure
DESGN 025
050
075
1.00
COOET 025
0.50
075
1.00
SYSTE 0.50
1.00
ACCTE 025
0.50
075
1.00

Figure 2-46. Effort to Implement Change Model for
IBM, FORTRAN, AGSS Projects

54

An effort to isolate change
model describes how effort is
normally expended in isolating
reported changes on a given
type of project as a function of
life-cycle phase. The model
captures the number of
reported changes to expect in
five categories that are based
on the effort needed to isolate
the change—1 hour or less, 1
day to 1 hour, 3 days to 1 day,

more than 3 days, and
unknown.
Note: For any phase and

fraction of phase, the sum of
the fractional values across all
categories equals the fractional
value in the reported changes
model.

An effort to implement change
model describes how effort is
normally expended in making
reported changes on a given
type of project as a function of
life-cycle phase. The model
captures the number of
reported changes to expect in
five categories that are based
on the effort needed to make
the change—1 hour or less, 1
day to 1 hour, 3 days to 1 day,

more than 3 days, and
unknown.
Note: For any phase and

fraction of phase, the sum of
the fractional values across all
categories equals the fractional
value in the reported changes
model.

Section 2—Components

2.2.3.1.3 Effort to Isolate Error Model

e TRpsRYERY

Fraciion of Meagre

Name/Fracton of Phase

Figure 2-47. Effort to Isolate Error Model for IBM,
FORTRAN, AGSS Projects

223.1.4 Effort to Correct Error Mode/

Profile Effort to Comrect Error
Model for Reported Errors
Name/Fracton of Phase Fracton of Measure
DESGN 025 0.0000 | 0.0000 | 00000] 0.0000

SYSTE 050 {01260 D:OS& 00144 § 00015
1.00 | 02050 0.08%] 0. 0.
ACCTE 025 00474 | 0.0284 } 00066 | 0.0041

Figure 2-48. Effort to Correct Error Model for IBM,
FORTRAN, AGSS Projects

An effort to isolate error model
describes how effort is
normally expended in isolating
reported errors on a given type
of project as a function of life-
cycle phase. The model
captures the number of
reported errors to expect in
five categories that are based
on the effort needed to isolate
the error—1 hour or less, 1 day
to 1 hour, 3 days to 1 day,

more than 3 days, and
unknown.
Note: For any phase and

fraction of phase, the sum of
the fractional values across all
categories equals the fractional
value in the reported errors
model.

An effort to correct error
model describes how effort is
normally expended in
correcting reported errors on a
given type of project as a
function of life-cycle phase.
The model captures the
number of reported errors to
expect in five categories that
are based on the effort needed
to fix the error—1 hour or less,
1 day to 1 hour, 3 days to 1
day, more than 3 days, and
unknown.

Note: For any phase and
fraction of phase, the sum of
the fractional values across all
categories equals the fractional
value in the reported errors
model.

55

Section 2—Components

2232 Creating a Profile Model

The profile models used by the SME are created by normalizing and then statistically
averaging actual project profile data observed on a set of one or more similar, completed
development projects. The projects selected for inclusion in the set should be representative
of the type of project to be captured by the model. The algorithm may be applied to any
defined profile with data. By first normalizing the measurements, the creation process gives
equal weight within the model to each contributing project regardless of size or duration.

Required Data

e Schedule data (for each project in the set)
e Profile data (for the profile of interest, for each project in the set)

56

Section 2—Components

Step 1—Normalize Each Project's Profile Data

For each project in the set, perform the following:

L.

For each life-cycle phase in the schedule data, determine the actual number of weeks
from the project start date through the start date of the phase (Actual Weeks 1, ppase /1))
and calculate the actual number of weeks elapsed between the start and end dates of
the phase (Actual Weeks),, ppase [i])-
For each phase segment to include in the model, calculate the actual number of weeks
from project start through the segment as
Week Numbergegmen: [i,j] = Actual Weeksty prase [i] + F(j) * Actual Weeks),, ppase [i]
for the it phase and ' segment, where F(j) refers to the fraction of phase of the i segment
For each calculated week number corresponding to the desired phase segments,
normalize the actual measure value of each component for that week, measured
cumulatively from project start, by the actual total measure value of all components at
project completion
Fraction of Measuregggment [1j,k] = Actual Measuregy, week [1i.k] / Actual Measure oy
for the kth component (i.e., the ki profile category)
Adjust the computed fraction of measure values for each component to be cumulative
within phase using
Fraction of Measure,, ppase [i,k] = Fraction of Measuregggment [1,k]
nrEnase ™ = Fraction of MeasureSQng.,t 1-5 JMax(i-1), k]
for the it phase, 1 segment, and kth component,
where i > 1 and JMax(i-1) is the last segment in the (i-1)!' phase
Cumulative Measure Data
Over Life Cycle £
g H— Normazed STEPS
: : Profle Data 1. The number of weeks in
Profie ; the DESGN, CODET, SYSTE,
Data : and ACCTE phases are 30,
: pou Cunidabe Normakzed JFrackn 40, 21, and 25, respectively.
: d . The phzse: ;re b‘r’oz(en
own into an
masm ol o olam|em e lomm (el sl | seaments, respectivel.
075 [} o 01 0.000 | 0.000 | 0.000 { 0.000 { 0.000 [0.000
wous oenwm | CODET '02 $1 7] ofooa |ooer [506 | 558 f 5o | o0 3. The cumulative total for
% | 3] 3| 2|3% 652 o8 1% | 8% | oot oot et b
Schedule gfoo 400) 198] 22| 0276 | 0.136 | 0.022 | 0276 { 0.126 | 0022 segment is divided by 1452,
Dara SYSTE 050 | 560 jrod A B 0202 | 00 [0110 | 0063 o010 the cumulative total of the
ACCTE 025 | 7a5| 4a1] &2 | osta | 0297 | 0.085 | 0.028 | 0.022 | 0007 sums of the components.
% | =il momm o2 com oo oo oo s value
100 | &3] 503f 13| 0576 | 0.345 | 0.078 | 0.081 | 0071 | 0o :bnE\laecr’tlezetgon;e\lI‘;Ii:?ll:; il:
cumulative within phase.

Figure 2-49. Normalizing a Project's Profile Data

57

Section 2—Components

Step 2—Average the Normalized Profile Data

Using the intermediate results from the first step, calculate the normal values to be stored in
the profile model as follows:

1. For each life-cycle phase and segment, average the normalized values calculated for
the fraction of measure of each component within phase as observed by the selected
projects using

N
Normal Fraction of Measurey, ppase [Lik] = { 2,1 Fraction of Measure,, ppase [iikp]) I N
p=

for the " phase, jth segment, and kth component, where p refers to projects 1 through N

Profile
Normalized Profile Valuss] ﬁ)
[Model STEPS

| J’A&_L[| _Projects 1. The normalized values for
l o | Averaged Valuss all components at each
Phase Projectt segment for the three

000 rojects are averaged.
boo % 0000 0000 0000 0000 0.000 proj a9

ESGN X X 1 poc 0000 0000 0000 0000 0.000
O B 1555 | 555 | 5500 | o000 | o000 oo [| oo o0 co0 ca0 oo 2. The resultant averaged

075 | 0.000 | 0.000} 0.000 | 0.000 | 0.000 poo 0000 0000 0.00C 0000 0.000 values may subsequently be

100 | 0.000 | 0.000] 0000 | 6.000 | 0.000 POO |3 0008 0002 0001 0.000 0.000 stored as a profile dei
co0ET 025 | 0.002 | 0.000{ 0.000 | 0.000 o.m% 0081 0025 0003 0002 0.000 o S a proliie modei.

oo | 0026 | 0.021] p.oos | 6.000 { 0.000 PO 000 0169 0058 0008 0004 0.000

075 | 0.103 j 0.065| 0011 | 0.002 | 0.000 P |00 0269 0088 0015 0007 0000

100 | 0267 } 0.132] 0021 | 0.004 | loco P[50 0401 DJ68 0022 0010 0000
SYSTE 650 | 0374 | 0.196 | 0:031 | 0.008 | 0.000 P 000 0438 0 0031 0013 0.000

100 | 0.470 § 0267 | o048 | 0013 | 6.000 P [239 0532 0240 003 0016 0000
ACCTE 025 | 0497 | 0288 0.055 | o015 | 0.000 P [000 0567 0264 0050 O 0.000

050 | 0515 | 0301] 0.084 | 0025 | 0.000 P [0600 0203 0061 0024 0.000

075 | 05551 | 0334 0.075 | 0.029 | 0.000 PO° 0608 0303 0063 0025 0.000

1.00 § 0.558 | 0.336] 0.075 | 0.03t | 0.000

-

Figure 2-50. Averaging Normalized Profile Data

58

Section 2—Components

2.2.3.3 General-Purpose Use of Profile Models

The SME incorporates a set of general-purpose services commonly used with profile models.
The services are referenced freely by SME functions to provide needed services associated
with profile models. These routines include

e Convert Phase to Profile Measure

The following section discusses this routine and details the algorithms behind the service it
provides.

59

Section 2—Components

2.2.3.3.1 Convert Phase to Profile Measure

Purpose

Calculates the cumulative profile vector that can normally be expected at a given point in the
life cycle specified by a phase name and elapsed fraction of phase.

Required Data
e Phase name and elapsed fraction of phase (input value)
e Expected measure value at project completion (input value)

e Profile model

Steps
1. Referencing the profile model, linearly interpolate the cumulative fraction of each
component's value normally expected within the specified phase as

Fraction of Measure, ppase [KI] = Fraction of Measure,, ppase [Kj-1,1] +
(Fraction of Measure, ppase [K.J,l] - Fraction of Measurey, ppase [k.j-1.11) * (F-F(-1))/(F() - F(-1))

for the k" phase, the " component, and an elapsed fraction of phase, F, where F(j-1} < F <= F(j)

2. Also, from the model, calculate the cumulative fraction of each component's value
normally expected in any earlier phases occurring before the specified phase as
k-1
Fraction of Measureggforg pPhase K] = Z Fraction of Measurey, ppase [JMax(i),l]
i=1
3. Obtain the expected profile vector by scaling the sum of these two vectors of
computed values by the specified total expected measure value at project completion

*

Expected Component Value [l] = Expected Comfletion Value
(Fraction of Measure;,, ppass (K,

I] + Fraction of Measureggfore Phase K1)

ﬁD STEPS

1. Using the profile model,
at 65% through CODET the
components will normally
attain cumulative measure
values of 1%, 7%, and 10% of
the expected total value at
project completion.

Profile
Mode!

2. Given an expected project
completion value of 1498 for
the measure, the normal
profile values to expect at
this point in the schedule are
16, 98, and 155.

Figure 2-51. Converting a Phase to a Profile Measure

60

Section 2—Components

2.2.4 Estimate Set Models

Purpose

Describes the relationships that exist between the completion values of measures.

Description

An estimate set model is a normalized representation of the measure values to expect at
project completion. The model implicitly captures the set of linear relationships that exist
between estimated completion values for each pair of measures. The completion values in
the model are normalized to 1000 lines of code, with one value for each measure defined in
the measure list. The order of the measures in the model denotes the default hierarchy used
by the SME in choosing a measure whose estimated completion value will be used as a
scaling factor to generate the set of normal completion values.

Source
Statistical averaging of actual
measure completion values
Estimate Set from a set of completed devel-
Model opment projects
Assumptions
Meas Completi .
Code VaFJﬂ:;m e Over the domain of the
o0 1300000 model, linear expressions
MOD 5,061 are sufficient to capture the
EFF 255.208 relationships between
i e completion values
RCH 8.501 -to- i
RER P * A one-to-one mapping
RUN 304.778 exists between the entries
in the estimate set model
and the measures defined
in the measure list
— * A measure model exists for
Figure 2-52. Estimate Set Model for IBM, FORTRAN, each entry in the estimate
AGSS Projects set model

Instances
One model exists for each project type.

Structure
Table with two columns—measure code and completion value. Each row in the table
supplies the estimated completion value per 1000 lines of code for the named measure.

The following sections detail the steps required to create estimate set models using actual
data from completed projects and present a set of general-purpose algorithms commonly
used with estimate set models.

61

Section 2—Components

2.24.1 Creating an Estimate Set Model

The estimate set models used by the SME are created by normalizing and then statistically
averaging actual measure completion values observed on a set of one or more similar,
completed development projects. The projects selected for inclusion in the set should be
representative of the type of project to be captured by the model and should have measure
data for each defined measure. By first normalizing the completion values, the two-step
creation process gives equal weight within the model to each contributing project regardless
of size or duration.

Required Data
e Measure data (for each project in the set, for each measure)

Step 1—Normalize Each Project's Completion Values

For each project in the set, perform the following:

1. For each defined measure, obtain the actual cumulative measure value at project
completion from the measure data (Actual Completion Value [i]).

2. Calculate the normalization factor based on the actual completion value for lines of
code as

Normalization Factor = 1000.0 / Actual Completion Value; oc
3. Normalize each measure's actual completion value using the computed factor

Normalized Completion Value [i] = Actual Completion Value [i] * Normalization Factor

ﬁD STEPS

Measure ormaliz
Data N ed 1. Obtain the actual cumula-
Values A A
tive value at project

completion of each measure
from its measure data.

Measure Compietion Measure
Code Value Normalization Code Estimale 2. Given 178682 lines of
Ofam' 5 code, the normalization
cPU 1549 0055965 cPu 0867 factor would be 0.0055965
EFF 475048 P 268964 (i.e., 1000.0 divided by
toc | 17se20 -_— Loc 100000 178682.0).
MCH 31560 MCH 17.662
MCD 9130 MOD 5110 3. Multiply the actual
RCH 1488.0 RCH 8386 completion value of each
:&5 mg RER 4618 measure by this factor to
48482 RUN 271.3%0 produce normalized values.

Figure 2-53. Normalizing a Profect's Completion Values

62

Section 2—Components

Step 2—Average the Normalized Project Completion Values

Using the intermediate results from the first step, calculate the normal completion values to
be stored in the estimate set model as follows:

1. For each defined measure, average the normalized measure completion values for the

selected projects using

N
Normal Completion Value [i] = (2, Normalized Completion Value [ijj) / N
/=

for the ™ measure, where Jjrefers to projects 1 through N

2. Store the normal completion values in the model in order of the measure's decreasing

importance in determining the magnitude of a project.

Note: By convention, the order used by the SME is lines of code (LOC), module

count (MOD), total staff hours (EFF), computer hours (CPU), modules changed

(MCH), reported changes (RCH), reported errors (RER), and computer runs (RUN).

Measure Project Project2

Estimate Set
Mode!
Project3

cPU 867 706
EFF 266266 215941
LoC 1000.000 1000.000
MCH 17683 14.589
MOD 5110 6.156
RCH 8384 6838
RER 3783 3.732
RUN 271331 255089

23
283.588
1000.000
20619
4486

10283
4680
387912

Figure 2-54. Averaging Normalized Completion Values

832
255298
1000.000
17.624
5251
8.502
4.085
304.778

@ STEPS

1. For each measure,
average the normalized
values from the three
projects to calculate the
measure's completion value
for the estimate set model.

2. Store the averaged values
in the model in a suitable
order (e.g., LOC, MOD, EFF,
CPU, MCH, RCH, RER, and
RUN).

63

Section 2—Components

2242 General-Purpose Use of Estimate Set Models

The SME incorporates a set of general-purpose services commonly used with estimate set
models. The services are referenced in various high-level SME functions to provide needed
functions associated with estimate set models. These services include

e Get Ratio of Estimates
e Determine Normal Estimate Set
e Get Project Magnitude

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

64

Section 2—Components

2.24.2.1 Get Ratio of Estimates

Purpose

Obtains the ratio of estimated completion values normally expected for any two specified
measures.

Required Data
e Measure name for numerator (input value)
¢ Measure name for denominator (input value)

e Estimate set model

Steps
1. Obtain the normal completion values of the two specified measures from the estimate
set model.

2. Divide the completion value of the measure for the numerator by the completion
value of the measure for the denominator to obtain the normal ratio of estimated
completion values.

Ratio of Estimatest completion = Completion Valuey,,, / Completion Valuepgnom

EED STEPS

Estmate Set 1. Get the estimated
| © completion values of the two
Input T —— Normal Ratio of specified measures from the
Measures Cormpletion Estimates model. For LOC and EFF,
Moasws | Gorpieton this would result in 1000.0
leas!
ot e and 255.298, respectively.

2. Divide the value for the
numerator by the value for

LL&? SSFD > l\'igco 100232(: . LLOOCCﬁg;: 198'725177 the denominator to derive
RER, LOC EFF 255298 RERLOC= 0.004 the normal ratio expected at
RER, RCH CPU 0.832 RERRCH= 0515 roject completion. For
. Kg_{i 1;?_’20‘1 . OC/EFF, thls would result in
: RER &a78 : 3.917 lines of code per hour.
MCH, MOD RUN 304.778 MCHMOD = 3357

Figure 2-55. Obtaining the Ratio of Completion Estimates

65

Section 2—Components

2.24.2.2 Determine Normal Estimate Set

Purpose

Produce a full set of normal completion estimates for all measures given the expected
completion value for any one measure. :

Required Data
e Measure name (input value)
e Expected completion value for the measure (input value)

e Estimate set model

Steps
1. Locate the specified measure in the estimate set model and obtain the normal
completion value for the measure (Normal Completion Value peasure)-

2. Calculate a scaling factor for the model based on the ratio of the input expected
completion value for the measure to the model's normal completion value as

Scale Factor = Expected Completion Valuepygasure / Normal Completion Valuepjeasure

3. Multiply the completion values found in the estimate set model for each measure by
the calculated scaling factor to produce a set of completion estimates using

Completion Estimate [i] = Normal Completion Value [i] * Scale Factor

ED STEPS
Normal 1. The normal completion
Mooe! Estimate Set value for LOC in the estimate
Project set model is 1000.0.
Magnitude
— ey romsvmg IR B4 41 10 oo
L easure ; e ines of code, this
g vates Code Vake Code Estrate would result in a scaling
of code factor of 225 (i.e., 225000.0
Loc 1000000 Loc 22500000 divided by 1000.0).
> MOD 5251 MOD 1181.48 -
EFF 255708 |mwmmmppe| EFF 5744205 3. Multiplying each
cPU 0832 cPU 18720 completion value in the
MCH 17,624 MCH 396540 estimate set model by this
g?; 3:53; F;%;!‘ 1 g;%g scalirf\g factolr genell'ates a
; : set of normal completion
AN 304778 RN 8857505 estimates that is s?zed to the
magnitude of the project.
Any measure can be used to
generate an estimate set.

Figure 2-56. Determining a Normal Estimate Set

66

Section 2—Components

2.2.4.2.3 Get Project Magnitude

Purpose
Obtains the measure and estimated completion value for the measure that is most indicative
of the project's magnitude.
Required Data
¢ Estimate data
¢ Estimate set model
Steps
1. Locate the first measure in the estimate set model for which there exists a non-zero
value in the project’s estimate data (PlannedValue compietion)-

2. Identify the measure and return the planned completion value stored in the estimate
data for the measure.

@ STEPS

Estmate Set 1. LOC is the first measure
Model Data in the estimate set model for

which there exists a non-

zero value in the estimates

Weamre Complefion Meaxrre Complefon data, with a value of 225000.
Code Vakse Code Esbmate
2. This w'c:uld indicaieg
LOC . 1000.000 cry 187.20 project whose magnitude is
LR o i Szt esti‘mated at 225000 lines of
| vwE e | = code.
g MOD 1181.48
RCH a.501
RER 4378 % ':;2;? 3. If the estimates data
RUN 304778 RUN 6857505 contained zero values for
both LOC and MOD, the

algorithm would show a
project whose magnitude is
estimated at 57442 staff
hours.

Figure 2-57. Obtaining a Project's Magnitude

67

Section 2—Components

2.2.5 Attribute Definitions

Purpose

Describes the set of overall project quality attributes, such as correctability and
maintainability, used by the SME.

Description

The attribute definitions list is a set of associated tables that (1) identifies fundamental
project quality attributes used by the SME and (2) specifies how relative ratings for those
attributes are calculated. The list decomposes each attribute into one or more weighted
factors and further defines each weighted factor as a function. Each function is a
mathematical expression consisting of arithmetic operators, numerical constants, and
variable references to specific measure or profile values. This hierarchy, in essence, captures
the algorithm used to evaluate measurement data to calculate a relative rating for key project
quality attributes. The SME implementation currently defines two attributes—correctability
and maintainability.

Source

Defined as part of the SME
Adtribute I implementation
Definitons

Assumptions

» Objective measurements
taken during the software

Attrbutes Fadiors
Attrbute List _ e development effort can be
Comecitity 4| MpmomMasimum Factor Function used as early indicators of
Maintainabilty e s Range and Basis project and product quality.
| | —— Eror Corocionass e The defined attribute
Maintainability R . R
‘ |\ _ ratings are relative to a
- : normal project of the same
Change_isolation/Ease project type (and are not
: absolute values).
Instances

The SME references one
attribute definitions list.

Figure 2-58. Attribute Definitions for the SME

Structure

Three tables consisting of an attribute list, a set of attributes, and a set of factors. The
attribute list is a table with one column—attribute name. The names appear in alphabetical
order with one defined attribute name per row. The set of attributes are described by a
second table of attribute records with each record containing information on one
attribute—the attribute's name, the minimum and maximum rating values, the number of
underlying factors, and the name and weighting of each factor. The set of factors are

68

Section 2—Components

described by a third table of factor records with each record containing information on one
factor—the factor's name, the maximum range of values to consider (as a percentage of the
normal expected value), the function used to evaluate the factor, and the measures which
must be available to evaluate the factor.

69

Section 2—Components

2.2.5.1 Defined Attributes

The SME defines two basic overall project quality attributes. These attributes are rated on a
relative scale from -10 to +10, with O considered normal. Negative and positive ratings are
considered below normal and above normal, respectively. The attributes are

o Correctability
e Maintainability

The following sections describe the two attributes and present a set of general-purpose
algorithms commonly used with attribute definitions.

70

Section 2—Components

2.25.1.1

Correctability

Anribute
Definition

Fadors

Name: Carrectabiity
Minimum: -10.0
Maxdmum: +10.0
Factor Count 2

Factcr Name

Emor_lsolaton/Ease
Emor_CorrectionEase

1.0
1.0

Weight /
|~

Name: Enror_lsolaon/Ease

Label: %Ermors {sclated within 1 Day
Maxrange: 0.10

Funclion: ((RERI[1] + RER1[2) / REFR,) * 100
Bagis: RER

Name: Ermor_Comrecton/Ease

Label: %Emors Comected within 1 Day
Maxrangs: 0.10

Funclion: 1} + RER22) / RER) * 100
Basis: ESREFQ !

Figure 2-59. Attribute Defining Correctability

22512

Maintainability

Attribute
Definition

Factors

Weight

10
1.0

Pl

Name: Change_lsdafion/Ease
{abel: %Changes lsclated within 1 Day

Foncaon, ((%n‘:?ﬂn]. RCH1[Z) /RCH) * 100
Basis: RCH

Name: Change_implementaton/Ease

Label: %Changes Implementsd within 1 Day
Maange: 0.10

Funcion: ((RCHAT] + RCHZZ] /RCH) * 100
Basis: RCH

Figure 2-60. Attribute Defining Maintainability

The SME rates correctability
on the basis of two associated
factors—the ease of isolating
errors and the ease of
correcting errors. Both factors
rely on profile data collected
on reported errors. The ease of
isolating errors is calculated as
the percentage of all reported
errors that were isolated within
1 day. The ease of correcting
errors is calculated as the
percentage of all reported
ertors that were corrected
within 1 day. After scaling,
the resultant factor values are
averaged to produce a relative
rating on a scale of -10 to +10
for the attribute.

The SME rates maintainability
on the basis of two associated
factors—the ease of isolating
changes and the ease of
implementing changes. Both
factors rely on profile data
collected on reported changes.
The ease of isolating changes
is calculated as the percentage
of all reported changes that
were isolated within 1 day.
The ease of implementing
changes is calculated as the
percentage of all reported
changes that were imple-
mented within 1 day. After
scaling, the resultant factor
values are averaged to produce
a relative rating on a scale of
-10 to +10 for the attribute.

71

Section 2—Components

2.25.2 General-Purpose Uses of Attribute Definitions

The SME incorporates a set of general-purpose services commonly used with attribute
definitions. The services are referenced in high-level SME functions to provide needed
services associated with attribute definitions. These services include

o Evaluate Actual Factor Value
e FEvaluate Expected Factor Values
e Agssess Attribute

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

72

Section 2—Components

22521 Evaluate Actual Factor Value

Purpose

Calculates a factor's actual value as of a given date using actual project data values to
evaluate the function defined for that factor.

Required Data

e Factor (input value)

e (Calendar date (input value)

e Measure data (for any referenced measures)

¢ Profile data (for any referenced profiles)

Steps

1. For the expression in the factor's function, locate all references to measure values.
Obtain the actual data value on the input calendar date from the measure data of any
referenced measure.

2. For the expression in the factor's function, locate all references to profile values.
Obtain the actual data value on the input calendar date from the profile data of any
referenced profile.

3. Evaluate the expression in the factor's function using the actual project data values

£ sras

obtained (Actual Factor Value).

Change_isolation/aase
— Function: ({RCH1[1] + RCH1{2})/ RCH1) * 100 1. The actual measure value
- Profile for reported changes is 1498
Data on 12/24/93 (i.e., RCH1 or the
sum of all components).

FOM - Bflerto faclae Chare 2. The actual values for the

<ethe § thw-tcday | 1-3days >3days | Unknown profile components are 836,
503, 113, 46, and 0 (i.e., the
1st through 5th components
of RCH1).

1011181

0 [0
101891 o 0 o

¢ oo
- oa

) . . . ; . 3. To evaluate the factor's
g | 22488 | 8% e " “ ° function, add 836 and 503 to

ield a value of 1339 (i.e.,
pa | et 22080, o ot e Crares Divide this by the attial tota
Value value of 1498 and multiply by
100 to yield a value of 89
(i.e., 89% of the changes
were isolated within 1 day).

Figure 2-61. Evaluating a Factor Using Actual Data Values

73

Section 2—Components

22522 Evaluate Expected Factor Values

Purpose

Calculates a factor's expected values as of a given date using normal model values to
evaluate the function defined for that factor. The factor's expected values consist of three
values that represent the normal, best, and worst cases expected for the factor.

Required Data
e Factor (input value)
e (Calendar date (input value)
e Schedule data
e Schedule model (in Convert Date to Phase)
e Estimate data
e Estimate set model (in Determine Normal Estimate Set)
e Measure model (for referenced measures) (in Convert Phase to Measure)
e Profile model (for referenced profiles) (in Convert Phase to Profile)

Steps
1. Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

2. On the basis of the project start and end dates, use Convert Date to Phase to translate
the input calendar date to the phase and elapsed fraction of phase that normally
should be reached on that date.

3. Use Get Project Magnitude on the current estimate data to obtain the measure and
estimated completion value for the measure that is most indicative of the project's
magnitude.

4. On the basis of that magnitude, use Determine Normal Estimate Set to create a
normal set of estimates for the project.

5. For the expression in the factor's function, locate all references to measure values.
For any referenced value, use Convert Phase to Measure to obtain the expected
measure value at the desired phase and fraction of phase, given the normal
completion value of the measure, from the measure model.

6. For the expression in the factor's function, locate all references to profile values. For
any referenced value, use Convert Phase to Profile to obtain the expected profile
value at the desired phase and fraction of phase, given the normal completion value
of the profile's measure, from the profile model.

7. Evaluate the expression in the factor's function using the obtained model values
(Expected Factor Valuenomap-

74

Section 2—Components

8. Use the maximum range value for the factor to compute the best and worst case
expected values as

Expected Factor Valuegggs, = Expected Factor Valueyoma * (1.0 + Factor Maxrange)

Expected Factor Valueyyy,st = Expected Factor Valuenoyma * (1.0~ Factor Maxrange)

Profile
Mode!

