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Abstract

Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error
statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a
balance is reached between the gain of information from new measurements and the loss of information during propagation.
The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm
obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error
covariance by including future as well as past measurements in each estimate. This paper investigates whether such
benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed
both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true
state vector and noise statistics are exactly known.

1. Introduction

Spacecraft attitude determination and sensor calibration are major functions of the Goddard Space Flight Center’s
(GSFC) Flight Dynamics Facility (FDF). The problem is to extract information about the system state in the presence
of perturbing noise. There are a number of ways to attack the problem. These divide broadly into batch and sequential
filter methods. While batch methods have been used extensively in the past, sequential filters are also playing an
increasingly important role in FDF operations. In particular, real-time extended Kalman filters are currently in use for
the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the Extreme Ultraviolet Explorer (EUVE)
(prototype only), and the soon-to-be-launched next-generation Geostationary Opefational Environmental Satellite-I
(GOES-I). These are real-time systems designed to solve only for the attitude and the rate bias on each axis.

More elaborate filters are planned for some future missions, such as the X-Ray Timing Explorer (XTE) and the
Submillimeter Wave Astronomy Satellite (SWAS). These will include a sequential filter as the central engine of their
Attitude Ground Support Systems (AGSS). Various AGSS subsystems are generally responsible for gyro and sensor
calibrations. For XTE and SWAS, the gyro calibration will be performed by the AGSS Kalman filter, simultaneously
with the attitude. The filter optionally will solve for elements of an expanded state vector, including rate bias, scale
factor corrections, and misalignments.

One obvious deficiency of a sequential filter is that only the final state estimate makes use of data throughout the given
data span. The XTE and SWAS software will generate improved attitude estimates for an entire data span by using
optimal smoothing. A smoother is a sequential method that makes a second pass through the data, so that all the sensor
information is available for estimating the state at each time step. Smoothed estimates can be, in effect, weighted
averages of forward and backward propagating filters. The uncertainty in the estimate at each step is reduced, compared
to the Kalman filter, since it makes use of future as well as past data.

Thus, there are two new aspects to the planned AGSSs: the noise modeling for the expanded state vector in the context
of an extended Kalman filter and the smoother algorithm itself. This paper focuses on the smoother algorithm and does
not consider the expanded state. The thrust of current investigations is to verify the filter/smoother design, to experiment
with tuning parameters, and to examine the improvements in the estimates. It should be stressed that this work is not
intended as a definitive statement about the use of smoothing methods for attitude determination. Rather, as just one part
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of a continuing investigation (see References 1 and 2), it is expected that the smoother results obtained here may be
improved in several ways in the future.

The next section presents the extended Kalman filter equations and shows how forward and backward filter results can
be combined to form an optimally smoothed estimate. Section 3 discusses some results and comparisons for test cases
using EUVE data. The final section gives a summary and conclusions.

2. Theory

As stated above, the smoother can simply form an average of forward and backward filter estimates. What is not obvious
is that the optimally smoothed estimate can be written as a linear combination of optimal (i.e., Kalman) filter solutions
using only the forward, backward, and smoother error covariance matrices in the weighting coefficients (Reference 3).
Conveniently, the smoother error covariance matrix is easily obtainable from the forward and backward filter error
covariances.

The starting point for the smoother considered here is the "Unit Vector Filter" (UVF) described in Reference 2. This
extended Kalman filter solves for attitude and gyro bias using a particularly simple observation noise model. Onboard
measurements of Sun and star unit vectors are assumed to be perturbed by random noise uniformly on all three axes;
hence, the sensor noise covariance matrix is a constant times the identity matrix.

For both the UVF and the smoother described below, a distinction must be made between the full 7-component state
vector, comprised of the attitude quaternion and the gyro bias vector, and the 6-component error state (Reference 4).
The small-angle rotation from the true to the estimated attitude can be written as a 3-component error vector, one
dimension less than the 4-component quaternion needed for an unambiguous representation of the attitude in inertial
space.

