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ABSTRACT

Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science

experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since

their presence greatly affects the complexity of the isolation problem, they should be considered in control

synthesis. In this paper a general framework is presented for applying extended H 2 synthesis methods to

the three-dimensional microgravity isolation problem. The methodology integrates control- and state

fiequency weighting and input- and output disturbance accommodation techniques into the basic H 2
synthesis approach. The various system models needed for design and analysis are also presented. The

paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation
problem.

INTRODUCTION

Although many scientists have planned or conducted materials processes and fluid physics science

experiments designed for a weightless environment, the currently available facilities have proved far from

ideal. Evacuated drop towers can provide only a few seconds of"weightlessness" at levels on tile order of

10 .6 go (where go is the gravitational acceleration at sea level). Aircraft flying low-gravity parabolic

trajectories can extend the time to about 15-20 seconds, and sounding rockets can provide several minutes

of a microgravity enviromnent, but the goal of providing days, or even hours, for microgravity research has

proved elusive. It was once hoped that the Space Shuttle could provide the desired environment, but such
factors as manned activity, machine and structural vibrations, and thruster firings for orientation or reboost

have resulted in acceleration levels generally unsatisfactory for the designed experiments. (Background

excilations have been measured in the milli-g range.) In fact, the data from many experiments have been
found unacceptable due to the poor acceleration environment•

Due to the low fiequencies of greatest concern (below about 10 ttz) the isolation problem is a largely

unfamiliar one to vibration engineers; the requirement of a corner frequency of about 10-3 Hz is particularly
vexing• Passive isolation is incapable of solving the isolation problem in this region, and even should a
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sufficiently soft spring be physically realizable, it could not isolate against direct disturbances to the

payload. If the payload is tethered (e.g., for evacuation, power transmission, cooling, or material

transport), a passive isolator cannot provide isolation below the corner frequency imposed by the umbilical

stiffness.

An active isolator (such as a magnetic suspension system) that merely possesses a low positive stiffness

fares no better in the presence of an umbilical, for the same reasons. And if the control system seeks to

lower the corner frequency by adding negative stiffness, to counteract the umbilical's stiffness, the system

will (at best) possess ahnost no stability robustness. In the face of the usual umbilical nonlinearities and

uncertainties, this situation is clearly unacceptable. At very low frequencies the rattlespace constraints

become limiting (refs. I, 2), so that any isolation system must have unit transmissibility in that region. In

short, a microgravity isolator must be active, and it must be capable of dealing with the particular

frequency-dependent complexities accompanying a tethered payload and a restrictive rattlespace.

The available acceleration data clearly point to a need for three-dimensional isolation (ref. 3).

Classical control design methods are not well-suited for handling such problems; modern control methods

provide a much more natural setting, opening up to the designer tile power of the developing robust

control synthesis and -analysis tools, along with a variety of well-tested and progressive computational

software packages.

The well-known H 2 synthesis [i.e., LQR ("Linear Quadratic Regulator") or LQGCLinear Quadratic

Gaussian")] methodology is one such modern control method. It can readily provide an optimal feedback

controller for a linearized plant (i.e., payload plus umbilical) subject either to no exogenous input (LQR

case) or to white noise disturbances only (LQG case). An optimal control found by tt 2 synthesis minimizes

a quadratic ("energy-type") cost function, or performance index. Such a performance index is quite

appropriate for tile microgravity isolation problem, since it allows penalizing both the control energy

required for isolation and the vibrational energy of the payload. Unfortunately, however, the application of

this synthesis method to practical problems has been plagued by robustness difficulties. Granted, the

standard LQR solution provides excellent robustness guarantees for the single-input-single-output (SISO)

problem (ref. 4, pp. 70-74) and also yields guarantees (though less useful) for the multiple-input-multiple-

output (MIMO) problem (ref 5). But the addition of a state observer to the controller (as is usually

necessary for practical problems) removes these robustness guarantees (ref. 6). This fundamental

pwactical concern has led to a common skepticism regarding tt 2 synthesis.

There exist extensions to []2 synthesis, however, which can resolve the robustness issues. The

disturbance-accommodation and frequency-weighting techniques contributed, respectively, by C. D.