Expected
Factor Values

Change_isolation/'ease
Function: ((RCH1[1] + RCH1[2])/ RCH1) * 100
Maxrange: .10

RCH1 - Effort to ksolate Change

@ STEPS

1. A calendar date of 3/20/93
represents 75% through the
system test phase.

2. The project's magnitude
is next determined to derive
a normal completion esti-
mate for reported changes of
1418,

3. Given 1418 total changes,
the profile model shows that
the component values at
75% of system test should
be 624, 213, 53, 28, and 0.

4. When used to evaluate
the factor's function, the
model values yield a value of
91.2. For a maximum range
value of 0.10, best and worst
case expected values are
100.3 and 82.1, respectively.

Figure 2-62. Evaluating a Factor Using Normal Model Values

75

Section 2—Components

22523 Assess Attribute

Purpose
Calculates a relative rating as of a given date for a specified project quality attribute.

Required Data
e Attribute (input value)
e (Calendar date (input value)
e Factors (associated with specified attribute)
Steps
1. For each factor associated with the specified attribute, use Evaluate Actual Factor

76

Value, discussed earlier, to calculate the factor's actual value as of the input calendar
date (Actual Factor Value [i], for the it factor).

For each factor associated with the specified attribute, use Evaluate Expected Factor
Values, discussed earlier, to calculate the factor's expected values as of the input
calendar date (Expected Factor Valueyoma [il, Expected Factor Valuegest [i], Expected Factor

Valueworst [i)-

Calculate the normal value for the attribute’s relative rating as the average of the
minimum and maximum rating values defined in the attribute with

Normal Attribute Rating = (Minimum Rating + Maximum Rating) / 2

Calculate a scaling value for the attribute's relative rating as the difference between
the defined maximum rating and the computed normal rating with

Rating Scale = Maximum Rating - Normal Attribute Rating

For each factor, calculate the corresponding range of the expected values obtained
from evaluating the factor with

Factor Range [i] = (Expected Factor Valueggg [i] - Expected Factor Valueyyot [il) 7 2

For each factor, scale the factor's actual value to match the range of values used in
rating the attribute with

Factor Rating [i] = Normal Attribute Rating + (Rating Scale / Factor Range [if) *
(Actual Factor Value [i] - Expected Factor Valuenoma [il)

Set the attribute's rating to the weighted average of the scaled factor ratings computed
for each factor, 7 through K, using

K K
Attribute Rating = (Z Factor Weight [i] * Factor Rating [i]) / 21 Factor Weight [i]
I'= i=

Section 2—Components

Maintainabikty
At!ri?t.ne
Rating Change_isolatiorvease
+10 T ——— Best T 10032
bbbl Actual [sase
i) ~ =~ =cmmcccscncfecnrnananvenasemun

Normal 0 ~t <s——— Normal ¥+ 91.20

10 4 —— Wost L m208

29710+26°1.0

¥ . 20

Change_implementation/ease

Best -

-275

g7.2

79.55

Figure 2-63. Assessing a Project Attribute

ﬁﬂ STEPS

1. Each factor's actual and
expected values are
evaluated.

2. The attribute's normal
value is calculated,

3. The difference between
the defined maximum rating
and the computed normal
rating is calculated as a
scaling value.

4. The range of expected
values for each factor is
calculated, and the actual
values are scaled.

5. The attribute’s rating is
set to the weighted average
of the scaled factor ratings.

77

Section 2—Components

78

Section 2—Components

2.3 MANAGEMENT RULES

The SME relies on experienced software development managers in the SEL environment for
the expert knowledge needed to analyze and interpret the observed behavior of projects.
Capturing and applying this knowledge using expert systems techniques has been
investigated by the SEL and proven feasible in this domain (References 4 and 5). Over the
years, a variety of management rules and heuristics that are useful in the local environment
have been collected and published in numerous SEL reports. A representative selection of
these management rules may be found in Software Engineering Laboratory (SEL)
Relationships, Models, and Management Rules (Reference 2) and in Manager's Handbook
for Software Development (Reference 6).

Conceptually, interviewing successful software development managers to learn how they
interpret certain conditions observed on a project captures reusable knowledge about
evaluating a project's strengths and weaknesses. Their interpretations can then be combined
or recast into specific management rules that describe the possible explanations for certain
conditions. For example, one simple rule could express several possible reasons for an
observed deviation in reported errors as "If the number of reported errors is below normal,
then either (1) the development team is experienced, (2) the system testing is inadequate, or
(3) the problem is easier than expected." More complex networks or sets of these rules can
be created to examine a wide range of data and provide more depth from which to draw
conclusions.

The SME currently incorporates two independent approaches to capturing management rules
and providing expert assistance to software development managers—a knowledge base and a
rule base. The knowledge base focuses on explaining observed deviations from normal
values in fundamental software development measures; the rule base concentrates on
providing interpretations of the project's general status based on conditionally evaluating a
series of rules.

Table 2-4 summarizes the major components referenced by the SME as management rules
and identifies each component's purpose.

Table 2-4. SME Management Rules Components

COMPONENT PURPOSE

Knowledge Base Captures management experience that relies on objective
measurements and subjective data to explain deviations in
measures from normal values

Rule Base Captures management experience that relies on a series of
rules which use the observed ratios between key pairs of
measures to assess the project's current status

The following sections provide additional detailed information on each of these components.

79

PRECEOWNG PAGE BLANK NOT FILMED e ITE wrenTons Ly 5 ank

Section 2—Components

2.3.1 Knowledge Base

Purpose

Describes a collection of captured management experience that uses objective
measurements and subjective data to explain deviations in measures from normal values.

Description

The knowledge base is a set of associated tables that (1) identifies possible reasons for
observed deviations in a project's measures from what is considered normal and (2) specifies
how to assess the probable validity and relative merit of those reasons. The list of reasons in
the knowledge base are organized to associate the deviation of a measure with that
deviation's possible causes. Each reason in the list is identified by an encoded reason,
consisting of a causal rating and a factor name, that maps to an entry in a list of explanations
used for display purposes. In assessing the reason’s validity, the named factor is evaluated to
produce a rating that can be compared to the causal rating. If the ratings match, the reason is
a likely cause of the deviation. Each underlying factor is defined as being either objective,
subjective, or dependent. Objective factors are evaluated using actual measure data, while
subjective factors rely on subjective data from the manager. Dependent factors represent a
weighted combination of ratings from a network of two or more factors. The SME
knowledge base currently contains the reasoning needed to assess deviations in four defined
measures: CPU hours, staff hours, lines of code, and reported errors.

Source
Knowledge Defined as part of the SME
. Base _ based on past experience
Z: n’-: ;u:i::«mm Eﬁ:‘:‘" Assumptions

GUR | = | tow e i Toam i ot dong deck work o The manager's estimated
) : ; completion values

BRI] o | o et sausetamaunt o G rovead code accurately reflect the
R | 12 | o o manisptice Exprie Gttt project's magnitude and
%m 3 low a/s.:in_hshg/mm! N u:u:hﬂ/tmb&hg b . f
RERMO 40 wz:wmm Team hno(";h’l;niﬁwgbms can serve as a as1§ 101

determining what is

\ considered normal
Factors = o The subjective data

provided by the manager is

:] Dopendert Fact
Opermran | st d%“” rated consistently across
Foncion: Moctke Chariges (HCH] mmzm’g:’ ptlom? woWeghts projects
d Instances
The SME has one knowled
Figure 2-64. Knowledge Base for the SME base &

Structure

Three tables consisting of a reason list, an explanation list, and a set of factors. The reason
list is a table with three columns—a deviation in a measure, the weight used to rank the

80

Section 2—Components

reason, and the possible reason for the deviation encoded as a causal rating and a factor
name. The explanation list is a table with two columns—the encoded possible reason and the
explanatory text for that reason. The set of factors are described by a third table of factor
records with each record containing information on one factor. The record structure varies
by the type of factor. Objective factors contain the factor name and the function used to
evaluate the factor (i.e., a mathematical expression referencing specific measure values).
Subjective factors contain the factor name, the question used to solicit the subjective
information, and a list of acceptable responses to that question. Dependent factors contain
the factor name and a list of underlying factors identified by name, weight, and optimum
rating. The underlying factors referenced in a dependent factor may be objective, subjective,
or dependent.

The following sections describe the specific reasoning captured in the knowledge base for

assessing deviations in four specific measures and present a set of general-purpose
algorithms commonly used with the knowledge base.

81

Section 2—Components

2.3.1.1 Captured Knowledge

The SME captures reasoning in the knowledge base for assessing deviations in four defined
measures which may be either above normal (high) or below normal (low). This reasoning,
discussed in detail below, addresses

Higher than Normal CPU Hours
Lower than Normal CPU Hours
Higher than Normal Total Staff Hours
Lower than Normal Total Staff Hours
Higher than Normal Lines of Code
Lower than Normal Lines of Code
Higher than Normal Reported Errors
Lower than Normal Reported Errors

82

Section 2—Components

2.3.1.1.1 Higher than Normal CPU Hours

The SME considers five possible reasons that could cause the number of CPU hours recorded
for a project to be above normal. These reasons, in order of decreasing potential likelihood,
are (1) team made up of terminal jockeys, (2) too much system testing, (3) unreliable system,
(4) team is not doing desk work, and (5) unstable code. Assessing the validity of these
reasons in explaining the deviation relies on evaluating the objective, subjective, and
dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rating Factor Name Explanation
40 High dev_team/terminal_jockeys Team made up of terminal jockeys
30 High system_testing/amount Too much system testing
25 Low software/reliability Unreliable system
20 Low dev_team/desk_work Team is not doing desk work
15 High source_module_change/amount Unstable code

Objective Factors

Factor Name Function

source_code_changes/rate RCH/LOC ({Reported Changes per LOC)

source_module_change/amount MCH (Module Changes)
Subjective Factors
Responses
Factor Name Question (High,Low,Normal)
CM_plan/use Is this prgfj;ed using/following its CM plan? (Yes,No,N/A)
code_reading/amount How much code reading is being done on this project? (Lots,Minimal,Norma)

code_reading/quality
desigrvstability
design/quality
dev_leamv/desk_work

What level of stability would you assign to this project's design? High,Low,Normal)
What quality rating would you assign 1o this project's design? Hig\P;,Low,Normal)
is the team completing required desk work before getting on (Yes,No,N/A)

the computer?

What quality rating would you assign to this project's code reading? EHigh,Low,Normal)

dev_team/terminal_jockeys Is the team spending too much time on the computer? Yes,No,NIA;
librarian/use Is this project using a librarian? Yes,No,N/A
specs/stability How would you rate the stability of the specifications for this project? (High,Low,Normal)
system_testing/amount How would you rate the amount of system testing being done? (High,Low,Normal)
unit_testing/amount How wouid ’you rate the amount of unit testing being done on (High,Low,Normal)

this project
unit_testing/quality What quality rating would you assign to unit testing on this project? (High,Low,Normal)

Dependent Factors

Optimum
Factor Name Underlying Factors ating Weight
CMquality
CM_plan/use High 1.0
librananvuse High 1.0
software/reliability
CM/quality High 1.0
code_reading/amount High 1.0
code_reading/quality High 1.0
desigrvstability High 1.0
desigr/quality High 1.0
source_code_changes/rate Low 1.0
specs/stability High 1.0
unit_testing/amount High 1.0
unit_testing/quality High 1.0

Figure 2-65. Reasoning for Higher than Normal CPU Hours

83

Section 2—Components

2.3.1.1.2 Lower than Normal CPU Hours

The SME considers seven possible reasons that could cause the number of CPU hours
recorded for a project to be below normal. These reasons, in order of decreasing potential
likelihood, are (1) computer not available, (2) not enough system testing, (3) experienced
development team, (4) good planning, (5) good configuration management, (6) good quality
assurance, and (7) low productivity. Assessing the validity of these reasons in explaining the
deviation relies on evaluating the objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name Explanation
40 Low computer/availability Computer not available
30 Low system_testing/amount Not enough system testing
30 High dev_tearmvexperience Experienced development team
20 High planning/quality Good planning
15 High CWquality Good configuration management
15 High QA/quality Good quality assurance
15 Low dev_tearn/productivity Low productivity
Objective Factors
Factor Name Function
coding/productivity LOC/EFF {LOC per hour)
desigrvproductivity MOD/EFF (Modules per hour)
Subjective Factors
Responses
Factor Name Question (High,Low,Normal)
CM_plan/quality What quality rating would you assign to this project's CM plan? (High,Low Normal)
CM_plan/use Is this project using/following its CM plan? ?Yes,No,N/A;
code_reading/use Is this project using code reading? Yes,No,N/A
computer/reliabifity What leve; of refiability would you assign 1o the development (High,Low,Normal)
computer?
dev_plarvquality Wl;\na; quality rating would you assign o this project's development (High,Low,Normal)
dev_teamvexper_w/application Elov»[/_'wo.uld'?you rate the team's experience with the project's {High,Low,Normal)
application?
dev_teanmvexper_w/environment | How would ygu rate the team's experience with the development (High,Low ,Normal)
environment?
dev_teamv/exper_w/language lHow woulg you rate the team's experience with the development (High,Low,Normal)
anguage?
dev_teamvexper_w/tools Hovlu would xou rale the team's experience with the development (High,Low,Normal)
tools in use?
dev_team/quality How would you rate the development team'’s overall quality? (High,Low,Normal)
librarian/use Is this project using a fbrarian? es,No,N/A)
mgmt_plan/quality Vﬂllha’!, quality rating would you assign 1o this project's management (High,Low ,Normal)
an?
plan_maintenance/quality Es thg’ set of plans (dev, mgmt, QA, CM, and test) being kept up to (Yes,No,N/A)
ate?
QA_plarvquality What quality rating would you assign to this project's QA plan? (High,Low,Normal)
QA_plarvuse Is this prg}'ect using/following its QA plan? (gYes,No.N/A)
staffing_plan/quality What quality rating would you assign to this project's staffing plan? High,Low,Normal
sysiem_testing/amount How wguld you rate the amount of system testing being done on this High,Low,Normal
roject”
terminal_per_pgmr/amount Elow would you rate the number of terminals per programmer? (High,Low ,Normal)
test_plarvquality What quality rating would you assign to this project's test plan? {High, Low,Normal)

Figure 2-66 (1 of 2). Reasoning for Lower than Normal CPU Hours

84

Section 2—Components

Dependent Factors

Optimumn
Factor Name Underlying Factors ating Weight

CMquality

CM_plarvuse High 1.0

librariar/use High 1.0
computer/availability

computer/reliability High 1.0

terminal_per_pgmr/amount High 1.0
dev_leanvexperience

dev_team/exper_w/application High 1.0

dev_team/exper_w/environment High 1.0

dev_team/exper_w/language High 1.0

dev_team/exper_w/tools High 1.0
dev_teamvproductivity

coding/productivity High 5.0

desigr/productivity High 3.0

dev_team/quality High 2.0
planning_quality

CM_plan/quality High 1.0

dev_plan/quality High 1.0

mgmt_plan/quality High 1.0

plan_maintenance/quality High 5.0

QA ﬂplan/quaﬁty High 1.0

statfing_plan/quality High 1.0

test_plan/quality High 1.0
QA/quality

code_reading/use High 1.0

QA_plar/use High 1.0

Figure 2-66 (2 of 2). Reasoning for Lower than Normal CPU Hours

85

Section 2—Components

2.3.1.1.3

The SME considers six possible reasons that could cause the total number of staff hours
recorded for a project to be above normal. These reasons, in order of decreasing potential
likelihood, are (1) problem larger than expected, (2) low productivity, (3) unstable code, (4)
poor planning, (5) inexperienced development team, and (6) incomplete specifications.
Assessing the validity of these reasons in explaining the deviation relies on evaluating the

Higher than Normal Total Staff Effort

objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name Explanation
30 High estimate/accuracy Problem larger than expected
20 Low dev_teanvproductivi Low productivity
20 High source_module_change/amount Unstable code
15 Low planning/quality Poor planning
10 Low dev_teanvexperience Inexperienced development team
10 Low specs/completeness incomplete specifications

Objective Factors

Factor Name Function
coding/productivity LOC/EFF (LOC per hour)
design/produclivi& MOD/EFF (Modules per hour)
source_module_change/amount MCH Module Changes)
Subjective Factors
Responses
Factor Name Question (High,Low,Normal)

86

CM_plan/quality
dev_plarvquality

dev_team/exper_wr/application
dev_teamvexper_w/environment
dev_teanvexper_w/language
dev_tearm/exper_w/tools
dev_tearmvquality
estimate/confidence
estimate_errot/direction
mgmt_plarvquality
plan_maintenance/quality

QA_plan/quality
specs_outstand_quest/amount

specs_TBDs/amount

staffing_plan/quality
test_plan/quality

What quality rating would you assign to this project's CM plan?

V\Ilha't’ quality rating would you assign to this project's development

plan?

How would you rate the team’s experience with the project's

application?

How would you rate the team's experience with the development

environment?

How would you rate the team’s experience with the development

language?

How would ZOU rate the team’s experience with the development

tools in use?

How would you rate the development team's overall quality?

What is your confidence in the project size estimate?

If you're not confident in the estimate for this project, then itis
at quality rating would you assign 1o this project's management

lan?
fs tge sgt of plans (dev, mgmt, QA, CM, and tes?) being kept up
10 date?
What quality rating would you assign to this project's QA plan?
How would you rate the number of outstanding specification
questions?
HO?I wguld you rate the number of specification TBDs for this
roject?
EVhat quality rating would you assign to this project's staffing plan?
What quality rating would you assign to this project’s test plan?

(High,Low,Normal)
(High,Low,Normat)

{High,Low,Normal)
(High,Low Normal)
(High,Low,Normal)
{High,Low,Normal)
(Hiﬁh,l.ow,Normal)
(High,Low,N/A)
(H:?h, ow,Confident)
(High,Low,Normal)
(Yes,No,N/A)

(High,Low ,Normal}
(High,Low,Normal)

{High,Low,Normai)

éHigh,Low,Normal)
High, Low,Normal)

Figure 2-67 (1 of 2). Reasoning for Higher than Normal Total Staff Hours

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors ting Weight

dev_team/experience

dev_team/exper_w/application High 1.0

dev_team/exper_w/environment High 1.0

dev_team/exper_w/language High 1.0

dev_team/exper_w/tools High 1.0
dev_team/productivity

coding/productivity High 5.0

desigrvproductivity High 3.0

dev_team/quality High 2.0
estimate/accuracy

estimate_is_high/truth High 1.0

estimate_is_low/truth Low 1.0
estimate_is_high/truth

estimate/confidence Low 1.0

estimate_error/direction High 1.0
estimate_is_low/truth

estimate/confidence Low 1.0

estimate_error/direction Low 1.0
planning/quality

CM_plan/quality High 1.0

dev_plarvquality High 1.0

mgmt_plan/quality High 1.0

plan_maintenance/quality High 5.0

QA _plan/quality High 1.0

staffing_plarvguality High 1.0

test_plan/quality High 1.0
specs/completeness

specs_outstand_guesvamount Low 1.0

specs_TBDs/amount Low 1.0

Figure 2-67 (2 of 2). Reasoning for Higher than Normal Total Staff Hours

87

Section 2—Components

2.3.1.14 Lower than Normal Total Staff Effort

The SME considers seven possible reasons that could cause the total number of staff hours
recorded for a project to be below normal. These reasons, in order of decreasing potential
likelihood, are (1) staffing up too slowly, (2) easy problem, (3) problem smaller than
expected, (4) experienced development team, (5) not paying attention to deadlines, (6) high
productivity, and (7) problem not understood. Assessing the validity of these reasons in
explaining the deviation relies on evaluating the objective, subjective, and dependent factors

shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name Explanation
40 Low staffing/amount Staffing up too slowly
30 Low problemvdifficulty Easy problem
30 Low estimate/accuracy Problem smaller than expected
25 High dev_teamvexperience Experienced development team
20 Low mgmt_team/deadline_sensitivity Not paying attention to deadlines
20 High dev_tearmvproductivity High productivity
20 Low problervunderstanding Problem not understood

Objective Factors

Factor Name

Function

coding/productivity
desigrvproductivity

LOC/EFF (LOC per hour)
MOD/EFF (Modules per hour)

Subjective Factors

88

Factor Name

Question

Responses
{High,Low,Normal)

dev_teanvexper_w/application
dev_teamvexper_w/environment
dev_team/exper_w/language
dev_team/exper_w/1ools
dev_team/guality
estimate/confidence
estimale_emor/direction
mgmt_tearnvdeadiine_sensitivity
problemvditiiculty
problemvunderstanding
staffing/direction

staffing_plarvguality
staffing_planvuse

How would ’;you rate the team's experience with the project's
application?

How would you rate the team's experience with the development
environment?

How would you rate the team’s experience with the development
language?

How would xou rate the team's experience with the development
tools in use?

How would you rate the development team's overall quality?

What is your confidenca in the project size estimate?

if you're not confident in the estimate for this project, then itis ...
Is this tearn paying attention to deadlines?

How would ’you rale the difficulty of the problem this project is
working on?

How would you rate the team'’s understanding of the problem they
are working on?

If staffing is not following a plan, would you say it was ...

What quality rating would you assign to this project’s staffing plan?
Is this project using/following its statfing plan?

(High,Low ,Normal}
(High,Low,Normal)
(High,Low,Normal)
(High,Low,Normal)
(High,Low,Normal)
(High,Low,N/A)
(High,Low,Confident)
(Yes,No,N/A)
(Difficult,Easy,Normal)
{Good,Poor N/A)
(High,Low,N/A)

(High,Low,Normal)
es, No,N/A)

Figure 2-68 (1 of 2). Reasoning for Lower than Normal Total Staff Hours

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors ating Weight

dev_teanvexperience

dev_team/exper_w/application High 1.0

dev_team/exper_w/environment High 1.0

dev_team/exper_w/anguage High 1.0

dev_team/exper_w/tools High 1.0
dev_tlearm/productivity

coding/productivity High 5.0

design/productivity High 3.0

dev_team/quality High 2.0
estimate/accuracy

estimate_is_highvtruth High 1.0

estimate_is_low/truth Low 1.0
estimate_is_high/truth

estimate/confidence Low 1.0

estimate_error/direction High .0
estimate_is_Jow/truth

estimate/confidence Low 1.0

estimate_error/direction Low 1.0
staffingzamount

staffing_is_high/truth High 1.0

staffing_is_lowstruth Low 1.0
staffing/quality

staffing_plarvquality High 1.0

staffing_plan/use High 1.0
staffing_is_high/truth

staffing/direction High 1.0

staffing/quality Low 1.0
staffing_is_low/truth

staffing/direction Low 1.0

staffing/quality Low 1.0

Figure 2-68 (2 of 2). Reasoning for Lower than Normal Total Staff Hours

89

Section 2—Components

2.3.1.1.5

The SME considers eight possible reasons that could cause the total number of lines of code
recorded for a project to be above normal. These reasons, in order of decreasing potential
likelihood, are (1) problem larger than expected, (2) lots of reused code, (3) experienced
development team, (4) stable design, (5) not enough unit testing, (6) high productivity, (7)
poor configuration management, and (8) poor quality assurance. Assessing the validity of
these reasons in explaining the deviation relies on evaluating the objective, subjective, and

dependent factors shown below.

Possible Reasons and Explanations

Higher than Normal Lines of Code

Causal
Rank Rate Factor Name Explanation
40 High eslimate/accuracy Problem larger than expected
35 High source_module_reuse/amount Lots of reused code
30 High dev_team/experience Experienced development team
25 High design/stability Stable design
20 Low unit_testing/amount Not enough unit testing
20 High dev_tearn/productivity High productivity
15 Low CM7quality Poor configuration management
15 Low QA/quality Poor guality assurance

Objective Factors

Factor Name Function
coding/productivity LOC/EFF (LOC per hour)
desigrvproductivity MOD/EFF {Modules per hour)

Subjective Factors

90

Responses
Factor Name Question (High,Low,Normal)
CM_plan/use Is this project using/following its CM plan? Yes,No,N/A)
code_reading/use Is this project usin? code reading? Yes,No,N/A)
desigrvstability What level of stability would you assign to this project's design? (High,Low.NormaI;
dev_team/exper_w/application (High,Low,Normal

dev_team/exper_w/environment
dev_team/exper_w/language
dev_team/exper_w/tools

dev_team/quality
estimate/confidence
eslimate_error/direction
librarian/use

QA_plan/use
source_module_reuse/amount
unit_testing/amount

How would ’,you rate the team’s experience with the project's
application?

ow would you rate the team’s experience with the development
environment?
How would you rate the team's experience with the development
language?
How would zou rate the team's experience with the development
100ls in use?
How would you rate the development team's overall quality ?
What is your confidence in the project size estimate?
If you're 'not confident in the estimate for this project, then itis
Is this project using a librarian?
Is this project using/foliowing its QA plan?
How would you rate the level of module reuse on this project?
How would ',you rate the amount of unit testing being done on
this project?

(High,Low,Normal)
(High,Low,Normal)
(High,Low,Normal)

(High,Low Normal}
(High,Low,N/A)
{High,Low,Confident)
(Yes,No,N/A)
(Yes,No,N/A)
{High,Low Nommal)
(High,Low,Normal}

Figure 2-69 (1 of 2). Reasoning for Higher than Normal Lines of Code

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors ating Weight

CM/quality

CM_planvuse High 1.0

librarian/use High 1.0
dev_leamvexperience

dev_team/exper_w/application High 1.0

dev_team/exper_w/environment High 1.0

dev_team/exper_w/language High 1.0

dev_team/exper_w/tools High 1.0
dev_team/productivity

coding/productivity High 5.0

design/productivity High 3.0

dev_team/quality High 2.0
estimate/accuracy

estimate_js_high/truth High 1.0

estimate_is_fow/truth Low 1.0
estimate_is_high/truth

estimate/confidence Low 1.0

estimate_error/direction High 1.0
estimate_is_low/truth

estimate/confidence Low 1.0

estimate_error/direction Low 1.0
QA/quality

code_reading/use High 1.0

QA_plarvuse High 1.0

Figure 2-69 (2 of 2). Reasoning for Higher than Normal Lines of Code

91

Section 2—Components

2.3.1.1.6

The SME considers five possible reasons that could cause the total number of lines of code
al. These reasons, in order of decreasing potential

recorded for a project to be below norm
time, (3) incomplete

likelihood, are (1) problem smaller than expected, (2) team is wasting
and (5) too much unit testing. Assessing the validity of these

design, (4) poor planning,
lies on evaluating the objective, subjective, and

reasons in explaining the deviation re

dependent factors shown below.

Possible Reasons and Explanations

Lower than Normal Lines of Code

Causal
Rank Rate Factor Name Explanation
40 Low estimate/accuracy Problem smaller than expecied
35 Low mgmt_teanvcontrol Team is wasting time
30 Low design/completeness Incomplete design
20 Low planning/quality Poor planni
20 High unit_testing/amount Too much unit testing

Objective Factors

Factor Name Function
none
Subjective Factors
Factor Name Question (Higﬁﬁ.sgvs?ngr?'naJ)
CM_plan/qualit What quality rating would you assign 1o this roéle?cz's CMplan? (High,Low,Normal)

92

design_RIDs(CDR)/amount
design_TBDs(CDR)/amount
dev_plarvquality

estimate/confidence
estimate_error/direction
mgmt_plar/quality

mgmt_team/control
plan_maintenance/quality

QA _plarvquality
staffing_plan/quality
tesi_plarvquality

unit_testing/amount

How would you rate the number of RIDs at CD
How would you rate the number of TBDs at CDR?
Wha't’ quality rating would you assign to this project’s development

lan?
that is your confidence in the project size estimate?
I you're not confident in the estimate for this project, then itis
a}, quality rating would you assign to this project’s management

lan ?
Es the team wasting time and a%pear 1o lack a sense of direction?
is the set of plans {dev, mgmt, QA, CM, and test) being kept up

to date?

