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Abstract

In the near future, NASA's Earth Observing System (EOS) platforms will produce
enormous amounts of remote sensing image data that will he stored in the EOS Data

Information System. For the past several years, the Intelligent Data Management group at
Goddard's Information Science and technology Offlce/930.1 has been researching techniques
for automatically cataloguing and characterizing image data (ADCC) from EOS into a
distributed database [Cromp et al., 92]. At the core of the approach, scientists will be able

to retrieve data based upon the contents of the imagery. The ability to automatically classify
imagery is key to the success of contents-based search.

We report results from experiments applying a novel machine learning framework, based
on Set-Enumeration (SE) trees [Rymon, 93], to the ADCC domain. Following the design
of [Chettri et M., 92], we experiment with two images: one taken from the Blackhills region
in South Dakota, the other from the Washington DC area. In a classical machine learning
experimentation approach, an image's pixels are randomly partitioned into training (i.e.
including ground truth or survey data) and testing sets. The prediction model is built using
the pixels in the training set, and its performance estimated using the testing set. With the

first Blackhills image, we perform various experime_nts achieving an accuracy level of 83.2%,
compared to 72.7% reported by Chettri et al. using a Back Propagation Neural Network

(BPNN), and 65.3% using a Gaussian Maximum Likelihood Classifier (GMLC). However,
with the Washington DC image, we were only able to achieve 71.4%, compared with 67.7%
reported for the BPNN model, and 62.3% for the GMLC.

1 The Problem

In the near future, NASA's Earth Observing System (EOS) platforms will produce enormous

amounts of remote sensing image data. An EOS platform will typically carry a number of

instruments, each capable of continuously taking measurements on several "channels" of the

EM spectrum. Each platform is expected to produce an order of 100 gigabytes of such raw
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dataa day; the EOSData andInformationsystemalonewill maintainaround11petabytes
of mostlyscienceimagedata. A numberof previouslyuntackledresearchproblemsarise along

the various phases of such unprecedented venture: planning observations, transmitting the

information to the ground stations, standard product generation and archiving, and finally

accessing and analysis by scientists of various disciplines.

Each of these activities can benefit from automated techniques that interpret, analyze, and

summarize image data. The Intelligent Data Management (IDM) project of NASA/GSFC/930.1

has developed a paradigm for managing very large databases, called the Intelligent Informa-

tion Fusion System (IIFS) [Cromp et al., 92]. In addition to providing techniques for retrieval

and science data management, the IIFS manages the processing/reprocessing process by first

preprocessing image data based on real-time extraction of scientific features for browsing. By

providing a glimpse of the contents of the data, scientists can minimize processing/reprocessing

rates by prioritizing product generation scheduling. A major part of IIFS, called Automatic
Data Characterization and Cataloguing (ADCC), focuses on classification techniques of im-

agery according to known features (e.g, forestation, urban area, etc) for the generation of

browse products and post-retrieval analysis and verification.

While each of these classification tasks is important by itself, and while they share much of

their functionality, they represent different tradeotfs between the accuracy of classification and

the resources (primarily time) required to attain it. For the purpose of retrieval, real time per-
formance is most important whereas for analysis tasks accuracy is often the top consideration.

Algorithms that can be tailored to execute in both the real-time and post-retrieval/analysis

phase, despite their very distinct accuracy-runtime tradeoffs, can provide a unified framework

for simplifying the process.

2 SE-tree-based Classification

About a decade ago, researchers in machine learning (e.g. ID3 [Quinian, 86]) and statistics (e.g.

CART [Breiman et al., 84]) proposed using a decision tree as an underlying structure in classi-

fication algorithms. A large body of work since then has resulted in significant improvements

to algorithms and understanding; thousands of systems and applications followed suit. In the

remote sensing domain, for example, [Civco, 89] has shown that decision trees can be built to

provide for impressive interpretation accuracy. A new learning framework which generalizes the
decision tree-based approach by using a more expressive Set Enumeration (SE) tree has recently

been presented in [Rymon, 93]. In a recent study, yet to be published, SE-trees were empirically

shown to enjoy a particular advantage over decision trees in large domains (for which relatively

few examples are available), and in noisy domains. In the remainder of this section we provide

a brief and informal overview of this approach; the interested reader is referred to [Rymon, 93]

for a more in-depth presentation.