Johnson (ref. 7, 1968; refs. 8 and 9, 1970; ref. 10, 1971) and N. K. Gupta (ref. 1I, 1980) have proved to

be highly usefiJl in this regard. In fact, they provide the fimdamental additional tools needed for solving

practical controller design problerns. These two extensions lead to augmented state equations which still

allow for problem solution by the familiar tt 2 synthesis machinery. Recent investigations have examined

the effect of the frequency-weighting extension on system robustness (refs. 12, 13), and the dual

relationship between fiequency weighting and disturbance-accommodation (ref. 14). Additional

extensions have also been proposed (ref. 15).

The utility of"extended II2 synthesis" for the tethered microgravity vibration isolation problem has

been clearly demonstrated by recent studies (refs. 16, 17). Extended t] 2 synthesis has been used

effectively to develop SISO and SIMO (single-input-multiple-output) controllers for a realistic one-

dimensional microgravity vibration isolation problem, using a "smart" form of acceleration feedback. The
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resulting closed-loop system exhibited excellent stability- and performance robustness guarantees,

including a high degree of robustness to umbilical parametric uncertainty.

]'he present paper will give a general framework for controller design by the extended tt 2 synthesis

method, for the microgravity vibration isolation problem. Following a summary of the basic H 2 synthesis

approach, the paper will describe how to incorporate the control- and state frequency weighting and input-
and output disturbance accommodation extensions into the synthesis procedure. Control noise will also be

included. General guidelines will be presented for effectively integrating these extensions into the design
procedure.

The development below is specifically tailored to the microgravity isolation problem, but the

mathematics are fully applicable to any problem that has the appropriate (very general) mathematical

description. Four fimdamental system models will be presented to aid the designer in visualizing the

design effort. Only the synthesis procedure will be detailed here; the analysis techniques used for
controller evaluation will be detailed in a later work.

BASIC It 2 SYNTHESIS REVIEW

A generic microgravity vibration isolation system is depicted below in Fig. 1. A payload, such as a

microgravity science experiment, is acted upon by actuators (typically non-contacting) that are commanded

by a control system. This control system uses measurements, such as payload positions and accelerations,

to develop the control signals, typically currents or voltages. The objective ofH 2 synthesis is to find a

control signal that minimizes the weighted sum of the two-norm of the control energy and of the states,

subject to the linearized system equations of motion. This control signal will be found to be dependent

only on the past accumulative measurement information, for a system excited only by zero-mean white
Gaussian noise.

Ac,u.to[lls.nso,_t PayloadControl

System

Figure 1. Vibration isolation system.

Specifically (and a bit more mathematically), to use tt_ synthesis the system equations of motion must

first be linearized and expressed in the following (standard) state space form:

ic=dx+BLt+E_w, y__= (Tx + DL_, z= y_+ E,w__,, (la,b,c)

x_is the state vector, X is the output vector, _zis the measurement vector, t_tis the control vector, E s and E n
are selection matrices, and w_ and w,, are process- and sensor-noise vectors, respectively. For the

microgravity vibration isolation problem, the process noise (w,) models the disturbances acting on the

payload, either directly (e.g., air currents, fluid flow, or experiment-mounted rotating mac|finery) or
indirectly (i.e., through the umbilicals). The sensor noise (w,,) models the electrical or mechanical noise

that contaminates the state measurements. In general, not all states will be measurable (i.e., rank C < dim
x).
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Let the initial conditions on the state vector be x_(0) = x_0 (although these intitial conditions will not

appear in the final control solution); let x_0, w_, and u_,n be independent and bounded (as is reasonable, since
unbounded states and infinitely large noise are not physically possible); and let x_0 be Gaussian, and u,n and

_:s, zero-mean white Gaussian, for technical reasons. The power of the process- and sensor-noise vectors

can be expressed mathematically by
cov[w,(t),w_<(r)] _ 1/16[t- r) and covl_w,(t), _%,(r)] = V_6(t- r) (2)

(ref !8, p. 272). Assume that {A,B} and {A,E_ l._1/2} are stabilizable, where 1_ = t_ t/2 Vt I/2. (the asterisk

here means "conjugate transpose"), and that {C,A } is detectable (ref. 19, p. 226). These requirements

mean, respectively, that a stabilizing controller exists, and that the available measurements are sufficient for

its implementation t, et V_and I'"3 be positive semidefinite (PSD) and positive definite (PD), respectively, for
reasons of solution existence. That is, there need not be any process noise, but there must be at least some

noise in all measurement channels (as there will be) if an optimal control solution is to exist.