Thus, in outline, the UVF proceeds as follows for either forward or backward processing: The full state vector and the
6x6-dimensional state error covariance matrix are propagated from the current time to the next sensor measurement. A
prediction vector, based on the estimated attitude and a reference vector, is subtracted from the observation to obtain
aresidual vector. The residual, weighted by the Kalman gain matrix, yields the new estimated error state. The propagated
quaternion is rotated by the estimated attitude error, and the gyro bias is corrected by the bias error. The error state then
is discarded since its information has been incorporated into the full state. Finally, the Kalman gain also is used to
update the state error covariance matrix.

Kalman Filter
The state evolution can be integrated over a time step af to obtain discrete-step propagation equations. Derivations can

be found in Reference 5 and in those previously cited. For the backward filter, the index k increases as the timet,
decreases. The attitude quaternion is propagated as

0 1 ./(6 .
Qie-1 = {‘05(5)14 M mhk-[sm(i)n(mklk—l)} G-t k-1 1)

where the time interval is at=t,-¢, ,, and

0= o, ot 2
The k|j notation indicates a quantity estimated using sensor data through time ¢;, and propagated (if k #/) to time ¢,.

Equation (1) is approximate in that it assumes the angular rate is constant over az. The estimated rate for this interval
is the gyro output &,, corrected with the latest bias estimate:

Bppeey = By - 5t|k-1 3)
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In many cases, &, is an average for the time interval, generated by a rate integrating gyro unit.

The matrix Q is

z y X
o, 0 o @
(@) = t y @
y "9, 0 o

e, ~e, -, 0

The estimated gyro bias propagates as a constant:

®

bklk-l = by Jk-1

The error state is

where the true (but unknown) error rotation vector & is related to the true and estimated quaternions by

g, = 8q;" ® gy, @
with

a' =

-d,/2 ®)
1

The product in Equation (7) is defined so as to combine quaternions in the same order as attitude matrices. Also, the
inverse quaternion is used in Equation (7) to simplify signs elsewhere. For brevity, only the first order approximation
is shown in Equation (8) and elsewhere for the error quaternion. In practice, one must either add a normalization step
or use the full trigonometric relationship in Equation (8).

Similarly, the true gyro bias, its estimate, and the unknown correction are related additively:

b = 5&[&-1* Ask ®

Although dynamics noise does not affect the mean propagation of the full state described above, it is needed for the error
covariance propagation. Perturbations are assumed to enter the problem as zero-mean white noise in the true angular
rate

&-a-6-17, 10)
and in the true gyro bias evolution
db _ _
Z . (1)
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From these, one can form a 6-component noise vector n"-[ﬁf,ﬁ;]. Its 2-time expectation is

E[n(®n7()] = Q3¢-1) (12)
The matrix Q(z) is the spectral density
o}l 0
ew=| "~ (13)
0 oL

where I, is the 3x3 identity matrix, and of,cg model the gyro drift rate noise and drift rate ramp noise, respectively.

From this noise model, one can show that the state error covariance

P, T E[xw x,,TU] (14)
propagates according to
Piigay = "Pk-llk-lq’r t @ s)
where the plus sign is used when ar>0 and the minus sign when at<Q. The propagation matrix is
o-|? “’] (16)
03x3 13
where the submatrices are
~ = 12
é=1I - sinﬁ-[-‘-"i] + (1_me)[i’i amn
[ @2
and its integral
- = 12
v = Lat + (cos8-1)182 + (9-sine) (82 (18)
w? w? :
The antisymmetric cross-product matrix is denoted
0 -v, o
[6x]=|w, 0 -o (19)
-0, o, 0
The process noise matrix is
2
o - C oo (20)
& 2. T 2
g,X° 04l
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where the matrix x is the integral of y

X = I,“Tz * (sine-e)L‘—z,i] + (oose-u%)%’:lz @y

and C is the integral of a constant plus § 7

3 = 12 3
C=o’Lat+ oi[l’“ + 218 (sin6—6+iH @2)
3 6

The update step uses the standard Kalman filter equations (Reference 5):
e = Ky 23
where the a priori state is zero since x is an error state. The residual ¥ is discussed below. The Joseph-stabilized error

covariance update is

Py = (I ~KH )Py, (1, -K H)T + KkRkKkT (24)

