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Abstract

Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error
statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a
balance is reached between the gain of information from new measurements and the lossof information during propagation.

The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm
obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error
covariance by including future as well as past measurements in each estimate. This paper investigates whether such
benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed
both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true

state vector and noise statistics are exactly known.

1. Introduction

Spacecraft attitude determination and sensor calibration are major functions of the Goddard Space Flight Center's

(GSFC) Flight Dynamics Facility (FDF). The problem is to extract information about the system state in the presence

of perturbing noise. There are a number of ways to attack the problem. These divide broadly into batch and sequential

filter methods. While batch methods have been used extensively in the past, sequential filters are also playing an

increasingly important role in FDF operations. In particular, real-time extended Kalman filters are currently in use for

the Solar, Anomalous, and Magnetospberic Particle Explorer (SAMPEX), the Extreme Ultraviolet Explorer (EUVE)

(prototype only), and the soon-to-be-launched next-generation Geostationary Operational Environmental Satellite-I

(GOES-I). These are real-time systems designed to solve only for the attitude and the rate bias on each axis.

More elaborate filters are planned for some future missions, such as the X-Ray Timing Explorer (XTE) and the

Submillimeter Wave Astronomy Satellite (SWAS). These will include a sequential filter as the central engine of their

Attitude Ground Support Systems (AGSS). Various AGSS subsystems are generally responsible for gyro and sensor

calibrations. For XTE and SWAS, the gyro calibration will be performed by the A_3SS Kalman filter, simultaneously

with the attitude. The filter optionally will solve for elements of an expanded state vector, including rate bias, scale

factor corrections, and misalignments.

One obvious deficiency of a sequential filter is that only the final state estimate makes use of data throughout the given

data span. The XTE and SWAS software will generate improved attitude estimates for an entire data span by using

optimal smoothing. A smoother is a sequential method that makes a second pass through the data, so that all the sensor

information is available for estimating the state at each time step. Smoothed estimates can be, in effect, weighted

averages of forward and backward propagating filters. The uncertainty in the estimate at each step is reduced, compared

to the Kalman filter, since it makes use of future as well as past data.

Thus, there are two new aspects to the planned AGSSs: the noise modeling for the expanded state vector in the context

of an extended Kalman filter and the smoother algorithm itself. This paper focuses on the smoother algorithm and does

not consider the expanded state. The thrust of current investigations is to verify the filter/smoother design, to experiment

with tuning parameters, and to examine the improvements in the estimates. It should be stressed that this work is not

intended as a definitive statement about the use of smoothing methods for attitude determination. Rather, as just one part
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of a continuing investigation (see References 1 and 2), it is expected that the smoother results obtained here may be

improved in several ways in the future.

The next section presents the extended Kalman filter equations and shows how forward and backward filter results can

be combined to form an optimally smoothed estimate. Section 3 discusses some results and comparisons for test cases

using EUVE data. The final section gives a summary and conclusions.

2. Theory

As stated above, the smoother can simply form an average of forward and backward filter estimates. What is not obvious

is that the optimally smoothed estimate can be written as a linear combination of optimal (i.e., Kalman) filter solutions
using only the forward, backward, and smoother error covariance matrices in the weighting coefficients (Reference 3).

Conveniently, the smoother error covariance matrix is easily obtainable from the forward and backward filter error
covariances.

The starting point for the smoother considered here is the "Unit Vector Filter" (UVF) described in Reference 2. This
extended Kalman filter solves for attitude and gyro bias using a particularly simple observation noise model. Onboard

measurements of Sun and star unit vectors are assumed to be perturbed by random noise uniformly on all three axes;

hence, the sensor noise covariance matrix is a constant times the identity matrix.

For both the UVF and the smoother described below, a distinction must be made between the full 7-component state

vector, comprised of the attitude quaternion and the gyro bias vector, and the 6-component error state (Reference 4).
The small-angle rotation from the true to the estimated attitude can be written as a 3-component error vector, one

dimension less than the 4-component quatemion needed for an unambiguous representation of the attitude in inertial

space.