The tt 2 synthesis design method uses a quadratic performance index,

1 r{_ / x r
t_ w'l/qN/,,
' - :LW ,w.,jt,//j

where W t, W2, and W s are weighting matrices. These weighting matrices, assigned by the designer, allow

him to place a relative importance on the two-norln of each state (using W 1) and of the control (using It':0.

IV, allows him to assign cross weightings (These cross-weighlings are not generally used for the basic tt 2

syi_thesis problem, but they become important with some of the extensions.) Wj is PSD and W3 is PD (tel

18; pp. 272, 276), again for reasons of solution existence. "e" is the expected-value operator, needed since
1

the system is excited stochastically by ___.,.The cost rate functional form for J (with " lira --" ) is used tor_ 27"

allow for the white noise disturbance _w,.Otherwise the performance index would be infinite.

Let an admissible control _(t) be one that depends only on the past accumulative observation data.

That is, !t(t) has the form
u(t) = u[t, Z(t)], where Z(t) = {z_(r),0<_r<_t }. (4a,b)

(For more general conditions on admissibility, see ref. 18, p. 272.) The objective is to find an admissible

control function u" (t) which minimizes the cost .I with respect to the set of admissible control functions

It_U)subject to the dynamic constraint (1 a,b,c). Thai is, the optimal control solution must exist and be

realizable, must minimize the cost functional specified by the designer, and must take into consideration the

system equations of motion.

The solution is well-known, and is summarized as follows:

u*(t) = -K_(t)

where _ is an estimate of x using a Luenberger observer
I

(ref 18, pp. 288-289) having observer gain matrix L

I' is the unique Pl) solution

to the Algebraic Riccati Equation (ARE)

PA + ArI'-(PB + W2)g_-'(I'B 4- W2) r 4-Wt -- O,

I. QCT(E,, r-I

Q is the unique PD solution to the ARE

A(_) + OAr -Q('r(E,, I_E_')-t('Q + E, V, El'= O,

(Sa)

(Sb)

(%)

(5d)

(Se)
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P exists if {A,B} is stabilizable and {CA } is detectable

or if the system is asymptotically stable, and

Q exists if {A, Esl)t/: } is stabilizable and {CA} is detectable

or if the system is asymptotically stable.

Note that this control signal is developed by simply applying constant (negative) feedback gains K to
estimates of the system states. These estimates are themselves optimal in that they are the "closest" to the

actual slates, in terms ofthe expected value of the rms ofthe estimate error. They are produced in the

controller from the control signal and the measurement vector, using constant observer gains L. Fig. 2

below presents this standard optimal controller (e.g., cf. ref. 20, pp. 356, 366) in block-diagram form.

_/-

f
Figure 2. Block diagram of system with H2-optimal controller.

_g

¢:

z

EXTENSIONS TO tt 2 SYNTItESIS

Frequency Weighting

For tile active microgravity vibration isolation problem, payload accelerations are of much greater

concern at some frequencies than at others. Accelerations at higher fiequencies can be handled passively,

and very low-frequency accelerations correspond to such large displacements that they are essenlially
unisolable, due to practical rattlespace constraints. Rattlespace constraints also require that the relative

displacements between space platform and payload be kept to a minimum at low fiequencies. Control is

needed at lower frequencies, where the plant is best-known and where the major isolation effort is desired.

At higher frequencies, however, excessive control can excite unmodeled higher modes of the plant.

Consequently it is desirable, through the performance index, to be able to penalize control strategies in a
frequency-dependent fashion. This can be achieved by weighting the stales _xand tile control u in the cost
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ratefunctionalsothat the weightings are frequency-dependent. The latter, extended, tt 2 synthesis problem

will be seen to have the same form as the former one. It will have the simple difference that the various

system matrices now will be "augmented" to take into account tile additional "pseudo" states required by

the fiequency-weighting extension.

Let x_be considered to be the input to a filter _(s) of which Y is the output, and let _(s) have a

slate-space representation defined by {A 1, Bt, C;, D;}.