2.1 Set Enumeration Trees

SE-trees were first proposed by [Rymon, 92] simply as a way to systematically search a space of

sets. As a representation for a decision making procedure, an SE-tree differs from a decision tree

in that multiple attributes are typically used in each of its branching points. The construction

process, and the way in which the SE-tree is used in classification of new instances, are both
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very similar to the process in which decision trees are commonly constructed and used. In

fact, the construction process generalizes the construction of a decision tree, except that here

the corresponding partitions are often not mutually exclusive. In fact, one way to view an

SE-tree is as an edge-sharing collection of numerous decision trees. However, taking advantage

of their overlap, an SE-tree is not nearly as large as that collection. Similarly, the SE-tree-based

classification algorithm generalizes the one which uses decision trees, except that here a number
of paths can match a new instance.

Given a set of attributes, or features, a complete SE-tree is simply a tree representation of

all sets of attribute-value pairs. It uses an indexing of the underlying set of attributes to do so

systematically, i.e. to uniquely represent all such sets. Figure 1 depicts a complete SE-tree for

the space of partial instantiations of three binary attributes (A, B, and C). Assuming alphabetic

indexing, notice that a node is only expanded with attributes alphabetically greater than its

own (these attributes are referred to as that node's View). Of course, the complete SE,-tree

is typically too large to be used in practice, and so an algorithm will usually search the most
relevant parts of that tree.

{A-0,n..0}_ {A-0,S-_C-0}

{A-0,n-0,C-I}

___._(A=0,B,.| } _ {A'B.,'C=0}

(A=0} {A.0,C,.0} {A=0,B=i,C=I}
{^-0,C-I)

{A=I,_0.C-0}

{A.I,B-0,C.I}

}_-.----- CA_I.S-t.C-0}
{A=1,B..1.C=I}

'{A,.I,C..I }

{_.o,c.o}

{B.o,c-1}

{s.l,c.o}

(_.t,c.1}

}

Figure 1: Complete SE-tree for 3 Binary Variables

2.2 SE-Learn and SE-Classify

SE-Learn and SE-Classify are, respectively, families of SE-tree-based algorithms for acquiring

knowledge from examples (learning), and for using such knowledge to classify new instances.

The SE-tree underlies SE-Learn's search for classification rules, and is used as an efficient

representation for these rules, both for the purpose of storing them and for the purpose of
subsequently using them in SE-Classify.
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Like its decision tree counterparts, SE-Learn works by recursively partitioning the training

set. Unlike decision tree-based frameworks, however, this process stops not only with the

discovery of a rule-node, but can also be truncated with the dismissal of a node as not having

the potential of leading to rules. Typically, SE-Learn starts with all training instances at the

SE-tree's root, and first branches on all attribute-value pairs appearing in the training set.

According to the SE-tree's structure, it then recurs on a node's remaining training instances,

but only with respect to attributes in that node's View. SE-Learn stops partitioning either

when all remaining training instances are equally classified, or by a similar stopping criterion

which designates the node's label as a rule (e.g. if there is a great majority for a given class).
Rule nodes become leaves; they are retained and labeled with the appropriate class. While

searching for rules, SE-Learn prunes away nodes which are subsumed by previously discovered
rules. Furthermore, its systematic exploration allows it to prune nodes that cannot lead to

rules, e.g. when the remaining instances only differ in their assignment to attributes not in the

node's View.