The Kalman gain matrix is

T T -1
K, = Pklk-IHk [Hkpuk-lHk + Rk] 25)

L

and the UVF observation model assumes the sensor noise covariance matrix to be

R =oll (26)

where o, here is the noise standard deviation on each component of the unit vector.
The residual

-

Ve =W, - Wi k-1 @7

is the difference between the observed unit vector and the prediction

‘f’mq = klk-lﬁk (28)
where 4 is the attitude matrix and v, is the reference vector. Model the actual observation as
o A A 29)

w =
f ———
|49, + 7]

where 7, is a Gaussian distributed white noise sequence of strength o, on each axis. References 2 and 6 show that one
can safely neglect the difference between the covariance of the sensor noise implied by Equation (29) and that given
in Equation (26). (This freedom arises because the filter is totally insensitive to the noise component along the observed
vector.)

435



i

The observation sensitivity matrix is the partial of the observation vector with respect to the error state vector, evaluated
at the current estimate. Analogous to Equation (7), the true attitude matrix is related to its estimate by the small-angle
rotation, - &,. Representing the rotation as a matrix exponential, one has

AP, = exp([,x1) Ay s %

(T + (8, X)) Wy (30)

]

Wieer ~ e x]&,

where the sign flip occurs when W and & are interchanged through the cross product. Inserting this into Equation (29)
and expanding, one finds the sensitivity matrix is

Hy = (~Doge-d ¢ Og) 3D

The zero submatrix appears because the observation is independent of the gyro bias part of the error state.

Optimal Smoother

As the forward filter proceeds, the a posteriori (post-update) full state and error covariance are periodically saved.
Observation data and reference vectors are also saved so that star identification and data adjustment need not be repeated.
To run the backward Kalman filter, the saved values are read and processed in reverse order. The only difference from
the forward filter is that the sign of the process noise must be flipped for the covariance propagation, as indicated in
Equation (15). This ensures that the uncertainty in the estimate grows whichever way one propagates.

The smoother runs simultaneously with the backward filter. The backward state estimate is propagated to the time of
a saved forward solution. If this is also a measurement time, the state vectors are combined prior to updating the
backward estimate (the information from that measurement having already been used in the forward filter).

One complication is that the smoother cannot combine the state vectors directly. The 6 x6- covariance matrices apply
to the rotation vector and bias correction, not to the full state. It is necessary to express the smoother algorithm also in
terms of a small-angle rotation. Were it not for this complication, one would simply form the smoother covariance

-1 » -1\-1
P = (Pifu: + Py ) 32)
and obtain the smoothed state (generically referred to as X here) as the weighted average:
-1 ] -1 b
X, =P (Pkfu kau: * Pyip xklk—l) (33)

The £, b, s notation refers to forward, backward, and smoothed values, and some care must be taken in interpreting thek | k-1
subscript on the backward estimates (the indices refer to the update sequence, not the time sequence). Rearranging
Equation (32) yields

-1 b -l
P:PI{M =1 - Pi Py (34)
hence

b -l/yb
X; = XI{UK + P Pyji (Xklk-l - Xk,ik) (33)

Thus, the smoothed state is the forward state plus a correction proportional to the difference between the states.
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Analogously, one can use the small-angle rotation between the attitudes and the gyro bias difference to correct the
forward state. Noting that it is - & in Equations (7) and (8) that rotates from the estimated to the true state, one defines
ag and agd by

ag = (g*®q”) = ¢/®q*" 36)

and

i)

The sequence indices have been suppressed in these and the following equations. So, -ad rotates from the forward to
the backward attitude estimate. Similarly, ab is the difference from the forward to the backward bias estimate

b =B - (38)
This is then weighted using the covariances
ba) _ pe pon| (39)
3b - |ab
Finally, these are combined with the forward estimate, as in Equation (35), to obtain the smoothed state
o |02 g (40)
1
and
5° =5+ 85 @1