That is, _(.s) - ('t(.sl-AyIBltDr

Then z'/= A/z/+ B/x_, _"= C_zl +B/x

(6)

(7a,b)

expresses Y in terms of x_,employing pseudostates z_I. Similarly, ifu is considered to be the input to a filter

_(s) ofwhich _ is the output, and if _(s) has a state-space representation defined by {A 2, B:, C:, D:},/__t

can be expressed in terms of Lt,employing pseudostates z_2:

z-2= A2z-2 + B2_' ft --'-C2Z2 4"D2u- (Sa,b)

These.fi.equeno,-weighted states (Yc) and controls (/_) are now weighted (i.e., penalized) by constant

weighting matrices W I and W_. respectively. The resulting state equations and performance index are as

follows:
I_ = tA _x_+ IBu_+ q"'_w s, Y = #C Ix + I)Lt , _ = )_'+ E. w,, (9a,b,c)

{ / ,l l/,:/t/, h (9d)

= ['x 7 _ /i15r'W:

where t_x = , 'A= B I As () , tB = O , 'C=[C O O] (9e,f,g,h)

o 0 A: [B2J
?

[1 ,++,,,o1 r o11;;' ',,_-_/C[IF, D , CS'W,C 1 0 I' 'IV2--/ O /' 'ws:tD'[W,'),] (gj,k,m,n)rE, = 0 ,

LoJ [ o o c;+w,C,J L(,_w,D;J
1he optimal control u(t) will now minimize the weighted sum of the two-norm of the fi.equencv-weighted

control energy and stales.

Input Disturbance Accommodation

In the basic tl 2 problem it was assumed that the process noise ly, (i.e., the disturbance acting on the

payload, whether directly, or indirectly via the umbilicals) is zero-mean white Gaussian. This, of course,

will not generally be the case; the process noise will have some (known or unknown) non-white power

spectrum Let the process noise be modeled as./s, where./, is a stochastic disturbance with power spectral

density S/(co) St/e(jco) St/_jco) . Defining tt](ja,) by ,_"2(jco) V'/2 consider./_ to be the= "1 , one can
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• 1T 2xT

w,,ere
- /_,j

density S:(co)= Sy2(jco) S}/_jco). Defining lt/(.jco) by _'/2(ja,) VI':2, one can consider./, to be the

output of a filter llf(s), excited by zero-mean white Gaussian noise u,, with power Vt (i.e.,
cov[,,.,(0,w,(0l : r_ ,_t- 0).

lnstate-spaceform, __ :A,__ +B.,w_, f :c,__ 4D, E, (10a,b)

suchthat H.f(s) C,(sl .-t: -A,) ,_,+ z_, (10c)
Incorporating these new pseudostales (_x/) into the state equations and performance index yields the further
augmented I-12synthesis problem given below:

_: 2A_+:BLt+2E, w.,, y_::(:"x+l)Lt, z : k_,+ E,, w_,, (lla,b,c)

B t A / O O 2B : O
_1: O O A 20 ' B2 (lle, f,g)

o o o A, j o

,s 0 (I I h,j)

(, o[  oj]c;w,n, (:;t_;c, o o :w:= c_:o o c_w,(_ o ' "_'-):/
0 0 0 0

(1 Ik,m)

(1 In)

The optimal-control solution to this problem will minimize the fiequency-weighted cost fimctional as

before, with the plant now considered to be subject to the specified colored noise disturbance.

In actual space applications the power spectrum of the process noise may not be known Fortunately,
orbiter spectral vibration information need not be available for disturbance accommodation to be used.

1he disturbances can be assumed to have whatever form the designer finds useful. For example, if he

desires the controller not to respond to process noise above some frequency range, he might choose to

model ltf(s) as a lowpass filter.

Output Disturbance Accommodation

The same procedure can be employed to incorporate colored sensor noise into the extended tt 2

synthesis problem. No sensor will have the white-noise contamination assumed by the basic tt 2 problem.

And the designer may even find it useful to shape the sensor noise filter in some non-physical way. For

example, if payload acceleration measurements are known to be more accurate in one frequency range, and

relative position measurements in another, he might choose his sensor noise filters appropriately to
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"inform"tile observer of these facts. The resulting obse_'er would tend to rely more heavily on the more

accurate measurement(s) in a particular frequency range, in its state-reconstruction process.