What quality rating would you assign 1o this project’'s QA plan?
What quality rating would you assign 1o this project's staffing plan?
What quality rating would you assign 1o this project’s test plan?
How would !ou rate the amount of unit testing being done on

this project”

{High,Low,Normal
%High,Low,Normal
High,Low,Normal)

{High,Low N/A}
(Hli_?h,Low,Conﬁdem)
(High,Low,Normal)

iNo,Yes.N/Ag
Yes,No,N/A

High,Low,Normal
High,Low,Normal
High,Low,Normal
High,Low,Normal)

Figure 2-70 (1 of 2). Reasoning for Lower than Normal Lines of Code

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors Rating eight

design/completeness

design_RIDs(CDR)/amount Low 1.0

design_TBDs(CDR)amount Low 1.0
eslimate/accuracy

estimate_js_hightruth High 1.0

estimate_is_low/truth Low 1.0
estimate_is_high/truth

estimate/confidence Low 1.0

estimate_error/direction High 1.0
estimate_is_low/truth

estimate/confidence Low 1.0

estimate_error/direction Low 1.0
planning/quality

CM_planv/quality High 1.0

dev_plarvquality High 1.0

mgmt_plan/quality High 1.0

plan_maintenance/quality High 5.0

QA plan/quality High 1.0

sta |n? _plan/quality High 1.0

test_plarvquality High 1.0

Figure 2-70 (2 of 2). Reasoning for Lower than Normal Lines of Code

93

Section 2—Components

2.3.1.1.7

The SME considers five possible reasons that could cause the total number of reported errors
recorded for a project to be above normal. These reasons, in order of decreasing potential
likelihood, are (1) team is reporting inconsequential errors, (2) inexperienced development
team, (3) poor use of methodology, (4) complex problem, and (5) unreliable system.
Assessing the validity of these reasons in explaining the deviation relies on evaluating the

Higher than Normal Reported Errors

objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal
Rank Rate Factor Name Explanation
50 High dev_team/nit_picking Team is reporting inconsequential errors
25 Low dev_,team/exﬁerience Inexperienced development team
20 Low process_methodology/use Poor use of methodology
15 High problem/complexity Complex problem
10 Low software/reliability Unreliable system

Objective Factors

Factor Name

Function

source_code_changes/rate

RCH/LOC (Reported changes per LOC)

Subjective Factors

94

Responses
Factor Name Question (High,Low,Normal)
gohé_plan/use Is this project using/foliowing its CM plan? (Yes,No,N/A)
e_commenting/use What level of code commenting is being used in this project's (Lots,Minimal,Normal)

code_reading/amount
code_reading/quality
code_reading/use
cading_CM/use

coding_QA/use

desigr/quality

desigrvstability
design_methadology/use
dev_team/exper_w/application

dev_team/exper_w/environment
dev_tearv/exper_w/language
dev_teamvexper_w/iools
dev_teamvnit_picking
librarian/use
problem/complexity
specs/stability
specs_methodology/use
testing_methodology/use
unit_testing/amount

unit_testing/quality
unit_testing/use

software?
How much code reading is being done on this project?
What quality rating would you assign 1o this project’s code reading?
Is this project using code reading?
Is this project using formal configuration management methods
during coding?
&gjis p’roject using formal quality assurance methods during

ing"
What quality rating would You assign to this project's design?
What level of stability would you assign to this prcg’ec('s design?
Is this project using a formal design methodology®
How would you rate the team’s experience with the project's
application?
How wouid you rate the team's experience with the development
environment?
How would you rate the team's experience with the development
language?
How would gou rate the team’s experience with the development
tools in use?
Is the team reporting insignificant or cosmetic errors (nit picking) ?
{s this project using a librarian?
How would you rate the complexity of the problem this project is
working on?
How would you rate the stability of the specifications for this project?
Is this project using a formal specification methodology?
Is this project using a formal testing methodology?
How would 'you rate the amount of unit testing being done on
this project?
What quality rating would you assign to unit testing on this project?
Is unit testing being done on this project?

(Lots,Minimal ,Normal)
(High,Low,Normal)
es,No,N/A)
(Yes,No,N/A)

(Yes,No,N/A)

(High,Low,Normal)

(High,Low,NormaI)
es,No,N/A)

(High,Low Normal)

(High,Low,Normal}
(High,Low,Normal)
(High,Low,Normal)
ﬁYes,No,N/A)
Yes No,N/A
(Complex,Simple,Norm
{High,Low,Normal
l\égYes,No,N/A))
Yes,No,N/A)
(High,Low,Normal)

(High,Low, Normal)
?Yes,No,N/A)

Figure 2-71 (1 of 2). Reasoning for Higher than Normal Reported Errors

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors ating Weight
CM/quality
CM_plan/use High 1.0
librarianvuse High 1.0
coding_methodology/use
code_commenting/use High 1.0
code_reading/use High 1.0
coding_CM/use High 1.0
coding_QA/use High 1.0
unit_testing/use High 1.0
dev_teamvexperience
dev_teanvexper_w/application High 1.0
dev_team/exper_w/environment High 1.0
dev_team/exper_w/language High 1.0
dev_iteam/exper_w/tools High 1.0
process_methodology/use
coding_methodology/use High 1.0
design_methodology/use High 1.0
specs_methodology/use High 1.0
testing_methodology/use High 1.0
softwaresreliability
CM/quality High 1.0
code_reading/amount High 1.0
code_reading/quality High 1.0
design/quality High 1.0
desigr/stability High 1.0
source_code_changes/rate Low 1.0
specs/stability High 1.0
unit_testing/amount High 1.0
unit_testing/quality High 1.0

Figure 2-71 (2 of 2). Reasoning for Higher than Normal Reported Errors

95

Section 2—Components

2.3.1.1.8 Lower than Normal Reported Errors

The SME considers seven possible reasons that could cause the total number of reported
errors recorded for a project to be below normal. These reasons, in order of decreasing
potential likelihood, are (1) team is not submitting SEL forms, (2) good unit testing, (3) not
enough system testing, (4) experienced development team, (5) reliable system, (6) lots of
reused code, and (7) easy problem. Assessing the validity of these reasons in explaining the
deviation relies on evaluating the objective, subjective, and dependent factors shown below.

Possible Reasons and Explanations

Causal

Rank Rate Factor Name Explanation
40 Low dev_team/forms_submission Team is not submitting SEL forms
30 High unit_testing/quality Good unit testing]
20 Low sysiem_testing/amount Not enough system testing
15 High dev_team/experience Experienced development teamn
10 High software/reliability Reliable system
10 High source_module_reuse/amount Lots of reused code

5 Low problenvditficulty Easy problem
Objective Factors
Factor Name Function

source_code_changes/rate

RCH/LOC (Reported changes per LOC)

Subjective Factors

96

Responses
Factor Name Question (High,Low,Normal)

CM_plan/use Is this project using/following its CM plan? (Yes,No,N/A)
code_reading/amount How much code reading is being done on this project? (Lots,Minimal,Normal)
code_reading/quality What quality rating would you assign to this project’s code reading? (High,Low,NormaI;
desigrn/quality What quality rating would you assign to this project's design? (High,Low,Normal
desigrvsiability What level of stability would you assign to this project's design? (High,Low,Normal
dev_team/exper_w/application (High,Low,Normal

dev_team/exper_w/environment
dev_teamvexper_w/language
dev_team/exper_w/tools
dev_teamv/iorms_submission

librarian/use
problemvditficulty

source_module_reuse/amount
specs/stability
syslem_testing/amount
unit_testing/amount

unit_testing/quality

How would Qyou rate the team's experience with the project's
application?

How would you rate the team's experience with the development
environmem?

How would you rate the team's experience with the development
language?

How would xou rale the team's experience with the development
tools in use?

Is 1hg) team submitting SEL forms (especially COFs and CRFs) on
time?

Is this project using a librarian?

How would Qyou rate the difficulty of the problem this project is
working on?

How would you rate the level of module reuse on this project?

How would you rate the stability of the specifications for this project?
How would you rate the amount of system testing being done?

How would you rate the amount of unit testing being done on

this project?

What quality rating would you assign to unit testing on this project?

{High,Low,Normal)

{High,Low,Normal)

(High,Low,Normal)
(Yes,No,N/A)

(Yes,No,N/A)
(Difficult,Easy,Normal)

(High,Low,Norm

éHigh,Low,Norma!
High,Low,NormaI;
(High,Low,Normal

(High,Low,Normal)

Figure 2-72 (1 of 2). Reasoning for Lower than Normal Reported Errors

Section 2—Components

Dependent Factors

Optimum
Factor Name Underlying Factors ating Weight
CMquality
CM_plan/use High 1.0
librariarvuse High 1.0
dev_leam/experience
dev_team/exper_w/application High 1.0
dev_team/exper_w/environment High 1.0
dev_team/exper_w/anguage High 1.0
dev_team/exper_w/tools High 1.0
software/reliability
CM/quality High 1.0
code_reading/amount High 1.0
code_reading/quality High 1.0
desigrvquality High 1.0
desigrvstability High 1.0
source_code_changes/rate Low 1.0
specs/stability High 1.0
unit_testing/amount High 1.0
unit_testing/quality High 1.0

Figure 2-72 (2 of 2). Reasoning for Lower than Normal Reported Errors

97

Section 2—Components

2312 General-Purpose Use of the Knowledge Base

The SME incorporates a set of general-purpose services commonly used with the knowledge
base. The services are referenced by SME functions to provide needed services associated
with the knowledge base. These services include

Rate Objective Factor
Rate Subjective Factor
Rate Dependent Factor
Evaluate Reason

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

98

Section 2—Components

2.3.1.2.1 Rate Objective Factor

Purpose

Evaluates an objective factor as of the current date by comparing its actual value computed
from measure data to its expected model value. The factor is assigned a rating (i.e., High,
Low, Normal, or Unknown) and a certainty.

Required Data
e Objective factor (input value)
¢ Measure data (for any referenced measures)
e Schedule data
e Schedule model (in Convert Date To Phase)
e Estimate data
e Estimate set model (in Determine Normal Estimate Ser)
¢ Measure model (for referenced measures) (in Convert Phase To Measure)

Steps

For the expression in the factor's function, obtain the actual data value of any
referenced measure as of the current date from the measure data.

If the expression references a single measure, set the factor's actual value to the actual
measure value. If the expression references a ratio of two measures, set the factor's
actual value to the ratio of the two actual measure values obtained. (Actual Factor Value)

Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

On the basis of the project start and end dates, use Convert Date to Phase to translate
the current date to the phase and elapsed fraction of phase that normally should be
reached on that date.

Use Get Project Magnitude on the current estimate data to obtain the measure and
estimated completion value for that measure which is most indicative of the project's
magnitude.

On the basis of that magnitude, use Determine Normal Estimate Set to create a
normal set of estimates for the project.

For the expression in the factor's function, use Convert Phase to Measure to obtain
the expected measure value of any referenced measures at the desired phase and
fraction of phase, given the normal completion value of the measure, from the
measure model. (Expected Measure Value yoma)

99

Section 2—Components

100

8.

10.

1.

Compute the upper and lower normal bounds on any expected measure values
obtained by adding and subtracting, respectively, the scaled value of the normal
deviation stored in the model from each expected measure value via

Expected Measure Valuepgp = Expected Measure Valuenormar +
(Normal Deviation * Normal Completion Value)
Expected Measure Value,,,, = Expected Measure Valuenoma -

(Normal Deviation* Normal Completion Value)

If the expression references a single measure, set the factor's normal upper and lower
values to the expected high and low model value just obtained. If the expression
references a ratio of two measures, set the factor's normal upper and lower values to
the possible extremes of the ratio of the two model values via

Normal Measure Valueyjgn, = Expected Measure Valuepgp[Numerator] /
Expected Measure Value, ou{Denominator]
Normal Measure Value,,,, = Expected Measure Value, oy{Numerator] /

Expected Measure Valueyjjgn[Denominator]

Note: The upper bound for the normal measure value is considered infinite (or
unbounded) if the denominator of the first equation is zero. The lower bound for the
normal measure value is considered unknown (or indeterminate) if the denominator
of the second equation is zero.

Set the objective factor's rating as follows:

if (Normal Measure Valuey oy, = Unknown) or
if (Normal Measure Valueyjgn = 0.0) Factor Rating = Unknown

if (Actual Factor Value < Normal Measure Value(,,) Factor Rating = Low
if (Actual Factor Value > Normal Measure Valueygp) Factor Rating = High
otherwise Factor Rating = Normal

Set the objective factor's certainty as follows:

if (Factor Rating = Unknown) Factor Certainty = 0.0

otherwise Factor Certainty = 1.0

Section 2—Components

Objective Factor
B s saansamoun £ srees
MCH - Module Changes 1. Obtain the actual measure

value for module changes as
of the current date.

2. Convert the current date
to an expected phase.

3. Generate a set of normal

Comiion estimates for the project to
Esimate obtain a completion estimate
for MCH for module changes.

4. For this completion value,
get the expected measure
value at the desired phase
and the normal range about
that measure value.

5. Since the actual value is
below the normal range for
module changes, rate the
factor as "Low."

Figure 2-73. Rating an Objective Factor

101

Section 2—Components

2.3.1.22 Rate Subjective Factor

Purpose

Evaluates a subjective factor as of the current date on the basis of the project's subjective
data supplied by the manager. The factor is assigned a rating (i.e., High, Low, Normal, or

Unknown) and a certainty.

Required Data

e Subjective factor
e Subjective data

Steps

1. Locate the name of the input subjective factor in the subjective data supplied by the

manager for the project.

2. Translate the manager's rating for that entry in the subjective data to a factor rating of
either High, Low, Normal, or Unknown on the basis of the allowable responses in the

input subjective factor. (Factor Rating)
3. Set the subjective factor's certainty as follows:
if (Factor Rating = Unknown) Factor Certainty = 0.0

otherwise Factor Certainty = 1.0

Subjective Factor

Name: problerrvdifficulty

Question: How difficult i the problem
that this project is working on?

Responses: Hard, Easy, Normal

Subjective *
Data

Factor Rating

problevdificuty | Harg

Factor '
Rating Problem difficulty is rated High.

Figure 2-74. Rating a Subjective Factor

102

(input value)

ﬁD STEPS

1. To rate a subjective factor
(e.g., problenvdifficulty),
locate the factor by name in
the project’s subjective data
and obtain its current rating.

2. Convert the factor's rating
to either High, Low, Normal,
or Unknown using the
allowable responses defined
in the factor (e.g., a value of
"Hard" for problem/difficulty
translates to a rating of
"High").

3. If the factor was not found
in the subjective data, its
rating is set to "Unknown"
and its certainty is set to 0.0.
Otherwise, the factor's
certainty is set to 1.0.

Section 2—Components

23.1.2.3 Rate Dependent Factor

Purpose

Evaluates a dependent factor as of the current date that consists of two or more underlying
objective, subjective, or dependent factors. The factor is assigned a rating (i.e., High, Low,
Normal, or Unknown) and a certainty.

Required Data

e Dependent factor (input value)
® Factors (associated with specified dependent factor)

Steps
1. For each underlying factor associated with the input dependent factor, rate the factor
on the basis of its type. If the factor is objective, use Rate Objective Factor. If the
factor is subjective, use Rate Subjective Factor. If the factor is dependent,
recursively use this algorithm Rate Dependent Factor.
(Factor Ratingfi] and Factor Certaintyli])

2. Assign the value of the dependent factor to the weighted average of the underlying
known factor ratings obtained for each factor, 1 through K, using

K
Factor Value = (27 Factor Weight [i] * Factor Certainty [i] * Same) /
=

K
(Z Factor Weight [i] * Known)
I=

where Same compares the underlying Factor Rating [i] with the Optimum Rating [i] and returns
0 if Factor Rating ﬁ is Unknown or Normal
1 if Factor Rating [i] matches Optimum Rating [i
-1 if Factor Rating [i] does not match Optimum Rating [i]

and where Known examines the underlying Factor Rating [i] and returns
0 if Factor Rating [i] is Unknown
1 otherwise

3. Set the rating for the dependent factor by rounding the value assigned to the factor as
follows:

if (Factor Value >= 0.5) Factor Rating
if (Factor Value <= -0.5) Factor Rating
otherwise Factor Rating = Normal

4. Set the certainty of the dependent factor to the weighted average of the underlying
factor certainties obtained for each factor, 7 through K, using

High
Low

K
Factor Certainty = (z; Factor Weight [] * Factor Centainty fi]} /
=

K
(Z Factor Weight [i])
I=

103

Section 2—Components

Depsndsnt
Factor Dependert Factor

Name: dev_tsarmyproductivity

!

Optimum
Underlying Factors Rating Weight
coding/productivity High 50 =P
design/productivity High 30 el
dev_tearnquali i 20
iy High B

Actual
Rating

High

Factor
- Rating Team Productivity is rated High.

Weighted
Factor Values
50
3.0
(1]

/

Average is

< 230r 067

Figure 2-75. Rating a Dependent Factor

104

ﬁﬂ STEPS

1. Each underlying factor is
evaluated based on its type
(e.g., two objective factors
and one subjective factor).

2. The value of the depend-
ent factor is assigned to a
weighted average of 0.67
(e.g., the sumof5,-3,and 0
divided by 3).

3. The assigned value is
rounded and translated to a
rating (e.g., 0.67 is "High").

4. The certainty of the de-

endent factor, not depicted,
is set to a weighted average
(eg., 1.0).

Section 2—Components

2.3.1.2.4 Evaluate Reason

Purpose
Calculates the relative actual ranking as of the current date for a specified knowledge base
reason.
Required Data
s Reason (input value)
e Factor (associated with specified reason)
Steps

1. For the factor identified with the input reason, rate the factor on the basis of its type.
If the factor is objective, use Rate Objective Factor. 1If the factor is subjective, use
Rate Subjective Factor. 1f the factor is dependent, use Rate Dependent Factor.
(Factor Rating and Factor Certainty)

2. Set the actual rating of the reason to the rating of the factor using

Actual Rating = Factor Rating

3. Set the actual ranking of the reason on the basis of the reason's weighted rank and the
factor's certainty using

Actual Rank = Reason Rank * Factor Centainty

4. If the reason's actual rating does not match the reason's causal rating, negate the
actual ranking of the reason to indicate that it is not a reason using

If (Causal Rating <> Actual Rating) Actual Rank = -1.0 * Actual Rank

D sres

1. The factor for the reason
"Unstable code” is evaluated

Reason Rank: 15 -
Cacsal Rating: (source_module change/.

g: Hich amounts rated "High" with
Factor Ngor;\?.{;wm_wh_d\angdmm __1 a certainty of 1'0)_

2. The actual rating of the

Factor rating: High reason is set to "High" (i.e.,
Certairty: 1.0 the factor rating) and its
actual rank to 15.0 (i.e., the
reason’s rank times the
Forthe reason: factor's certainty of 1.0).
5&2} :::klgss‘lggh {&“a‘;i'n"’m'ﬁ‘-” mn 3. Since the actual rating
matches the causal rating,
actual rank is not negated
Since the Actual rating matches the Causal rating, and indicates “"Unstabie
"Unstable code” is a probable reason with a rank of 15.0 code" is a |ike|y cause.

Figure 2-76. Evaluating a Knowledge Base Reason

105

Section 2—Components

2.3.2 Rule Base

Purpose

Describes a collection of captured management experience that uses a set of rules to
evaluate the observed ratios of key pairs of measures to assess a project's current status.

Description

The rule base consists of two associated tables that (1) identify the set of rules to be
evaluated on the basis of the present life-cycle phase and the observed deviations in the ratios
of a project's measures from what is considered normal and (2) specify the interpretations to
associate with those rules. The list of rules contains a series of conditions, with each
condition associated with one or more possible interpretations. The interpretations are
encoded and map to an entry in a list of explanations used for display purposes. Each rule in
the rule base is evaluated based on the present life-cycle phase and current measure data for
the project. If the rule's condition evaluates to true, the associated weighted interpretations
are considered valid and added to an assertion list. Attempts to duplicate an interpretation in
the assertion list result in one entry weighted to reflect both conditions. The SME rule base
currently contains rules that address deviations in nine specific ratios of project measures.

Source
Aule Defined as part of the SME
Auios Base based on past experience
il i dussaebieni Explanations Assumptions
Code Inberpretaton Text p
RULE-1] IF (RUNALOC s High) and w 025 None
(TBME is Ealy CODET) HCOMPTP 050 w productvity
MIEST 1 ncomrTp| High complenity
1493 azs MIEST | Actoleerd, Instances
EPC Error prone code
- The SME has one rule base.
: : Structure
RULE-90] IF (EFFARCH s Low) and GTEST 025 ..
(TIME s ACCTE) s by Two tables consisting of a rule
e 0% list and an explanation list.
The rule list defines all the
rules in the rule base. Each
record in the table describes
one rule and contains the rule

. name, the condition to be

Figure 2-77. Rule Base for the SME evaluated for applying the rule,

and one or more possible

interpretations to consider if the rule's condition is true. Each possible interpretation in the

rule consists of a pair of values—an encoded identifier and a weighted certainty. The

explanation list is a table with two columns—an encoded identifier for an interpretation and
the explanatory text to display for that interpretation.

106

Section 2—Components

2321 Captured Knowledge

The SME captures reasoning in the rule base that encompasses deviations in nine specific
ratios of measures. The deviations may be either above normal (high) or below normal

(low).

This reasoning covers

Above Normal Computer Runs per Line of Code
Below Normal Computer Runs per Line of Code
Above Normal Computer Hours per Line of Code
Below Normal Computer Hours per Line of Code
Above Normal Reported Changes per Line of Code
Below Normal Reported Changes per Line of Code
Above Normal Total Staff Hours per Line of Code
Below Normal Total Staff Hours per Line of Code
Above Normal Computer Hours per Computer Run
Below Normal Computer Hours per Computer Run
Above Normal Reported Changes per Computer Run
Below Normal Reported Changes per Computer Run
Above Normal Total Staff Hours per Computer Run
Below Normal Total Staff Hours per Computer Run
Above Normal Computer Hours per Reported Change
Below Normal Computer Hours per Reported Change
Above Normal Total Staff Hours per Reported Change
Below Normal Total Staff Hours per Reported Change

The following sections describe the specific rules captured in the rule base that address
deviations in the ratios of measures and present a set of general-purpose algorithms
commonly used with the rule base.

107

Section 2—Components

2.3.2.1.1 Above Normal Computer Runs per Line of Code

The SME considers five rules that address the case where the number of computer runs per
line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-1 IF (Computer Runs per Line ot Code are Above Normal) and
Project is in early code & unit test phase)

THEN interpretations are
Low productivity 0.25)
High complexity 0.50)
A ot of testing 0.75
Removal of code by testing or transporting 0.25
Error prone code 0.75

RULE-2 IF (Computer Runs per Line of Code are Above Normal} and
Project is in middle code & unit test phase)
THEN interpretations are

Low productivity %O 2
High complexity 0.7
A lot of testing 50.7
Removal of code by testing or transporting 0.5
Unstable specifications (0.5
Error prone code (0.7

RULE-3 IF (Computer Runs per Line of Code are Above Normal) and
Project is in late code & unit test phase)
THEN interpretations are

Low productivity 0.25)
High complexity
A lot of testing
Removal of code by testing or ransporting 0.50
Unstable specifications
Error prone code

RULE-4 IF (Computer Runs per Line of Code are Above Normal) and
&Project is in system test phase)
THEN interpretations are

Low productivity {
High complexity

A lot of testing {
Removal of code by testing or transporting (0.
Unstable specifications (
Error prone code {

RULE-5 IF (Computer Runs per Line of Code are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are

HiFh complexity 0.75
A lot of testing 0.50
Unstable specifications 0.25
Error prone code (0.75

Figure 2-78. Rules for Above Normal Computer Runs per Line of Code

108

Section 2—Components

23.21.2 Below Normal Computer Runs per Line of Code

The SME considers five rules that address the case where the number of computer runs per
line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-8 IF (Computer Runs per Line of Code are Below Normal) and
Project is in early code & unit test phase)

THEN interpretations are
Good solid and reliable code 0.25
Influx of transported code 0.75
Little or not enough online testing being done (0.75)
Little executable code being develop (0.25)
Computer problems, inaccessibility or environment constraints (0.25)

RULE-7 IF (Computer Runs per Line of Code are Below Normal) and

Project is in middle code & unit test phase)

THEN interpretations are
Good solid and reliable code o.75g
Influx of transported code 0.50
Near build or milestone date (0.50)
Little or not enough online testing being done (0.75)
Little executable code being develop 0.50)
Computer problems, inaccessibility or environment constraints 0.75)

RULE-8 IF {Computer Runs per Line of Code are Below Normal) and

Project is in late code & unit test phase)

THEN interpretations are
Good solid and reliable code {0.75
Influx of transported code 0.25
Near build or milestone date 0.50
Little or not enough online testing being done (0.75;
Little executable code being develop (0.25
Computer problems, inaccessibility or environment constraints (0.75)

RULE-9 IF {Computer Runs per Line of Code are Below Normal) and
Project is in system test phase)
THEN interpretations are
Good solid and reliable code 0.75
Little or not enough online testing being done 0.75
Computer problems, inaccessibility or environment constraints 0.75
Good testing or test pian (0.75)

RULE-10 IF (Computer Runs per Line of Code are Below Normal) and
EProjea is in acceptance test phase)
THEN interpretations are

Good solid and reliable code (0.75)
Little or not enough online testing being done 0.25;
Computer problems, inaccessibility or environment constraints 0.25
Good testing or test plan 0.75)

Figure 2-79. Rules for Below Normal Computer Runs per Line of Code

109

Section 2—Components

23.2.1.3 Above Normal Computer Hours per Line of Code

The SME considers five rules that address the case where the number of computer hours per
line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-11 IF (Computer Hours per Line of Code are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Computation bound algorithms run or tested .
Low productivity
A lot of testing
Removal of code by testing or transporting

o000

[ENEVE]
LR =]
La0e

RULE-12 IF (Computer Hours per Line of Code are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Computation bound algorithms run or tested

Low productivit

Unstable specifications

A lot of testing

Unit testing being done

Removal of code by testing or transporting

Loose configuration management or unstructured development
Error prone code

T
NN N

R LR

RULE-13 [F {Computer Hours per Line of Code are Above Normal) and

Project is in late code & unit test phase)

THEN interpretations are
Computation bound algorithms run or tested {0
Low productivit (0.
Unsiable specitications 0.75
A lot of 1esting 0
Unit testing being done 0
Removal of code by testing or transporting 0
Many design changes 0
Error prone code (0

RULE-14 IF {Computer Hours per Line of Code are Above Normal) and
g’roject is in system test phase)
THEN interpretations are

Computation bound algorithms run or tested (0.75)
Low productivit 0.25
Unstable specifications 0.50}
A ot of testing 0.75
Removal of code by testing or transporting 0.25
Error prone code {0.75)
RULE-15 IF {Computer Hours per Line of Code are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are
Computation bound algorithms run or tested (0.75)
Unstable specifications (0.50)
A lot of testing {0.75
Error prone code (0.75;

Figure 2-80. Rules for Above Normal Computer Hours per Line of Code

110

Section 2—Components

2.3.2.1.4 Below Normal Computer Hours per Line of Code

The SME considers five rules that address the case where the number of computer hours per
line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-16 IF (Computer Hours per Line of Code are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Influx of transported code 0.75)
Little or not enough online testing being done 0.75)
Litle executable code being develop 0.75)
Error prone code (0.25}

RULE-17 IF (Computer Hours per Line of Code are Below Normal) and
%Project is in middle code & unit test phase)
THEN interpretations are
influx of transported code
Near build or milestone date
Little or not enough online testing being done
Little executable code being develop
Tight management plan or good configuration control

AAHAH
S o000
NN N
annon
Quuoy

RULE-18 IF (Computer Hours per Line of Code are Below Normal) and
Project is in late code & unit test phase)
THEN interpretations are
Influx of transported code
Near build or milestone date
Little or not enough online testing being done
Little executable code being develop

.
SOo0
NNNN
(LKL K3, K6,]
auan

RULE-19 IF {Computer Hours per Line of Code are Below Normal) and
&Projea is in system test phase)
THEN interpretations are
Good solid and reliable code
Near build or milestone date
Little or not enough online testing being done

AAA
o000
N
Soam

—

RULE-20 IF (Computer Hours per Line of Code are Below Normmal) and
g—"roject is in acceptance test phase)
THEN interpretations are
Good solid and reliable code (0.75)

Figure 2-81. Rules for Below Normal Computer Hours per Line of Code

111

Section 2—Components

2.3.2.1.5 Above Normal Reported Changes per Line of Code

The SME considers five rules that address the case where the number of reported changes .
per line of code for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-21 IF (Reported Chan?es per Line of Code are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Good testing or test plan (0.25
Error prone code {0.50
Unstable specifications £0.25;
Removal of code by testing or transporting 0.50
Loose configuration management or unstructured development (0.50)
Near build or milestone date (0.50)

RULE-22 IF (Reported Changes per Line of Code are Above Normal) and
Project is in middle code & unit test phase)

THEN interpretations are
Good testing or test plan (0.25)
Error prone code (0.75)
Unstable specifications 0.50
Removal of code by testing or transporting 0.50
Loose configuration management or unstructured development {0.75
Near bufld or milestone date 0.50

RULE-23 IF (Reported Changes per Line of Code are Above Normmal} and
Project is in late code & unit test phase}

THEN interpretations are
Good testing or test plan 0.25
Error prone code 0.75
Unstable s?eciﬁcaﬁons 0.75
Removal of code by testing or transporting §0.25;
Loose configuration management or unstructured development 0.75)
Near build or milestone date (0.50)

RULE-24 IF (Reported Changes per Line of Code are Above Normal) and
Project is in system test phase)
THEN interpretations are

Good testing or test plan
Error prone code
Unstable specifications
Removal of code by testing or transporting {
Loose configuration management or unstruciured development (
Near build or milestone date (

RULE-25 [IF (Reported Changes per Line of Code are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are

Good testing or test plan é0.25g
Error prone code 0.50
Unstable s?eciﬁwtions (0.50;
Removal of code by testing or transporting (0.25
Loose configuration management or unsiructured development (0.50)
Near build or milestone date (0.25)

Figure 2-82. Rules for Above Normal Reported Changes per Line of Code

112

Section 2—Components

2.32.1.6 Below Normal Reported Changes per Line of Code

The SME considers five rules that address the case where the number of reported changes
per line of code for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-26 IF (Reported Changes per Line of Code are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Infiux of transported code (0.75)
Near build or milestone date (0.25)
Good solid and reliable code 0.50
Poor testing 0.50
Change backlog or holding changes (0.75
Low complexity (0.50)

Computer problems, inaccessibility or environment constraints (0:50)
Tight management plan or good configuration control 0

RULE-27 IF (Reported Changes per Line of Code are Below Normal) and
Project is in middle code & unit test phase)

THEN interpretations are
Influx of transported code (0.50
Near build or milestone date (0.25
Good solid and reliable code (0.75
Poor testing (0.50
Change backlog or holding changes E0.75
Low complexity 0.50
Computer problems, inaccessibility or environment constraints §0.50
Tight management plan or good configuration control 0.75

RULE-28 IF (Reported Changes per Line of Code are Below Normal} and
Project is in late code & unit test phase)
THEN interpretations are
Influx of transported code
Near build or milestone date
Good solid and reliable code
Poor testing
Change backlog or holding changes
Low complexity
Computer problems, inaccessibility or environment constraints
Tight management plan or good configuration control

AHAAAAM
CREEEERT
o0
=)
2.