One can see how the smoother works most easily by inspecting Equations (32) and (33). If one of the forward or
backward error covariances is much larger than the other, then its inverse contributes little to the sum in Equation (32).
In that case the smoother error covariance approximately equals the smaller of P/ and P®. In Equation (33), the inverse
of the large covariance suppresses the contribution from that state, and P* times the inverse of the other covariance is
close to the identity. Thus, the smoothed state closely equals the state with the smaller covariance. Alternatively, when
P/ and P? are similar, the inverse of the sum in Equation (32) yields a smoother covariance half as large, and the
smoothed state is roughly the average of the forward and backward states.

The forward filter starts with a relatively large uncertainty, thus the smoothed state should be dominated by the backward
estimate until observation data bring the forward covariance down. Similarly, the backward state is initialized with a very
large covariance, so the smoothed state should nearly equal the forward solution near the end of the data span.

3. Results

This section presents results from two sets of tests run on the first version of the optimal smoother. The first tests make
use of actual flight data from the EUVE spacecraft. These data span two orbits on December 16, 1992, when EUVE
was in Survey mode. In this mode, the spacecraft has its body x-axis (the roll axis) pointed away from the Sun, and it
maintains a steady 3-revolution-per-orbit (3-rpo) roll rate. It remains nearly stationary about its y- and z-axes (pitch and
yaw).

The only measurements used in these tests are from two fixed-head star trackers (FHSTs) and the rate-integrating gyros.
When not in Earth shadow, the Sun vector is used to help identify stars by a dot product test, but it is not included in
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the filter update. The FHST 1o noise parameters are set to 0.01 deg, due mainly to the time tag uncertainty times the
roll rate. The gyro noise parameters are taken to be 0?=10"" rad¥sec and 02=10"" rad?fsec’.

Figure 1 shows the forward filter solutions for the pitch and yaw axes as solid lines. The roll angle varies from 0 to 360
deg six times during this period and is not shown. These are similar to results presented in Reference 2, except for some
significant improvements in the gyro processing in the current version. For comparison, the solutions generated by the
onboard computer (OBC) filter are shown as dashed lines. These two filters are fairly similar in design. The steps in
the yaw angle near t= 5000 sec and 11000 sec are small maneuvers performed each orbit to keep the roll axis pointing
away from the Sun. At the same time, there is a roll adjustment to maintain the roll phase relative to the orbital position.

The sensor update history is shown in Figure 2. The points indicate the times of occurrence of filter updates for the two
star trackers. The gaps in the update history appear when the trackers are facing the Earth.

The small-angle deviations between the OBC and the forward filter solutions are presented in Figure 3. On this scale,
initial transients and the jitter due to gyro noise are more apparent. The backward filter results look quite similar, except
that the "initial" transients occur at the end of the data span. The relatively large deviations in roll angle at the times
of the roll phase adjustment are errors in the OBC solution, probably caused by its gyro smoothing algorithm. The 3-rpo
oscillation derives from a small difference between the UVF and OBC estimated Euler axes, which leads to body frame
errors being modulated at the rotation rate.

Figure 4 shows the smoother attitude estimates in the same format as Figure 3. It is clear that the smoother has had only
a small effect on the solutions. Some apparent improvement is visible near z= 3000 sec (where a gyro counter rollover
occurs) and the forward and backward transients are completely removed.

Gyro biases shown in Figure 5 are in excellent agreement with OBC-determined biases (not shown) and with those
obtained from the ground support system for a similar time span (dashed lines). The offset of roughly 0.01 deg/hr is
comparable to the 1G uncertainty in the AGSS estimate (Reference 7). Forward, backward, and smoothed solutions are
shown for the body frame z-axis gyro drift rate. Solutions are similar for the x- and y-axes. The transients apparent in
the forward and backward estimates are completely removed in the smoothed bias. There also is a visible reduction in

noise.

One internal figure of merit for the filter and smoother is the error covariance. Uncertainties for the attitude and bias
are obtained separately as the square root of the sum of the first three and the last three elements of the covariance
matrix. Figure 6 overlays these uncertainties for the forward, backward, and smoothed solutions. Several features are
apparent: the smoother errors equal the forward errors at the end of the time span, and equal the backward errors at the
beginning, as expected from Equation (32). The errors grow due to process noise during the data gaps between star
observations. The Kalman filter errors are lowest at the beginning or ending times, after each has had access to all of
the data. The smoother always has access to the entire data span, but its errors are lowest near the middle since that
point is closest in time to all the data, on average. This minimizes the contribution from the process noise.

A second internal check is to obtain the mean gyro bias and the root-mean-square (RMS) deviation from the mean. This
is useful since the bias is expected to be very nearly constant. As Figure 5 shows, the deviations are very small. Statistics
are gathered from the second orbit for the forward filter, the first orbit for the backward filter, and from the middle for
the smoother. The three-axis root-sum-square averages of these orbit-averaged RMS deviations are 0.0026 deg/hr for
both the forward and backward filters, and 0.0011 deg/hr for the smoother, somewhat smaller than the uncertainties
deduced from the covariances shown in Figure 6. The filter/smoother covariance ratio is close to 2, as expected (see
Equation (32) and the discussion at the end of Section 2).

A similar statistical check of the attitude is not useful because there is no available truth model. The deviations in Figure
3 are caused equally by errors in the UVF and the OBC filters. The OBC errors mask any improvements due to the
smoother. For this reason, the smoother was tested using a simulated data set for which the true state is known. The true
rates are taken to be (3 rpo, 0, 0), but the gyro output is perturbed by white noise and a randomly walking gyro bias
as in Equation (10). The noise on the simulated star observations is Gaussian distributed, with width o = 0.01 deg. The
resulting deviations with the truth model are shown in Figure 7. In this case, the uncertainty (as defined for Figure 6)
and the deviation from the truth model are in fairly close agreement. When averaged over an orbit, and averaging the
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three axes, the forward and backward filters both have uncertainties of 3.8 arc sec, and RMS deviations of 3 to 4 arc
sec. The smoother uncertainty is 2.4 arc sec and RMS deviation is 2.1 arc sec,

4. Conclusions

An optimal smoother for estimating spacecraft attitude and gyro bias has been developed and tested using both EUVE
flight data and simulated data. It has been shown that the algorithm converges and yields reasonable results. The
solutions have been tested for internal consistency by examining the error covariances and the RMS variations of those
parameters that are expected to be constant (the gyro biases). In addition, the smoother was tested using a simple
simulation. The tuning parameters then could be chosen exactly to match the model, and the resulting error covariances
were found to match the actual solution statistics.

Continuing investigations may go in two different directions. The expanded state vector to be used by some future
missions for full gyro calibrations should be tested for convergence under varying observability conditions. Designs for
those filter/smoothers also include a more general process noise matrix that allows for a different noise parameter on
each axis. This should be tested for its ability to obtain good attitudes in the presence of gyro degradation on selected
axes.

Another direction for future studies is to look at alternative smoother algorithms. There are a few different ways to re-
express the simple forward/backward average implemented here. There are expected advantages to these other methods
in terms of central processing unit (CPU)-time efficiency. There also is a theoretical difference that may be significant.
The current smoother uses the final forward state estimate as the initial value for the backward filter. This imposes
strong correlations between the forward and backward states that should not be there. To cure this, the backward error
covariance is taken to be the forward covariance times a large factor (typically 10" in the test cases). It is expected that
this large covariance forces the backward filter to put full confidence in the sensor data, and almost instantly forget its
initial value. However, there may be correlations that persist and leave the smoother state suboptimal. The problem can
be avoided by redefining the backward filter in terms of P! and a new state variable, P!x. Initializing these to zero
implies zero a priori information and no correlation with the forward filter.

-
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