Let the sensor noise vector be.[., with selection matrix E,,, where./, is a stochastically modeled

disturbance with power spectral density S.(jco) ..t/2... or/2"...= ._. LlCOl .7. LlrO). As with the input disturbance./,,.[.

can be considered to be the output of a filter H.(s) excited by zero-mean white Gaussian noise _w.with

power I:3 (i,e., cm{w.(t), w.( r)] = Vs6(t - r)). In state-space form,

A.) B. +D. (12a,b,c)__ -_A.__e+B.w_., [ =C.__2+t).w., suchthat tt.(s)=C.(sl- -'

For the extended tt 2 synthesis problem with state- and control frequency weighting (pseudostates z_I

and z:, respectively), and with input- and output disturbance accommodation (pseudostates _£t and _2,

respectively), the augmented state equations and the performance index are as follows:

_:_= *A_x + _BLI+ _E, %., ,

r.[,Wi
_J = 81 lira 1 r 4xT

[_ ,-,

"/zt

where *x =

-- _2Z--21 ''El

z_="(7 *x+ *])u_+_E. __w

_lVs _ dt

-A

Bl

91=O

O

O

o o F_/;, 0

A t 0 0 0

0 A 2 0 0

0 0 A, 0

0 0 0 A.

," ("'c = [c o o o /;;, ,], 'D = D,

-B

0

B2

0

,0

_D,

4Es =

0

0

0

( !3a,b)

(13c)

(13d,e,f)

'w,=

-I)[W_I),

clw, I),
0

0

%__-{_°},.,% _-iF.on.]

l),_(; o o o]

-T {z I

(-i 11 (;'1 O O 0
"IT

O (.2_C2 O O ,4W2=

0 0 0 0
/

O O O O O[

--

0

0

0

0

B.

0

0

0

0

is the autocorrelation matrix for 4w_,
I1 = _O /_s

/:,:/4t2 = I_ is thecross--correlation matrix between _ and w,,

and * I.._= I'._is the autocorrelation matrix for wn.

(! 3g,h,j)

(13k,m,n)

(13p,q)

(130

(_3s)

(13t)

(]3u)
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Control Noise

The active microgravity vibration isolation system must perform well even when the actual system

dynamics are less than perfectly described by the system model. One way to improve the isolation

system's robustness to parameter changes at the control inputs (i.e., to uncertainties in the actuator or plant

model) is to add a process noise input (w_) to the model's control signal (re£ 21, p. 1-48). Recall that the

tl 2 synthesis machinery seeks to minimize the rms of the observation error. It does this by finding an

observer gain matrix L that will optimally trade off the measurement uncertainties against the plant model
uncerlainties, in the state reconstruction process. Control noise will reduce the observer's "confidence" in

the plant model, so that the observer will "trust" its measurement data more and its plant model less. The

resulting gain matrix L will sacrifice a degree of observation quality for improved observer robustness to
plant model inaccuracies. The controller gain matrix K will be unaffected.

Under these circumstances the state equations of motion, unaugmented by frequency weighting or
disturbance accommodation, become

x_--,4_+,_(,_+__c)+F,,[, y_= C__+D(,_,+wc), __=y_+E,/,
where./s and./, can be represented by filters in state-space form with white-noise inputs, as noted

previously. Assume no cross-correlation between _ and w,, or between w__and _w,,,and let

co,,[.,c(r),we(_)]= r_a(r- _). (l 5)
Using now the pre-superscript designator "5" to indicate the appropriate state-space augmentation, the
system equations change as follows:

_x_=4_x, (16a)

3,4--_4, :B= 4B, :C= "tC, 5D-- 4D, (16b)

5WI ='Wt, 'W2="W:, _W3='Ws (16c)

O O

5E, = B 2 O

O O

O

O

O

O

I!0°1
o t,_,

(14a, b,c)

, -_w, = w, 5,E'. = w. JE.=[D E.D.] (16d,e,f,g)

M

5b= 0 _ , 5i_= 0 (16hj,k)

o bJ b
The basic tools are now in place for practical microgravity vibration isolation system design, by extended
It: synthesis.

SYSTEM MODELING

The tt 2 synthesis problem is actually a two-fold design problem; the designer must determine a

regulator gain matrix K, and also an observer gain matrix L, which together are used to comprise the

oplimal controller. The full augmented state vector must be used for the regulator sub-design problem,
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but pseudostates _zt and _z2 (which occur due to frequency weighting) need not be reconstructed by the
observer. They can simply be developed by passing the reconstructed state vector x_and the control vector

u, respectively, through the appropriate frequency-weighting filters. Consequently the observer sub-design

problem can (though need not) be one of reduced order. It is helpful, then, to have different mathematical

models for conceptualizing these two sub-problems. These models will also differ, in general, from the

basic plant model, which depicts the "actual" linearized plant (i.e., the system without the controller) in

state space form. This model will not include the frequency-weighting and disturbance-accommodation

augmentations of the former. In addition to these three conceptual models of the system, there is a fourth

model, which more properly falls under the category of analysis but should be kept in mind during the

synthesis procedure. This "nominal analysis model" depicts the linearized and unaugmented plant with the

synthesized controller attached. It is used, with various modifications, to analyze closed-loop system

performance.