RULE-28 IF {Reported Changes per Line of Code are Below Normal) and
EProjed is in system test phase)
THEN interpretations are

Influx of transported code 0.25
Near build or milestone date 0.25
Good solid and reliable code 0.75
Poor testing 0.25
Change backlog or holding changes 0‘23
Low complexity 0.7

Computer problems, inaccessibility or environment constraints 0.25)
Tight management plan or good configuration control 0.50)

RULE-30 IF (Reported Changes per Line of Code are Below Normal) and
Project is in acceptance test phase)
THEN interpretations are

Influx of trransported code 0.25)
Near build or milestone date 0.25
Good solid and reliable code (0.75
Poor testing 0.25
Change backlog or holding changes 0.25
Low complexity 0.75
Computer problems, inaccessibility or environment constraints 0.25
Tight management plan or good configuration control 0.25

Figure 2-83. Rules for Below Normal Reported Changes per Line of Code

113

Section 2—Components

2.3.2.1.7 Above Normal Total Staff Hours per Line of Code

The SME considers five rules that address the case where the number of total staff hours per
line of code for a project is above normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-31 IF (Total Staff Hours per Line of Code are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are
High complexity (0.75)
Error prone code 0.25
Unstable specifications 0.50
Removal of code by testing or transporting 0.50
Changes hard 10 isolate (0.25
Changes hard 10 make 50.25
Low productivity 0.50
RULE-32 IF (Total Saff Hours per Line of Code are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are
High complexity {0.75)
Error prone code 0.50
Unstable specifications 0.50
Removal of code by testing or transporting (0.25
Changes hard to isolate (0.25
Changes hard to make i0.25)
Low productivity 0.75)
RULE-33 IF (Total Staff Hours per Line of Code are Above Normal) and
Project is in late code & unit test phase)
THEN interpretations are
High complexity {0.75)
Error prone code (0.75)
Unstable s?ecifimﬁons 0.50)
Removal of code by testing or transporting 0.25)
Changes hard to isolate 0.50)
Changes hard 10 make (0.50
Low productivity (0.75
RULE-34 IF {Total Staff Hours per Line of Code are Above Normal) and
Project is in system test phase)
THEN interpretations are
High complexity {0.50)
Error prone code 0.75
Unstable s?eciﬁmtions 0.25
Removal of code by testing or transporting 0.25
Changes hard 1o isolate 0.50]
Changes hard to make 0.50
Low productivity 0.75
RULE-35 IF (Total Staff Hours per Line of Code are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are
High complexity {0.25)
Ertor prone code 0.50)
Unstable s?eciﬁcations 0.25
Removal of code by testing or transporting 0.25
Changes hard to isolate 0.50
Changes hard to make 0.50
Low productivity 0.75

Figure 2-84. Rules for Above Normal Total Staff Hours per Line of Code

114

Section 2—Components

23218 Below Normal Total Staff Hours per Line of Code

The SME considers five rules that address the case where the number of total staff hours per
line of code for a project is below normal. Conditional evaluation of the rules depends upon
the current life-cycle phase of the project and results in a set of possible interpretations for
the observed deviation in the specified ratio of measures.

RULE-36 IF (Total Staff Hours per Line of Code are Below Normal) and
EProjem is in early code & unit test phase)
THEN interpretations are
Influx of transported code (0.50)
Near build or milestone date (0.25)
Low complexity $0.75
High producitivi 0.50
Lack of thorough testing (0.50;
RULE-37 IF (Total Staff Hours per Line of Code are Below Normal) and
Project is in middle code & unit test phase)
THEN interpretations are
Influx of transported code éO.SO)
Near build or milestone date 0.25)
Low complexity {0.75
High pri uctivng (0.75
Lack of thorough testing (0.50,
RULE-38 IF (Total Staff Hours per Line of Code are Below Normal) and
Project is in late code & unit test phase)
THEN interpretations are
Influx of transported code (0.25
Near build or milestone date (0.25
Low complexity 0.75
High productivi 0.75
Lack of thorough testing {0.50)
RULE-39 IF (Total Staff Hours per Line of Code are Below Normal) and
Project is in system test phase)
THEN interpretations are
Inftux of transported code 0.25
Near build or milestone date 0.25
Low complexity 50.50
High produaivnt% 0.75
Lack of thorough testing (0.25)
RULE-40 IF (Total Staff Hours per Line of Code are Below Normal) and
Project is in acceptance test phase)
THEN interpretations are
Influx of transported code 0.253
Near build or milestone date 0.25
Low complexity 0.25
High productivnl 0.75
Lack of thorough testing 0.25

Figure 2-85. Rules for Below Normal Total Staff Hours per Line of Code

115

Section 2—Components

2.3.2.1.9 Above Normal Computer Hours per Computer Run

The SME considers five rules that address the case where the number of computer hours per
computer Tun for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-41 IF (Computer Hours per Computer Run are Above Normal} and
Praject is in early code & unit lest phase)
THEN interpretations are

System and integration testing started early (0.
Error prone code (0.25)
Computation bound algorithms run or tested (0.
Large reuse or early and larger test (0

RULE-42 IF (Computer Hours per Comfuter Run are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are)
System and integration testing started early 0.75
Error prone code
Computation bound aigorithms run or tested
Large reuse or early and larger test (0.50)

RULE-43 IF (Computer Hours per Computer Run are Above Normal) and
Project is in late code & unit test phase)

THEN interpretations are
System and integration testing started early 0.50;
Error prone code 0.25
Computation bound algorithms run or tested (0.75)
Large reuse or early and larger test (0.25)

RULE-44 IF (Computer Hours per Computer Run are Above Normal) and
Project is in system test phase}
THEN interpretations are

System and integration testing started early (0.
Error prone code 20.25
Computation bound algarithms run or tested 0
Large reuse or early and larger test {0

RULE-45 IF (Computer Hours per Computer Run are Above Normal) and
%Projecl is in acceptance lest phase)
THEN interpretations are

System and integration testing started early {0.25)
Error prone code 0.25
Computation bound algorithms run or tested 0.50]
Large reuse or early and larger test 0.25)

Figure 2-86. Rules for Above Normal Computer Hours per Computer Run

116

Section 2—Components

2.3.2.1.10 Below Normal Computer Hours per Computer Run

The SME considers five rules that address the case where the number of computer hours per
computer run for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-46 IF {Computer Hours per Computer Run are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Unit testing being done (0.
Easy errors or changes being found or fixed 0.25;
Simple system [1}
New or late development 0

RULE-47 IF (Computer Hours per Computer Run are Below Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Unit testing being done 0.50)
Easy errors or changes being found or fixed 0.25;
Simple system 0.50
New or late development (0.50)

RULE-4B8 IF (Computer Hours per Computer Run are Below Normal) and
Project is in late code & unit test phase)

THEN interpretations are
Unit testing being done 0.75)
Easy errors or changes being found or fixed 0.25%
Simple system 0.75
New or late development (0.75)

RULE-4¢ IF (Computer Hours per Computer Run are Below Normal) and
Project is in system tes! phase)
THEN interpretations are

Unit testing being done (0.75}
Easy errors or changes being found or fixed (0.50
Simple system (0.75)
New or late development (0.75)

RULE-50 IF (Computer Hours per Computer Run are Below Normal) and
Project is in acceptance test phase)

THEN interpretations are
Unit testing being done éo.ZS}
Easy errors or changes being found or fixed 0.50
Simple system 0.75)
New or late development 0.75)

Figure 2-87. Rules for Below Normal Computer Hours per Computer Run

117

Section 2—Components

2.3.21.11 Above Normal Reported Changes per Computer Run

The SME considers five rules that address the case where the number of reported changes
per computer run for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-51 IF (Reported Chan?es per Computer Run are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Good testing or test plan

System and integration testing started early

Error prone code

Near build or milestone date

Loose configuration management or unstructured development
Unstable specifications

AAHAAA
SO00000
oo
[Gi={=X=X5 X))

RULE-82 IF (Reported Changes per Computer Run are Above Normal) and
Project is in middie code & unit test phase)
THEN interpretations are
Good testing or test plan
System and integration testing started early
Error prone code
Near build or milestone date
Loose configuration management or unstructured development
Unstable specifications

nNGONON

A.AAAA
EGRER
SucusSs

RULE-s3 IF (Reported Changes per Computer Run are Above Normal) and
Project is in late code & unit test phase)
THEN interpretations are
Good testing or test plan
System and integration testing started early
Error prone code
Near build or milestone date
Loose configuration management or unstructured development
Unstable specifications

AHAAAA
CEEELE
NN O
snootn

RULE-54 IF (Reported Changes per Computer Run are Above Normal) and

&Project is in system test phase)
THEN interpretations are

Good testing or test plan fo
System and integration testing started early 0
Error prone code (0.75)
Near build or milestone date }0
Loose configuration management or unstructured development 0
Unstable specifications (0.75}

RULE-55 IF (Reported Changes per Computer Run are Above Normal) and
EProjecl is in acceptance test phase)
THEN interpretations are
Good testing or test plan 0.25
System and integration testing started early
Error prone code
Near build or milestone date
Loose configuration management or unstructured development 0.50
Unstable specifications %0.75

Figure 2-88. Rules for Above Normal Reported Changes per Computer Run

118

Section 2—Components

2.3.2.1.12 Below Normal Reported Changes per Computer Run

The SME considers five rules that address the case where the number of reported changes
per computer run for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-s6 IF (Reported Changes per Computer Run are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Good solid and reliable code ()
A lot of testing (0
Poor testing (0.
Change backlog or holding code (0
Tight management plan or good configuration control 0

RULE-57 IF (Reported Changes per Computer Run are Below Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Good solid and reliable code ?0
A lot of testing 0.50
Poor testing 50.75
Change backlog or holding code 0
Tight management plan or good configuration control (]

RULE-58 IF (Reported Changes per Computer Run are Below Normal) and
Project is in late code & unit test phase)
THEN interpretations are
Good salid and reliable code (0.75)
A lot of testing (0.50)
Poor testing (0.50)
Change backlog or holding code {0.50)
Tight management plan or good configuration control (0.75)

RULE-59 IF (Reported Changes per Computer Run are Below Normal) and
Project is in system test phase)
THEN interpretations are

Good solid and reliable code

A lot of testing

Poor testing

Change backliog or holding code

Tight management plan or good configuration control

Co0o0
NG~
=]

RULE-60 IF (Reported Changes per Computer Run are Below Normal) and
Project is in acceptance test phase)
THEN interpretations are

Good solid and reliable code

A lot of testing

Poor testing

Change backlog or holding code

Tight management plan or good configuration control

P
00000
mou N
Sogsuwm

Figure 2-89. Rules for Below Normal Reported Changes per Computer Run

119

Section 2—Components

2.3.2.1.13 Above Normal Total Staff Hours per Computer Run

The SME considers five rules that address the case where the number of total staff hours per
computer run for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-61 IF (Total Staff Hours per Computer Run are Above Normal) and
&Project is in early code & unit test phase)
THEN interpretations are
High complexity (0.50)
Modifications being made to recently transported code (0.50;
Changes hard to isolate (0.25
Changes hard to make (0.25;
Late design (0.75
Good solid and reliable code 0.50)
Unstable specifications 0.25)
RULE-62 IF (Total Staff Hours per Computer Run are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are
High complexity (0.75)
Modifications being made ta recently transported code 0.25
Changes hard 1o isolate 0.25
Changes hard to make 0.25
Late design 0.75
Good solid and reliable code 0.75
Unstable specifications {0.25
RULE-83 IF (Total Staff Hours per Computer Run are Above Normal) and
Project is in late code & unit test phase)
THEN interpretations are
High complexity (0.75)
Modifications being made to recently transported code 0.25;
Changes hard to isolate 0.50
Changes hard to make io.SO)
Late design 0.25)
Good solid and reliable code 0.75
Unsitable specifications 0.50
RULE-64 IF (Total Staff Hours per Computer Run are Above Normal) and
Project is in system test phase)
THEN interpretations are
High complexity (0.25)
Modifications being made to recently transported code 0.25)
Changes hard to isolate 0.50)
Changes hard to make 0.50;
Late design (0.25
Good solid and reliable code 0.25
Unstable specifications 0.75
RULE-85 IF (Total Staff Hours per Computer Run are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are
High complexity (0.25)
Modifications being made to recently transported code 0.25)
Changes hard 1o isolate 0.25)
Changes hard 10 make 0.25
Late design 0.25
Good solid and reliable code 0.25
Unstable specifications (0.75

Figure 2-90. Rules for Above Normal Total Staff Hours per Computer Run

120

e e |

2.3.2.1.14 Below Normal Total Staff Hours per Computer Run

The SME considers five rules that address the case where the number of total staff hours per
computer run for a project is below normal.
upon the current life-cycle phase of the project and res

for the observed deviation in the specified ratio of measures.

RULE-66

RULE-67

RULE-68

RULE-69

RULE-70

IF (Total Staff Hours per Computer Run are Below Normal) and
EProjea is in early code & unit test phase)
THEN interpretations are
Easy errors or changes being found or fixed
Error prone code
Aot of testing
Lots of terminal jockeys
Unstable specifications

IF (Total Staff Hours per Computer Run are Below Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Easy errors or changes being found or fixed

Error prone code

A lot of testing

Lots of terminal jockeys

Unstable specifications

IF (Total Staff Hours per Computer Run are Below Normal) and
EProject is in late code & unit test phase)
THEN interpretations are
Easy errors or changes being found or fixed
Error prone code
A lot of testing
Lots of terminal jockeys
Unstable specifications

IF (Total Staff Hours per Computer Run are Below Normal) and
%Projem is in system test phase)
THEN interpretations are
Easy errors or changes being found or fixed
Error prone code
A lot of testing
Lots of terminal jockeys
Unstable specifications

IF (Total Staff Hours per Computer Run are Below Normal) and
Project is in acceptance test phase}
THEN interpretations are

Easy errors or changes being found or fixed

Error prone code

A lot of testing

Lots of terminal jockeys

Unstable specifications

Figure 2-91. Rules for Below Normal Total Staff Hours per Computer Run

Section 2—Components

Conditional evaluation of the rules depends
ults in a set of possible interpretations

(3]
)

,\
88500
~NPN NN
Mmoo

Cror=Y=T=)
v
SHhnny

RSN AS,

Section 2—Components

2.3.2.1.15 Above Normal Computer Hours per Reported Change

The SME considers five rules that address the case where the number of computer hours per
reported change for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-71 IF (Computer Hours per Reported Change are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are
Good solid and reliable code 0.50)
Poor lestinF 0.253
High complexity 0.25
Changes hard to isolate 0.25)
Unit testing being done 0.25
Computation bound algorithms run or tested (0.50
RULE-72 IF (Computer Hours per Reported Change are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are
Good solid and reliable code (0.75)
Poor testinrg (0.25
High complexity (0.50
Changes hard o isolate §0.25
Unit testing being done 0.2
Computation bound algorithms run or tested (0.50)
RULE-78 IF (Computer Hours per Reported Change are Above Normal) and
Project Is in late code & unit test phase)
THEN interpretations are
Good salid and reliable code ?0.75)
Poor testing 0.25)
High complexity {0.75
Changes hard 1o isolate 0.50
Unit testing being done 50.25
Computation bound algorithms run or tested 0.75)
RULE-74 IF (Computer Hours per Reported Change are Above Normal) and
Project is in system test phase)
THEN interpretations are
Good solid and reliable code (0.7
Poor testin?) (0.25
High compfexity (0.75)
Changes hard 1o isolate {0.50)
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.75)
RULE-75 IF (Computer Hours per Reported Change are Above Normal) and
g’roject is in acceptance test phase)
THEN interpretations are
Good solid and reliable code (0.25
Poor testin (0.25
High complexity 0.25
Changes hard io isolate 0.25
Unit testing being done (0.25)
Computation bound algorithms run or tested (0.50}

Figure 2-92. Rules for Above Normal Computer Hours per Reported Change

122

I e

L

THm——]]

Section 2—Components

2.3.2.1.16 Below Normal Computer Hours per Reported Change

The SME considers five rules that address the case where the number of computer hours per
reported change for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-76 IF (Computer Hours per Reported Change are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Near build or milestone date 5
Good testing or test plan

Error prone code (
Tight management plan or good configuration control (

RULE-77 IF (Computer Hours f)er Reported Change are Below Normal) and
Project is in middie code & unit test phase)
THEN interpretations are

Near build or milestone date 0.25)
Good testing or test plan
Error prone code
Tight management plan ar good configuration control (0.75)

RULE-78 IF {Computer Hours per Reported Change are Below Normal) and
Project is in late code & unit test phase)
THEN interpretations are

Near build or milestone date .
Good testing or test plan
Error prone code
Tight management plan or good configuration control

RULE-79 IF (Computer Hours per Reported Change are Below Normal) and
LProject is in system test phase)
THEN interpretations are

Near build or milestone date 50.50;
Good testing or test plan
Error prone code {0.50)
Tight management plan or good configuration control (0.50)

RULE-80 [F (Computer Hours per Reported Change are Below Normal and
Project is in acceptance test phase)
THEN interpretations are

Near build or milestone date
Good testing or test plan
Error prone code
Tight management plan or good configuration control

Figure 2-93. Rules for Below Normal Computer Hours per Reported Change

123

Section 2—Components

2.3.2.1.17 Above Normal Total Staff Hours per Reported Change

The SME considers five rules that address the case where the number of total staff hours per
reported change for a project is above normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-81 IF (Total Staff Hours per Reported Change are Above Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Good solid and reliable code 2 8
Poor testing
Changes hard o isolate (
Changes hard to make (

RULE-82 IF (Total Staff Hours per Reported Change are Above Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Good solid and reliable code 20.75)
Poor testing
Changes hard to isolate {
Changes hard to make (0.50)

RULE-83 IF (Total Staff Hours per Reported Change are Above Nomal) and
Project is in late code & unit test phase)
THEN interpretations ars

Good solid and reliable code (0.
Poor testing 0.
Changes hard to isolate 0.
Changes hard to make (0.

RULE-84 IF (Total Staff Hours per Reported Change are Above Normal) and
Project is in system test phase})
THEN interpretations are

Good solid and reliable code $0.50)
Poor testing
Changes hard to isolate (0.75)
Changes hard to make {0.75)

RULE-85 IF (Total Staff Hours per Reported Change are Above Normal) and
Project is in acceptance test phase)
THEN interpretations are
Good solid and reliable code (0.
Poor testing 0.25
Changes hard to isolate 0.
Changes hard to make 0

Figure 2-94. Rules for Above Normal Total Staff Hours per Reported Change

124

Section 2—Components

2321.18 Below Normal Total Staff Hours per Reported Change

The SME considers five rules that address the case where the number of total staff hours per
reported change for a project is below normal. Conditional evaluation of the rules depends
upon the current life-cycle phase of the project and results in a set of possible interpretations
for the observed deviation in the specified ratio of measures.

RULE-86 IF (Total Staff Hours per Reported Change are Below Normal) and
Project is in early code & unit test phase)
THEN interpretations are

Good testing or test plan 0.25;
Near build or milestone date 0.50
Easav errors or changes being found or fixed 0.50)
Modifications being made to recently transported code 0.50)
Error prone code 0.50)

RULE-87 IF (Total Staff Hours per Reported Change are Below Normal) and
Project is in middle code & unit test phase)
THEN interpretations are

Good testing or test plan (0
Near build or milestone date (2
Easy errors or changes being found or fixed {0.75
Modifications being made to recently transported code 50
Error prone code 0

RULE-88 IF (Total Staff Hours per Reported Change are Below Normal) and

%Project is in late code & unit test phase)
THEN interpretations are

Good testing or test plan (0
Near build or milestone date (0.
Easy errors or changes being found or fixed (0.75
Modifications being made to recently transported code (0
Error prone code {0

RULE-88 IF (Total Staff Hours per Reported Change are Below Normal) and
Project is in system test phase)
THEN interpretations are

Good testing or test plan (0.25
Near build or milestone date (0.25
Easgl errors or changes being found or fixed (0.5
Modifications being made to Tecently transported code 20 2
Error prone code 0.7

RULE-90 IF (Total S1aff Hours per Reported Change are Below Normal) and
Project is in acceptance test phase)
THEN interpretations are

Good testing or test plan 0.2 }
Near build or milestone date 0.2
Easy errors or changes being found or fixed {0.25
Moadifications being made 1o recently transported code 0.25
Error prone code 0.5

Figure 2-95. Rules for Below Normal Total Staff Hours per Reported Change

125

Section 2—Components

2.3.2.2 General-Purpose Use of the Rule Base

The SME incorporates a set of general-purpose services commonly used with the rule base.
The services are referenced by SME functions to provide needed services associated with the
rule base. These services include

e Determine Phase for Rules
o Determine Rate for Rules
o FEvaluate Rule

The following sections discuss each of these services and detail the algorithms behind the
actions they perform.

126

Section 2—Components

2.3.22.1 Determine Phase for Rules

Purpose

Identifies the present life-cycle phase of the current project. The result is stored in a list as
an assertion, consisting of an associated key and value pair, for subsequent use in evaluating

rules.
Required Data

o Current date (input value)

e Schedule data

e Schedule model (in Convert Date to Phase)

e Assertion list

Steps

1. Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

2. On the basis of the project start and end dates, use Convert Date to Phase to translate
the current date to the phase and elapsed fraction of phase that normally should be
reached on that date. (Phase Name,ont @nd Fraction of Phasecyrreny)

3. Set the assertion key and value to identify the present life-cycle phase as follows:
Assertion Key = 'TIME'
if (Phase Namegyrgn: = DESGN) Assertion Value = 'Design phase’
if (Phase Namegyent = 'CODET) then

if (Fraction of Phasegygn <= 0.33) Assertion Value = 'Early code & unit test phase’
else if (Fraction of Phasegypent <= 0.66) Assertion Value = 'Middle code & unit test phase’
else if (Fraction of Phasecyyent > 0.66) Assertion Value = 'Late code & unit test phase’
if (Phase Namegyrens = 'SYSTE) Assertion Value = 'System test phase’
if (Phase Namegyprgny = ACCTE) Assertion Value = 'Acceptance test phase'’
4. Store the assertion in the rule base's assertion list.

127

Section 2—Components

Dara

Schedule
Mode!

Assertion
List

Schedule I

Current Date
is
10/01/92
10/04/91 122583
<, :ﬁ o]
3
1
I M . N
r 1 } 1
DESGN CODET SYSTE ACCTE
25.65% 34.968% 17.90% 2145%
H
1
Project is 40%
through CODET
Key Vale
| TIME Middle Code & Unit

Test Phase

ﬁD STEPS

1. The project start and end
dates are 10/4/91 and
12/25/93, respectively.

2. The current date of
10/01/92, based on the
schedule model, maps to a
point 40% into the code and
test phase.

3. Since 40% through code
and test falls into the middle
third of the phase, set an
assertion indicating that the
present phase of the project
is "Middle code & unit test
phase.”

Figure 2-96. Determining the Present Phase for the Rule Base

128

Section 2—Components

23222 Determine Rate for Rules

Purpose

Compares the actual cumulative ratio of two specified measures to expected model values to
determine if the rate is above, below, or within the range of values normally expected for the
current date. The result is stored in a list as an assertion, consisting of an associated key and
value pair, for subsequent use in evaluating rules.

Required Data
® Measure name for numerator (input value)
e Measure name for denominator (input value)
® Measure data (for the two specified measures)
e Schedule data
e Schedule model (in Convert Date to Phase)
® Measure model (for two specified measures) (in Generate Rate Model)
e Estimate set model (in Get Ratio of Estimates)
® Assertion list

Steps

Obtain the actual data values of the two specified measures as of the current date
from the measure data. Set the actual value for the rate to the ratio of the two actual
measure values as follows:

Actual Value = Actual Measure Valuepn,merarr / Actual Measure Valuepepnominator

Use Get Project Dates to obtain the planned project start and end dates from the
current schedule data.

On the basis of the project start and end dates, use Convert Date to Phase to translate
the current date of the measure data to the phase and elapsed fraction of phase that
normally should be reached on that date.

Use Generate Rate Model to create a rate model for the two input measures from the
corresponding measure models.

Use Get Ratio of Estimates to obtain the normal ratio of completion values for the
two input measures from the estimate set model. (Normal Completion Ratio)

Use Convert Phase to Measure on the rate model to obtain the normal ratio of
expected measure values for the two referenced measures at the desired phase and
fraction of phase, given the normal ratio of completion values. (Expected Valueopma)

Compute the upper and lower normal bounds on the expected ratio of values obtained
by adding and subtracting, respectively, the scaled value of the normal deviation
stored in the rate model to or from the expected ratio as follows:

Expected Valueyjgp, = Expected Valuepyma + (Normal Deviation * Normal Completion Ratio)

Expected Value| oy, = Expected Valuepymas - (Normal Deviation * Normal Completion Ratio)

129

Section 2—Components

8. Set the assertion key and value to identify the results of evaluating the ratio of the

specified measures as follows:

Assertion Key = 'Measure Nameyymerator + '/ '+ 'Measure Namepenominator

if (Actual Value > Expected Valueygy) Assertion Value

'"Above Normal'

if (Actual Value < Expected Value,,,) Assertion Value = 'Below Normal
Assertion Value =

otherwise

9. Store the assertion in the rule base's assertion list.

‘Normal'

Lines of Code per Hour
: Above Nm,’
- orplen
Schedule Model
LOC/EFFis
Below Norrmal
Key Value
l___. TIME System Test Phase

LOCEFF

Below Normal

ED STEPS

1. Obtain the current phase
using the schedule model.

2. Get the normal ratio of
completion values for the
two input measures from the
estimate set model (e.g.,
LOC to EFF is 3.917).

