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Abstract

Visualization is used in the process of analyzing large, multidimensional data sets.

However, the selection and creation of visualizations that are appropriate for the

characteristics of a particular data set and the satisfaction of the analyst's goals is difficult.

This process consists of three tasks: generate, test, and refine, that are performed

iteratively. The performance of these tasks requires the utilization of several types of

domain knowledge that data analysts do not often have. Existing visualization systems

and frameworks do not adequately support the performance of these tasks. In this paper

we present the RApid Visualization Environment (RAVE), a knowledge-based system

that interfaces with commercial visualization frameworks and assists a data analyst in

quickly and easily generating, testing, and refining visualizations. RAVE has been used

for the visualization of in situ measurement data captured by spacecraft.

1. Introduction

Large volumes of multidimensional data are routinely collected in fields that range

from space physics to retail marketing. Information is extracted from the collected data

through visualization techniques, as well as a variety of analysis methods, e.g.,

statistical, whose results are comprehended also using visualizations. The creation of

useful visualizations is a knowledge intensive task that is usually performed as a

generate and test process. The analyst must know (1) how to visualize the data set he is

analyzing, (2) what visualization package to use to realize the selected visualization(s),

and (3) whether the data set will need to be transformed before the selected package can

generate the chosen visualization. Very few analysts possess all the necessary types of

knowledge. As a result, the generate and test process takes a long time to perform.

Existing data visualization systems and frameworks suffer from two limitations. Either

they are not easily extensible implying that the generate and test process cannot be

performed, or they are hard to use. In this paper we present the RApid Visualization

Environment (RAVE), a knowledge-based system that interfaces with commercial

visualization frameworks and assists a data analyst in quickly and easily generating,

testing, and refining visualizations. RAVE generates visualizations that satisfy a set of

analysis and display goals stated by its user. The system has been used by space scientists

for the visualization of in situ measurement data captured by spacecraft. It currently
interfaces with the PV-Wave and AVS visualization frameworks.
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Once the user selects a goal, RAVE automatically identifies a set of visualizations that

can be used to achieve the goal. The user selects one or more visualizations from this

set, and RAVE automatically creates and executes the appropriate program to generate

each of the selected visualizations. The program is implemented in the language of the

visualization frameworks that are interfaced to RAVE. The user can compare the

effectiveness of the created visualizations with regards to the amount of information

that can be extracted and the way the information is presented. In this way, the analyst

can quickly and easily select a set of target visualizations which can then be further

refined.

2. Data Visualization

Data is collected and analyzed to create models that predict the future behavior of a

system, or explain an observed event. For example, a space scientist may try to explain

whether the earth's magnetosheath contain solar wind plasma or just noise. Data

analysis gives rise to goals that must be achieved. Visualization can be used to achieve

these goals. For example, an analyst may create a scatter plot of temperature versus

density for protons in an attempt to explain the existence of solar wind in earth's

magnetosheath.

Visualization of a data set to achieve a goal implies that the analyst must be able to (1)

decide how to visualize a data set, (2) create the decided upon visualization, and (3)

assess the created visualization's effectiveness in presenting the information contained

in the data set and thus achieving the stated goal. The selection and creation operations

can be viewed together as a generate operation. Therefore, visualization in this class of

domains can be framed as a generate and test process.

Deciding how to visualize the data implie s that the analyst understands the benefits of

using each visualization, and knows how to map from a space of analysis goals to a space

of visualizations. Oftentimes these mappings are one-to-many further complicating the

visualization-selection task. Creating a visualization, and later refining it through the

addition of features such as color, implies that the analyst must have knowledge about

computer graphics and programming. For example, the analyst must know how to

write a program to generate a scatter plot, and then how to use color to display the data

points whose values are greater than some threshold. Existing visualization languages
that are included in frameworks such as AVS, PV-WAVE facilitate the programming

task but have steep learning curves. The knowledge included in the RAVE system (1)

supports the data analyst during the visualization selection operation, and (2) enables
the automatic creation of the corresponding programs in the visualization languages of

the frameworks to which RAVE is interfaced.