Basic Plant Model

The basic plant model (shown schematically in Fig. 3) simply presents the linearized differential

equations of motion in a state space form useful to the tt 2 synthesis machinery. Such a representation is

given below.
ic=Ax+Btl+E,f.,, y_=(Tx+I)s_, _=)-+E,f, (! 7a,b,c)

No performance index is needed at this stage, since it is thefi'equency-weighted states and control which

will be weighted relative to each other for the actual controller synthesis. For the microgravity vibration

isolation problem a useful choice for the state vector would include relative displacements, relative

velocities, and accelerations. Weighting an acceleration more heavily in a fiequency range would

correspond roughly to a demand to increase the associated effective mass (or inertia) of the system. A

similar correspondence can be drawn between relative-displacement weighting and the effective relative

stiffness, and between relative-velocity weighting and the effective relative damping.

L

\/

4-

.)--_
\ +

,+ _z

Figure 3. Basic plant model.

Regulator Synthesis Model

The regulator synthesis model adds frequency weighting and disturbance accommodation weighting
filters to the basic plant model, and is the model actually used by the extended H 2 synthesis machinery in
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designingtheregulator.Fig.4 portraysthismodelinblockdiagramform. Notethatit hasasimilarform
to thebasicplantmodel,but thatnowaugmentedA, t3, 6"_,E_,E,,, Wp W2 and W3 matrices are used, as
indicated by the pre-superscripts. These matrices were defined previously (16b through ! 6g). Also note

that white noise vector _, replaces./', since the process noise power spectral information is now contained

in matrices -_Aand 5E,.

The regulator synthesis model shows the system as viewed by the extended H 2 machinery in

determining the matrix 5p. This matrix is the unique positive definite solution to the following ARE,

,p_( 5, 'R+ 5i, 5W,=0
:P is used to find the regulator feedback gains. This model is typically used only in determining the

regulator gains - -_K. It is not generally used for the design of observer gains (')L (although it could be),

since that design problem can be reduced to one oflower order, as noted before.
w4 to.

+

+'

Figure 4. Regulator synthesis model.

\ ¢

4-

Observer Synthesis Model

Tile observer uses the measurement vector _z(e.g., measured relative positions and accelerations) and

tile control vector L_as inputs to produce observations of the state vector. (In general an observer is

needed to estimate the unmeasurable system states. Only rarely will all system states actually be available

for measurement, and never will the disturbance-accommodation pseudostates actually be capable of

measurement.) Kalman-Bucy filter design uses knowledge of process noise and sensor noise covariance

matrices (and, if necessary, cross-correlation matrices) to produce optimal observer gains ()L, in the sense

of optimality previously discussed. If the complete augmented state vector 5x is to be observed, then an

appropriate observer synthesis model would be as depicted in Fig. 5. -SLwould be found from the equation

-_L= ( 5Q :Cr ._ 5E, -2 n, ., '. (19a)

where :() is the unique PD solution to tile following ARE,

._ So+ 5Q 5_z_ 50 5cT ( _L;,5I_ 5ET )-,.sc:O+ 5E.S _ ._Er = O (19b)

and where 5_= 5A_(5F, 51_ _Er)(_E,, 51,3 5Er)-, 5C (t9c)

- -- - UC)-'  lgd)5i_ 51.3 _I'2 r.,, !'., ._
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and I l, _I,'2, 5t_, and 5E_ are as defined previously.

Equations (19b, c, d) reduce to the form
, J r 5,-T +, +'E, E,])'A'Q+'o'AT-('Q'C'+ E,,v, e:)('E.'_; _:.) (Q 'cT 'v,"

+ 'E. 'V, 'U, -- 0
(19e)

u_

+

Figure 5. Observer synthesis model, observing all states and pseudostates.

ttowever, as noted previously, the observer does not need to reconstruct the frequency-weighting

psendostates z_t and z_:. This fact will permit an observer of smaller dimension In this case Fig. 6 will be an

appropriate observer synthesis model, with pertinent matrices defined as follows. 6L would be found from

the equation

: 6 ,T 6 7" )-16t, ('0 'c T+'F-, 't; ,_:°)(_F.. 'v, _, (20.)

where :Q is the unique PD solution to the following ARE,

6_l _O + _Q aftr _ eQ eC, ( eE. _l_ 6Er )-' :C 6Q '- 6Es _'t 6E_ --0, (20b)

'_ : 'A-( % 'v, %")('r.° '_,:,'_:_")-''c (2oc)
~ 6 -,T "_n )-I% :_ _; - 6x,3 _:. ('E. 't5 '_." 'E, 't5_ (200)

,_l.5 =5V/. 6V: : -_I.2, '_V3 = 5V: (20e,f,g)

and where

_E,= /3. O . _! = O A. 0

0 B. 0 o A.

, eC=[C 0 E.(:.] (20h,j,k)

Equations (20b,c,d) reduce to the form

t + _'..,'_/", _'0 '(:_+_F,'l) )"+_F., o (20m)
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Figure6.Reducedobserversynthesismodel.

NominalAnalysisModel

Oncethe active vibration-isolation controller has been designed, it can usually be reduced in size by

modal truncation and/or balance-and-truncate ("Moore's method," ref. 22). Then the closed loop system
can be evaluated, with the controller applied to the actual plant.

analysis model can be portrayed as in Fig. 7.

'1
Letting the state space system {,4ran , BF/B, Cr,,_ ' I)F/_} represent the feedback controller, a nominal

Checks on nominal stability can be made by simple eigenvalue

L

\

+

/t-

I
Figure 7. Nominal analysis model.
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checks of this closed-loop system. Nominal performance can also be conducted readily using this model.

With the appropriate placement of complex A-blocks to represent system uncertainties, one can also

evaluate the system for robust stability and robust performance guarantees, using the powerful methods of

mu-analysis (tee 23).

DESIGN PttlLOSOPttY FOR "FILE MICROGRAVITY ISOLATION PROBLEM

With tile synthesis framework now in place, as presented above, the designer must choose a reasonable

strategy in order to use his I-t2 synthesis tools with skill, tte must determine what states to use, what

fiequency-weighting and disturbance-accommodation filters (if any) to employ, the relative weightings of

the resultant frequency-weighted states and control, and the relative weightings of the various noise

vectors in his system model. The designer must also decide which measurements to make, whether to use

the full- or the reduced observer synthesis model, and whether to conduct the regulator- and observer-gain

sub-problems in sequence or in combination.

One primary goal in controller design should be simlgicity. The construction of the controller will be

easiest, and its speed of operation fastest, if its complexity (i.e., the number of controller states) is kept to a

minimum. To accomplish this aim, the authors recommend that the engineer seek to design the controller

by starting with basic (unextended) t1-2 synthesis and adding complexity "one layer at a time." For example,

he might first determine if basic LQG is adequate, and then add appropriate frequency weighting and
disturbance accommodation step by step, evaluating after each addition whether or not the design is

acceptable. If not, the next layer of complexity could be added based on the present design inadequacies.

Once an adequate design has been found, it is recommended that the controller order (i.e., number of

states) be reduced by using modal reduction and/or balance-and-truncate. This "step-up, step-down"

philosophy should keep controller complexity to a minimum.

A second fundamental goal should be intuitiveness. Unless the problem is posed in such a way as to

employ the designer's intuition, he will find it very difficult, especially with a three-dimensional problem, to

proceed with any degree of speed. The single most important step toward an intuitive problem is the

proper choice of plant states. For the microgravity vibration isolation problem, the authors believe that a

reasonably physical choice is payload relative position, payload relative velocity, and payload acceleration.

A heavier weighting on payload relative position (in the cost functional matrix WI), for example, signals the

tt 2 machinery to attempt to increase system stiffness. Similar analogues exist for the other two suggested

states, as noted before. And at least two of these states are readily measurable for microgravity systems.

Such state choices, then, allow the designer to assign his weightings with a degree of "physical feel," so

that extended 1-tz synthesis becomes more of a craftsman's design tool, rather than a black box for use in a

time-consuming trial-and-error approach.

The designer must also decide whether or not to conduct tile regulator- and observer-gain design

problems independently. The well-known "separation principle" guarantees that for a perfectly known

system the regulator gains K and the observer gains L can be designed independently. One approach, then,
would be first to design the regulator to meet the design goals, and then to design the observer to produce

a state-vector estimate that is "accurate enough" over a "sufficient" bandwidth. The frequency-weighting

and disturbance-accommodation extensions, however, affect the state observations in such a manner that

"accurate enough" and "sufficient" are quite difficult terms to define. The closed-loop system must be

analyzed as a whole for this purpose. The existence of an observer bandwidth can also be used to enhance

overall system performance, so that a full-state-feedback system with inadequate performance can actually
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performquitewellwhentheobserver is added. Since the system stability- and performance robustness
must ultimately be evaluated for the total closed-loop system, it is recommended that the entire controller

(i.e., the observer-plus-regulator) be designed as a unit, rather than in parts.

For the microgravity vibration isolation problem, studies to date indicate that I-t2 synthesis extensions

are necessary, ifone is to produce a practical control (ref. 16). This being so, there are certain fiequency

weightings that are very reasonable choices to use. At very low frequencies, indirect disturbances (i.e.,

orbiter positional deviations from a perfectly elliptical orbit), will be much larger than rattlespace

constraints will allow. In the Iow-fiequency region, then, the payload relative displacement should be

weighted heavily, and the payload acceleration, lightly. These weighting choices could reasonably be

expected to call for a controller producing unit transmissibility between orbiter and payload, at low

frequencies. In the intermediate frequency range, where payload acceleration is of most concern, that state

should be weighted heavily. At higher fiequencies, where the plant model is not well known, high control
weightings and low state weightings should be used to call for reduced control.

Certain disturbance-accommodation filters, as well, will be appropriate for the problem, while others

will be inadvisable. From a physical perspective, a more massive experiment would be less susceptible
either to direct or to indirect disturbances. One could expect, then, that an input disturbance filter which

models a large direct disturbance would call for a controller tending to make the system seem more

massive (electronically). On the other hand, an indirect disturbance alone (i.e., acting through the

umbilical) could be attenuated effectively either by a greater system effective mass or by a reduced system
effective stiffness. The latter means ofdisturbance attenuation is ineffective for direct disturbances. It also

tends to reduce the stability robustness of the system, ttence, the designer should be wary of having too
large an indirect disturbance model.

Output disturbance accommodation and control noise should be included in the system model only if

necessary. Research to date does not indicate that either is needed for microgravity vibration isolator

design. Again, the goal is to achieve a satisfactory controller that is as simple as possible.

Observer design involves the numerical solution of an ARE. An ARE involving matrices of smaller

dimension will be less susceptible to the numerical difficulties which sometimes attend such solution

procedures. It is preferable, then, to use the reduced rather than the full observer synthesis model.

CONCLUDING REMARKS

Active vibration isolation of microgravity science experiments is a three-dimensional, MIMO design

problem requiring sophisticated design- and analysis tools. Modern control methods provide the most

natural setting for handling this problem, and with a suitable choice of states, modern-control design can be

conducted in a relatively intuitive fashion. The ti 2 synthesis approach can be extended, using frequency

weighting and disturbance accommodation techniques, to give the designer great flexibility in building a

suitable controller. Implementation of these extensions involves a straightforward augmentation of various

system matrices, so that the ARE-based solution methods of LQG synthesis can be readily applied.

Extended tt 2 synthesis provides the necessary tools for the design of a robust isolation system. This paper
has provided a general framework for using extended It 2 synthesis to design the controller for such a
system.
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In addition to the basic plant model, there are three complementary system models that are of use in

conceptualizing the synthesis problem. Observer synthesis requires fewer pseudostates than regulator

synthesis, so two respective system models are needed to reflect this difference. The controller model is

developed by combining the observer and regulator models, followed by reduction of the controller

dimensionality. Attachment of this controller to the basic plant model produces an analysis model that can

be used, with mu-analysis methods, to evaluate the closed-loop system in terms of its stability- and

performance robustness.

This paper has also suggested a general design philosophy for applying the extended 1t 2 synthesis

machinery to the particular design problem at hand. In addition to an overall design strategy, reasonable
state choices were suggested, and basic practical guidelines were given for the effective use of frequency-

weighting and disturbance-accommodation techniques.
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