3. Generate a rate model for
the two measures.

4. Scaling the rate modet for
the normal completion ratio,
get the expected value and
normal range of the rate for
the current phase.

5. If the actual measure ratio
falls under the normal range,
as shown, add an assertion

that the rate is below normal.

Figure 2-97. Determining Measure Rates for the Rule Base

130

Section 2—Components

2.3.2.2.3 Evaluate Rule

Purpose

Evaluates a single rule in the rule base to conditionally determine the applicability of the
rule’s interpretations to the current project. If the rule's condition evaluates to true, each
associated interpretation is stored for subsequent use in a list as an assertion, consisting of an
associated key and value pair. If the rule's condition evaluates to false, no action is taken.

Requlred Data

e Rule (input value)
e Assertion list

Steps
1. For each expression in the rule's condition, capture the expression as an assertion
consisting of an associated key and value pair. Locate the entry k with a matching
key in the assertion list and evaluate the individual expressions, for i equals 7 through
N, as follows:

if (Expression Valuefi] = Assertion Valuefk)) Expressionfi] = TRUE
otherwise Expression[i] = FALSE

2. Evaluate the rule's condition, using boolean logic and the results obtained from
evaluating the individual expressions.

3. If the rule's condition is true, express each of the rule's interpretations as assertions
and determine if that interpretation already exists in the assertion list by searching for
a matching key.

4. For each interpretation associated with a rule whose condition is true, store the
interpretation as an assertion as follows. If the interpretation does not already exist in
the list, simply add the interpretation's key and value to the assertion list. If the
interpretation exists in the list as the ! entry, update the assertion value to reflect a
new weighted certainty for the interpretation using

Assertion Value[k] = (1 - New Certainty) * Old Certainty + New Certainty

where New Certainty is the wei?hted interpretation's certainty used as an Assertion Value
and Old Centainty is the original certainty existing in the list for that entry as Assertion Valuefk]

131

Section 2—Components

Rule 90 If (EFF/RCH is Below Normal) and
Tg IME is Acoeptance Test Phase)

Rule " GTEST 025
Base / NEM 025
EASY 025
RTCM 025 Al
Before EPC 0.50 o
KEY VALUE KEY VALUE
TMEre | axspineeTest TIME Acceptance Test
EFFACH Beiow Normal LOCEFF Below Normal

RUNADC | Above Nomal EFFRCH | Below Nomal

HCOMPTP 07S ’

EPC 075 o - DR -
'] GrEST 025 H

+| NBM 025 1

L 1] easy 025 H

Assertion List 1| Rrem 028 i

H H

[1

1 L]

[pprympmympmpagugmpapepmpegymgng=y—— 4

Figure 2-98. Evaluating a Rule In the Rule Base

132

A1 sees

1. Each expression in the
rule's condition is located in
the assertion list and
evaluated.

2. The rule's condition is
evaluated using boolean
logic and the evaluation of
the individual expressions.

3. If the rule is true, each of
the rule's interpretations is
expressed as an assertion
and searched for in the
assertion list.

4. If that assertion is already
in the list, the assertion's
associated weight is
updated. Otherwise, itis
added to the assertion list.

Section 2—Components

2.4 MANAGEMENT DATA

At times, the SME must rely on the manager using the system for additional information
needed to perform a given function. This situation arises in three specific instances where
the SME permits the user to interactively specify the required data. The first case involves
permitting the manager to modify the project's plan by changing the current schedule and
estimates for use in analyzing what-if scenarios. The second case lets a manager specify an
estimate of the current phase (presumably based on information that is unavailable to the
SME) for use in making predictions. Lastly, the third case solicits subjective information
about a project from the manager to augment the known objective data contained in the
knowledge base on the project. In each of these cases, the SME can store the information for
future reference.

Table 2-5 summarizes the major components referenced by the SME as management data.
Each component maps to a particular type of information obtained from SME users and is
identified with a specific purpose.

Table 2-5. SME Management Data Components

COMPONENT PURPOSE
Alternative Plans Identifies sets of project schedules and estimates supplied by
the user to support what-if scenarios
Phase Estimates Identifies where a project is in the development life cycle on a
iven date as a basis for making predictions
Subjective Data dentifies the manager's ratings of a set of subjective factors
that supply additional knowledge about a project

The following sections provide additional detailed information on each of these components.

133

Section 2—Components

2.4.1 Alternative Plans

Purpose

Enables the user to investigate the effects of changing project plans.

Description

Alternative plans are created by the manager interactively during sessions with the SME
planning function. An alternative plan consists of a schedule and a set of completion
estimates that have been modified by the user in some way. The schedule has the same
format as the project's current schedule, but the user might have modified one or all of the
development life-cycle phase dates. Similarly, the set of completion estimates has the same
format as the current completion estimates, but the user might have modified one or all of the
estimated completion values. The SME provides the user with two distinct methods for
Creating an alternative plan, as detailed in Section 3 under planning services. Once created,
the plan may be used in subsequent monitoring and overall assessment functions to
investigate the effects of modifying scheduled phase dates or completion estimates.

Source
Created interactively by the

methods. May be input inter-

Prase | St | & e | oo | 5 actively by the user, or derived
fome | Ok | O Nome | Owe | Dw from the schedule and estimate
% %’:’% ;%% ot it e set models.
ACCTE 042243 12/2583 ACCTE 0672483 | 0172403 .
o (Y E—— = B Assumptions
Sl i i i ¢ The alternative schedule
or 720 oy 250 and estimate set will
Loc 2508 Loc 000000 conform to the standard
Moo 1818 M0 100 SME formats for schedules
i i RER 08500 and estimates
® A change to either a

project's schedule or its
estimates constitutes an
alternative plan

Figure 2-99. Representative Alternative Plan for a Instances
Project

Multiple alternative plans can
exist for any given project.
Each alternative plan belongs to the manager who originally created the plan.
Structure

A schedule table with three columns—phase name, phase start date, and phase end date; an
estimates table with two columns—measure code and estimated completion value.

134

It YO

Section 2—Components

2.4.2 Phase Estimates

Purpose

Indicates where a project is in its life cycle on a given date.

Description

Phase estimates are created by the manager interactively during sessions with the SME
prediction function. A phase estimate reflects an assessment of exactly where a project is in
the development life cycle on a specific date. A phase estimate contains the current date, the
current phase, and the completed fraction of that phase. The SME uses a phase estimate for a
given project as the basis for predicting the expected completion date and value of the
measure of interest for the current project. The SME provides three distinct methods of
obtaining a phase estimate, as detailed in Section 3 under the prediction function. The user
may select which method should be used for the prediction.

Source
Selected interactively by the
manager from three choices.
The phase estimate may be
DESGN CODET SYSTE | ACCTE calculated by the SME,
L derived from the current
—— On 04/07/86, ’Qf oroject was ;chtf:hdeullles,e ;)r input interactively
. 50 t h th .
Estmate - Cod%r?&e’}eslggphas: y
Assumptions
i ¢ The date specified in the
—— phase estimate must be
i Data between the project start
‘r/: date and the current project
: date
11/21/67 04/07/89 08/15/90
Instances
Figure 2-100. Representative Phase Estimate fora wltiple phase estimates can
Project exist for any given project.

Each phase estimate belongs to
the manager who originally created and used the estimate as the basis for a prediction.

Structure
Table with three columns—date, phase name, and fraction of phase complete.

135

Section 2—Components

2.4.3 Subjective Data

Purpose

Represents the manager's ratings of software development factors for a given project.

Description

Subjective data currently is collected from the manager interactively during sessions with the
SME trend analysis function. The data consists of ratings associated with specific factors
that potentially affect the software development process, such as development team
experience, problem complexity, and tool usage. The SME uses these ratings in the expert

system software.

Subjective
Data

Projectn
Eacior Naroa, | ating
Projec2
Project o oo
. pood |
Factor Name Rating igh F
Problem Complexity Average
Regs. Stability Tight
Regs. Quality High

Figure 2-101. Subjective Data for Three Projects

Source

Collected interactively from
the manager

Assumptions

o Each project's manager is
responsible for providing
subjective data on their
own project that can be
referenced by all SME
users

Instances

One set of subjective data may
exist for each project.

Structure

Table with two columns—
factor name and rating. Each
row in the table describes one
subjective factor that exists in

the knowledge base. The rating is a value that translates to either high, normal, low, or

unknown.

136

Section 3—Functionality

SECTION 3—FUNCTIONALITY

The SME supports a key set of experience-based functions intended to assist software
development managers in actively tracking and evaluating the status of their projects. These
functions rely on the components described in the previous section for information on an
ongoing project as well as for the collective experience from past development efforts that
can be used to understand and manage the project. When organized by the type of service
they provide for the user, these functions fall into four categories. The first relates to
executive services. These functions include general high-level features that permit a user to
choose a project to examine and optionally to go back in time to an earlier point in that
project's life cycle. In short, these services establish the scope and context in which all
subsequent SME functions will be performed. The second encompasses various monitoring
services that focus on a specific measure selected by the user. These functions permit a user
to observe, compare, predict, and analyze the behavior of the measure of interest. The third
covers assessment services pertaining to the overall quality of the project. These functions
allow a user to objectively evaluate and examine high-level quality attributes, such as
correctability and maintainability, with respect to a normal project in the environment. The
fourth category contains planning services that support the creation and use of alternative
schedules and estimates. These functions are used for performing "what if" scenarios to
explore the effects of changing a project's plan.

Table 3-1 summarizes the major functions provided by the SME, organized into four basic
service categories.

Table 3-1. Major Functions Provided by the SME

SERVICE FUNCTION

Executive Project Selection
Specification of Current Project Date

Monitoring Measure Selection

Simple Observation
Comparison to a Normal Project
Comparison to Manager's Plan
Comparison to Other Projects
Prediction

Trend Analysis

Profile Analysis

Overall Assessment Attribute Evaluation
Attribute Factor Examination

Planning Use of Alternative Schedules
Use of Alternative Estimates

137

Section 3—Functionality

138

Section 3—Functionality

3.1 EXECUTIVE

The executive services provided by the SME serve to establish the context in which all
subsequent functions will be performed. Primarily, this involves permitting the manager to
identify a project to examine by choosing one from a list of all available projects. Once the
manager specifies a project of interest, any SME functions requested will reference that
project.

To the user, selecting the project of interest is a simple case of choosing the name of the
desired project from a list. This action, however, causes the SME to initialize a contextual
environment for performing SME functions that incorporates a wide range of information
related to the project of interest. This initialization includes locating and obtaining all data
captured for the project, choosing the manager's current plan from the list of all submitted
schedules and estimates based on the current project date, and identifying an appropriate set
of models to use with the project given its known characteristics. The manager may switch
to a different project at any time by choosing a new project of interest.

A second key service permits the manager to change the current date of the project of interest
to view the project as it appeared at some earlier time. By default, when a project is first
selected as the project of interest, the current project date is set to the latest date for which
measure data exists. This lets the manager obtain the latest picture of the project from the
most current information available. At times, however, the manager may wish to view the
project as it appeared at an earlier point in the software development life cycle. To
accommodate this, the SME allows the manager to override the default current value to
effect going back in time to an earlier project date. Specifying a different project date causes
the SME to update the current plan to reflect the manager's schedule and estimates in effect
on that date. All subsequent SME functions requested by the manager reference that plan
and artificially truncate the project's measure and profile data. The resultant picture of the
project reflects what the SME would have shown on the specified date.

Table 3-2 summarizes the major functions supported by the SME under executive services.

Table 3-2. Key Executive Services Functions

FUNCTION PURPOSE

Project Selection Lets user select a project as the current project of interest
for performing all subsequent SME functions

Specification of Current Project Date | Lets user change the current date of the project of interest
to view the project as it appeared at some earlier time

The following sections provide additional detailed information on each of these functions.

PRBCHDNG PAGE BLANK NOT FHMED 139

Section 3—Functionality

3.1.1 Project Selection

Purpose

Lets the user select a single project as the project of interest for any subsequent SME
functions.

Description

The project selection function displays a list of all available projects and permits the user to
choose a project of interest. The SME performs its functions within the context of this
particular project. Selecting a project of interest causes the SME to identify and locate for
future reference all data captured for the project, the manager's current plan submitted for the
project, and the appropriate models to apply to the project.

The figure illustrates the
selection of a project of
interest from the list of

Data and models to use for PROJECT2 available projects. This
— example shows that if a user
Project e chooses PROJECT?2 from the
) Da A . .
List list, the SME identifies the
project data associated with
Current Schedule Measure Data .
Current Estimates Profile Data that project and references an
gﬁgg_/ Project Charactorstics appropriate set of models that
match the key characteristics

PRQJECT3

Research i
l of the project.

Schedule Model Measurs Models Note that research data such
Estimate Set Model Profile Models as attribute definitions and
management rules can apply
to any project regardless of
the project's characteristics.

PROJECTn

Figure 3-1. Selecting a Profect of Interest

Required Information
e List of available projects (project list)
e List of defined measures (measure list)
e List of defined profiles (profile list)
e List of available measures for projects (project/measure availability list)
e List of available profiles for projects (project/profile availability list)
e Planned schedule for the project (schedule data)
e Planned completion values for measures (estimates data)
e Actual data values for the available measures (measure data)
e Actual data values for the available profiles (profile data)

140

Section 3—Functionality

* Key characteristics of the project (project characteristics)
® Model of the schedule for similar projects (schedule model)
® Model of completion estimates for similar projects (estimate set model)
® Models of measure behavior for similar projects (measure models)
® Models of profile behavior for similar projects (profile models)
Key Steps

1. Select a project of interest and locate all available project data for the project.

2. Set the current plan to reflect the most recent schedule and estimates for the
project.

3. Identify a set of appropriate models to use with the selected project.

141

Section 3—Functionality

3.1.1.1 Select a Project of Interest

Purpose

Allows the user to select a project from the list of all available projects. Identifies and
locates all project data for the selected project.

Required Data

Project list

Project/measure availability list
Project/profile availability list

Schedule data (for project of interest)
Estimates data (for project of interest)
Measure data (for project of interest)

Profile data (for project of interest)

Project characteristics (for project of interest)

Steps
1. Display the list of available projects appearing in the project list and permit the user
to select a project of interest.

2. Reference the project/measure availability list to identify the measures with data for
the project. Locate the data for each available measure.

3. For each available measure, reference the project/profile availability list to identify
the measure profiles with data for the project. Locate the profile data for each
available profile.

4. Locate the schedule data, estimates data, and project characteristics for the project.

Data
£ STEPS

Project — Comar o 1. Generate a list containing
List Charactistcs Data the names of all projects,
- and let the user selecta
ProjectMeasure I project.
Availability List
PROJECTI 2. Identify the measures for
. — Measurs Data M M ?
PROECTs o] & [oo | oo poy Effort which there is available data
PROJECTS | heim] CPU| EFF | LOC | MOD Y | FOR|eallin Modds Counts for the project, and locate
: . that measure data.
. Reportsd Enars
PROJECTn Project/Profile 3. Identify the profiles for
Availability List which there is available data
for the project, and locate
Profie Data that profile data.
S RETR‘ PETF!Z L. ——- Effort & isclals
- 4. Locate the schedule,
Error estimates, and project

characteristics for the
project.

Figure 3-2. Identifying Profect Data for the Project

142

Section 3—Functionality

3.1.1.2 Set Current Plan for Project

Purpose

Examines all schedules and estimates submitted by the manager for the project of interest
over the development life cycle to obtain the ones that were in effect on a specified date.
The identified schedule and set of completion estimates become, respectively, the current
schedule and the current estimates for the project. When considered together, the selected
schedule and estimates constitute the current plan submitted by the manager.

Note: When a project of interest is first selected, this service causes the most recent plan
submitted by the manager to be chosen as a default. If the user subsequently changes the
current project date to effect going back in time to an earlier date, that date is specified to
choose a "current” plan from the past.

Required Data

e Current project date (input value)
e Schedule data (for project of interest)
e Estimates data (for project of interest)

Steps
1. Use Get Schedule with the input project date to obtain the most recent schedule
submitted on or prior to the specified date.

2. Use Get Estimates with the input project date to obtain the most recent set of
completion estimates submitted on or prior to the specified date.

3. Remember the resultant schedule and set of estimates, respectively, as the current
schedule and current estimates for the project of interest.

PROJECT2

| SCCL;IZZ;e frission Date = 04/16%83 @J STEPS
./ .
Phase Start End 1. Relative to the current
Name Date Dats project date, get the most
oEsan | 1o04mt | osnamz recent schedule submitted
CODET | 081382 | 021333 by the manager.
SYSTE 021383
oa2483 | 122583 .
Current 2. Relative to the current
Estmates Daw » 041650 L Estimates [fonDale=041683 project date, get the most
Data Gomp recent estimate set
Crnesen L Code Esimate submitted by the manager.
g 3. Mark the schedule and

crPU 18720

ey <22 11 EFF 5744205 estimate set as the current

Loc 225000.00 Loc Z000.0 schedule and estimate set.

MCH 396540 e e

MOD 1181.48 RACH 19,2:73

ACH 191273
RER 984.60

iy i RUN 68575.05

Figure 3-3. Setting the Current Plan for a Project

143

Section 3—Functionality

3.1.1.3 Identify Models to Use for Project

Purpose
Identifies and locates an appropriate set of models to use with the project of interest.

Required Data
e Project characteristics (for project of interest)
e Measure list
e Profile list
o Schedule model (suitable for the type of project)
e Measure models (suitable for the type of project)
e Profile models (suitable for the type of project)
e Estimate set model (suitable for the type of project)
Steps
1. Obtain the characteristics of the selected project of interest from its project
characteristics data.
2. Concatenate the characteristics to produce a project type that identifies the
appropriate models to use for the project.
3. Identify and locate the schedule model and the estimate set model that match the
project type of the project of interest. (Use default models if no match exists.)
4. For each measure defined in the measure list and each profile defined in the profile

Figure 3-4. Identifying Models for the Project of Interest

144

list, identify and locate the measure and profile models that match the project type of
the project of interest. (Use default models if no match exists.)

Models for @
PROJECT? [IBM, FORTRAN, AGSS] STEPS

Projects
1. Get the project charac-
teristics of the current
Characteristi Coded project.
c
Name Value m“g&ﬁ odel 2. Using these project
> Maasure Modeks characteristics, generate a
COMPUTER 1BM Computer Hours project type that identifies
m% N ffé'é,sm Effort the appropriate model set to
Lines of Code reference.
) 3. Locate the sc(l;edule and
. Profile Models estimate set models corre-
Characteristics rE;von to Isolate Change sponding to that project
) type.

4. Check the measure and
profile lists and locate all
defined measure and profile
modeis for the project type.

Hae

Section 3—Functionality

3.1.2 Specification of Current Project Date

Purpose

Lets the user change the current date of the project of interest to view the project
as it appeared at some earlier time.

Description

The function permits the user to change the current project date to effect going back in time
to an earlier point in the development life cycle. The user-specified date must fall between
the project start date and the last date for which measure data exists (i.e., the original project
date considered current). Changing the current date of the project of interest causes the SME
to update the current plan to reflect the manager's schedule and completion estimates that
were in effect on the specified date. Until the date is reset or the project is changed, all
subsequent SME functions requested by the user for the project will reference the adjusted
current date to artificially truncate any measure or profile data.

The figure illustrates
changing the current date of
the project of interest to
reflect an earlier point in
time.

Note that since an historical
record of the subjective

100481 wism razem ratings used with the
N knowledge base for a project
are not maintained over time,
any updates made to these
ratings can not be restored to
reflect a change in the current

S U
-

project date.
N:::I:’Idm /' 0172483 12253
Figure 3-5. Changing the Current Date for a Project
Required Information
o Last date for which measure data exists (current project date)
e All planned schedules for the project (schedule data)
¢ All planned completion values for measures (estimates data)

145

Section 3—Functionality

Key Steps

1. Obtain, validate, and remember the new date requested by the user.
2. Use Set Current Plan for Project (see project selection) to update the current
schedule and current estimates to reflect the plan in effect on that date.

146

Section 3—Functionality

3.2 MONITORING

The monitoring services provided by the SME focus on a specific measure of interest chosen
by the manager for the current project. This measure of interest may be an individual
measure selected from the list of defined measures for which data exists or it may be the ratio
of any two of those measures. Once the manager specifies the measure (or ratio of measures)
to examine, any SME monitor functions requested will reference that measure. The manager
may switch to a different measure at any time by choosing a new measure of interest.

At a basic level, the SME supports observation of the selected measure of interest by plotting
its collected values as a function of time over the manager's schedule. While useful in
tracking the actual work accomplished to date, this feature gives no indication of whether the
project is on schedule or what work should have been accomplished. To provide such a
yardstick for monitoring progress, the SME incorporates three methods of graphically
comparing the observed measure values to the likely behavior of the measure based on past
experience in the environment. These methods are comparison to normal project guidelines
derived from models of the measure's past behavior on similar projects, comparison to a
model of the measure adjusted to fit the manager's current plan, and comparison to actual
measure values observed on one or more past projects.

The SME also allows the manager to predict the future behavior of the measure of interest
over the project life cycle. This prediction is performed by fitting models of normal project
behavior to the actual data collected on the project, thereby forecasting the probable
completion date and expected completion value of the measure.

Additional monitoring services help managers identify a project's strengths and weaknesses
by analyzing the current value of the measure of interest. The SME supports this monitoring
function through trend analysis and profile analysis.

Trend analysis compares the current value of the selected measure to a model of the measure
and uses expert systems techniques to reach conclusions that explain any deviations from the
norm. This analysis uses two discrete approaches for interpreting the captured management
experience and providing expert assistance to the manager. If the measure of interest is a
single defined measure, the analysis relies on the knowledge base for the necessary
management rules; if the measure of interest is a ratio of two measures, the analysis uses the
rule base. In either case, the function examines not only the measure of interest, but a wide
range of current data for the project, to reach its conclusions.

Profile analysis, on the other hand, lets managers examine and interpret the current value of
the measure of interest in more detail to detect potential problems and identify improvement
areas. This function displays a detailed distribution of the current measure value broken
down into discrete, defined categories. Multiple profiles, or ways of categorizing the data,
may be defined for each measure.

Table 3-3 summarizes the major functions supported by the SME under monitoring services.

147

Section 3—Functionality

Table 3-3. Monitoring Services Functions

FUNCTION PURPOSE

Measure Selection Lets the user select an available measure as the current
measure of interest for performing SME monitor functions

Simple Observation Displays the actual values observed for a measure of
interest as a function of calendar time

Comparison to a Normal Project Compares the actual values observed for a measure of
interest to a model of the measure's normal behavior

Comparison to Manager's Plan Compares the actual values observed for a measure of
interest to its expected behavior given the manager's plan

Comparison to Other Projects Compares the actual values observed for a measure of
interest to the measure's behavior on other projects

Prediction Forecasts the probable completion date and the expected
completion value of the measure of interest

Trend Analysis Displays a list of possible reasons to explain an observed
deviation in the measure of interest '

Profile Analysis Displays a distribution of actual measure values within two
or more discrete categories for detailed user examination

The SME provides the full range of monitoring services whenever the user selects a single
measure as the measure of interest. When the user chooses to monitor a ratio of two
measures, however, the SME limits the available monitoring services to observation,
comparison, and trend analysis functions. This limitation arises because (1) the concept of
profile analysis inherently applies only to individual measures and (2) the algorithms used in
prediction currently do not accommodate the non-monotonically increasing behavior
exhibited by ratios of measures.

The following sections provide additional detailed information on each of these functions.

148

Section 3—Functionality

3.2.1 Measure Selection

Purpose

Lets the user select a single measure, or a ratio of two measures, as the measure of interest
for any subsequent SME monitor functions.

Description

The measure selection function displays a list of all available measures and permits the user
to choose a measure of interest for the current project. This measure of interest may be either
a single measure for which data exists or a ratio of two such measures from the list. The
SME performs all monitor functions for the current project within the context of this measure
of interest. Selecting a single measure as the measure of interest simply causes the SME to
identify the appropriate measure data and measure model to use in the future. Selecting two
measures to serve as a ratio for the measure of interest, however, causes the SME to
construct a set of measure data and a measure model for future reference that reflects the
ratio of the identified measures. In this case, the SME creates the needed set of measure data
from the cumulative ratios of the values recorded for the individual measures. Similarly, the
SME generates a measure model to use with the ratio by combining the two models that
correspond to the selected measures.

The figure depicts the
selection of a measure of
interest from the list of
available measures. This

[List of Available J example shows that if a user

Measures for Project! chooses "Total Staff Hours"

from the list, the SME

identifies the corresponding

CPU CPU Hours .
 ERp S e effort data and appropriate
10~ ~ImesofCode """ Effort Model effort model for use in

MCH Modues Changed for Projecn Subsequent monitor

MOD Module Count

ACH Reported Changes
RER Reported Errors

AUN _ Computer Jobs Note that choosing two
measures results in the SME
combining the data and
models of the individual
measures to generate a
composite set of data and a
model for use with the ratio.

functions.

Figure 3-6. Selecting a Measure of Interest

149

Section 3—Functionality

Required Information
e List of defined measures (measure list)
e List of available measures for the current project (project/measure availability
list)
e Actual data values of measures (for ratios) (measure data)
e Models of measure behavior (for ratios) (measure models)
Key Steps

1. Display a list of available measures for the current project and allow the user to
select a measure of interest.

2. If the user selects an individual measure, identify the corresponding measure data
and measure model to use.

3. If the user chooses two measures, construct the measure data for the ratio and use
Generate Rate Model on the two measure models to create an appropriate model.

150

Section 3—Functionality

3.2.2 Simple Observation

Purpose

Displays the actual cumulative values of a measure of interest, such as effort or
lines of code, as a function of calendar time.

Description

The observation function displays the actual recorded behavior of the measure of interest for
the current project. The results are depicted graphically as a plot of the current measure with
actual data values shown from project start through the current date. The manager's
estimated completion value also appears for reference as a targeted planning value.

Note that observation applies
to a ratio of two measures, as
well as to a single, individual
measure. This lets managers

Reported Errors for Projectt view an extended set of
Estimates | 60
555 Planned measures such as LOC per
o hour (coding productivity)
e At and reported errors per LOC

00 22 Actual (error density).

200]

The upper plot in the figure
shows a representative
observation plot of reported
5/93 errors for a sample project.
This example indicates that
the project has reported a
total of 322 errors through
the current date of 05/21/93.
The manager expects to see a
total of 525 errors at the end

Current Lines of Code per Hour for Projectt of the project.
Estimates 6
3 SRR S TRCTEEEE— The lower plot in the figure
o- . S POy shows a representative plot of
-] 350 Planned the ratio of two measures,
st~ ottt bommmnmses LOC to effort, for a sample
By SRR . R project. This plot indicates
N e] that the project has produced
oo P I 4.26 lines of code per hour
urrent - 1
D —— PO T A through the current date. The

manager plans to generate
3.50 lines of code per hour
over the entire project.

Figure 3-7. Observing Actual Measure Values

151

Section 3—Functionality

Required Information

¢ Project start and end dates (current schedule)
e Actual data values for the measure of interest (measure data)

e Estimated completion value of the measure
of interest (current estimates)

Key Steps

1. Scale and display the basic plotting area to use for observation.
2. Plot the actual measure values and the manager's planned completion value.

152

Section 3—Functionality

3221 Scale and Display Plot Area for Observation
Purpose
Scales the plotting area to use for observation and generates the plot axes, labels, and title.

Required Data

Current schedule
Current estimates
Measure data (for measure of interest)

Use Get Project Dates with the current schedule to obtain the project start and end
date. Calculate the number of weeks planned between these dates (Planned Weeks1).

