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Abstract

Over any finite arc of trajectory, the variational equations of a Hamiltonian system can be separated
into "normal_ model This transformation is canonical, and the Lyapunov exponent= over the trajectory
arc occur as positive / negative pairs for conjugate mode=, while the modal vectors remain unit vectors.

This decompoaition effectively solves the variational equations for any canonical, linear time--dependent
system. As an example, we study the Voyager I trajectory. In an interplanetary flyby, some of the
modal vezlables increase by very large multiplicative factors, but this means that their conjugate modal
variable= decrease by those same very large muhiplicative factors. Maneuver strategies for thi= case ate
explored, and the minimum Av maneuver is found.

1 Introduction

A Hamiltonian dynamical system can be written as a vector set of differential equations

OH= z_-_, (1)

where X T _- (qi, pi) is termed the state vector, and the matrix Z is

,}-x o • (2)

Introduce the small displacement x(t) = X(t) - X0(t) from a known trajectoryX0(t). Then, to firstorder

in small quantities,the displacement vectorobeys the variationalequations

O_H [

= A(t). = zy_Jxo .. (3)

As a set of linear equations, the variational equations are formally solved by the fundamental matrix @(t, to),
which satisfies

= A(ii@, ¢(t0,t0) = I. (4)

Then, the generalsolutionto (3) can be writtenas x(t) = @(t,t0)x(to).

2 The Modal Transformation

In this section we will review the recent discovery of the modal transformation for general time dependent

linear systems, Wiesel [6], and we will establish this transformation as a canonical change of coordinates.
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The stability of a general trajectory of a line_ system is determined by the Lyapunov exponents. These

are the values I
losI, (tl, to)x,(to)l (5)

= tl -to Ix,(to)l '
extrem_lized over allinitialdisplacements x_(t0).Usually (5) includesa limitas t/ --*c¢, but not here.

The restrictionto finitetime intervalsisan absolute necessity,sincepredictionof chaoticsystems isonly

possiblefor a finitetime interval.
We wish to find the vectorsx_(t0),which extremalizethe growth of the norm of displacement vectors,

Ix(t/)[with respectto the initialdisplacement x(t0).This isa constrainedmaximization, sincein a linear

system we may specifyIx(t0)[--1 from the outset.Using a Lagrange multiplier_, we have the optirnization

problem

j" = Ix(t!)l - " ,lx(to)l- 1).\

Now, sincex(t/) = @(t!,t0)x(t0),the scalarfunction(6) becomes

(6)

(7)

Partiedderivativescan now be calculatedas ifallcomponents ofthe initialconditionsz0_ were independent,

yielding
1 @J

a ok- 0= - (8)
i j

where k - 1,2,....N. But thisisjust the component form of

{¢I )T_ -- _J} ei(tO) -- O. (9)

That is, the e_(t0) are the real, orthogonal eigenvectors of the real symmetric matrix @T@, or the right

singular vectors of _. Comparison to (5) shows that the Lyapunov exponents over the time interval (to, t/)
are found from

_, = exp {2A,(t!- to)). (10)

This has been recognized by Goldhirsch, Sulem and Orszag [1]. We will refer to our A_ as regional Lyapunov

exponents, since they pertain to the finite time interval (to, t/).
A matrix • is symplectic if it obeys ebZ@ T "- Z, or equivalently @Tz_b -- Z. It is well known that the

fundamental matrix @ is symplectic for a Hamiltonian dynamical system, see, e.g., Wiesel and Pohlen [7].