Thus, in outline, the UVF proceeds as follows for either forward or backward processing: The full state vector and the

6x6-dimensional state error covariance matrix are propagated from the current time to the next sensor measurement. A

prediction vector, based on the estimated attitude and a reference vector, is subtracted from the observation to obtain
a residual vector. The residual, weighted by the Kalman gain matrix, yields the new estimated error state. The propagated

quaternion is rotated by the estimated attitude error, and the gyro bias is corrected by the bias error. The error state then
is discarded since its information has been incorporated into the full state. Finally, the Kalman gain also is used to

update the state error covariance matrix.

Kalman Filter

The state evolution can be integrated over a time step at to obtain discrete-step propagation equations. Derivations can

be found in Reference 5 and in those previously cited. For the backward filter, the index k increases as the timer,

decreases. The attitude quaternion is propagated as

(I)

where the time interval is at=t,-tk_ 1, and

0 -_ ¢_klk-lat (2)

The k IJ notation indicates a quantity estimated using sensor data through time tj, and propagated (if k *j) to time tk.

Equation (1) is approximate in that it assumes the angular rate is constant over at. The estimated rate for this interval

is the gyro output if,, corrected with the latest bias estimate:

_*1,-_ = _k- g,lk-_ (3)
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In many cases, _k is an average for the time interval, generated by a rate integrating gyro unit.

The matrix t_ is

_(_) --

0 _z -_y _x

-_z 0 _x _y

_y -_x 0 _z

-_x -_y -_z 0

(4)

The estimated gyro bias propagates as a constant:

The error state is

Bkl,-'_=/_k-1Ik-1 (S)

(6)

where the true (but unknown) error rotation vector _ is related to the true and estimated quaternions by

q_ = _;_ ® qklk-_ (7)

with

The product in Equation (7) is defined so as to combine quaternions in the same order as attitude matrices. Also, the
inverse quaternion is used in Equation (7) to simplify signs elsewhere. For brevity, only the first order approximation
is shown in Equation (8) and elsewhere for the error quatemion. In practice, one must either add a normalization step
or use the full trigonometric relationship in Equation (8).

Similarly, the true gyro bias, its estimate, and the unknown correction are related additively:

Gt = GIlt-I÷ _k (9)

Although dynamics noise does not affect the mean propagation of the full state described above, it is needed for the error
covariance propagation. Perturbations are assumed to enter the problem as zero-mean white noise in the true angular
rate

and in the true gyro bias evolution

_' = _2 (11)
&
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TW -T -TFrom these, one can form a 6-component noise vector _] [_]l,_h]. Its 2-thne e×W._tafion is

E[_(0nr(t_)] = _O_(t-t') (12)

The matrix Q(t) is the spectral density

Ji' ,1o 0 (13)
(2(0= 2

O 2

2 2

where 13 is the 3x3 identity matrix, and ol,62 model the gyro drift rate noise and drift rate ramp noise, respectively.

From this noise model, one can show that the state error covariance

propagates according to

Pklk-I = _Pk-ll*-1 _r± Qk

(14)

(15)

where the plus sign is used when M>0 and the minus sign when at<0. The propagation matrix is

where the submatrices are

°[o'']
3x3 "/3

= /3 - Sin0 [_x] + (1-cOS0) [_x]2
¢D (D 2

and its integral

qJ--13_+ (cos0-1)_ + (0-sin0)[_a)_]2

(163

(17)

(18)

The antisymmetric cross-product matrix is denoted

[_x] "
0

-(Dy

-fD z

0

_x

(19)

The process noise matrix is

C-- 2 T

O'2X

(2o)
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wherethematrix X is the integral of

_,f2

x = t_-3- +,°o (.o_,+;] ox:o.
and C is the integral of a constant plus _ _r

r,:, ':)JC = a 113_ * 02 +5[-7- 2

The update step uses the standard Kalman filter equations (Reference 5):

(21)

(22)

(23)

where the a priori state is zero since x is an error state. The residual 37kis discussed below. The Joseph-stabilized error
covariance update is

The Kalman gain matrix is

P,t* = (z,-X,H,)P,j,-x(l,-x,n,) r ÷ X,R,K:

and the UVF observation model assumes the sensor noise covariance matrix to be

Rt = o_l 3

where o h here is the noise standard deviation on each component of the unit vector.