2. Scale the plot's x-axis to the number of weeks in the project's planned schedule
X-Axis Scale = Planned Weeks o4
3. Use Get Estimated Completion Value with the current estimates to obtain the
manager's planned completion value for the measure (Planned Value completion)-
4. Scale the plot's y-axis to the maximum of either the manager's planned completion
value or the current measure value found in the measure data.
Y-Axis Scale = Maximum (Planned Valuecompjetion, Actual Valuecyrgny)
5. Display the basic plotting area with appropriate axes, labels, and title.
Reported Errors for Project
A1 sreps
525 Planned
50 1 Estmaed 1. The x-axis is scaled to
pied the iroiecl duration of 116
400 ¢+ weeks.
%00 + 2. Given an estimate of 525
errors in the current esti-
! mate set, the managert's
20 il TN 168 Actual planned completion value is
Vae set to 525,
100 1
3. Based on an actual value
Wy t(: dat:d of 168 Ierrors anld a]
12/25/3 anned completion value o
J18 weeks total - 525, the y-axis is scaled to
Current show 525 errors (i.e., the
Scheduie maximum value).
4. After mapping the fixed-
sized plotting area to the
computed x and y scaling
factors, the basic plot is
displayed.

Figure 3-8. Scaling the Observation Plotting Area

153

Section 3—Functionality

3.2.22 Plot Actual Data for a Measure

Purpose
Plots the actual data values of the measure of interest from project start through the current
date. Adds a label to the plot for the actual measure value to date.
Required Data
e Current schedule
e Measure data (for measure of interest)
Steps

1. Initialize the starting point for plotting the actual measure data as a function of week
number, to indicate the measure value is zero at week number zero using

X-Value[o] = 0 and Y-Value[0] = O

2. For each entry in the measure data through the current date, set the x and y values of
the next point to plot to the week number of the sample date and its corresponding
measure value as follows:

X-Value[i] = Week(i) and Y-Valuefi] = Measure Value[i]
for the t entry in the measure data, where Week(i) is the relative week number of the " entry

3. Plot the data points computed for the actual measure data by week number, from 0
through the current week N, as a step function (i.e., plot the rise and then the run)

4. Label the x-axis with the project start and end dates from the current schedule.

5. Label the actual measure value observed on the current date at its correct height on
the right side of the plotting area. (Actual Valuecyron

ED STEPS

Reported Errors for Projectt 1. The x- and y-values serve

Estmate £25 Planned as week numbers and actual
[aeag B data values, respectively, for
the measure data. They are
initialized to zero.

2. The x-values are set to
successive week numbers,
while the y-values are set to

17T Mga;;'e T e mmeeeood 168 Actual the measure values for each
) DS, N FR— week,
Current : 3. The points are plotted as
Schedvle | prig191 \zneme 09/10/8 ?h zl:;:u u)nctnon (i.e., rise and

4. The actual measure value
to date is labeled.

Figure 3-9. Plotting Actual Values for a Measure

154

Section 3—Functionality

3.2.3 Comparison to a Normal Project

Purpose

Compares the actual cumulative values of a measure of interest for the current project to
guidelines derived from models of the measure's normal behavior.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the curment project with guidelines of the measure's expected behavior for a
normal project. The comparison is depicted graphically by "superimposing” a reference plot
representing a normal project on an observational plot containing actual measure values.

Current
Schedule

Schedule
Mode!

Current
Schedule

Schedule
Maodel

Reported Emors for Projecti
100481 1272598
DESGN | CODET | SYSTE § AcCTE
500+ H H H 525 Flanned
’ v 3
500 : : ¥ 450 Nermal
! Measure § &
400 ! Model
3004 :
'
'
200]
----------- 168 Aclual
1001
100491 081382 021383 0472453 122533
Lines of Code per Effort
for Project1
1000491 122583
4.00 Planned
375 Namal
2.85 Actual
100491 1225/

Derived from models, the
guidelines on the plot show
the normal range of expected
measure values as a function
of a normal schedule. The
normal values are scaled to
reflect the size and duration
of the current project. Note
that comparison applies to a
ratio of two measures, as well
as to a single measure.

The upper plot in the figure
shows a representative
comparison plot of reported
errors for a sample project.
This example indicates (1)
the project's 168 reported
errors are below what is
normally expected for the
current date and (2) typical
projects of the same size
normally have 450 errors at
project completion.

The lower plot in the figure
compares the ratio of two
measures to normal. This
plot shows (1) the project's
coding productivity of 2.85
LOC per hour is below
normal and (2) projects of the
same size normally produce
3.75 LOC per hour overall.

Figure 3-10. Comparing a Measure to Normal Guidelines

155

Section 3—Functionality

Required Information
¢ Project start and end dates (current schedule)
e Actual data values for the measure of interest (measure data)
¢ Estimated completion value of the measure
of interest (current estimates)
® Model of the schedule for similar projects (schedule model)
e Model of the measure of interest for similar
projects (measure model)
® Model of completion estimates for similar projects (estimate set model)
Key Steps
1. Scale and display the basic plotting area to use for comparisons with normal
projects.

2. Plot the normal measure guidelines and schedule to expect for a similar project.
3. Use Plot Actual Data for a Measure, as in simple observation, to overlay the
actual measure values and the manager's planned completion value on the plot.

156

Section 3—Functionality

3.2.3.1 Scale and Display Plot Area for Comparison to Normal

Purpose

Scales

the plotting area to use for comparing a measure to normal project behavior and

generates the plot axes, labels, and title.

Required Data

Steps

10.

Current schedule

Current estimates

Measure data (for measure of interest)
Measure model

Estimate set model

Use Get Project Dates with the current schedule to obtain the project start and end
date. Calculate the number of weeks planned between these dates (Planned Weeks 1545)).

Scale the plot's x-axis to the number of weeks in the project's planned schedule
X-Axis Scale = Planned Weeks o4

Use Get Estimated Completion Value with the current estimates to obtain the
manager's planned completion value for the measure (Planned Value completion)-

Use Get Project Magnitude with the current estimates to obtain the measure and
estimated completion value for that measure which is most indicative of the project's
magnitude.

On the basis of that magnitude, use Determine Normal Estimate Set with the estimate
set model to create a normal set of estimates for the project.

Use Get Estimated Completion Value with the normal estimates to obtain the normal
completion value for the measure (Norma/ Value compietion)-

Examine the measure model for the measure of interest and obtain the maximum
fractional value expected for the measure at any point in the life cycle (Maximum
Valuepodel)-

Compute the maximum value that the upper bound of the normal measure guidelines
would attain over the life cycle as

Maximum Upper Range = Normal Valuegompjetion * (Maximum Valuepssgg + Normal Deviation)
Scale the plot's y-axis to the maximum of either the manager's planned completion
value or the current measure value found in the measure data or maximum upper

bound value of the normal measure guidelines.
Y-Axis Scale = Maximum (Planned Valuecompietion Actual Valuecyrrany, Maximum Upper Range)

Display the basic plotting area with appropriate axes, labels, and title.

157

Section 3—Functionality

,ﬁD STEPS

Reported Errors for Projectt 1. The plot's x-axis is scaled
s(’;"{”gs”: 100481 i 12259 to the project duration of 116
e DEsaN ! CODET 5 SYSTE | ACCTE weeks.
600~ : ! H 525 Planned
: : ' 2. Based on the project's
500 : H 450 Normal magnitude, a set of normal
: Measure §§ ! estimates is generated.
400 ' Model 7 From this set of estimates, a
3004 ' ' completion estimate of 450
' : errors is obtained.
. : ' . .
e H 3. The y-axis plot is scaled
100 H to either the maximum model
' value, the manager's planned
Scheduie I 108t pry— e o 1amue completion estimate, or the

cur_rent megsure value,
whichever is greatest.

4. The plot is displayed with
appropriate labels and tities.

Figure 3-11. Scaling the Comparison to Normal Plotting Area

158

Section 3—Functionality

3.2.3.2 Plot Normal Project Data for a Measure

Purpose

Plots the normal measure and schedule values to expect over the development life cycle as
guidelines for the measure of interest. Adds labels to the plot for calendar dates associated
with the normal schedule and for the normal measure value to expect at completion.

Required Data

Steps

Project start and end dates (input value)
Normal measure value at completion date (input value)
Schedule model

Measure model (for measure of interest)

Use Determine Normal Schedule with the input project start and end dates to scale the
schedule model to match the project's duration and generate a normal schedule for the
current project.

For each phase in the normal schedule, draw a vertical line through the plotting area
representing the end date of each phase. Label the names of the phases in the normal
schedule across the top of the plotting area. Label relevant calendar dates under the
x-axis of the plot to identify the project start date, the project end date, and the end
date of each phase.

Use Determine Normal Measure Guidelines with the input normal completion value
to scale the measure model and generate expected measure values, with upper and
lower normal bounds on those values, as a function of schedule for the current
project.

Plot the values computed for the normal measure guidelines over the life cycle as a
shaded area consisting of three related curves—the upper bound expected for the
measure, the normal measure value expected, and the lower bound expected for the
measure.

Label the normal completion value for the measure at its correct height on the right
side of the plotting area. (Normal Valuecomplation)

159

Section 3—Functionality

3

Schedule

:

Reported Emrors for Project1

100491

DES

coDE :SYSEAOC

ﬁl] STEPS

1. The project's start and
end dates are used to scale
the schedule model and
generate a normal schedule,

2. The phase names and end
dates are added to the
display. A vertical line is
also drawn corresponding to
each phase's end date.

3. The measure model is
scaled by the normal
completion value for the
measure, with upper and
lower bounds added.

4. The normal measure
guidelines are plotted as
three curves shaded in
between,

Figure 3-12. Plotting Normal Project Values for a Measure

160

Section 3—Functionality

3.2.4 Comparison to Manager's Plan

Purpose

Compares the actual cuamulative values of a measure of interest for the current project to
the measure's expected behavior given the manager’s current plan.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the current project with the measure's expected behavior given the manager's
current schedule and estimates. The comparison is depicted graphically by "superimposing"
a reference plot representing the planned project behavior on an observational plot containing
the actual measure values. Derived from the current schedule and a measure model, the
reference plot shows the expected measure values as a function of planned schedule. The
measure and schedule values reflect the planned size and duration of the project.

Note that the comparison also
applies to the ratio of any two
such measures. This permits

_ examining an extended set of
Reported Ermors for Project measures such as LOC per

Cument | s ___wase cnys owwss 1225% hour (coding productivity).
uie DESGN CODET SYSTE ACCTE

| 525 Prames The figure shows a

Measure -~ representative comparison
od - plot of reported errors for a
e sample project. This

Measu,e example indicates (1) the
o Pid ° """" Data i e project's 168 reported errors
- '
-~ : are below what can be
SCAnggI/E 100481 101282 122583 expected as of 10/12/92
:I given the manager's current
plan and (2) the manager

plans to see 525 errors at
project completion.

g g8 8s
g

Figure 3-13. Comparing a Measure to the Manager's Plan

Required Information
e Planned start and end dates of each phase (curtent schedule)
e Actual data values for the measure of interest (measure data)
e Estimated completion value of the measure of
interest (current estimates)
e Model of the measure of interest for similar
projects (measure model)

161

Section 3—Functionality

Key Steps _
1. Scale and display the basic plotting area to use for comparisons with the

manager's plan.
2. Plot the expected measure values and current schedule given the manager's plan

for the project.
3. Use Plot Actual Data for a Measure, as in simple observation, to overlay the

actual measure values and the manager's planned completion value on the plot.

162

Section 3—Functionality

3.24.1 Scale and Display Plot Area for Comparison to Plan
Purpose
Scales the plotting area to use for comparing a measure to planned project behavior and

generates the plot axes, labels, and title.

Required Data
e Current schedule
e Current estimates
e Measure data (for measure of interest)
e Measure model

Steps

Use Get Project Dates with the current schedule to obtain the project start and end
date. Calculate the number of weeks planned between these dates (Planned Weeks Tota)-

Scale the plot's x-axis to the number of weeks in the project's planned schedule
X-Axis Scale = Planned Weeks 1o,

Use Get Estimated Completion Value with the current estimates to obtain the
manager's planned completion value for the measure (Planned Value completion)-

Examine the measure model for the measure of interest and obtain the maximum
fractional value expected for the measure at any point in the life cycle (Maximum

Value Model)'

Compute the maximum value that the planned measure would attain over the life
cycle as

Maximum Expected Value = Planned Valuecompjetion * Maximum Valuepgoder

Scale the plot's y-axis to the maximum of either the maximum expected measure
value given the manager's planned completion value or the current measure value
found in the measure data.

Y-Axis Scale = Maximum (Maximum Expected Value, Actual Valuecy reny

Display the basic plotting area with appropriate axes, labels, and ttle.

163

Section 3—Functionality

Reported Enors for Project1
6004
00 4
400 9 .

] Measure
%0 Mode!
200 4 .
- ovae [om=-- 168 Actal
100 4 /f Hoas
1272583

116 Weeks Totad L

@ STEPS

1. The plot's x-axis is scaled
to the project duration of 116
weeks.

2. The manager's planned
completion estimate, of 525
reported errors, is obtained.

3. The maximum value of the
model over the fife cycle is
obtained. Using this value,
the maximum value to expect
for the planned measure is
calculated.

4. The y-axis of the plotis
scaled to the maximum
planned measure value, the
manager's planned comple-
tion value, or the actual
measure value, whichever is
greatest.

5. The plot js displayed with
labels and titles.

Figure 3-14. Scaling the Comparison to Plan Plotting Area

164

Section 3—Functionality

3.24.2 Plot Planned Project Data for a Measure

Purpose

Plots the planned measure and schedule values to expect over the development life cycle for
the measure of interest. Adds labels to the plot for calendar dates associated with the current
schedule and for the planned measure value at project completion.

Required Data

e Current schedule
e Estimated measure value at completion (input value)
e Measure model (for measure of interest)

Steps

1. Using the dates in the current schedule, label the top of the plotting area to identify
the project start date, the project end date, and the end date of each phase.

2. Calculate the planned number of weeks between the project start and end dates found
in the current schedule (Planned Weeks1yz)).

3. For each life-cycle phase in the current schedule, calculate the number of weeks
planned between the start and end dates of the phase (Planned Weeks),, phase .

4. For each life-cycle phase, normalize the amount of time planned for the phase by the
total project duration to compute the fraction of duration planned for that phase as
Fraction of Duration, ppase [il = Planned Weeks, ppase [i] / Planned Weeks rota;

5. Using these fractional values, create a schedule model that models the current
project's schedule as planned by the manager.

6. Use Convert Phase to Date on this model of the planned schedule, specifying as input
the project start and end dates, to determine the calendar dates associated with each
phase and phase segment defined in the measure model (Expected Calendar Date [if).

7. For each calendar date calculated, compute the date's relative week number as the
number of weeks between the project start date and the date itself (Expected Week [ij).

8. Also for each phase and phase segment, use Convert Phase to Measure on the
measure model, specifying as input the estimated completion value as planned by the
manager, to determine the expected measure values that correspond to the computed
dates (Expected Measure Value [i]).

9. Show the planned behavior of the measure of interest over the life cycle as a curve
through the points just computed for each phase and phase segment by plotting
expected measure value as a function of expected week.

10. Label the planned completion value for the measure at its correct height on the right
side of the plotting area. (Planned Valuecompletion)

165

Section 3—Functionality

10M451 0211353 12/25583
+ 0472493 +
HE Reported Errors for Project1
L v
Current H H 1 02n¥8s 1212558
Schedule . *“'w * “;"”
. Y y
: : 1 1] 1}
v 6007 H H ; s
¥ 1
— 5001 : : ; Plarned
m‘ 1 1] 1
%01 : b
200 H H)
100 v ' :
Planned H M M

Measure 25
Value j

ﬁﬂ STEPS

1. The manager’s schedule
is modeled based on the
fraction of the total project
duration to be spentin each

hase. For this gro'ect, the

actions are DESGN 0.26,
CODET 0.34, SYSTE 0.18,
and ACCTE 0.22.

2. The start and end dates
for each phase are deter-
mined and their relative week
numbers are calculated.

3. Expected measure values
at each phase segment are
calculated, relative to the
final completion estimate,

4. The planned behavior of
the measure is plotted and
labeled.

Figure 3-15. Plotting Planned Project Values for a Measure

166

Section 3—Functionality

3.2.5 Comparison to Other Projects

Purpose

Compares the actual cumulative values of a measure of interest for the current project to
the measure's behavior on another project.

Description

The comparison function can visually contrast the actual recorded behavior of a measure of
interest for the current project with the measure's behavior as observed on other projects.
The comparison is depicted graphically by overlaying reference plots of measure data from
one or more selected comparison projects on an observational plot containing actual measure
values for the current project. To eliminate the effects of project size, the measure values
plotted for the current project and any selected comparison projects are scaled to reflect a
percentage of that project's normal completion value expected for the measure. Similarly,
the schedules of all comparison projects are scaled to match the duration of the current
project. A comparison project may be either a completed project that reflects an earlier
development effort or an ongoing project.

Note that the comparison also
applies to the ratio of any two
such measures. In this case,

Reported Errors for Projectt however, the measure values
as a Percentage of Nomal Completion Value are plotted as absolute values
and need not be scaled to

Current 100491 1272583
reflect a percentage of the

oo T 117%Plarned normal completion value.
500 100% Normal
o [um The figure shows a sample
0 sl plot of reported errors for
Projectl and a comparison
] a7 o project, Project2. This
1001 example indicates (1) errors
curent | , for Projectl are 37% of the
o e s total number normally

expected at completion and
(2) relatively more errors
were reported on Project2.

Figure 3-16. Comparing a Measure to Other Projects

Required Information
e Project start and end dates (current schedule)
e Actual data values for the measure of interest (measure data)
e Estimated completion values for all measures (current estimates)
e Model of the measure of interest for similar
projects (measure model)

167

Section 3—Functionality

¢ Model of completion estimates for similar projects (estimate set model)

® List of projects with data available for the measure (project/measure availability
list)

¢ Characteristics data for the comparison project (project characteristics)

e Project start and end dates for comparison project (current schedule)

¢ Actual data values of measure for comparison

project (measure data)
e Estimated completion values for comparison
project (current estimates)
e Model of the measure of interest for comparison
project (measure model)
e Model of completion estimates for comparison
project (estimate set model)
Key Steps
1. Scale and display the basic plotting area to use for comparisons with other
projects.

Scale and plot the actual measure values for the current project.
Select a comparison project with data available for the measure of interest.
Scale and plot the actual measure values for the comparison project.

b el

168

Section 3—Functionality

3.25.1 Scale and Display Plot Area for Compatrison to Other Project

Purpose

Scales the plotting area to use for comparing a measure to actual data from other projects and
generates the plot axes, labels, and title.

Required Data
e Current schedule
e Current estimates
e Measure data (for measure of interest)
e Estimate set model
Steps
1. Use Get Project Dates with the current schedule to obtain the project start and end

date. Calculate the number of weeks planned between these dates (Planned Weeks 1o1)-

Scale the plot's x-axis to the number of weeks in the current project's schedule.
X-Axis Scale = Planned Weeks 1oz

Use Get Project Magnitude with the current estimates to obtain the measure and
estimated completion value for the measure that is most indicative of the current
project’s magnitude.

On the basis of that magnitude, use Determine Normal Estimate Set with the estimate
set model] to create a normal set of estimates for the project.

Use Get Estimated Completion Value with the normal estimates to obtain the normal
completion value for the measure (Normal Value compietion)-

Use Get Estimated Completion Value with the current estimates to obtain the
manager's planned completion value for the measure (Planned Value compietion)-

Divide the manager's planned completion value by the normal completion value
computed for the measure to determine the planned value as a percentage of the
normal value at completion using

Planned Percentcompjetion = (Planned ValueComp,e,,-o,,/ Normal Valuecompjetion) * 100

Divide the current measure value found in the measure data by the normal completion
value computed for the measure to determine the percentage of the normal
completion value seen to date using

Actual Percentpypent = (Actual Valuegy et / Normal Value completion) * 100

Scale the plot's y-axis to the maximum of either 100% of the normal completion
value for the measure, the current measure value found in the measure data expressed
as a percentage, or the planned completion percentage.

Y-Axis Scale = Maximum (100, Actual Percentcyepny, Planned Percentcompletion)

169

Section 3—Functionality

10. Display the basic plotting area with appropriate axes, labels, and title.

Reported Errors for Projectt

as a Percentage of Normal Complstion Value

450 emors.

525 serors.
‘ 100% Normal

117% Planned

b ={ 37% Actual

1070591

Current
Schedule

Figure 3-17. Scaling the Comparison to Other Projects

170

Plotting Area

12/25/33

@] STEPS

1. The x-axis is scaled to the
project duration of 116
weeks.

2. Based on the project's
magnitude, a normal set of
estimates is generated.
From these estimates, the
normal completion estimate
is obtained.

3. The manager's planned
completion value and the
current measure value are
obtained and converted to a
percentage of the normal
completion value,

4. The y-axis is scaled to the
maximum of: 100% of the
normal completion value, the
manager's planned comple-
tion percentage, or the
current measure value,

Section 3—Functionality

3.25.2 Plot Actual Data for Current Project

Purpose

Plots the actual data values of the measure of interest from project start through the current
date as a percentage of the normal completion value. Adds labels to the plot to identify the
percentages for the actual measure value to date, the normal measure value at completion,
and the planned completion value.

Required Data
e Normal completion value (input value)
e Current schedule
e Current estimates
e Measure data (for measure of interest)
Steps
1. Initialize the starting point for plotting the actual measure data as a function of week

number to indicate the measure value is zero at week number zero using
X-Value[0] = 0 and Y-Value[0] = 0

For each entry in the measure data through the current date, set the x and y values of
the next point to plot to the week number of the sample date and its corresponding
measure value as follows:

X-Valuefi] = Week(i) and Y-Value[i] = Measure Value[i]
for the 1 entry in the measure data, where Week(i) is the relative week number of the 1 entry

Scale each y value to reflect the actual measure value expressed as a percentage of
the normal completion value for the measure using
Y-Value[i] = (Y-Value[i]/ Normal Valuecompietion) * 100

Plot the percentages computed for the actual measure data by week number, from 0
through the current week N, as a step function (i.e., between any two points plot the
rise and then the run)

Label the x-axis with the project start and end dates from the current schedule.

Use Get Estimated Completion Value with the current estimates to obtain the
manager's planned completion value for the measure (Planned Value compistion)- Scale
the planned completion value to express it as a percentage of the normal value at
completion using

Planned Percentcompletion = (Planned ValueComp,e,,-o,,/ Normal Valuecompletion) * 100

Label the manager's planned completion value for the measure as a percentage at its
correct height on the right side of the plotting area. (Planned Percentcompiotion)

171

Section 3—Functionality

8. Label the actual measure value observed on the current date as a percentage of the
normal completion value at its correct height on the right side of the plotting area.
(Y-Value[N))

Reported Errors for Projecti @] STEPS

as a Percentage of Normal Completion Valu
@ tag P © 1. The x-values are set to

successive week numbers,
Data d- 117% P while the y-values are set to
""""""'""'"""""""%Bﬁ&i] Kl)%No::;d each week's corresponding
1 measure value.

2. The y-values are scaled to
demmemmreeemerccccmmemm e na] refiect the actual measure
value expressed as a
Femcmemcnmnnes] Measure Jee-mm=nemveund 37% Actual percentage of the normal

Measure 3
Data i s | completion value.
r
]
¥

------------------------- 3. The points are plotted as
a step function.

4. The manager's planned
completion value is scaled to
a percentage of the normal
completion value for the
measure and displayed.

Figure 3-18. Plotting Actual Values as a Percentage of the
Normal Completion Value

172

Section 3—Functionality

3.2.5.3 Select a Comparison Project

Purpose

Allows the user to select a project from a list of comparison projects that have data for the
measure of interest. Identifies appropriate models, as needed, for the selected comparison
project whenever the project has different project characteristics from the current project of
interest.

Required Data

Project/measure availability list
Project characteristics (for selected comparison project)
Project characteristics (for current project of interest)

Examine the project/measure availability list to obtain a list of all projects that have
measure data for the measure of interest.

Display the list of potential comparison projects and permit the user to select a project
from the list.

Obtain the characteristics of the selected project from its project characteristics data.

Concatenate the characteristics to produce a project type that identifies the
appropriate models for the comparison project.

If the project type of the comparison project differs from that of the current project,
identify and locate suitable models for temporary use with the comparison project.

@) STEPS

Proje_cw_l_easgre
Avallability List 1. Alist of all projects
having data for reported
errors if generated. The
user selects a project from
Name | CPU| EFF| RER] .. this list,
Projeci1 T 2. Once the user selects a
Project2 T project, a project type is
Project3 F generated from the project
Protodts z characteristics of the
' comparison project.
) 3. If the project type of the
Projecin comparison project differs
from that of the current

project, suitable models are
sdentified and located for use
with the comparison project.

Figure 3-19. Selecting a Comparison Project

173

Section 3—Functionality

3.254 Plot a Comparison Project for a Measure

Purpose

Plots the actual data values for a comparison project of the measure of interest as a
percentage of its normal completion value. Scales the duration of the comparison project to
match the planned duration of the current project of interest.

Required Data

Steps

174

Planned duration in weeks (for current project of interest) (input value)
Current schedule (for selected comparison project)

Current estimates (for selected comparison project)

Measure data (for selected comparison project)

Estimate set model (for selected comparison project)

Initialize the starting point for plotting the actual measure data of the comparison
project as a function of week number to indicate the measure value is zero at week
number zero using

X-Value[0] = 0 and Y-Value[0] = 0

For each entry in the measure data of the comparison project, set the x and y values of
the next point to plot to the week number of the sample date and its corresponding
measure value as follows:

X-Valug[i] = Week(i) and Y-Value[i] = Measure Valuefi]
for the " entry in the measure data, where Week(i) is the relative week number of the h entry

Calculate the number of weeks between the project start and end dates found in the
current schedule for the comparison project (Number Of Weeks 1o43))-

Scale each x value to force the duration of the comparison project to match the input
planned duration of the current project of interest using

X-Value[i] = X-Value[] * (Planned Durationpojgct Of interest/ Number of Weekst,2))

Use Get Project Magnitude with the current estimates to obtain the measure and
estimated completion value for that measure which is most indicative of the
comparison project's magnitude.

On the basis of that magnitude, use Determine Normal Estimate Set with the estimate
set model to create a normal set of estimates for the comparison project.

Use Get Estimated Completion Value with the normal estimates to obtain the
comparison project's normal completion value for the measure (Normal Value compietion)-

Scale each y value to reflect the actual measure value expressed as a percentage of its
normal completion value for the measure using

Y-Value[i] = (Y-Value[i] | Normal Valuecompjetion) * 100

Section 3—Functionality

9. Plot the percentages computed for the actual measure data by its scaled week number,

for each data point O through N.

Current Reported Errors for Projecti
Estimates

+ 100% Nomal
Measure
Data 350 errors.
325 emrors
Current
100 wesks.
Schedule -

Figure 3-20. Plotting Comparison Project Values fora
Measure

,@] STEPS

1. The x-values are set to
successive week numbers,
while the y-values are set to
each week's measure value.

2. The duration of the
comparison project is scaled
to match the current project.

3. Based on the comparison
project's magnitude, a
normal set of estimates is
created for it.

4. The normal completion
value for the comparison
project's measure is ob-
tained from the estimates.

5. The y-values are scaled to
a percentage of the compar-
ison project's normal value
and plotted.

175

Section 3—Functionality

3.2.6 Prediction

Purpose

Forecasts the probable completion date and the expected completion value of a
fundamental software development measure for a given project.

Description

The prediction function forecasts the probable future behavior of the measure of interest for
the current project. To accomplish this, the SME fits schedule and measure models of
typical project behavior to the actual data collected for the project. The results are depicted
as an extension to the observational plot for the current measure with predicted data values
shown through a predicted completion date.
- Note that predictions may be
made for any measure of
. interest defined by the SME
Current Reported Errors for Project! provided actual da}llta has been
Schedule | '’ 5 A ¥ N collected for that measure.
DESGN CODET SYSTE| ACCTE

525 Planned The figure shows a

o , representative prediction of
wol @Zed el fegorted errors for a sample
project. This example
indicates that the SME
b expects the project to finish 3
weeks behind schedule with
approximately 83 fewer
errors than currently planned.