3. Application Domain

RAVE has been used for the visualization of space sciences data from in situ
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measurements of plasmas, fields, and corpuscular radiation. For example a set of

instruments for in situ measurements may capture the DC magnetic field (a three-

component field vector), the DC electric field (also a three component field vector), the

flux of particles as a function of their energy of arrival, charge, and mass composition,

and the AC electric and magnetic wave field spectra (energy density vs. frequency). We

have experimented with a subset of observations from the Hot Plasma Composition

Experiment (HPCE) on the AMPTE/CCE spacecraft.

The Charge Composition Explorer (CCE) satellite of the AMPTE program was launched

in August, 1984 into a near equatorial orbit (inclination 4.8 ° with apogee of 8.8 Re and

perigee 1108 km). The CCE was spin-stabilized at 10 rpm with its spin axis pointing

approximately toward the sun. The spacecraft carried instrumentation to measure

composition and charge state of ions over a very broad energy range, electrons, plasma

waves, and the geomagnetic field. The data used here from the HPCE was taken by a set

of eight magnetic electron spectrometers that measure the flux of electrons from 50 eV to

25 keV [Shelley et al., 1985]. Each spectrometer is operated at a fixed energy with an

energy resolution of 50%. The eight instruments are co-aligned with their fields-of-view

perpendicular to the spacecraft spin axis and are operated simultaneously, making

measurements in unison every 155 msec. Thus an eight point electron energy spectrum

is obtained every 9.5 ° of satellite rotation. The spectrometers are collimated with a 5 °

full width conical field-of-view giving an effective full width field-of-view of 5 ° x 14.5 °

during each measurement period. As the spacecraft rotates the view directions sweep

through a range of pitch angles the amplitude of which depends on the direction of B

with respect to the spacecraft spin axis. The full pitch angle scan (0°-180 ° ) is achieved

when B is perpendicular to the spin axis.

• The captured measurements may be viewed as a succession of time slices through

energy space. Each time slice contains eight measures of the instantaneous electron flux

(at the eight energies) and each successive slice is displaced by 9.5 ° of rotation in the spin

plane of the satellite. All captured parameters vary in time and space with rates-of-

change that are highly variable as (1) the environment responds to externally applied

forces, and (2) the spacecraft moves between different plasma regimes. In addition to the

data captured from the HPCE sensors, our data set also contained data that was derived

by combining data from multiple sensors. In this way we were able to represent global

characteristics of the plasma, e.g., plasma beta, ratio of plasma frequency to gyro

frequency, etc.

4. RAVE: System Description

RAVE is a knowledge-based system that supports a data analyst in generating, testing,

and refining visualizations of a set of relational data. It is layered on top of existing

visualization frameworks, e.g., AVS, PV-WAVE, etc., capitalizing on their data

representation and rendering strengths, while improving their ease of use. RAVE

consists of: a graphical user interface, a knowledge base, an inference engine, a facts
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database, a visualization program generator, and interfaces to the visualization

frameworks to which it is connected. The system's architecture is show in Figure 1.

RAVE's graphical user interface is implemented using DevGuide under Open Look, the

interfaces to the visualization frameworks are implemented in C, whereas the rest of the

system is implemented in Common Lisp using the Common Lisp Object System.
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Figure 1: The architecture of the RAVE system

RAVE's knowledge base contains (1) a set of visualization objects, and (2) a set of rules

that relate visualization goals to visualization objects. Each method for visualizing a

data set is represented by a separate object. An object has slots for: (1) the name of the

visualization, (2) the goals the corresponding visualization can satisfy, (3) the

refinements the visualization can accept, (4) the domain(s) in which it Can be used, and

(5) the program that implements it in the language of one of the visualization
: _ 7 : :
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frameworks with which RAVE interacts. For example, the visualization object that

corresponds to the two-dimensional scatter plot can satisfy the goal "attribute x is related

to attribute y," it can accept zooming and color as refinements, and can be applied in any

domain where numeric-valued attributes are compared.

Occasionally, a data set may need to be transformed, e.g., to a different coordinate system,

before the visualization can be rendered in a framework. The visualization-generation

program included in an object includes the necessary transformations that must

performed, and executes them automatically as part of the program-creation process. If a

particular visualization can be rendered by more than one of the frameworks with

which RAVE is interfaced, then a visualization object can include a separate

visualization-generation program, along with the necessary transformations, for each of

the appropriate frameworks. The user can select the framework(s) where the data will be

displayed. We plan to expand the types of knowledge that can be represented in a

visualization object by making explicit visualization-selection criteria such as cost of

displaying a visualization, type of display device needed for displaying effectively a

selected visualization, etc. In this way, not only we will be able to further assist the

analyst's selections, but we will also be able to capture the rationale behind each

selection. Finally, this knowledge will also be accessible by the rules and will enhance

the RAVE's mapping capabilities.

A set of visualization objects that are appropriate for the data of a particular application

domain can be organized into a collection. For example, objects that correspond to

visualizations used with financial data are organized into a collection. Such collections

can be organized hierarchically with the top-level collection (node) containing the set of

general visualizations, e.g., scatter plots, line plots, etc.

The antecedents of each rule represent (1) the statement of a goal, and (2) the constraints

that need be satisfied before the goal can be achieved. The rule's consequents select the

visualizations, i.e., instantiate the visualization objects, that can satisfy the goal. The

rules make explicit: (1) what constitutes an appropriate visualization for a data set and a

goal, (2) how to develop knowledge that can be shared across several domains, and (3)

how to choose a particular visualization. A set of rules can be associated with a

collection of visualization objects, e.g., the objects that correspond to visualizations that

pertain to analysis of financial data. Two example rules are shown in Figure 2.

Variables in these rules are preceded by question marks. Each variable, e.g., ?x, is bound

to an object that contains information about each attribute in the data set to be

visualized. The information includes: the type of the attribute's values, e.g., integer,

real, nominal, etc., the number of distinct values included in the set to be visualized,

minimum and maximum values (for numeric-valued attributes), the type of data, e.g.,
time-series, a pointer to the actual values, etc.
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(if (and (goal (related-to ?x?y))
(equal (value-type ?x) 'numeric)
(equal (value-type ?y) 'numeric))

then (activate 2-d-scatter-plot ?x ?y))

(if (and (goal (value-distribution-of ?x))
(<= (number-of-distinct-values ?x)5))

then ((activate 2-d-bar-graph ?x) (activate 2-d-pie-chart ?x) (activate 3-d-pie-chart ?x)))

Figure 2: Examples of rules used by RAVE

The first rule states that the visualization object corresponding to the two-dimensional

scatter plot is enabled for selection by the user if the stated goal seeks to establish whether

attribute x is related to attribute y, and the values of both attributes x and y are numeric.

The second rule states that the visualization objects corresponding to the two-

dimensional bar graph, the two-dimensional pie chart, and the three-dimensional pie

chart are enabled for selection by the analyst if the stated goal seeks to identify the

distribution of the values of a particular attribute and the number of distinct values this

attribute takes in the selected data set is not greater than five.

The user interface initially allows the analyst to: (1) select a data set to be analyzed, (2)

specify any special characteristics of the selected data, e.g., time-series data, and (3) choose

a visualization goal from a menu of pre-specified goals. The selected data, i.e., attributes

and values, is preprocessed so that information such as minimum and maximum
values can be established. The data and the resulting metadata are organized into an

object that is asserted in RAVE's facts database. The selected goal is asserted as a separate

fact in the same database. The inference engine executes the rules whose antecedents

match facts in the database. As a result of executing the matching rules, one or more

visualizations may be activated. The names of the activated visualizations are displayed

to the analyst through RAVE's interface. The analyst can select one or more of the

activated visualizations. A portion of RAVE's user interface is shown in Figure 3.

As was stated above, if a selected visualization can be displayed by more than one of the

frameworks that are connected to RAVE, the analyst must select the frameworks that

will-be used. The-pr-ogram(s) _included With tfle object t_hat corresponds to each selected

visualization is subsequently sent to RAVE's visualization program generator which

instantiates it for the specified data set and attributes. The instantiated program is then

sent, through the appropriate interface, to the corresponding visualization framework

for rendering. Each selected visualization is rendered in a different window. The

analyst is given control, through the user interface, of simultaneouslydisplaying all the

created visualizations. In this way, the analyst is able to compare the information-

extraction and presentation effectiveness of each selected visualization, and either
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choose the best one(s), refine one or more of the displayed visualizations, or discard
them and modify his initial selections so that new visualization objects may be enabled.

Figure 3: A portion of RAVE's user interface
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Should, after seeing the results of a selected visualization, the analyst decide to refine it,

he can select one or more of the refinements supported by the particular visualization.

The selected refinements are reflected on the instance of the visualization object that is

asserted on RAVE's facts database. The updated object is communicated to the program

generator which creates an instance of the updated program(s) corresponding to the
visualization• This new instance is similarly sent to the appropriate visualization

framework for rendering. Figure 4 shows a two-dimensional scatter plot that has been

refined by enabling the zooming and coloring capabilities.
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Figure 4: A two-dimensional scatter plot produced by RAVE
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6. Related Work

We compare RAVE to two sets of systems. The first set consists of systems that use

artificial intelligence techniques to facilitate the creation of complex user interface• In

particular, we examine the Integrated Interfaces system [Arens et aI. 91], and the APT
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system [Mackinlay 91]. The second set consists of two visualization frameworks that

have been developed for space sciences data: LinkWinds [Jacobson & Berkin 93], and

SAVS [Szuszczewicz et al. 92].

Integrated Interfaces is a knowledge-based system whose goal is to alleviate the work of

user interface designers and developers. For this reason the system uses knowledge that

allows it to automatically select, at run time, the most appropriate way for presenting

information. Integrated Interfaces supports output in natural language, text, maps and

other graphics, tables, and forms. Its knowledge base represents domain knowledge, and

knowledge about user interfaces. In contrast, RAVE concentrates on output that can be

presented through graphics. Its knowledge base represents deeper and more detailed

knowledge both about graphics and the particular domains where the system is applied.

Furthermore, through its ability to display several different visualizations that can

satisfy a particular goal, RAVE provides its user with the ability to perform guided

exploration of the visualization space by comparing the effectiveness of several

visualizations in extracting the most possible information from the contents of the data
set.

The goal of the APT system is to dynamically create effective visualizations of relational

information by searching a space of possible designs. In this respect, it is a tool for

performing open-ended exploration of the visualization space. It concentrates on bar

charts, scatter plots and connected graphs. APT has the ability to decompose a data set

into components that can be visualized individually, selecting a visualization

appropriate for each component and then composing from the individual pieces the

visualization for the overall data set. As was mentioned above, RAVE provides less

support for a guided rather than an open-ended exploration of the visualization space. It
assumes that the user will partition a data set, should the need arise. However, it

supports more complex domain-specific and domain-independent visualizations of

relational information than the APT system. Finally, RAVE is able to interface with

existing visualization frameworks making it an easily extensible system able to render

complex domain-specific visualizations, in addition to the generic simple ones.

The LinkWinds system provides an environment for rapidly prototyping and executing

visualization applications on planetary data. It allows its user to analyze data and

creation visualizations through a spreadsheet interface. RAVE, in contrast, provides

knowledge-based support for selecting appropriate visualizations and automates the

creation of each selected visualization template.

The SAVS tool provides data acquisition, manipulation, and visualization capabilities.

The system is being applied on solar-terrestrial and planetary data. It is implemented on

top of the AVS visualization environment. SAVS does not provide knowledge-based

support during the visualization-creation process. In addition, the visualizations it

supports are those that can be supported by AVS. In addition to the knowledge-based

support it provides, RAVE can be interfaced with a variety of visualization languages,
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including AVS. As such it can support a wider range of visualizations than SAVS.

7. Conclusions

We continue developing the RAVE system expanding its knowledge base with more

visualizations that are appropriate for space sciences data, and interfacing it to other

visualizations frameworks, such as SGI Explorer, that have desired features. In addition,

we are in the process of interfacing RAVE to the Recon data mining system [Simoudis et

al 93] that provides sophisticated data management and analysis capabilities.

The process of generating, testing, and refining visualizations is particularly well-suited

for the space sciences domain, as well as for other domains where graphics are used for

extracting information from data but where the identification of the appropriate

visualizations is not easy. RAVE provides knowledge-based selection of visualizations

that are appropriate for achieving analysis and data display goals. Once visualizations

are selected, RAVE can automatically create and execute programs that generate the

visualizations. In the process, it automatically transforms the target data set to satisfy

constraints imposed by the visualization framework in which the data will be displayed.

These capabilities allow the analyst to perform a guided exploration of domain-specific

and generic visualization spaces, while concentrating on information extraction.
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