Consider, for instance, the following set of instances, and the $E-tree constructed for it by

SE-Learn:

[A]B]C]D[Class]
T__//_I] D--_ ID=0 T

F F F T

Given an ;E-tree acquired by SE-Learn and a new instance to be classified, the decision

procedure SE-Classify works by recursively branching from the root of the SE-tree constructed

by SE-Learn on paths that agree with that instance. Consider the previous example, and a new

instance {A--1,B-0,C=0,D=I). Note that unlike in a decision tree, given its multiple-attribute

branching, an SE-tree may include a number of such paths. For the new instance, these are
the ones labeled with {A=I, B=0), and {C=0) respectively. SE-Classify follows such paths

until reaching a class-labeled leaf. Given the potential multiplicity, however, different paths

may be labeled with different classes. In our example, for instance, the first rule is labeled
with a F whereas the second is labeled with a T. Different variations of SE-classify take one

of two approaches, or a combination thereof. The first approach involves prioritizing paths

(or parts thereof, e.g. some features may be more reliable than others), and consequently the

classes labeling their leaves; the algorithm predicts the class labeling the highest priority path.

The second approach involves traversing all such paths and using a so-called resolution criteria

to determine a prediction from the combination of classes. In the remote sensing domain,

for example, all rules can be weighted by the reliability or relative relevance of their specific

components. Hybrid approaches involve such resolution among the class-labels of a subset of

paths with the highest priorities.

2.3 Discussion

The SE-tree's power as a classification tool draws from the fact that it allows considering a

large number of decision procedures in different ways in each classification decision. Consider
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for examplethe following(rather small) dataset and illustration of the two-binary-attribute
domain:

IAI Bi ClassI B

10r010 i ?1 1 1 1 1

Four different hypotheses are consistent with this training data, corresponding to any as-

signment of 0 or 1 to {A-0,B-1} and {A=I,B=0). In contrast, there are only two ID3-style 1

decision trees, depicted in Figure 2(a). The corresponding SE-tree (Figure 2(b)) contains, as

subset of its arcs, both trees. As we will soon demonstrate, it can be used to represent all four
hypothesis

(a) Decision Trees (b) SE-Tree

Figure 2: SE-tree versus Decision Trees

Both SE-Learn and SE-Classify allow prioritization via user-specified exploration policies.

Technically, an exploration policy is simply a ranking of sets of attribute-value pairs. In SE-

Learn, it is used to guide a best-first exploration. In SE-Classify, it allows implementing pref-

erences by prioritizing the paths on which the decision procedure branches.

The role of an exploration policy in learning is dual. First, if all minimal rules for the given
problem are explored, then the particular order in which nodes are expanded can affect the

number of nodes that have to be explored vis-a-vis pruning. In the remote sensing domain, for

example, an infra-red channel is known to be a good separator for water-based classification.

Thus, relevant problems, branching on such channels first is likely to reduce the tree size.

More importantly, if an SE-tree exploration is truncated before all rules are discovered then

the exploration policy determines which are discovered. The similarity between SE-trees and

decision trees allows us to borrow many of the tediniques developed for the latter. First, we

know that the number of nodes that have to be explored depend on the indexing function used

in the SE-tree. A number of techniques developed for attribute selection in decision tree-based

frameworks (see, for example, studies by [Mingers, 89a, Buntine & Niblett, 92]) can be used
here to select a good indexing function. Second, to reduce exploration, but also to reduce

overfitting, we can take advantage of statistically-motivated pruning techniques developed for

decision trees (e.g. [Mingers, 89b])

The exploration policy plays an even more important role in classification, where it is used to

implement preference (bias). Since training data is often incomplete, a large number of classifiers

may be consistent with it, yet differ significantly on new data. The notion of bias, the set of

preferences guiding the choice among such classifiers has thus received significant attention in

the Machine Learning literature(e.g.[Mitchell,80, Utgoff,86]).In the remote sensingdomain,

classificationbias can be definedby the particularchannel'sreliabilityand/or separability,

by the relevanceof the feature,and even by the particulardata chosen by the scientistfor

training(sincesuch choicemay itselfrepresentsome preference).SE-Classifyallowsseparating

ZTherearemoredecisiontrees,butonlythesecanbegeneratedby an ID3-1ikeprocedure.
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genuinedomain-based preferences from those that merely reflect the particular algorithm used

for learning. In many cases, the latter (termed search bias [Buntine, 90]) can be eliminated

altogether. In variations of SE-Learn where exploration is truncated, the exploration policy

reflects a learuing-phase bias.

Consider again the previous example where we argued that the SE-tree can represent all

four hypotheses. Indeed, the particular hypothesis selected in a particular classification session

depends on the exploration policy (bias) used. Assuming a classification algorithm which follows

arcs by their ranking and predicts the first leaf to be encountered, an OR function 2, for example,

can be achieved using an exploration policy which ranks the SE-tree arcs in the following order:

B=I first, A=0 second, A=I third, and B=0 fourth. The algorithm's response to each possible

instance is depicted by the following table:

Instance Arc follow_

{A=0,B=0}

{A=0,B=I}

{A=I,B=0)

{A=I,B=I}
A__o B=I

A=I

B=I

Exploration policies and truncated learning can also be used to trade off accuracy and time,

both in learning and in classification. In addition to simple truncation, of particular interest

may be a variation of SE-Learn, described in [Rymon, 93], that learns consistent SE-trees, i.e.

ones in which all paths matching a new instance are equally labeled.

Finally, in [Rymon, 93], we show that the SF__tree's indexing function can be dynamically
tweaked so that the first nodes to be explored by SE-Learn will correspond to those explored

by any given decision tree-based algorithm. This decision tree will then appear at the leftmost
side of the SE-tree. As a result, a variation of SE-Learn was implemented which starts off with

a given decision tree, and hill-climbs in the performance space. Viewed differently, this result
shows once more that a decision tree is a special case of an SE-tree - one in which every node

expands with only one new feature and in which every possible instance matches at most one

path.

To summarize, the SE-tree can be both viewed and constructed as a generalized decision

tree. The similarity between SE-Learn/SE-Classify and decision tree-based algorithms allows

borrowing from the many techniques that were developed for the latter, e.g. discretization

algorithms, selection criteria, pruning techniques, etc.

3 Experiments

A prototypical system which implements a variation of SE-Learn has been built in the University

of Pennsylvania and tested on a number of domains. For the purpose of this paper, we have

mainly experimented with Landsat-derived imagery data of South Dakota's Blackhills region.

Each pixel in the image corresponds to 79m x 79m on the ground. For every pixel, we have

readings from four sensors set to different channel radiances. The readings are each digitized to

an integer between 0 and 255. The task is to classify each pixel according to its correct "ground

truth", i.e. urban, agricultural, range, forest, or barren. Figure 3 describes the distribution of

pixels.

2Not modeled by either decision tree.
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-_ # pixels % of total ]Name

0 Urban

1 Agricultural

2 Rangeland
3 Forested land

6 Barren

6676

42432

16727

194868

1441

Total 262144
= .

2.55%
16.19%

6.38%

74.34%

0.55%

Figure 3: Distribution of Pixels for Blackhills Image

In our experiments, we tried to stay close to the design of [Chettri et al., 92], who had

experimented with two classification techniques: Back Propagation Neural Networks (BPNN),
and Gaussian Maximum Likelihood Classifier (GMLC). Chettri et al. have used the Blackhills

and the Washington DC data sets in their experiments. Accuracy results from their experi-

ments, estimated on a holdout from each data set, are presented in the first part of Figure 4.

[Campbell et al. 89] have also experimented with the Washington DC image, albeit using a
more refined geographical classification system.

Experiment description Accuracy

Back Propagation Neural Network 72.7%

Gaussian Maximum Likelihood Classifier 65.3%

SE-Learn/ SE- Classify

exp. 1 (invq)

exp. 1 (vote)

exp. 1 (quad)

exp. 2 (w/cluster-based discretization)

exp. 3 (w/four neighbors)

exp. 4 (w/bit-based discretization)
exp. 5 (w/bit disc. & stat-significance pruning)

ID3 decision tree only
SE-tree

47.0%
75.5%
80.0%
83.2%

Figure 4: Comparative Accuracy on BlackhUls

In our first experiment with SE-Learn/SE-Classify, we have used the Blackhills data set as

is, i.e. we associated one attribute with each sensor reading. A fifth attribute was associated

with the class, taking 5 values. Learning was pursued to completion, i.e. until all relevant

parts of the SE-tree are exposed. A conjunction was defined as a rule if and only if all training
instances conforming to it were labeled with the same class. We have experimented with three

different domain independent weight-based resolution criteria:

1. majority (simple) voting among all matching rules (vote);

2. quadratic weighting (quad) in which every rule is weighted by r 2 (r denotes cardinality);
and

3. inverse quadratic weighting (invq) where every rule is weighted by 1/r 2.
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As displayed by Figure 4, there was a great deal of variation in the performance and reso-

lution criteria favoring more specific rules did significantly better.

One problem with the design of the first experiment is that, at least currently, the SE-tree

framework handles poorly ordered features. In particular, it is unable to consider ranges in such

features, and thus has to come up with many more rules than are really necessary. This problem

is common to many discrete classification methods. It is common to precede such programs with

a process in which all attributes are discretized. Thus, in our second experiment, we added a

clustering-based discretization scheme which partitioned the 0-255 range of each sensor reading
into a number of intervals. These intervals were then given a name and were input to the SE-

Learn/SE-Classi.fy program as nominal values. As shown by Figure 4, this has resulted in an

hnproved accuracy. As aside, the difference between the different resolution criteria has ahnost

disappeared, i.e. similar results were obtained using any of the three resolution criteria.

Although the results obtained thus far were already impressive, we tried to milk even more

out of the data by allowing the program to look also at a pixel's four neighbors. Given the

substantial increase in the size of the training data, we had to add bias in the iearning phase.

In particular, we decided to prefer a pixel's own readings to those of its neighbors. Figure 5

presents accuracy results for ten different tree sizes. We believe that the ultimate improvement
in accuracy resulted from the fact that regions tend to be homogeneous, i.e. that a pixel is likely

to belong to the same class as its neighbors. The effectiveness of this bias is demonstrated by the

temporary drop in accuracy, occurring immediately as soon as the algorithm starts considering

neighboring pixels. The range of accuracies and their overall correspondence to the tree size (and

thus runtime) represents a potential for a dynamic choice of tradeotT. The overall monotonicity

suggests that accuracy can be further improved.

Accuracy

90.00

80.00 --

70.00

54).00

50.00

40.00

30.00 --

20.00

S/
f

2.00 3.00 4.00 5.00

it.____.

mvq

f _ .....vote

Size (log scale)

Figure 5: Potential Tradeofl" between SE-tree Size and Accuracy

In a fourth experiment, we have discretized the input data by associating a vector of 8

boolean features with each sensor reading, for a total of 32 features per pixel. Again, for lack of

time, learning was not pursued to completion. Instead, the program first explored an ID3-based

decision tree as the leftmost part of the SE-tree, and then augmented this tree with more parts

of the SE-tree in a hill-climbing fashion. However, given the sheer size of the complete SE-tree,

190



we could not run this process to completion. The result corresponds to the last partial SE-tree

we could expose, with a simple voting resolution criterion used in classification.

Finally, in a fifth experiment, using the same discretization as above, we added a pruning

procedure in which a conjunction is defined as a rule (and is thus not further refined) as soon

as one of the classes becomes statistically significant in it (considering the priors of course).

In this case, the ID3-based decision tree (pruned as above) was first explored, and new rules

were then added by their relative desirability according to Quinlan's information-gain measure.

The first result reported corresponds to the decision tree; the second to an SE-tree consisting

of this decision tree plus few thousand rules. The pruned decision tree consists of only 7 rules,
compared with several thousand rules in the unpruned decision tree.

Having completed the experiments on the BlackhiUs image, we turned to the Washington

DC image. Here, we only ran an experiment similar to the the latter Blackhills experiment, i.e.

attributes were bit-discretized, and statistically insignificant rules were pruned away. Figure 6

presents results from this experiment

Experiment description

Back Propagation Neural Network 67.7%

Gaussian Maximum LikelihoodClassifier 62.3%

SE-Learn/ SE-Classify

ID3 decisiontreeonly 67.7%

SE-tree 71.4%

Accuracy

Figure6: Comparative Accuracy on Washington DC
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