Fs,’;fg;“l; 10/05/91 0523/92 10/12/92 031333 051583 01/1594

Figure 3-21. Representative Prediction

Required Information
® Project start date (current schedule)
e Actual data values for the measure of interest (measure data)
* Model of the schedule for similar projects (schedule model)
® Model of the measure of interest for similar projects(measure model)
¢ Estimate of the life-cycle phase on a given date (phase estimate)
Key Steps
1. Obtain a phase estimate to serve as the basis for making the prediction.
2. Predict the probable completion date of the project.
3. Predict the expected measure value at project completion.
4. Predict the future measure values expected through project completion.

176

[RERL AN

AR L]

LG L UL L TR

Section 3—Functionality

3.2.6.1 Obtain a Phase Estimate

Purpose

Obtains a phase estimate, based on any one of three discrete methods, that identifies where
the project was in the development life cycle on a specific date.

Required Data
e Current schedule (Methods 1 and 2)
¢ Current estimates (Method 1 only)
e Measure data (for each measure) (Method 1 only)
e Schedule model (Method 1 only)
e Measure model (for each measure) (Method 1 only)
Steps

1. Use Method 1 to analyze all available measures and calculate an overall average
phase estimate for the current date.

2. Use Method 2 to examine the current schedule and derive a phase estimate from the
most recently completed phase prior to the current date.

3. Allow the user to select the phase estimate resulting from either Method 1 or
Method 2, or let the user interactively specify the values for the phase estimate
(Method 3).

Note: To serve as a valid basis for a prediction, a phase estimate must satisfy two
requirements. First, the date specified in the phase estimate must be between the project start
date and the current date. Second, the value of the measure of interest as of the date
specified in the phase estimate must be non-zero. These requirements ensure the existence of
an objective measurement that can be extrapolated into the future.

DESGN CODET SYSTE ACCTE I g NOTE
u The figure depicts a sample
phase estimate for an
Phase On 04/07/88, the project was ongoing project. The phase
Esti 50 percent through the estimate consists of a
stmaie J 1= Cod j fic date, the life-cycl
ing & Testing phase. specific date, the life-cycle
phase on that date, and the

completed percentage of that
» phase. Non-zero measure
data should exist on the
specified date before the

s Measure ase estimate can be used
Data in a prediction.
_f/ Notice that the date specified
does not fall exactly in the
11/21/87 04/07/89 09/15/90 middle (at 50%) of the

CODET phase, but instead
indicates that the projectis
slightly behind s ule,

Figure 3-22. Sample Phase Estimate

177

Section 3—Functionality

Method 1—Calculated by the SME Using Phase Analysis

For each available measure, calculate the week number corresponding to the phase at which
the measure normally attains its current value as follows:

L.
2.

Determine the current value for the measure from the project's measure data.

Determine the expected completion value for the measure from the project’s estimates
data.

Use Convert Measure to Phase with these values to obtain the phase and fraction of
phase that is characteristic of the measure's current value from the measure model.

Given the project start and end dates from the current schedule, use Convert Phase to
Date on the schedule model to determine the calendar date that matches the
calculated phase and fraction of phase.

Compute the relative week number of this date as the number of weeks between the
project start date and the calendar date (Week Numberi]).

Note: A measure must meet three conditions to be considered an available measure for
this algorithm. These conditions are (1) data must exist for the measure as indicated by
the project/measure availability list, (2) the expected completion value for the measure
contained in the current estimates must be non-zero, and (3) the current value of the
measure must show a positive trend by exceeding 10% of its estimated completion value.

178

Reported Errors for Project! @) STEPS

Schedule | 10089 061¥R MR 4R 122580

; 1. The current value for the
Model CODET SYSTE

ACCTE measure is 168.

525 Planned 2. The expected completion

Measure T The current vaie of value for the measure is 525.

Mode! 168 shoukd nomn.
3. The measure model

indicates that this value,

Measure 168 Actsal relative to the expected
Data Q°°°° completion value, is
characteristic of 25%
H through CODET.

Current | 10058 101282 1212583 4. The schedule model
Schedule indicates that, relative to the
project start and end dates,
25% through CODET would
be 8/27/92, or 40 weeks from
the project start date.

i
i

Figure 3-23. Phase Analysis for One Measure

Section 3—Functionality

Using the intermediate results calculated for each available measure above, obtain an overall
averaged phase estimate for the current date as follows:

1. Average the week numbers computed for each available measure as indicative of the
project's phase using

K
Average Week = (2,1 Week Number [i]) / K
=

where | refers to the available measures 1 through K

2 Obtain the calendar date corresponding to the averaged week number by adding it to
the project start date.

3. Given the project start and end dates from the current schedule, use Convert Date to
Phase on the schedule model to determine the average phase and fraction of phase
that matches this calculated calendar date.

4. Set the phase estimate to reflect the averaged phase and fraction of phase as of the

current date.
Schedule
Mooe ZD srers
1. The average week
Measure Week DESGN CODET SYSTE ACCTE numbers compuled for ﬂch
available measure indicates
EFF 60 . week 50 of the project.
CPU 56 ']
Sgg 45?, '] 2. Th: calend:r date cor;e
i sponding to the average
prrl { week number is 11/13/92,
—t
R ' .
REE' i; i 3. The calendar date, relative
d to the start and end dates for
the project, is characteristic
pversgowoskcs) 100! [} 122509 of 50% of CODET.
on On 1112/92, the project 4. The phase estimate is set
1ase was 50 peroent through the to 50% of CODET.
Estimate Code and Unit Test Phase.

Figure 3-24. Averaging Phases from All Available Measures

179

Section 3—Functionality

Method 2—Derived from the Current Schedule

Assuming that the project's schedule is accurate and up-to-date, obtain the phase estimate
from the current schedule as follows:

1. Identify the most recently completed phase prior to the current date by iteratively
using Get Scheduled Phase Dates on each phase in the current schedule to locate the
last phase whose end date satisfies the following

Phase End Date [k] <= Current Date

2. Set the phase estimate to reflect that the identified phase was 100% complete on its

scheduled end date.
Reported Errors for Project1
Sohode | 1o oS 0w ems AD srees
DESGN : CODET : SYSTE : ACCTE
H : H 1. The most recentl
H H) comg/leted phase prior to
H s s 10/12/92 is the design phase.
E : E 2. Assuming the schedule is
H H H accurate and up-to-date, set
Curremt : : H 188 A the phase estimate to show
Date R S vt the design phase was 100%
! H ' complete on its scheduled
P ' end date.
‘ w.wse ; . 122583

Phase
Estimate

Figure 3-25. Deriving a Phase Estimate from the Current
Schedule

(RN

180

e urr

T LT IR L

Section 3—Functionality

3.2.6.2 Predict Completion Date of Project

Purpose

Predicts the probable completion date of a project on the basis of the amount of time actually
expended through a known point in the project's life cycle.

Required Data

e Phase estimate (input value)
¢ Current schedule
e Schedule model

1. Calculate the actual number of weeks from the project start date in the current
schedule through the reference date in the phase estimate (Actual Weeks 1, pate)-

2. Using the schedule model, calculate the fraction of the total project duration normally
expended through the reference phase and fraction of phase in the phase estimate as

k-1

Normal Fraction of Durationte pate = Z Fraction of Duration, ppase [']
i=1 + F * Fraction of Durationy, ppase [K]

for the k! phase and an elapsed fraction of phase equalto F
3. Linearly extrapolate the total number of weeks expected to be required to complete
the project as
Predicted Weekstya = Actual Weekst, pare / Normal Fraction of Durationt, pate

4. Obtain the predicted completion date by adding the total number of weeks predicted
to the project start date.

ol
49 weeks o date
Current [SO ———REEEE LSRR E Fo) @ STEPS
Schedule
10/0591 End .
Date 1. Based on the project start
date :If 10/23/3:, the :ctual
; time elaps roug
Phass l O 09/12/92 is 49 weeks.
Estimate g .
Coding & Testing phase. 2. Based on the schedule
model, the normal amount of
time expended through 50%
of the CODET phase Is 43.2%
SGﬁM;d:/B [I J _ | of the total project duration.
DESGN CODET SYSTE ACCTE . .
25.3% 358% 177% 21.2% 3. Extrapolating from this,
the total duration may be
43.2% 10 date > predicted as 114 weeks (i.e.,
49 weeks divided by 0.432).
Predicted Duration is 114 weeks
l or through 12/11/83 l 4. Adding 114 weeks to the
start date of 10/05/91 results
in a predicted completion
date of 12/11/93.

Figure 3-26. Predicting a Completion Date

181

Section 3—Functionality

3.2.6.3 Predict Measure Value at Completion

Purpose

Predicts the expected measure value at project completion on the basis of the value of the
measure actually observed at a known point in the project's life cycle.

Required Data

e Phase estimate (input value)
e Measure data
e Measure model

1. Obtain the actual cumulative value for the measure on the reference date in the phase
estimate from the measure data (Actual Measure o pare)-

2. Use Convert Phase to Measure to determine the fraction of the total measure
tabulated in the measure model as normally observed through the reference phase and
fraction of phase in the phase estimate (Normal Fraction of Measuret, page)-

Note: Specify an expected completion value of 1.0 for Convert Phase to Measure to
obtain fractional, as opposed to absolute, measure values for the phase.

3. Linearly extrapolate the measure value to be expected at project completion as
Predicted Measuretyyy = Actual Measuret, pate / Normal Fraction of Measuret, pate

Measure
Msasure
= £
STEPS

DESGN CODET SYSTE| ACCTE

Reported Errors 1. Based on the measure
| —1 100 data for the project, the
actual cumulative value for
/ 100481 Qemors the measure through
10/11/91 0 srrors 10/12/92 is 168 errors.
101891 O errors
. - 2. Based on the measure
. mfodel fo;d errors, the nun;lber
: : of reported errors norma
I 1wizgz 188 emors seen through 50% of the
! A CODET phase is 38% of the
I total number expected at
1' On 10/12/92, the project was project completion.

50 percent through the i
Coding & Testing phase. 3. Extrapolating from these

\. J values, the total number of
reported errors at project
Estimate com:letion may be predicted
as 442 errors (i.e., 168 errors
divided by 0.38).

T-—~""1~"-- 0.38

Figure 3-27. Predicting a Measure's Completion Value

182

Section 3—Functionality

3.2.6.4

Purpose

Predict Intermediate Values Through Completion

Calculates predicted data values for the measure between the date specified in the phase

estimate and the predicted completion date.

Required Data

Steps

Phase estimate
Predicted completion date
Predicted measure value at completion
Current schedule
Schedule model
Measure model

(input value)
(input value)
(input value)

For each data point to be pfedicted between the date specified in the phase estimate and
the predicted completion date, the SME performs the following computation:

1. Given the project start date and the predicted completion date, use Convert Date to

Phase with the schedule model to translate the date of the desired data point into a

phase and fraction of phase.

2. Given the phase and fraction of phase matching the desired date and the predicted

measure value at completion, use Convert Phase to Measure with the measure model
to determine the predicted measure value to expect at that point in the life cycle.

Note: Conceptually, this algorithm would be used to predict values for each week. In
reality, however, one need only address points matching the granularity of the models.

Phase
‘_ Estimate

DESGN cquT SYSTE| ACCTE
| 1.00
L [fe
Measure | Predicted
Model : Data
| Predicted Errors
| Predicted
] Date & Value
1 10/12/92 168 arrors
s : 101982 175 amors
101292 120493 10/26/92 181 errors
114 woeks s .
Schedule . -
Model 12/04/33 442 errors

Figure 3-28. Predicting a Measure's Intermediate Values

@ STEPS

1. Scale the schedule model
to 114 weeks on the basis of
the groject start date and the
predicted completion date.

2. Use the scaled schedule
model to obtain the date,
?hase, and fraction of phase
or each desired data point
from 10/12/92 through
12/4/93 (predicted
completion date).

3. Multiply the fractional
value found in the measure
model for that time by the
predicted completion value
of 422 total errors to get the
predicted measure value for
the point.

183

Section 3—Functionality

3.2.7 Trend Analysis

Purpose

Displays a list of possible reasons to explain an observed deviation in the measure of

interest for the current project.

Description
The trend analysis function uses expert systems techniques to identify the probable causes of

a deviation in the measure of interest.

The analysis compares the current value of the

measure to a model of the measure and determines if the measure's value is within an
acceptable range of its expected value. If the measure falls outside of the acceptable range,
the function uses captured management experience to evaluate various known information
about the project and to reach conclusions to explain the deviation. The SME supports two
discrete approaches for performing the analysis, a knowledge base used with individual

meas

ures and a rule base used with ratios of measures.

The figure illustrates trend

Schedule .
Reported Errors for Project1

100581 122590

DESGN ; CODET ! SYSTE ! ACCTE
500 . : ! €25 Pranned
500 Below Normal because: H 450 Noma
¥
¥
Measure
Model
:
1
domeren-d 168 Actual
i
)
H

analysis of a measure of
interest. This example shows
a list of probable causes of a
lower than normal value for
reported errors. Since the
measure of interest is a single
measure, the knowledge base
is used to consider not only
the current measure, but also
other measure values and
subjective data, in reaching
these conclusions.

If the measure of interest is a
ratio of two measures, the
rule base is used instead of
the knowledge base.

Figure 3-29. Analyzing Trends in a Measure of Interest

Required Information

184

Management experience for interpreting trends

Actual data values for the available measures
Planned schedule for the project

Planned completion values for measures
Models of measure behavior for similar projects
Model of the schedule for similar projects

(knowledge base,
rule base)
(measure data)
(schedule data)
(estimates data)
(measure models)
(schedule model)

Section 3—Functionality

Model of completion estimates for similar projects (estimate set model)
Subjective information about the project (subjective data)

Key Steps

L.
2.

Use the knowledge base to analyze trends if the measure of interest is one
measure.

Use the rule base to analyze trends if the measure of interest is a ratio of
measures.

185

Section 3—Functionality

3.27.1 Analyze Trends for a Single Measure of Interest

Purpose

Uses the management experience captured in the knowledge base to identify and display the
probable causes of an observed deviation in a measure from its expected value.

Required Data

e Knowledge base

Measure data (for all measures)
Current schedule

Current estimates

Measure models (for all measures)
Schedule model

Estimate set model

Subjective data

Steps
1. Use Rate Objective Factor to rate the current value of the measure of interest as
either high, low, or normal with respect to its expected model guidelines. (Treat the
measure of interest as an objective factor defined in the knowledge base.)

2. If the resultant rating is normal, indicate that trend analysis can not be performed
when the measure of interest is within the acceptable range of normal values and quit.

3. For each reason in the knowledge base that applies to the observed deviation in the
measure of interest (either lower or higher than normal), use Evaluate Reason to
assess the probable validity and relative merit of the reason.

4. Sort the applicable reasons for the deviation by their computed relative ranking.

Note: As computed by Evaluate Reason, a positive value for actual rank indicates
the reason is a likely cause of the deviation in the measure. A zero value for actual
rank indicates the reason is a potential cause of the deviation, but the evaluation was
inconclusive. A negative value indicates the reason is not a likely cause.

5. Translate the encoded reasons into descriptive text, using the knowledge base's list of
explanations, and display the sorted list of reasons and rankings for the user.

186

Section 3—Functionality

Knowledge
Base
Desvdaton

Rank Causal Raing and Fackor

Acudl

Rat
CPUN
RERM0 S fow problem /dificul High -50
RERfo 10 high source_module_reuss/amount Normal 0.0
RERfo 10 high sofwarehrekability High 67
RERfo 15 high dev_beam/experience High 103
RERA 20 low system_tesing/amount Low 20.0
RERM 30 high unit_eeting/quality Uninown 00
RERM 40 iow dev_team/oms_submission Unknown 00

Reported Errors are Below Normal becauss:

1. Inadequate testing 200
2. Experienced eam 103
3. Reliable software &7

ﬁD STEPS

1. If reported errors (RER)

are observed to be "Low," a
total of seven reasons can
be found in the knowledge

base to match that deviation.

2. Each possible reason,
identified as a causal rating
and factor pair, is evaluated
10 produce the reason’s
actual rating and rank (e.g.,
fow system_testing/amount
is indeed "Low" with a rank
of 20.0).

3. The explanations that
correspond to reasons with
the highest actual rank are
displayed for the user in
descending rank order as
likely or possible causes.

Figure 3-30. Analyzing Trends Using the Knowledge Base

187

Section 3—Functionality

3.2.7.2 Analyze Trends for a Ratio of Two Measures

Purpose

Uses the management experience captured in the rule base to identify and display the

probable causes of an observed deviation from the expected value in a ratio of two measures.

Required Data

Steps
. Use Determine Rate for Rules to rate the current value of the measure of interest (the

188

Rule base

Measure data (for all measures)
Current schedule

Measure models (for all measures)
Schedule model

Estimate set model

ratio of the two measures) as either high, low, or normal with respect to its expected
model guidelines.

If the resultant rating is normal, indicate that trend analysis can not be performed
when the measure of interest is within the acceptable range of normal values and quit.

Use Determine Phase for Rules to identify the life-cycle phase that should correspond
to the current date. (The result will be stored as the first assertion in a list for
subsequent use in evaluating rules.)

For each of the nine specific ratios of measures referenced by the rule base, use
Determine Rate for Rules to determine if the ratio is above, below, or within the
range of values normally expected on the current date. (The results will be stored in
the assertion list for later use.)

Note: The nine ratios of measures referenced are RUN/LOC, CPU/LOC, RCH/LOC,
EFF/LOC, CPU/RUN, RCH/RUN, EFF/RUN, CPU/RCH, and EFF/RCH.

Use Evaluate Rule to evaluate each rule captured in the rule base and conditionally
determine the applicability of the rule's interpretations. (Each rule that evaluates to
true will have its interpretations stored in the assertion list.)

Sort the interpretations contained in the assertion list by their calculated certainties.

Translate the encoded interpretations into descriptive text, using the rule base's list of
explanations, and display the sorted list of interpretations and certainties for the user.

TR LI

NI TN TE

Section 3—Functionality

. 0.
Inferpre- | MTEST 0.500 Flecently ransported code being changed 0.25
Bkons EPC ogg g
—_— GTES 0.
NBM 0250
EASY 0.250
RTCM 0.250

Figure 3-31. Analyzing Trends Using the Rule Base

ﬁD STEPS

1. If the current ratio of
measures is deviating from
normal, the rule base is
evaluated.

2. Evaluating the rule base
(i.e., getting the current
phase, evaluating nine given
ratios of measures, an
evaluating each rule in the
rule base) results in a set of
assertions.

3. In the assertions, each
interpretation (e.g., a code of
EPC and a certainty of 0.875)
is the result of one or more
rules that were true.

4. These encoded interpreta-
tions are translated, ordered
by decreasing certainty, and
displayed as conclusions to
explain the deviation.

189

Section 3—Functionality

3.2.8 Profile Analysis

Purpose

Displays a distribution of the actual values recorded to date for the measure of interest
within two or more discrete categories that constitute a defined profile.

Description

The profile analysis function lets users examine profile data associated with the measure of
interest for the current project. Each set of profile data serves to break down the actual
values of the measure into discrete categories. In effect, each profile constitutes one way of
categorizing and viewing the measure's values in additional detail. Furthermore, multiple
defined profiles may exist for a given measure. (The number of reported changes, for
example, could be categorized based on the amount of effort required to implement the
change, as well as based on the reason for the change.) The user may select any profile
associated with the current measure for which profile data exists. Once a profile of interest is
selected, the function obtains the current measure values in each category, the expected
profile values on the current date, and the estimated profile values at project completion.
The results are depicted graphically as a bar chart showing the distribution of values over the
profile's defined categories.

The figure illustrates profile
analysis of a measure of
interest. This example shows

Profile Profile of ‘Effort to Comect Erors’ for Projectt a pr ofile of the number of
Data H H
1 Hour or Loss

- . reported errors categorized
into five bins by the amount
of effort required to correct
the error. For errors taking

) 84

1 Doy bo | Howr

ﬁHt'.-
8

FRPpRERSpeN |

. - this category while 55 errors

e e are normally expected and
Estimates % of Riaported Exrrs’ Esbmate (2) at project completion one

should expect 84 errors in

this category or 63% of the

Profile 4 '
Model | soaswioe |, | ! less than 1 hour to correct,
N ‘ : ' bl the display indicates that (1)
. ! ' L as of the current date 60
. errors have been reported in

total.
Figure 3-32. Analyzing Profile Data for a Measure
Required Information
e List of available profiles for the project {(project/profile
availability list)
¢ Actual data values for the available profiles (profile data)
e Planned schedule for the project (schedule data)

190

Section 3—Functionality

e Planned completion values for measures (estimates data)

e Models of profile behavior for similar projects (profile models)

e Model of the schedule for similar projects (schedule model)

e Model of completion estimates for similar projects (estimate set model)

Key Steps

1. Let the user select a profile defined for the current measure of interest.

2. Obtain the selected profile's actual and expected values for the current date and its
estimated values at completion.

3. Display the distribution of values in each of the profile's defined categories.

191

Section 3—Functionality

3.28.1 Select a Profile of Interest

Purpose

Allows the user to select a profile of interest from the list of all available profiles associated
with the current measure.

Required Data
* Project/profile availability list
Steps

1. Examine the project/profile availability list to identify all profiles associated with the
measure of interest that have data for the current project.

2. Display the list of available profiles and permit the user to select a profile of interest
for subsequent examination.

3. Locate the selected profile data and profile models for the project.

@ STEPS

1. The profile availability list

is ex;amined to identify whaI:
- Available Profiles profile data, associated witl
Project: FROJECT1 for Projectt the measure of interest, is
available for the current
RER? - Effort to Isofate Emor proiec‘
Measure: RER RER2 - Effort to Correct Emor *

/ 2. The list of available
profiles is displayed and the

- user selects one of the
Project/Profile REA1 | RER2 | .. profiles ts ofth
Availability List = =)

3. The selected profile data
and models are [ocated.

Figure 3-33. Selecting an Available Profile

192

Section 3—Functionality

3.2.8.2 Obtain Actual and Normal Profile Values

Purpose

Obtains a profile's actual and expected values for the current date and its estimated values at
project completion.

Required Data

Steps

Current project date (input value)
Profile data (for profile of interest)

Current schedule

Current estimates

Profile model (for profile of interest)

Schedule model

Estimate set model

Obtain the actual values observed through the current project date for the profile of
interest in each of its defined categories (Actual Profile 1o pate [1])-

Use Get Project Magnitude with the current estimates to obtain the measure and
estimated completion value for that measure which is most indicative of the project's
magnitude.

On the basis of that magnitude, use Determine Normal Estimate Set with the estimate
set model to create a normal set of estimates for the project.

Use Get Estimated Completion Value with the normal estimates to obtain the normal
completion value for the profile's measure (Normal Measure Value completion)-

Use Get Project Dates with the current schedule to obtain the project start and end
date.

Given the project start and end dates, use Convert Date to Phase with the schedule
model to translate the current project date into a phase and fraction of phase.

For this phase and fraction of phase, use Convert Phase to Profile Measure with the
profile model, specifying the normal measure value at completion as an input scaling
factor, to determine the expected profile values for the current date

(Expected Profile T, pate [il)-

Given the project start and end dates, use Convert Date to Phase with the schedule
model to translate the project end date into a phase and fraction of phase.

For this phase and fraction of phase, use Convert Phase to Profile Measure with the
profile model, specifying the normal measure value at completion as an input scaling
factor, to determine the estimated profile values at project completion

(Estimated Profile completion [1)-

193

Section 3—Functionality

Effort to Correct Error
@) STEPS

Total

1. Based on the project’s
magnitude, a normal set of
7 estimates is generated.
From this set of estimates,
&2 the completion estimate of
135 errors is obtained.

2. The current project date,
3/20/93, is converted to a
phase and fraction of phase.

Profile
Mode/

3. The expected value for
each profile component on
the current project date is
calculated.

-

-

4. Using the phase and frac-
tion of phase of the project's
end date, the expected com-
pletion value of each profile

component is calculated.

1004591

Figure 3-34. Obtaining Actual and Normal Profile Values

194

Section 3—Functionality

3.3 OVERALL ASSESSMENT

The SME enables the user to view the results of an overall project assessment of high-level
quality attributes such as correctability, maintainability, and reliability. The function uses
current project data along with algorithms to compute a rating for each quality attribute. The
SME compares a project's objective data with models and, based on the comparisons, assigns
a relative value to each one in a series of factors. Combinations of these factors are in turn
evaluated to produce the attributes’ overall relative quality indexes.

Table 3-4 summarizes the major functions supported by overall assessment and identifies
each function's purpose.

Table 3-4. Overall Assessment Services Functions

FUNCTION PURPOSE
Attribute Evaluation Letsbuser perform an overall assessment of project quality
attributes
Attribute Factor Examination Lets user investigate the reasons the SME computed a
particular attribute rating

The following sections provide additional detailed information on each of these functions.

195

Section 3—Functionality

3.3.1 Attribute Evaluation

Purpose

collected for the project.

Assigns and displays ratings of quality attributes using objective measurement data

Description

The attribute evaluation function uses current project data along with models and an
evaluation algorithm to compute a relative value for each attribute. The values can range
from negative to positive, with zero being the normal relative index. The results of the
evaluation are depicted graphically as a series of vertical bars, with one bar representing each

attribute. Each bar is labeled with the result of the associated attribute's evaluation.

Attribute Assessment for Project 1
High
*1 o i
Attributes
~a,

a5

ag

Low
8 -10
Correctability Maintainabiity

The figure shows a
representative project
attribute evaluation graph.
This example depicts the
evaluation of two attributes,
correctability and
maintainability. The
correctability and
maintainability attributes
have been evaluated at 8.5
and 8.9, respectively.

Note that the scale in the
figure ranges from a low
rating of -10 to a high rating
of + 10, with zero considered
normal.

Figure 3-35. Evaluating Project Attributes

Required Information
e List of attribute and factor definitions

e Actual data values for the available measures
* Actual data values for the available profiles
® Models for the available measures
¢ Models for the available profiles

Key Steps

1. Compute the relative values for each attribute.

(attribute definitions)
(measure data)
(profile data)
(measure models)
(profile models)

2. Scale, display, and label the vertical bar graph in the plotting area.

196

(R il

Section 3—Functionality

3.3.1.1 Compute Relative Attribute Values

Purpose

Evaluates all defined attributes and computes their relative values.

Required Data
e Attribute definitions
e Measure data
e Profile data
e Measure models
e Profile models
Steps '

For each attribute defined in the attribute definitions:

(in Assess Attribute)
(in Assess Attribute)
(in Assess Attribute)
(in Assess Attribute)

1. Use Assess Attribute to calculate a relative rating for the specified project quality

attribute.

Note: The algorithm in Assess Attribute relies (1) on Evaluate Actual Factor Value to
evaluate the function defined for any underlying factors using actual project data
values and (2) on Evaluate Expected Factor Values to evaluate the function defined

for any underlying factors using normal model values.

The results of these

evaluations are combined and scaled to produce a relative rating for each attribute.

Profile
Data

Profile 2

Profile 1

10/04/91
1071191
10/1891

101292

- QOO

- 000

Attribute
Definitions

l\
AN /

Attribute
Evaluation

8.46

Figure 3-36. Computing Attribute Values

ﬁn STEPS

1. Based on the measure
data for the project, the
actual cumulative value for
the measure through
10/12/92 is 168 errors. Based
on the profile data for the
project, 163 of these
teported errors were isolated
in less than 1 day, and 165 of
these errors were corrected
in less than 1 day.

2. Using information in the
attribute definitions, these
values are used to produce
an attribute evaluation of
8.46 for cotrectability.

197

Section 3—Functionality

3.3.1.2 Scale and Display Attribute Bar Graph

Purpose
Scales and displays project attribute values and generates the plot axes, labels, and title.

Required Data

e Attribute definitions

e Attribute values (input values)
Steps

1. Scale the plot's x-axis to the number of attributes, represented by vertical bars, to be
displayed for the project.

X-Axis Scale = Number of Barsyyy

2. Set the plot’s y-axis on a scale based on the minimum and maximum attribute values,
with the average y value considered normal.