The residual

(24)

(25)

(26)

Yk= _k - _*I_-_ (27)

is the difference between the observed unit vector and the prediction

a'l,lk_1= A,I,_10k (28)

where A is the attitude matrix and 0h is the reference vector. Model the actual observation as

_'t - (29)
IA:_ ÷ ,r,I

where ffk is a Gaussian distributed white noise sequence of strength ak on each axis. References 2 and 6 show that one

can safely neglect the difference between the covariance of the sensor noise implied by Equation (29) and that given
in Equation (26). (This freedom arises because the filter is totally insensitive to the noise component along the observed
vector.)
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The observation sensitivity matrix is the partial of the observation vector with respect to the error state vector, evaluated
at the current estimate. Analogous to Equation (7), the true attitude matrix is related to its estimate by the small-angle

rotation, -gk" Representing the rotation as a matrix exponential, one has

Ak_k = exp([_kxl)A,l___Ok

(30)

= wklk-! - [_'klk-l×]_*

where the sign flip occurs when _ and _ are interchanged through the cross product. Inserting this into Equation (29)

and exp_ding, one finds the sensitivity matrix is

//k = (-[_klk-I x] _ 03,o)
(31)

The zero submatrix appears because the observation is independent of the gyro bias part of the error state.

Optimal Smoother

As the forward filter proceeds, the a posteriori (post-update) full state and error covariance are periodically saved.
Observation data and reference vectors are also saved so that star identification and data adjustment need not be repeated.
To run the backward Kalman filter, the saved values are read and processed in reverse order. The only difference from
the forward filter is that the sign of the process noise must be flipped for the covariance propagation, as indicated in

Equation (15). This ensures that the uncertainty in the estimate grows whichever way one propagates.

The smoother runs simultaneously with the backward filter. The backward state estimate is propagated to the time of
a saved forward solution. If this is also a measurement time, the state vectors are combined prior to updating the
backward estimate (the information from that measurement having already been used in the forward filter).

One complication is that the smoother cannot combine the state vectors directly. The 6 x 6- covariance matrices apply
to the rotation vector and bias correction, not to the full state. It is necessary to express the smoother algorithm also in
terms of a small-angle rotation. Were it not for this complication, one would simply form the smoother covariance

= + pb -1\-I
P: (P/Ik"I klk-11

(32)

and obtain the smoothed state (generically referred to as X here) as the weighted average:

x;. xf, ' -', • (33)

The f, b, s notation refers to forward, backward, and smoothed values, and some care must be taken in interpreting thek Ik- 1
subscript on the backward estimates (the indices refer to the update sequence, not the time sequence). Rearranging

Equation (32) yields

s _f DsDb -Ie_,-_/,-1 --z - .,. klk-1
(34)

hence

X; I X[[k ÷ DS Db -!

(35)

Thus, the smoothed state is the forward state plus a correction proportional to the difference between the states.
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Analogously, one can use the small-angle rotation between the attitudes and the gyro bias difference to correct the

forward state. Noting that it is - _ in Equations (7) and (8) that rotates from the estimated to the true state, one defines
aq and z_ by

and

= -_ (36)

(37)

The sequence indices have been suppressed in these and the following equations. So, -_ rotates from the forward to
the backward attitude estimate. Similarly, a/_ is the difference from the forward to the I_ackward bias estimate

a/7 = G b - Gf (38)

This is then weighted using the covadanees

= p_ pb-' (39)
8

Finally, these are combined with the forward estimate, as in Equation (35), to obtain the smoothed state

fq" _ 1 (40)
and

/_s = Gf + 8_ (41)

One can see how the smoother works most easily by inspecting Equations (32) and (33). If one of the forward or

backward error covariances is much larger than the other, then its inverse contributes little to the sum in Equation (32).

In that case the smoother error covariance approximately equals the smaller of Pf and pb. In Equation (33), the inverse
of the large covariance suppresses the contribution from that state, and ps times the inverse of the other covariance is

close to the identity. Thus, the smoothed state closely equals the state with the smaller covariance. Alternatively, when

Pf and pb are similar, the inverse of the sum in Equation (32) yields a smoother covariance half as large, and the
smoothed state is roughly the average of the forward and backward states.

The forward filter starts with a relatively large uncertainty, thus the smoothed state should be dominated by the backward

estimate until observation data bring the forward covariance down. Similarly, the backward state is initialized with a very

large covarianee, so the smoothed state should nearly equal the forward solution near the end of the data span.

3. Results

This section presents results from two sets of tests run on the first version of the optimalsmoother. The first tests make

use of actual flight data from the EUVE spacecraft. These data span two orbits on December 16, 1992, when EUVE

was in Survey mode. In this mode, the spacecraft has its body x-axis (the roll axis) pointed away from the Sun, and it

maintains a steady 3-revolution-per-orbit (3-rpo) roll rate. It remains nearly stationary about its y- and z-axes (pitch and
yaw).

The only measurements used in these tests are from two fixed-head star trackers (FHSTs) and the rate-integrating gyros.
When not in Earth shadow, the Sun vector is used to help identify stars by a dot product test, but it is not included in
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thefilterupdate.TheFI-IST14 noise parameters are set to 0.01 deg, due mainly to the time tag uncertainty times the
2 10-13mdZlsecand 02= 10-19rad2/sec3.rollrate.The gyro noiseparametersare takentobe 41=

Figurel shows theforwardfiltersolutionsforthepitchand yaw axes assolidlines.The rollanglevariesfrom 0 to360

deg sixtimesduringthisperiodand isnot shown. These aresimilartoresultspresentedinReference2,exceptforsome

significantimprovements inthe gyro processinginthecurrentversion.For comparison,the solutionsgcncratedby the

onboard computer (OBC) filterare shown as dashed lines.These two filtersarc fairlysimilarindesign.The stepsin

the yaw angle neart= 5000 sccand 11000 sccaresmallmaneuvers performed each orbittokeep therollaxispointing

away from theSun. At the same time,thereisa rolladjusuncnttomaintainthcrollphase relativetotheorbitalposition.

The sensorupdatehistoryisshown inFigure2.The pointsindicatethetimesof occurrenceoffilterupdatesforthe two

startrackers.Thc gaps inthe updatehistoryappearwhen thetrackersare facingthe Earth.

The small-angledeviationsbetween theOBC and the forwardfiltersolutionsarepresentedinFigure3.On thisscale,

initialtransientsand thejitterdue togyro noisearcmore apparent.The backward filterresultslook quitesimilar,except

thatthe "initial"transientsoccur atthe end of thedata span.The relativelylargedeviationsinrollangleatthe times

oftherollphase adjustmentareerrorsintheOBC solution,probablycausedby itsgyro smoothing algorithm.The 3-rpo

oscillationderivesfrom a smalldifferencebetween theUVF and OBC estimatedEuleraxes,which leadstobody frame

errorsbeing modulated attherotationrate.

Figure4 shows thesmoother attitudeestimatesinthesamc formatasFigure3.Itisclearthatthesmoothcr has had only

a smalleffecton thesolutions.Some apparentimprovcmcnt isvisiblenear t= 3000 sec (wherea gyro counterrollover

occurs)and the forwardand backward _ansientsarecompletelyremoved.

Gyro biasesshown in Figure5 are in excellentagreement with OBC-determined biases(notshown) and with those

obtainedfrom theground supportsystem fora similartime span (dashedlines).The offsetof roughly0.01 deg/hris

comparable tothe lo uncertaintyinthe AGSS esthnate(Rcferencc7).Forward,backward, and smoothed solutionsarc

shown forthe body frame z-axisgyro driftrate.Solutionsarc similarforthex- and y-axes.The transientsapparentin

the forwardand backward estimatesarecompletelyremoved inthe smoothed bias.There alsoisa visiblereductionin

noise.

One internalfigureofmeritforthe filterand smoother isthe errorcovariancc.Uncertaintiesfortheattitudeand bias

arc obtainedseparatelyas the squarerootof the sum of the fn'stthreeand thc lastthreeelements ofthe covariance

matrix.Figure6 overlaystheseuncertaintiesfortheforward,backward, and smoothed solutions.Severalfeaturesare

apparent:the smoothcr errorsequalthcforwarderrorsattheend of thetime span,and equalthebackward errorsatthe

beginning,as expectedfrom Equation (32).The errorsgrow duc to processnoiseduringthe datagaps between star

observations.The Kalman filtererrorsarclowestatthebeginningor cnding times,aftereach has had accessto allof

the data.The smoother always has accessto the entiredata span,but itserrorsarc lowestnear the middle sincethat

pointisclosestintime toallthe data,on average.This minimizes the contributionfrom the processnoise.

A second internalcheck istoobtainthemean gyro biasand theroot-mean-square(P.MS)deviationfrom themean. This

isuscfulsincethebiasisexpectedtobe veryncarlyconstant.As Figure5 shows,thedeviationsareverysmall.Statistics

are gathered from the second orbit for the forward filter, the ftrst orbit for the backward filter, and from the middle for
the smoother. The three-axis root-sum-square averages of these orbit-averaged RMS deviations are 0.0026 deg/hr for

both the forward and backward filters, and 0.0011 deg/hr for the smoother, somewhat smaller than the uncertainties

deduced from the covariances shown in Figure 6. The filter/smoother covariance ratio is close to 2, as expected (see

Equation (32) and the discussion at the end of Section 2).

A similar statistical check of the attitude is not useful because there is no available truth model. The deviations in Figure

3 are caused equally by errors in the UVF and the OBC filters. The OBC errors mask any improvements due to the
smoother. For this reason, the smoother was tested using a simulated data set for which the true state is known. The true

rates are taken to be (3 rpo, 0, 0), but the gyro output is perturbed by white noise and a randomly walking gyro bias

as in Equation (10). The noise on the simulated star observations is Gaussian distributed, with width o = 0.01 d_g. The

resulting deviations with the truth model are shown in Figure 7. In this case, the uncertainty (as defined for Figure 6)
and the deviation from the truth model are in fairly close agreement. When averaged over an orbit, and averaging the
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three axes, the forward and backward filters both have uncertainties of 3.8 arc sec, and RaMS deviations of 3 to 4 arc
sec. The smoother uncertainty is 2.4 arc sec and RMS deviation is 2.1 arc sec.

4. Conclusions

An optimal smoother for estimating spacecraft attitude and gyro bias has been developed and tested using both EUVE
flight data and simulated data. It has been shown that the algorithm converges and yields reasonable results. The

solutions have been tested for internal consistency by examining the error covariances and the RMS variations of those

parameters that are expected to be constant (the gyro biases). In addition, the smoother was tested using a simple
simulation. The tuning parameters then could be chosen exactly to match the model, and the resulting error covariances
were found to match the actual solution statistics.

Continuing investigations may go in two different directions. The expanded state vector to be used by some future

missions for full gyro calibrations should be tested for convergence under varying observability conditions. Designs for

those filter/smoothers also include a more general process noise matrix that allows for a different noise parameter on

each axis. This should be tested for its ability to obtain good attitudes in the presence of gyro degradation on selected
axes.

Another direction for future studies is to look at alternative smoother algorithms. There are a few different ways to re-
express the simple forward/backward average implemented here. There are expected advantages to these other methods

in terms of central processing unit (CPU)-time efficiency. There also is a theoretical difference that may be significant.

The current smoother uses the final forward state estimate as the initial value for the backward filter. This imposes
strong correlations between the forward and backward states that should not be there. To cure this, the backward error

covariance is taken to be the forward covariance times a large factor (typically 10n in the test cases). It is expected that

this large covariance forces the backward filter to put full confidence in the sensor data, and almost instantly forget its

initial value. However, there may be correlations that persist and leave the smoother state suboptimal. The problem can

be avoided by redefining the backward filter in terms of p-l and a new state variable, P qx. Initializing these to zero
implies zero a priori information and no correlation with the forward filter.
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