But then examining _T@, we find

---_ _Tz_ "- Z, (II)

so that @T@ isitselfsymplectic.The eigenvaluesof a symplecticmatrix occur as inversepairs,Pi, I/pi, so

by (10) the regional Lyapunov exponents occur as positive / negative pairs. Since the Lyapunov exponents
are also real, at most half of the modes ate unstable, while the other half are stable. The proof of Liouville's

theorem follows from this as a very simple consequence.
Over a finite arc of the trajectory, the regional Lyapunov exponents may be used to factor the dynamics

into separate modes. The initial conditions ei(t0) introduce N special solutions to the variational equations,

x_(t) = @(t, t0)e_(t0), on which the average exponential rate of expansion or contraction is an extremum.
But local variations in these rates can be quite large, Haubs and Haken [2], Nese [3], Sepdlveda, Badii, and

Pollak [4]. We wish to use these N special solutions to the variational equations as basis vectors for the
entire solution set, and it would be very inconvenient for them to be anything other than unit vectors. Their

instantaneous rates of change of magnitude ate given by

xi • Axi (12)

4



SincetheregionalLyapunovexponentsaretheaverageof theseinstantaneousrateson theseN extremal
solutions, we have

1
/,o' ¢,O')d,-. (13)Ai = t! -t--'--o

Then, defineN new functionse_(t)ms the solutionsto

_(t) - Aec - ¢i(t)e_ (14)

with initialconditionse_(t0)on the interval(t0,t/).They are,by (14),triviallyunit vectorson the entire

intervalto <_t <_tl, and orthonormal at t - to. That they must alsobe orthogonal at t - t! can he seen

by realizingthat ei(tl)must alsobe the extremal initialconditionsfor exponential growth of trajectories

running 5ackwarda in time. So they are the eigenvectorsof the symmetric matrix (@-I)T(@-I), and are

orthogonal. But at other times in the interval( to, tI ) the ei(t)vectorsmay not be orthogonal. We note

that sincethe new vectorsremain unit vectors,

¢,(t)= e_. Aei (15)

isan alternateform of (12).The ei have the same directionas the specialsolutionsxi throughout the time

interval,differingfrom them only in magnitude.

Now, assemble the ei(t)vectorsby columns intothe matrix £(t).The matrix analog of (14)is

_b-- A£ - £J(t), (16)

where J(t) is the diagonalmatrix whose entriesare the ¢i(t). This is a relationshipwhich isvery familiar

from time-periodlcsystems.

We wish to use the ei(t)vectorsas the coordinatevectorsfor describingthe solutionto the variational

equations.To thisend, definenew coordinatesy on the tangent space as

x(t) = £(t)y(t). (17)

Since £(t) is a nonsingular matrix function of time, at least for to < t < t/, all stability information resides

withinthe y variables.Again differentiating(17)and substitutingintothe variationalequations (3)we have

y={e-lAe_e-le}y. os)
But using (16), this easily reduces to

$, = J(t)y. (19)

So, this transformation takes the variational equations (3), and replaces them with a set of decoupled, time-

dependent coefficient differential equations for the variables y, and another set of linear equations (16) for

the coordinate vectors e(t). We will refer to y as the modal variables for the system, and £(t) as the modal
matrix.

The transformation (17) will be canonical if £ is a symplectic matrix for all time. It is possible to so

normalize £(t,) at the initial time, Siegel and Moser [5], Wiesel and Pohlen [7]. Then £ will stay symplectic

if £Tz£ = Z for all time. Taking a time derivative of this and substituting from (16) gives

£T AT z£ 4- £ T ZA£ -- .IT (£T z£) -- (£ T Z£) J -_ O. (20)

Assuming that the modal matrix is at the moment symplectic replaces the quantities in parentheses with Z.

For Hamiltonian systems the matrix A = Z_)2H/OX 2, and since @2H/OX 2 is symmetric, the above reduces
to

-- JT z- gJ = 0. (21)

Simple calculation will show that this is an identity for any diagonal matrix J, so the modal transformation

(17) is a canonical transformation if g(t0) is symplectically normalized. The modal equations of motion (19)
then come from a modal variational Hamiltonian

K(y) = _yTZT Jy. (22)

This is,of course,only a localapproximation, ignoringcubic and higherorder terms.
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3 The Voyager 1 Trajectory

As an example, we have chosen to study an approximation to the Voyager I trajectory from earth past

Jupiter, and onward almost to Saturn. The trajectory is only approximate, since it was constructed in the

restricted problem of three bodies. But our method is general, and easily extends to more complex and

realistic dynamics. The Hamiltonian function is

1 1-# /_

rl r2
(23)

where

r_ -- (z + 1-/J)2 + 1/2 +z2. (24)

Using Voyager I's known distance of closest approach to Jupiter of 780,000 km and the flight time of 544

days from the earth to Jupiter, a boundary value problem was posed: starting at Jupiter the trajectory was

propagated backwards, and at "launch", it should be 1 A.U. from the sun, and moving tangentially. The
initial conditions for this trajectory are listed in Table I. In addition, we give a point about 100 days prior

to close approach.

Table I
Launch Initial Conditions

Zx Y

q_ +3.762779457438691 x 10 -2 +1.886728183030001 x 10 -1 0.0

p_ -2.991922520851858 x 10 o +5.825188979188912 x 10 -1 0.0

Intermediate Initial Conditions
x y z

q_ -8.775683982224044 x 10 -1 -4.272485353294678 x 10 -a 0.0

p_ -8.227825491293955 x 10 -1 -7.044554120116425 x 10 -1 0.0

Over this trajectory, a final time of 1.5 dimensionless time units will take the spacecraft from the earth
almost to the orbit of Saturn. This is shown in Fig. 1, in the rotating reference frame usually used for the

restricted problem. The regional Lyapunov exponents are 4-5.637879, -4-5.08635, and 4-2.251739. Examining

the eigenvectors, the first and third are modes in the orbital plane, while the second is purely an out of plane
mode. This leads to amplification / contraction of initial errors by multiplicative factors of 4706, 2058, and
29.3. Over an infinite time interval we would expect two zero Lyapunov exponents, and the third mode is

much the least dramatically unstable of the three. It probably corresponds to an initial displacement along

the trajectory itself.
To gain further insight, adjacent trajectories have been examined in the modal space. Integrating the

nominal trajectory and a nearby orbit, the difference x = X(t) - X0(t) was converted into modal variables

with y = £-tx. Initial conditions were chosen to excite only one mode at a time, and to explore the limit of
the linearization inherent in our solution. A shorter arc of the trajectory, spanning 4-100 days before and after

flyby was chosen in order to avoid the extreme differences between initial and final modal amplitudes. Initial
conditions for this arc are also given in Table I, and the limits of this portion of the trajectory are indicated

in Fig. 1. Over this interval, the first two modes expand/decay by a factor of about 400, while the thud mode

is nearly static with an expansion/contraction factor of 1.32. The corresponding Lyapunov exp0nents are

+20.213590, 4-20.161805, 4-0.935968. The study of a shorter, less violently expanding / contracting interval

makes it possible to see the entire modal behavior on graphs. It also emphasizes that neither the Lyapunov

exponents nor the modal vectors £ are invariant to changes in the trajectory arc studied.
Fig. 2 shows the behavior of the Lyapunov exponents through this time interval. That is, the figure

plots the running values of ,_(t) starting 100 days before Jupiter approach, and ending 100 days afterwards.
The final values are the Lyapunov exponents used to decouple the entire trajectory arc, but intermediate

values show where error growth occurs. Obviously, the immediate vicinity of the close approach is a time of

explosive error growth. But after the flyby some of this error growth decays again.
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Figure I: Voyager I flyby trajectory in the rotating frame of the restricted problem. Jupiter is at the culp,
while plus signs mark points _100 days bracketing clo6e approach.
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Figure2: Lyapunov exponentsA_(t/)throughoutthe :i:100day intervalbracketingflyby.The firstand

secondmodes (theoutercurvesafterflyby)aresuperimpo6edatthisscale.
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Fig. 3 shows the behavior of the first mode over the :hl00 day arc. The modal vectors for this mode lie

entirely within the orbital plane of Jupiter. Since the modal equations of motion (19) are time dependent,
Fig. 3 is not a true phase portrait. Rather, initial conditions were scaled by a constant factor to find where
the system visibly departs from linearity. Since yl grows by a factor of about 400 in this interval, while
_4 shrinks by the same factor, initial conditions are virtually on the vertical _4 axis, while all trajectories
terminate nearly on the horizontal _1 axis. The linear regime appears at the core of the figure as a symmetric
region where trajectories scale linearly. Most of the loop is traversed in a very short period of time about

closest approach. Over most of the time interval trajectories are slowly departing from the vicinity of the Y4
axis before flyby, or converging towards the Yl axis after closest approach. These trajectories were calculated
with initial values of Y2, _s, _s, and _e zero. These values stayed zero, confirming the success of the modal
transformation.

Fig. 4 shows tangent space trajectories for the second mode. This mode lies entirely along the z, p,
directions in phase space, and the error growth / shrinkage factor is a_ain about 400 over this trajectory
arc. The truly linear regime again appears at the core of the figure, while the outer trajectories show visible
departures from linearity. Also like mode 1, virtually all of the outer loops are traversed in a short time
interval bracketing closest approach.

Mode 3 appears to span the in-track direction and the normal vector to the constant Hamiltonian surface.

Since errors in these two directions are, in the long run, nearly static, the author suspects that if extended to
infinity that this mode would generate the predicted pair of zero Lyapunov exponents. (A pair since in any
autonomous system one Lyapunov exponent must be zero, and as a canonical system its Lyapunov exponents
must occur as positive / negative pairs.) Fig. 5 shows some trajectories for this mode. The expansion /
contraction of amplitude near close approach is so dramatic for this mode that all the initial and final points
for this mode are at the origin on this scale plot. Actual initial modal amplitudes were of the order of 10-7 ,
and expand briefly by over four orders of magnitude near close approach. The individual trajectories seem
to leave the origin, and then virtually retrace their outward path in returning.
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Figure 4: Tangent space trajectories for mode 2, the out-of-plane mode. The Lyapunov exponents are
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Figure 5: Tangent space trajectories for the third mode, with Lyapunov exponent _0.93596. At this scale,
all trajectories begin at and return to the origin.

9



4 Maneuvers

Since three Lyapunov exponents axe positive, while three axe negative, we have examined a maneuver strategy
which attempts to zero the unstable modal amplitudes _/1, _2, _J. The stable modal amplitudes axe far less

important, since they axe decreasing any ways. However, we can only perform impulsive changes in velocity in

the physical space, and we have just stated our maneuver goals in the modal space. Just before a maneuver,
we have

xCt-) = e(t)yCt-), (25)

while just afterwards we have
x(t-) + 6x = t(0y(r) + t6y. (26)

Subtracting the two equations above produces 6x = £6y. Now, physically we must have 6x T - C0T, 6vT),

since an impulsive maneuver cannot change the position vector, and since the momenta are really the

components of the inertial velocity on the rotating frame axes. In partitioned form, then, the maneuver

conditions become
0 £12 _ (27')

£21 £2_ 6y4-e / '

in three by three vector partitions. To zero the unstable modal amplitudes we must have

_YT-$ -" (--1/1, --1/2, --Z/g)" (28)

The changes in the stable modal amplitudes axe not within our control. The first three rows can be solved

to yield

6y4-s = £i_1£11 -_ •
-93

Then, the second three rows give the desired maneuver as

= • (30)

An alternate strategy is suggested by the fact that only two of the modes experience significant expansion,

while mode three is nearly static. Attempting to zero only the amplitudes of modes one and two enables us

to minimize the velocity change required in the maneuver. Rewrite (2;') as

('Y1-3) _ { £11: £_I 0'Y4-e £_ £_I }( 6v)' (31)

(The £_I axe three by three blocks of the inverse matrix £-I .) Then, we wish to minimize Av 2 subject
to the constraints qAv = --Yl and c2Av = --Y2, where the _i axe the first and second rows of £_]. Using

two Lagrsnge multipliers _i, the minimum amplitude maneuver is given by the solution to the five linear

equations

2At_i -._ )t1(1/-{- _2(2t = 0, i "- 1, 2, 3,

(1AV "- -Vl, (32)

c_Av = -V2.

To study this maneuver strategy, we have begun at 100 days before flyby with a unit error in either Yl

or Ya. Of course, this is a linear problem, and scales linearly to other initial errors. Then the error was
corrected at maneuver time tin, and the new state, including nonzero amplitudes in the modal variables I/4-6,

was propagated to 100 days after the flyby. The results for 91 axe shown in Figs. 6 and 7. Fig. 6 shows the

required Av maneuver amplitude as a function of the maneuver time in order to eliminate a unit error in Itx
at the start of the trajectory arc. As expected, the error is much cheaper to correct early in the trajectory,

and becomes very expensive to correct after flyby. Fig. 7 shows the final values p4_8(t 1) as a function of the
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Figure 6: Maneuver magnitude Av needed to correct an initial unit error in Yl as a function of the time of
the maneuver tin. The error is vastly cheaper to correct before flyby.

time at which the maneuver is performed. Both Ys and Ye suffer a very large unwanted increase (again, at
the final time) if the initial Yl error is corrected any time around close approach. The conjugate variable to

Yl, Y4, remains insensitive to _/1 corrections before close approach, since any error introduced into Y4 by an
early maneuver has considerable time in which to decay. This is not true after the flyby, and the final error

y4(t/) shows a linear growth with tm for maneuvers performed after the time of closest approach. The out
of plane mode y_ is decoupled from the planar modes, so it remains at its initial value of zero.

Figs. 8 and 9 show the analogous results for an initial unit error in the unstable vertical mode _. The
cost of correcting an out of plane error soars enormously just at the time of closest approach, and afterwards

drops to a lower, nearly static value. The nearly static cost afterwards is due to the fact that most of the

mode growth / contraction in this problem occurs very near the time of flyby. Afterwards most of the modal
amplitudes themselves become almost static. Fig. 9 shows the final modal amplitudes as a function of the

maneuver time. Since the z mode is decoupled from both planar modes, these ate not excited from their

initial zero values. However, the stable mode y5 conjugate to the unstable vertical mode Y2 is excited by

maneuvers performed after the close approach. As with the planar mode, this is due to the fact that Ys can
significantly decay if the maneuver is performed before the flyby, but does not greatly decay if the maneuveris performed after flyby.

5 Discussion and Conclusions

In this paper we have shown that the recently discovered modal separation for time dependent linear systems
can be put on a canonical footing. A numerical example has been presented, showing the modal behavior and

maneuver strategies for an approximation to the Voyager I flyby of Jupiter. The modal separation variables
make it possible to assess the effects of initial errors and the steps taken to correct them without reference

to the actual size of the errors, and making maximum use of the possible dynamical decoupling that themodal transformation offers.

This is just a beginning. There is no reason that the orbit determination process itself could not use the

modal variables as the quantities to be determined. Also, the fact that the modal transformation is itself
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Figure 7: Final modal amplitudes Vi(tt) as a function of the time *m a maneuver wa6 performed to cancel
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Figure 8: Maneuver cost Ar needed to cancel an initial unit error in the out of plane mode V2.
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Figure 9: Final modal amplitudes y,(t/) as a function of the maneuver time tm used to correct an initial

unit error in the unstable vertical mode Y2.

a canonical transformation might be used to construct a perturbation theo_ about the underlying reference
orbit, including higher order terms in the modal Hamiltonian (22) as the perturbation source. This might

significantly extend the region of validity of the linearization of the trajectory.
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