Y-Minimum = Bar Valuepinimum

Y-Maximum = Bar Valuepsayimum

Y-Axis Range = Bar Valuepsavimum - Bar Valvepsinimum
Normal Y-value = (Bar ValueMaximum + Bar Va/UGMinimum) /2

3. Display the basic plotting area with appropriate axes, labels, and title.

4. Display and label vertical bars, and display respective attribute values.

Attrbute Assessment for Project1 ﬁD STEPS
1. Based on the information

+1C) A

in the attribute definitions,
83 there are two attributes to be
85 displayed,

2. The minimum and

0 20 maximum values contained
in the factor definition list
are -10 and +10, respectively.
This defines a range of 20,
with 0 being normal.

displayed on the screen with
titles and {abels.

‘ 3. The basic piot is

Corectabiity Mairtainability
4. The vertical bars are
displayed on the screen,
along with associated
attribute values and labels.

Figure 3-37. Displaying a Bar Graph of Attribute Values

198

Section 3—Functionality

3.3.2 Attribute Factor Examination

Purpose

Displays ratings for factors that contribute to a particular attribute evaluation.

Description

The attribute factor examination function generates a vertical bar graph displaying the factors
that were analyzed in arriving at the relative index of a given attribute.

The figure shows a
representative project
attribute factor graph. This
Factor Exarmination for Project! example depicts the display
+10 — of two factors, percentage of
Factors ' errors isolated in less than 1
day, and percentage of errors
corrected in less than 1 day.

583 The factors have been rated
m’ 0 at 5.83 and 11.09,
respectively.

Note that the scale in the
figure ranges from a low

v | 10 rating of -10 to a high rating
Ratng seErmors solated *4Erors comected of +10, with zero considered

within 1 day within 1 day normal

Figure 3-38. Examining Project Attribute Factors

Required Information
e List of attribute and factor definitions (attribute definitions)
o Actual data values for the available profiles (profile data)
e Models for the available profiles (profile models)

Key Steps

1. Scale, display, and label vertical bar graph in plotting area.

199

Ll

Section 3—Functionality

3.3.2.1 Scale and Display Factor Bar Graph

Purpose
Scales and displays attribute factor values and generates the plot axes, labels, and title.

Required Data

* Atutribute definitions 7 7
® Attribute factor values (input values)

Steps

1. Scale the plot's x-axis to the number of factors, represented by vertical bars, to be
displayed for the project.

X-Axis Scale = Number of Bars 1,44

2. Set the plot's y-axis on a scale based on the minimum and maximum factor values
with the average y value considered normal.

k4

Y-Minimum = Bar Valuepsinimum

Y-Maximum = Bar Valuepyyim

Y-Axis Range = Bar Va/UQMaximum - Bar Va/‘-’eMinimum
Normal Y-value = (Bar Valuepayimum + Bar Va’UQMinimum) /2

3. Display the basic plotting area with appropriate axes, labels, and title.

4. Display and label vertical bars, and display respective factor values.

Factor Examination for Project!
o Joa) STEPS

>10.0
T 1. Based on the information
in the attribute definitions,
there are two factors to be
displayed.

S8 2. The minimum and
maximum values contained
in the factor definition list
are -10 and +10, respectively.
This defines a range of 20,
with 0 being normal.

3. The basic plot is
displayed on the screen with
-10

titles and labels.
%Emors isolated %Errors coredted
within 1 day within 1 day

4. The vertical bars are
displayed, along with
associated factor values and
labels,

Figure 3-39. Displa ying a Bar Graph of Factor Values

200

T

Section 3—Functionality

3.4 PLANNING

The SME enables the user to select, create, and modify alternative plans. An alternative plan
consists of a schedule and a set of completion estimates. Alternative plans are created and
modified by the user to investigate the effects of changing schedules and estimates. Project
plans are used by the monitoring and assessment functions. The user can see the results of

using an alternative plan by reexecuting these functions.

Table 3-5 summarizes the major functions supported by the planning feature and identifies
each function's purpose.

Table 3-5. Planning Services Functions

FUNCTION PURPOSE
Use of Alternative Schedules Lets user modify phase start and end dates
Use of Atternative Estimates Lets user modify estimated completion values

The following sections provide additional detailed information on each of these functions.

201

Section 3—Functionality

3.4.1 Use of Alternative Schedules

Purpose

Lets the user modify the phase start and end dates specified in the current schedule for use
in "what-if" scenarios.

Description

A schedule is a list of serial, non-overlapping phases and their start and end dates. An
alternative schedule has the same format and usage, but is created interactively by the user.
Creating an alternative schedule enables the user to see the possible effects of changing some
aspect of a project's schedule. Once selected, the alternative schedule becomes the current
schedule for the project of interest and will be used in subsequent monitor and assessment
functions. The SME provides two independent methods for creating these schedules.

The figure depicts updating a

project schedule to create an
mue | s | o altemaltlv.clzlschedule. This
o | O example illustrates a case
Schedul -)
Data GBoer | odnome | Bn3%3 where the end dates of two -
' Ao | ovzesa | rasams phases, CODET and SYSTE,
/ have slipped approximately
" ; . f . 2 months, and the end of the
100491 061382 021383 042483 12R540 ACCTE phasc has been
} : t +— extended by 1 month.
1004/91 0&/13/92 0471383 052493 012454
Such a situation could arise
Phase | san | ene due to problems or to
Atomative = f e | Ow periodic reassessments of the
ule DESGN | 100481 | 051192 3 M
CO0ET | osniame | oanaso plan. Creating an alternative .
SYSTE | 041383 0672493
AcCTE orr24R4 schedule helps the user -
investigate the effects of
adjusting the schedule.

Figure 3-40. Sample Alternative Schedule

Required Information

® Planned start and end dates of each phase (current schedule)

* Model of the schedule for similar projects (schedule model) =
Key Steps =

1. Use Method 1 to allow the user to interactively specify end dates for each phase.
2. Use Method 2 to generate dates for each phase based on the schedule model.

Note: To serve as a valid alternative schedule, phase dates must be in chronological order by

phase, and the project end date may not fall before the current date of the project.
Additionally, the project start date is considered fixed and may not be altered.

202

Section 3—Functionality

Method 1—Entered by the User Interactively

Obtain any new phase end dates interactively from the user and create an alternative schedule

as follows:

1. Display the project start date and the end dates of all development life-cycle phases in

the current schedule.

2. Allow the user to update the end dates of one or more phases. After the user enters a

revised end date, validate and remember the entry.

3. When the user finishes updating the schedule, check all the entries to ensure that the
phase dates are in chronological order and that the end date of the last phase does not

precede the current project date.
Method 2—Detrived from the Schedule Model

Obtain a new project end date for the project from the user and create an alternative schedule

as follows:

1. Display the project start date and end date from the current schedule.

7 Allow the user to revise the end date of the project. After the user enters a new
completion date, validate the entry and ensure that the date entered does not precede

the current project date.

3. Using the original project start date and the new project completion date, use
Determine Normal Schedule with the schedule model to calculate new phase dates for

each life-cycle phase.

Current
Schedule L N
100591 oelaee

The revised Project End Date is 03/05/94

b1 4 "
0211383 DMZ'UQB 1272693

o~

schwu/e [5 3 r '}
Model DESGN CODET "evsTE | ACTE

25.60% 34.96% 17.90% 21.45%

'

New .-
Schedule

Figure 3-41. Creating a Schedule Based on a Model

o6ZTRR 040983 02083 030554

@3 STEPS

1. The current end date of
the project is 12/25/93.

2. The user enters 03/05/94
as a revised completion date
for the project.

3. The schedule model is
scaled based on the revised
project duration to produce a
new schedule.

4. The new end dates for the
DESGN, CODET, SYSTE, and
ACCTE phases are 6/27/92,
4/09/93, 8/20/93, and 3/05/84,
respectively.

203

Section 3—Functionality

3.4.2 Use of Alternative Estimates

Purpose

Lets the user modify the estimated completion values of one or more measures for use in
"what-if" scenarios.

Description

Completion estimates are a set of expected measure data values at project completion.
Alternative estimates have the same format and usage, but are created interactively by the
user. Creating a set of alternative estimates enables the user to see the possible results of
changing any of the project completion estimates. Once selected, the alternative estimates
become the current estimates and will be used in subsequent monitor and assessment
functions. The SME provides two independent methods for creating these estimates.

The figure depicts updating a
set of project estimates to
Submision Dals - 0471650 create alternative estimates.
Meamre Compieton i 1
== E— This example illustrates a
Estimates case where all estimated
oy L completion values have been
Loe 2000 revised upward by a factor of
oD l1s14 about 10% over their original
A ss57508 values.
Measure Campieton
Code Estimate 7 7 .
Such a situation could arise
, &] due to growth or to periodic
—> ﬁ 5%3.‘(8) reestimation of targeted
EstinvarESI RGH 210000 completion values. Creating
Data RER 1085.00 . "

- RN 7540000 alternative estimates helps
the user investigate the
effects of changing one or
more project completion

estimate(s).

Figure 3-42. Sample Alternative Estimates

Required Information
* Planned completion value for each project measure (current estimates)
® Model of estimates for similar projects (estimate set model)
Key Steps

1. Use Method 1 to allow the user to interactively specify estimated completion
values for each measure.

2. Use Method 2 to generate completion estimates for each measure based on the
estimate set model.

204

1w

e e o8|l

Section 3—Functionality

Note: To serve as a valid set of alternative estimates, each estimated completion value must
be a non-negative numeric value.

Method 1—Entered by the User Interactively

Obtain any new estimated completion values from the user and create a set of alternative
estimates as follows:

1. Display the estimated completion values of all measures in the set of current
estimates.

2. Allow the user to update the estimates for one or more measures. After the user
enters a revised completion estimate, validate the entry to ensure that the value is
numeric and non-negative.

Method 2—Derived from the Estimate Set Model

Obtain a new estimated completion value for one of the measures from the user and create an
alternative estimate set as follows:

1. Display the estimated completion values of all measures in the set of current
estimates.

2. Allow the user to choose one of the measures and to supply a new estimated
completion value for that measure. After the user enters a new estimate, ensure that
the value is numeric and non-negative.

3. For the chosen measure and new estimated completion value, use Determine Normal
Estimate Set to scale the estimate set model and calculate new estimated completion
values for each project measure.

cu%vm ﬁD
Estimate Set STEPS
' Model
Messurs Cor 1. The user chooses a
Code Value measure, in this case LOC,
and enters 250000 as a new
| cru 08 estimated completion value
ar Bz ‘ for that measure.
MCH 17.624
MOD 5251 2. This estimate provides an
il A Moaauro _ indicator of the magnitude of
RUN 304778 Codo Estimate the current project (e.g., the
Estimates project is 250000 lines of
Data cPy 205.00 code).
EFF 6310000
Ko o] 250000.00
MCH 436000 3. The estimate set model is
o P scaled to the specified value
New Complefon 1085.00 to produce a new set of
Estmas N 7540000 completion estimates sized
to the current project.

Figure 3-43. Creating an Estimate Set Based on a Model

205

Section 3—Functionality

206

Appendix A

APPENDIX A—LIST OF DEFINED SERVICES

This appendix provides an alphabetic listing (Table A-1) of all general-purpose and function-
specific services defined and referenced in the document. The list can facilitate locating
where a specific service is described in this document when only its name is known.

Table A-1. Cross Reference of Defined Services

NAME OF SERVICE SECTION COMPONENT/FUNCTION

Trend Analysis
Trend Analysis
Attribute Definitions
Attribute Evaluation
Schedule Models
Measure Models
Schedule Models
Measure Models
Profile Models
Estimate Set Models
Measure Models

Analyze Trends for a Ratio of Two Measures
Analyze Trends for a Single Measure of Interest
Assess Attribute

Compute Relative Attribute Values

Convert Date to Phase

Convert Measure to Phase

Convert Phase to Date

Convert Phase to Measure

Convert Phase to Profile Measure
Determine Normal Estimate Set

Determine Normal Measure Guidelines

NIRONPON NN W W0
WwhNDhNNDNDDND OO NN

P e A S S S A T Y S N N Y R A s et el

Determine Normal Schedule Schedule Models
Determine Phase for Rules Rule Base
Determine Rate for Rules Rule Base

Attribute Definitions
Attribute Definitions
Knowledge Base
Rule Base

Measure Models
Estimates Data
Estimates Data
Schedule Data
Estimate Set Models
Schedule Data
Schedule Data
Estimate Set Models
Project Selection
Profile Analysis
Prediction

Evaluate Actual Factor Value
Evaluate Expected Factor Values
Evaluate Reason

Evaluate Rule

Generate Rate Model

Get Estimated Completion Value
Get Estimates

Get Project Dates

Get Project Magnitude

Get Schedule

Get Scheduled Phase Dates

Get Ratio of Estimates

Identify Models to Use for Project
Obtain Actual and Normal Profile Values
Obtain a Phase Estimate

Predict Completion Date of Project Prediction
Predict Measure Value at Completion Prediction
Predict Intermediate Values Through Completion Prediction

Comparison to Other Projects
Simple Observation
Comparison to Other Projects
Comparison to a Narmal Project
Comparison to Manager's Plan
Knowledge Base

Knowledge Base

Knowledge Base

Simple Observation
Comparison to a Normal Project
Comparison to Other Projects
Comparison to Manager's Plan
Attribute Evaluation

Attribute Factor Examination
Comparison to Other Projects
Profile Analysis

Project Selection

Project Selection

Plot a Comparison Project for a Measure

Plot Actual Data for a Measure

Plot Actual Data for Current Project

Plot Norma! Project Data for a Measure

Plot Planned Project Data for a Measure

Rate Dependent Factor

Rate Obg')ective Factor

Rate Subjective Factor

Scale and Display Plot Area for Observation

Scale and Display Plot Area for Comparison to Normal
Scale and Display Plot Area for Comparison to Other Project
Scale and Display Plot Area for Comparison to Plan
Scale and Display Attribute Bar Graph

Scale and Display Factor Bar Graph

Select a Comparison Project

Select a Profile of Interest

Select a Project of Interest

Set Current Plan for Project

LdmmNAAmwMAAAhwmmmmmmmmkhbb#bbbbhAmmmmhbhbhkhhthN

PROVRPRPPREOINNPEVWELOWELRENNDONNDPNNNN DR

207

o ' L
PRGCADWYE PAGE BLANK NOT FLMED)M::}O INTENTGRALLY BLANK

fw Y.

Appendix A

208

Fo [

AL

T e

Abbreviations and Acronyms

ABBREVIATIONS AND ACRONYMS

AGSS attitude ground support system
CDR critical design review

CPU computer hours

CRF change report form

EFF total staff hours

FDD Flight Dynamics Division

GSFC Goddard Space Flight Center
LOC lines of code

MCH modules changed

MOD module count

NASA National Aeronautics and Space Administration
PEF project estimates form

PRF personnel resources form

RCH reported changes

RER reported errors

RID review item disposition

RUN computer runs

SEL Software Engineering Laboratory
SLOC source lines of code

SME Software Management Environment
SPF services/products form

TBD to be determined

BOWE PAGE BLANK NOT FILMED 209

oprs 2o O CINTERTHHALLY B AR

Abbreviations and Acronyms

210

References

REFERENCES

SEL 89-103, Software Management Environment (SME) Concepts and Architecture
(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and
Management Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL 92-002, Data Collection Procedures for the Software Engineering Laboratory
(SEL) Database, G. Heller, J. Valett, and M. Wild, March 1992

J. Valett and A. Raskin, "DEASEL: An Expert System for Software Engineering,”
Proceedings of the Tenth Annual Software Engineering Workshop, SEL-85-006,
December 1985

University of Maryland, Technical Report TR-1708, "An Evaluation of Expert
Systems for Software Engineering Management,” C. Ramsey and V. Basili,
September 1986

SEL 84-101, Manager's Handbook for Software Development (Revision 1),
L. Landis, F. McGarry, S. Waligora, et al., November 1990

PRECEOWIE RAGE BLANK NOT FILMED 211

RALE oA [0 INTENTIONALLY Bi ARK,

References

212

"

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W.J. Decker and C. E. Goorevich, May 1980

SEL-80-005, 4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook and E. E. McGarry, December 1980

BI-1
10000229
0207/1994

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Decem-
ber 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card,F. E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N.Card, EE. McGary,
G. Page, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-
ology for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora,
F E. McGarry, et al., June 1992

SEL-81-305SP1, Ada Developers’ Supplement to the Recommended Approach, R. Kes-
ter and L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1 , July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985 -~ -~ - = - -

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGarry, October 1983

SEL-82-1106, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1992

BI-2

10000229
0207/1984

(L) Il

L

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card,
F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labo-
ratory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager’s Handbook for Software Development (Revision 1), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,
R. W. Selby, Jr., F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testingg CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E.Seidewitz and
M. Stark, August 1986

BI-3

10000229
0207/1994

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987 '

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and lts Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume ¥V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988 - - '

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989 ,

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

BI-4

10000229
0207/1994

TR

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture
(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User’s
Guide (Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Lab-
oratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler
and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, J. Valett, and M. Wild, March 1992

BI-5

10000229
0207/1984

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,
December 1992

SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie,
M. Stark, et al., November 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-RELATED LITERATURE

10Abd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, “Towards Automated Support for
Extraction of Reusable Components,” Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991 '

4Agresti, W. W, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat-
ellite Simulation: A Case Study,” Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresvti, W. W,, E. E. McGarry, D. N. Card, et al., “Measuring Software Technology,”
Program Transformation and Programming Environments. New York: Springer-Verlag,
1984 '

1Bailey, J. W, and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W, and V. R. Basili, “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990 SR '

10Bailey, J. W,, and V. R. Basili, “The Software-Cycle Model for Re-Engineering and
Reuse,” Proceedings of the ACM Tri-Ada 91 Conference, October 1991 '

1Basili, V. R., “Models and Metrics for Software Management and Engineering,”
ASME Advances in Computer Technology,] anuary 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the
First Pan-Pacific Computer Conference, September 1985

TBasili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

BI-6

10000229
0207/1994

1

"

UL

TBasili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,”
IEEE Software, January 1990

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, “A Reference Architecture for the Compo-
nent Factory,”ACM Transactions on Software Engineering and Methodology, January
1992

10Basili, V., G. Caldiera, F. McGarry, et al., “The Software Engineering Laboratory—
An Operational Software Experience Factory,” Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the
Software Engineering Laboratory,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and
Other Variables in the SEL,” Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27,no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, ‘ARROWSMITH-P—A Prototype Expert System for
Software Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

Basili, V. R, and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, “Evaluating Automatable Measures for Software Develop-
ment,” Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals
and Environments,” Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

BI-7

10000229
0207/1994

5Basili, V. R., and H. D. Rombach, “T A M E: Tailoring an Ada Measurement Envi-
ronment,” Proceedings of the Joint Ada Conference, March 1987

SBasili, V. R.,and H. D. Rombach, “T AME: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

®Basili, V. R., and H. D. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments,” IEEE Transactions on Software Engineering, June
1988

"Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, “Support for Comprehensive Reuse,” Software En-
gineering Journal, September 1991

3Basili, V. R, and R. W. Selby, Jr., “Calculation and Use of an Environment’s Charac-
teristic Software Metric Set,” Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, “Comparing the Effectiveness of Software Testing Strat-
egies,” IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection
and Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August
1985

SBasili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

9Basili, V.R.,and R. W. Selby, “Paradigms for Experimentation and Empirical Studies
in Software Engineering,” Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software
Engineering,” IEEE Transactions on Software Engineering, July 1986

2Basili, V.R.,R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983

ZBasili, V. R., and D. M. Weiss, 4 Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Software Engineering, November 1984

BI-8

10000229
0207/1994

1Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objec-
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora-
tory,” Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V.R.,and M. V. Zelkowitz, “Measuring Software Development Characteristics
in the Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V.R.,and M. V. Zelkowitz, “Analyzing Medium Scéle Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

9Booth, E. W.,and M. E. Stark, “Designing Configurable Software: COMPASS Imple-
mentation Concepts,” Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, «Software Engineering Laboratory Ada Performance
Study—Results and Implications,” Proceedings of the Fourth Annual NASA Ada User’s
Symposium, April 1992

10Briand, L. C.,and V.R. Basili, “A Classification Procedure for the Effective Manage-
ment of Changes During the Maintenance Process,” Proceedings of the 1992 IEEE Con-
ference on Software Maintenance (CSM 92), November 1992

10Briand, L. C., V. R. Basili, and C. J. Hetmanski, “Providing an Empirical Basis for
Optimizing the Verification and Testing Phases of Software Development,” Proceed-
ings of the Third IEEE International Symposium on Software Reliability Engineering
(ISSRE 92), October 1992

118riand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized Set Reduction for Identifying High Risk Software Components, TR-3043,
University of Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991 '

11Briand, L. C.,S. Morasca, and V.R. Basili, “Meééuring and Assessing Maintainability
at the End of High Level Design,” Proceedings of the 1993 IEEE Conference on Software
Maintenance (CSM 93), November 1993

11Brjand, L. C., W. M. Thomas, and C. J. Hetmanski, “Modeling and Managing Risk
Early in Software Development,” Proceedings of the Fifteenth International Conference
on Software Engineering (ICSE 93), May 1993 '

BI-9

10000229
0207/1894

5Brophy, C.E., W. W, Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-
Oriented Design Methods,” Proceedings of the Joint Ada Conference, March 1987

6Brophy, C.E.S. Godfrey, W. W, Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,”
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D.N,, “Comparison of Regression Modeling Techniques for Resource Estima-
tion,” Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N.,, “A Software Technology Evaluation Program,” Annais do XVIII
Congresso Nacional de Informatica, October 1985

3Card, D. N., and W. W. Agresti, “Resolving the Software Science Anomaly,” Journal
of Systems and Software, 1987

6Card, D.N.,and W. W. Agresti, “Measuring Software Design Complexity,” Journal of
Systems and Software, June 1988

#Card,D.N., V. E. Church, and W, W, Agresti, “An Empirical Study of Software Des; gn
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D.N,, V.E. Church, W, W, Agresti, and Q. L. Jordan, “A Software Engineering
View of Flight Dynamics Analysis System,” Parts Iand II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card,D.N,,Q.L.J ordan,and V.E. Church, “Characteristics of F ORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

3Card, D.N,, FE. McGarry, and G.T. Page, “Evaluating Software Engineering
Technologies,” IEEE Transactions on Software Engineering, J uly 1987

3Card, D.N .» G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E.,and M.V, Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies,” Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for
Assessing Software Prototypes,” ACM Software Engineering Notes, July 1986

Doerflinger, C. W., and V. R. Basili, “Monitoring Software Development Through
Dynamic Variables,” Proceedings of the Seventh Intemational Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

BI-10

10000229
0207/1994

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada
Project,” Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6jeffery, D. R., and V. R. Basili, “Validating the TAME Resource Data Model,” Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988

11i N.R.,and M. V. Zelkowitz, “An Information Model for Use in Software Manage-
ment Estimation and Prediction,” Proceedings of the Second International Conference on
Information Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications,” Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, F. E.,and W. W. Agresti, “Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

"McGarry, F,, L. Esker,and K. Quimby, “Evolution of Ada Technology in a Production
Software Environment,” Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product,” Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

3Page, G.,E E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth Intermational Computer Software
and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, “An Evaluation of Expert Systems for Software Engi-

neering Management,” IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

5Rombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” IEEE Transactions on Software Engineering, March 1987

BI-11

10000229
0207/1994

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Software,
March 1990

9Rombach, H.D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth
Journal of Information and Software Technology, January/February 1991

6Rornbach, H. D, and V. R. Basili, “Quantitative Assessment of Maintenance: An
Industrial Case Study,” Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H.D., and L. Mark, “Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

7Rombach, H.D,and B. T Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

10Rombach, H. D, B. T. Ulery, and J. D. Valett, “Toward Full Life Cycle Control:
Adding Maintenance Measurement to the SEL,” Journal of Systems and Software,
May1992 . SRR

6Seidewitz, E., “Object-Oriented Programming in Smalitalk and Ada,” Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

SSeidewitz, E., “General Object-Oriented Software Development: Background and
Experience,” Proceedings of the 21st Hawaii Intemational Conference on System
Sciences, January 1988

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life
Cycle Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,”
Ada Letters, March/April 1991

10Seidewitz, E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters,
March/April 1992

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Develop-
ment Methodology,” Proceedings of the First Intemational Symposium on Ada for the
NASA Space Station, June 1986

%Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft-
ware in Ada,” Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the
Seventh Washington Ada Symposium, June 1990

BI-12

10000229
0207/1994

11Gtark, M., “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,”
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

TStark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, “Towards a General Object—Oriented Ada Lifecycle,”
Proceedings of the Joint Ada Conference, March 1987

10Straub, P A., and M. V. Zelkowitz, “On the Nature of Bias and Defects in the Soft-
ware Specification Process,” Proceedings of the Sixteenth International Computer Soft-
ware and Applications Conference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, «pyUC: A Functional Specification Language for
Ada,” Proceedings of the Tenth International Conference of the Chilean Computer Science
Society, July 1990

7Sunazuka, T, and V. R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

10Tjan, J., A. Porter,and M. V. Zelkowitz, “An Improved Classification Tree Analysis of
High Cost Modules Based Upon an Axiomatic Definition of Complexity,” Proceedings
of the Third IEEE International Symposium on Software Reliability Engineering
(ISSRE 92), October 1992

Turner, C., and G. Caron, 4 Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

10valett, J. D., “Automated Support for Experience-Based Software Management,”
Proceedings of the Second Irvine Software Symposium (ISS '92), March 1992

5vValett, J. D.,and E. E. McGarry, “A Summary of Software Measurement Experiences
in the Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, «Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory,” IEEE Transactions
on Software Engineering, February 1985

5Wuy, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Sys-
tems,” Proceedings of the Joint Ada Conference, March 1987

17elkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: TEEE Computer Society Press, 1979

BI-13

10000229
0207/1984

2Zelkowitz, M. V., “Data Collection and Evaluation for Experimental Computer
Science Research,” Empirical Foundations for Computer and Information Science (Pro-
ceedings), November 1982

6Zelkowitz, M. V,, “The Effectiveness of Software Prototyping: A Case Study,” Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Ztalkowitz, M. V, “Resource Utilization During Software Development,” Journal of
Systems and Software, 1988

8Zelkowitz, M. V., “Evolution Towards ;Sriiééirfiﬁéatiicr)irrx;Environment: Experiences With
Syntax Editors,” Information and Software Technology, April 1990 '

BI-14

10000229
0207/1994

NOTES:

1This article also appears in SEL-82-004,
Volume I, July 1982.

2This article also appears in SEL-83-003,
Volume II, November 1983.

3This article also appears in SEL-85-003,
Volume III, November 1985.

4Thijs article also appears in SEL-86-004,
Volume IV, November 1986.

5This article also appears in SEL-87-009,
Volume V, November 1987.

6This article also appears in SEL-88-002,
Volume VI, November 1988.

TThis article also appears in SEL-89-006,
Volume VII, November 1989.

8This article also appears in SEL-90-005,
Volume VIII, November 1990.

9This article also appears in SEL-91-005,
Volume IX, November 1991.

10This article also appears in SEL-92-003,

Volume X, November 1992.

11This article also appears in SEL-93-001,

Volume XI, November 1993.

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

Collected Software Engineering Papers:

BI-15

10000229
0207/1984

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per rasponss, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefterson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. _REPORT TYPE AND DATES COVERED
February 1994 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Management Environment (SME)
Components and Algorithms 552
6. AUTHOR(S)

Software Engineering Laboratory

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Branch REPORT NUMBER
Code 552
Goddard Space Flight Center SEL-94-001

Greenbelt, Maryland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 CR-189346

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified—Unlimited
Subject Category 61

13. ABSTRACT (Maximum 200 words)
This document presents the components and algorithms of the Software Management Environment (SME), a manage-

ment tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the
Goddard Space Flight Center (GSFC)- The SME provides an integrated set of visually oriented experienced-based
tools that can assist software development managers in managing and planning software development projects.
document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and
planning tools. SME Components and Algorithms is a companion reference to SME Concepts and Architecture, and
Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.

15. NUMBER OF PAGES
226

14, SUBJECT TERMS

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited

Standard Form 298 (Rev. 2-89)

et . AMAL Rad ARA IR AAR IAR

NSN 7540-01-280-5500

i

P R .
e T -

e LI T TR TN : AR _:

