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Abstract: In this paper we develop a dynamical model of a rotor and the active magnetic bearings

used to support the rotor. We use this model to develop a stable state feedback control of the magnetic

bearing system.

We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler

Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state

feedback control of the actively controlled magnetic bearing to control the rotor position under imbalances.

The control law developed takes into account the variation of the model with rotational speed. We show

stability over the whole operating range of speeds for the magnetic bearing system. Simulation results

are presented to demonstrate the closed loop system performance. We develop the model of the magnetic

bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing.

We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces

amongst redundant actuators.

1 Introduction

Several representations of rigid body rotations, including Rotation Matrices, Cayley -Kline parameters, Euler Pa-

rameters & Spinors ( [K.W86] [PP80] [OB79] ) have been developed. Conventional methods of deriving rigid body

dynamics utilize the Euler angle parametrization of the space of orientations of the rigid body. Such a parametrization

of SO(3) suffers from coordinate singularities. The singularities are entirely a result of the choice of parametrization.

A parametrization that is globally nonsingular is the parametrization utilizing Euler parameters (unit quaternions).

In this paper we develop the dynamical equations describing the rigid body model of a rotor supported by actively

controlled magnetic bearings, using rotation matrices (parametrized by euler angles) and using euler parameters.

We begin this paper by giving a brief description of the various mathematical terms and ideas that will be used in

defining rotation matrices and euler parameters [YCBDB82]. We present some of the properties of rotation matrices

and quaternions. We derive the dynamical equations of the rotor supported by active magnetic bearings using both

rotation matrices and quaternions. We present the development of a stable state feedback control law and simulation

results of the system when controlled by this state feedback control law. Most magnetic bearing systems arecomprised

of redundant sensors and actuators. We present a linear algebraic technique utilizing the method of least squares to

average multiple measurements and split the actuation forces amongst redundant actuators.

2 Preliminaries

The magnetic bearing system utilizes many frames of reference, in which various quantities such as positions, velocities

and angles are described. In this section we will set out the notation by which we will refer to the various quantities.

Also we will present some of the definitions and facts necessary for the derivation of the dynamical equations.
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2.1 Notation

In this section we will set out the notation by which we will refer to the various quantities.

s Vectors will be referred to by lower case letters, with an arrow on top. Position vectors will be represented in

either Cartesian or spherical coordinate systems. Representation of vectors in Cartesian coordinate systems

will be the )_, Y, _ components of the vector. Vectors would also be represented as column matrices. The

components of the column matrix would not contain an arrow.

Example 2.1 The vector _ would be represented in either of the two ways.

= a_t+ayY+az2

[']a _ ay

az

The components o] a vector would be written without the arrow on top.

• Matrices and tensors will be referred to by upper case letters. Dimensions and components of the matrix will

always accompany the notation. Example: A E _3×a

• Variables and constants will be denoted by lower case letters, and will be accompanied by a statement concerning

their dimension. Example: 0 E S.

• When referring to variables, which are described in a frame of reference, the subscript of the variable will refer
_rotor

to the frame of reference. Example: wi,_,_

• We will use three frames of reference primarily.

1. The first frame of reference is the fixed inertial frame of reference. This frame will be referred to as the

inertial frame, and the subscript inertial will accompany variables described in this frame of reference.

The orthonormal coordinate vectors of this reference frame will be denoted as _inertial, ?Lnerttal, 2inertial.

2. The second frame of reference is rigidly attached to the center of mass of the rotor, and moves with the

rotor. This frame will be referred to as the rotor based reference frame, and the subscript rotor

will accompany variables described in this frame of reference. The orthonormal coordinate vectors of this

reference frame will be denoted as _roto_, Yroto_, 2_oto_. The orientation of the rotor frame is along the

principal axes of inertia of the rotor. The origin of the rotor frame is at the center of mass of the rotor.

3. The third frame of reference is attached to the center of the magnetic bearing. We will say more about

this frame later. The origin of this frame is coincident with the center of the bearing. This frame will be

referred to as the bearing based reference frame, and the subscript bearing will accompany variables

described in this reference frame. The orthonormal coordinate vectors of this reference frame will be

denoted as )_b_,-9, _7_'_i"9, 2b_o_,,g.

• Rotation matrices relate the orientation of vectors in one frame relative to another. The convention we employ

through this report would be as follows.

_" _ _Jrame--1

2 I ..... _ =7 j ..... _

I?]rarne--2
where "_]_,_-1 is a rotation matrix that expresses the basis vectors of frame - 2 in terms of the basis vectors
of frame - 1. The rotation matrix can be expressed as a combination of basis vectors of both the frames in

the following manner. Given that the basis vectors of frames 1 and 2 are represented with the appropriate

subscript,

[ _f 2 _" , frame--1 _f 2 ,_f l 'f 2"_f 1 ]"..... ..... .....
"'f ..... 1 = _[ ..... 2" Z] ..... 1 ¢[ ..... 2" Zf ..... 1 2] ..... 2" 2] ..... 1

• Position vectors of objects will be referred to in the following manner.

I ob3ect

r x--]rarne

-,object ob) ect

rfram e _ ry_]ram e
object

r z-- lrarne

(3)
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• The cross product form of a vector is referred to as S(.). That is

_×g

S(a)

= S(a)b

[°_ a z

gy

['1= ay

az

[']g = by
bz

• A unit vector in the direction of an object will be represented as

x--Jrarne
_object object

Uy .... = uu- ! .... (4)
_ object

z--]rarn_

-*obJect

r.fram¢

= e?J"' (5)
frame[I 2

-.object /r object 12 r object 12 r object 12

r I .... 2 = V[rx_y .... J + [ry-] .... J + [rz-y .... J (6)

--az ay ]

0 -ax

ax 0

• By norm, we refer to the Euclidean norm of the vector throughout this report.

._f rame-- 2--ort gin
* If the object being referred to is the origin of a coordinate frame, it will be referred to as r I ..... 1

To set the ideas clear, consider the following examples.

Example 2.2 The origin of the rotor coordinate frame, as observed in an inertial reference frame would be
represented as

x--tnertia_
-_rotor--orlg_n rotor--origin

r in¢rttal = ry--,nert,al (7)

rrOtor --origin
z--tnertia!

We tag the word origin when we explicitly refer to the origin of a coordinate frame.

• Homogenous Transforms

Mappings between points in the Euclidean group SE(3) to points in SE(3) are represented as 4 × 4 matrix

transformations that map a position and orientation of a frame to another position and orientation. Such

mappings are termed homogenous transforms, and in coordinates are specified as follows.

T !..... 2 SE(3) SE(3)]rarne--I : --'+

1 1

x--Jrame--1

RJrame--2 r]rarne--2--origin
Z frame-2 "_]rame--I _--Jrarne--1

]rame--I = r]rame--2--ortgtn
z--fram¢--I

[0 0 0] 1
Tl_arne-2The inverse of a homogenous transform I_ .... l is represented and given as follows.

]rame-2]-I
frame--1 J

: T frame-1
]rarne--2

x--frame--1

[Rfrarne-2]T __[Qframe-2lT r]rame-2-origin
: L frame--lJ tA_]rarne--lJ y--frame--1

rJrame--2--origin

[0 0 0] l'-' ..... '
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Example 2.3 The homogenous tranformation tranforming coordinates of the origin of the bearing coordinate frame

as observed in the inertial coordinate frame to the same coordinates as observed from the rotor reference frame would

be represented as follows.

bear=rig--origin 1

rx--rotor

bearing--origin
r --rotor

_earlng--origin

r z--rotor

I

bearing--origln

Tx--iner till

bearing--origin

..pinertial r__inertial .
rotor oearlng--or|gtrl

rz--inertial

1

rx--rotor

is_}inertia| inertial--origin
J _rotor ry --rotor

inertial--origin
rz--rotor

[o o o) I

bearing--origin
rx--inertial

bearing--origin

r_--inertlal . .
oearlng--origin

Tz--inertial

1

(9)

2.2 Definitions

We will use the properties of linear vector spaces, quaternions and quaternion algebra. In this section we begin by

defining vector spaces and algebras. We then proceed to state/derive the properties of rotation matrices and euler

parameters (quaternions and quaternion algebra) [L.A79] fAR88] fAR89] [RA87] [K.W86].

Groups: A group is a set X with an internal operatien X × X --* X, such that

• the operation is associative

(xy)z=2-(yz) V2-,y,z E X,

• there is an element e E X called the identity such that

ze=ez=z V zEX,

• for each z 6 X there is an element of X called the inverse of 2- (written 2 "-1 ), such that

--1 --1
2- Z_---22- _e.

Usually this group operation is referred to as multiplication. If the operation is commutative then it is referred

to as addition and the group is called an Abelian Group.

Ring: A ring is a set X with two internal operations called multiplication and addition, such that

• X is an abelian group under addition,

• multiplication is associative and distributive with respect to addition.

If the group has an element e 6 X such that e2- = ze = z V z 6 X it is called a ring with identity. Also, if

2- E X has an inverse, then it is said to be regular.

Field: A field is a ring with identity, all the elements of which (except zero, the additive identity) are regular.

Module: A module X over a ring R is an abelian group X with an external operation, called scalar multiplication,

such that

_(z + y) = _x + ay

(._)_ = _(_)

for all c_,_ E @%and x, y E X.

Algebra: An algebra A is a module over a ring R with identity with an internal operation called multiplication such

that

• Aisaring,

• the external operation (_, 2-) --+ c_x is such that

_(2-y) = (_2-)y = _(_y).

Vector Spaces: A vector or linear space is a module for which the ring of operators is a field. Its elements are called

vectors.
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Quaternion: Quaternions can be viewed in many ways. A quaternion is defined as an operator with a scalar q0 and

a vector part _', expressed either as a sum of its parts,

q = {q0+q-_

or as a four dimensional vector,

q__ [q0]_ •

If q0 = 0 then the quaternion is called a vector quaternion, and if _'= 0 then it is said to be a scalar quaternion.

In this paper we notate the quaternions by boldface letters.

2.3 Properties of Rotation Matrix

The rotation matrix that relates the orientation of one frame relative to another requires the specification of three

angles, and can be parametrized in a number of ways. We now indicate two commonly utilized parametrizations.

* Fixed Axis Rotations: Let frame - 1 and frame - 2 be coincident to begin with.

- Rotate frame - 2 through an angle 0x about the vector _! ..... 1.

- Rotate frame - 2 through an angle 8y about the vector 9 I ..... 1.

- Rotate frame - 2 through an angle 0z about the vector _lrQme--1.

The resulting rotation matrix, relating the coordinate vectors of frame - 2 to the coordinate vectors of frame - 1

can be given as

.,..... [ os,sin.0] 0 0]! ..... a = sin0_ cos0x 0 0 1 0 0 cos0_ -sin0_

0 1 -sin0_ 0 cos0y 0 sin0_ cos0_

Comment 2.1 Note that as the successive rotations are performed about the fixed axes, the rotation matrices are

premultiplied in the order in which the rotations are performed.

Ryra.,¢-2 [ cos 0_ cos 0u
I_Qm¢-1 = sin 0. cos 0_

/ -- sin 0u

cos O, sin O_ sin 0:_ - sin O_ cos 0,:

sin Oz sin Ou sin O_ + cos O, cos O_

cos O_ sin 0_

[']. ['].? = RI ..... 2 12
]ram_--I

cos O, sin 0 u cos O. + sin O, sin O. ]

sin O, sin Ou cos 0_ - cos O. sin O. ]cos Oy cos O_

(10)

(11)

• Moving Axis Rotations: Let frame - 1 and frame - 2 be coincident to begin with.

- Rotate frame - 2 through an angle 0_ about the vector _! ..... 2.

- Rotate frame - 2 through an angle 0u about the vector 9 I ..... 2.

- Rotate frame - 2 through an angle 0_ about the vector )_y_,,_¢-2.

The resulting rotation matrix, relating the coordinate vectors of frame- 2 to the coordinate vectors of frame- 1

can be given as

.,...... [ os,si., 0 0]! ..... 1 = sinO_ cosO_ 0 0 1 0 0 cosO:_ -sinO_
0 1 -sinO u 0 cosO_ 0 sinO_ cosO_

Comment 2.2 Note that as the rotations are performed about the moving axes, the rotation matrices are post-

multiplied in the order in which the rotattons are performed.

cos O_ sin 0u sin O_ - sin O_ cos Ox

sin O_ sin 0u sin O_ + cos O, cos 0::

cos 0u sin O_

cos O_ sin 0 u cos O_ + sin O_ sin O_ ]

sin O_ sin 0 u cos 0_ - cos O, sin 0.; Jcos Üy cos Ox

(12)

(13)

R]rarne-2 [ cos0zcos0y
frame--1 : sin 0z cos 0v

t - sin Ou

[']= R .trame-_ _,
.frame--1

.[rame--I Z frame-2
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We now note three important properties of rotation matrices.

R/ ..... 2 o_ -! ..... 2_I ..... _ (14)
frame--I _ _ frame--I ) "_]r@me-- I

d .R/,-ame_2_T rD/rame--21T_t_/ ..... 2 _ (15)

S,_/,a,,_e-2 , _l,-ame-2 Sta,_Rl,Om_-I (16)
_'t f rame--I a_ = X_frame-I _, / frame--2

_Ve will now derive expressions for a_gul&r velocity of the object _s a function of the deriv&tives of the p&rametriza-

tions of the orient&tion xng|es. We will now derive the derivatives of the elementary rotation re&trices.

R(0.) = [

_dr(o,) =
dt

0 COS Ox

0 sinO_

°0 - sin O.

0 cos O_

O 0 0

0 0 -0,

0 O. 0

= S(&)R(O.)

_ R(O,) = S(O,)R(O,)

R(o,) = s(L)R(o.)

For the case of fixed axis rotations,

R/tame-2
]rame--I =

_d RS,,,n,_2 =
dt /rame-z

d --/rame--2

_ _yrGme--! =

d --frame--2

"_ K/tame--1 :

St ./_am_--2 x a/rame--2
_W]rarn,s-- 1 )l_frame--1 =

S( ./tame-21
_,gOframe-- 1 / :

We simpfify the above expression

1 0 0 ]- sin O.

cosO.

0 ]
- co6O, 0.
- sm O_

[1 0
0 cosO_

0 sin 0.

St .frame--2 x

_W frarae--1 )

o]- sin O,

COS O_

we note that

R(O,)R(O_)R(O,)

[d R(o,)]R(Oy)R(O.) + R(O,)[d R(oy)]R(O.)

+R(O,)R(0,)[_R(O.)]

S(O,)R(O,)R(O_)R(O,) + R(O,)S(O_)R(Oy)R(O.)

+R(O.)R(O,)S(e,)R(O.)

S(L)R(#,)R(0,)R(#,)

+ R(O, )S(0, )R r (0,)R(O, )R(Oy )a(o, )

+R(0,)R(#,)S(0,)[R(e.)R(e,)I_a(o,)R(o,)R(o-)

0 0 R 1 ..... 2[s(0,)+ s(r(o.p,)+ S(R(O,)R(,),)]_.....,

[S(L)+ S(R(_.)O,) " ".....+ S(R(O,)R(O_,)O,)]R_ .....

S(O,) + S(R(O,)O,) + S(R(O,)R(O_)O,)

to get,

0 -0, 0 ]

9, o 0 ]0 0 0

[° °0 0

-cosO,O_ - sin 0,0_
cose,O_ ]
sin 0,0_

0

0 sin 0_0. cos 0 u sin 0,0_. ]
+ - sin 0_0, 0 - cos Ou cos 0,0, ]- cos O_ sin 0,0. cos O_ cos 0,0, 0

0 z--frame--1 _y--frame--1

frarae--2 frome--2
--_ ¢dz_frarae_l 0 --taYx_frame_ 1

_frarne--2 _f rame--2
y--frame--I x--frame--I 0

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(2s)

(29)

(3o)

(3_)

(32)

(33)

(34)

(35)

(36)

(37)
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2] [...... ]_-I ..... 1 cos 0 u cos 0_0_ - sin 0_0 u
_ofrarne--2

y-S ..... 1 = cos O_ sin 0,0_ + cos 0_0_
_)frarne--2z-! ..... I O, - sin OyO_

cosOycosOz -sing_ 0 "]
= cos 0 u sin Oz cos O, 0 J- sin Ou 0 1

(38)

(39)

Note from equation (39) that determinant of the matrix relating the angular velocities of frame-2 and the derivatives

of the parametrization cos0u. Therefore, the matrix is invertible for small values of the angle 0u.

2.4 Properties of Quaternions

We will present here the properties of quaternion algebra that we use in this paper 1 [K.W86] [OB79]. We will also
derive the derivatives of quaternions.

Quaternion addition: The sum of two quaternions x and y is given by

g+g •

Quaternion product: The product of two quaternions x and 5' is given by

xy = x0i'+_x _ Y = x0g+y0£+ xg "

Quaternion conjugate: The conjugate of a quaternion q is given by

.[,o]q = __. •

Quaternion norm: The norm of a quaternion q is defined to be

Ilqll2 = q'q = q02 + _'. _'.

This is analogous to the euclidean vector norm of a four dimensional vector,

Quaternlon Inverse: The inverse of a quaternion q is defined as

q-1 1 ,
= U--_q •

It can be verified that this inverse has the property that

q-lq = qq-1 = 1.

Rotation operation: A rotation of a vector £ by 0 about an axis ff is given by

q£q*

where q is the quaternion given by

q = / sin(°) _ ]
COS(°)

The derivatives of the Quaternion representing a rotation operation are given by

Cl = q{Tw}

1 - q{l_}{1 ._ =q{_b}+ _w}

where _7 is the angular velocity and t_ is the angular acceleration.

The angular velocity and angular accelerations are given in terms of the quaternions through the following relations:

u7 = 2q* 6

w = 2q*_ + 2dl*_ 1

1Boldface letters represent quaternions
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Let us now calculate the derivative of the conjugate of the quaternion. As the quaternions representing a rotation

operation are unit quaternions (unity nortp), the inverse is the conjugate. Hence

1 = qq*

0 = _lq'+q_l"

_1" = -q-l_lq*

= -q*_q*

= --q q/_w)q

2.5 Relation between Rotation Matrices gz Euler Parameters

The operation of rotation by an angle 0 about an axis 6 can be represented by both a rotation matrix (R) and euler

parameters (q) as

R = cos(0)_ + (1 - cos(0))66 T + sin(0)6x

= [ cos( )q sin(_)_ 1

These two representations can be related as follows:

R = (qo 2 - _T013x3 + 2¢( + 2q0_'×

3. Dynamical Equations of the Rotor

In this section we derive the equations of motion of the rigid body rotor supported by active magnetic bearings. We

begin this section, with a derivation using rotation matrices, and then proceed to do the same using euler parameters

(quaternions).

3.1 Dynamical Equations using Rotation Matrices

To eliminate ambiguity regarding the specification of reference frames, we will primarily work in the rotor reference

frame, and finally transform the coordinates to the inertia] reference frame. We derive the dynamic equations of the

magnetic bearing in a systematic manner. For an excellent exposition on kinematics, refer to [RS94].

Step 1.
We compute the angular momentum of the rotor about the origin of the rotor reference frame, denoted as /_rr°_o°_

" rotor rotor _rotor

Hrotor -_ ]rotorWrotor
(40)

Step 2.
We utilize the principle of torque balance to relate the rate of change of angular momentum to the net torque•

We note here that by net torques (T r°t°r) we refer to the summation of the applied torques (r r°t°r, and the moments

of the applied forces (if') about the origin of the rotor reference frame. It is to be understood of course that the

quantities on either side of the equality will be referenced in one coordinate frame. Indeed to avoid ambiguity, we

will henceforth refer to each of the aforementioned quantities in a single coordinate frame• Expressing all quantities

in the inertial reference frame, we get

rotor
l_rotor : rotor ninertla| _rotorIrotor ltrotor ¢dinertlal
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Step 3.
We utilize Newton's torque balance equations to derive the following.

rotor
T_ ot or

.rotor _ "ir_otor + _'_oto_ x Frotor

l=l

Rinerttal .rotor _ Dinertial ff irotor Tinertial -_ _rotor X ILroto r zlnertlal

l=l

d _ rotor-

= _i[Hrotorl

rotor " rotor _rotor _ rotor
= lrotorWrotor +_rotor X Hrotor

rotor _rotor
Irotort_rotor



I fter|l_ _r Ot Of _ iTleri IG_R ..... ri._.,,°L + _',otorx R_o,or f, ...... L
gm.....d

|=l

Inertial --rotor _ -,4Rro,or r,._,,oL + S(r_o,o_)R.o,o.'_'"°_ Fi._.,,_4"1

._ nlnertlQL --rotor inertial rotor "rotor

_otor ")inert,aL X J_ro¢or _,nerc,alH=otor

rotor &roto_

[rotor "J ro_ or

ji r_lnel't laJ r _rotof Rrotor Trotofr_rlertlaL._rotor
_l'_otor _JinertloL _ tnertta_lrotor -CLrotor _tnertIGL )

rotor _rotor

[rotor "_rotor

tnertlal --rotor rotor rotor inertial .rotor

+Rroto,- S(wi.er..L)Ri..rt,.LlrotorRrotor .oi._rt,._

iwhere/'rotor is the point of application of the force f,_.rt,oL, and is given as

[ ] [ 1rx--rotor _--inerttai

r t 1. I
y--rotor T thefts°4 y--_nert,aL

I _ " rotor rt
r z--rotor =--tnertiaL

1 1

rx--lnerttal =--|nerteal

_lnertlal R inertial rrotor--ormg tn i

"'rotor -- -_rotor _t-- mrlert iaL 7"Ij--iylertta|

r rotoP_orlgln i
=--inertio_ r z--inertlai

[o o o] 1 1
&rotor .

We now compute _orotor m the following manner udlizing (14) - (16)

:.rotOr d r r_rotor IT .rolor

_Jrotor -_ "_LZlkinertia|J _Jirler t ,ai

[ rotor T "_rotor
L_inertta4] _inertl@4 rnrotor 1Tol _rotor _ _rotor

-- L_inert,aLJ "_inertloi)_/inerttoL

f rotor IT "-rotor
"_ LRinerrioLJ _iner ttoi

ninertia4 :.rotor

-rLrotor _inerttaL

_.rotor

Substituting the expression for Wrotor from equation(40) in the torque balance equxtion, we get

n

rllnertlaL _rotor -- _ r,[ --_ xnlnertt_4 Ni

IT_ro$or Tinerttoi "P _ D_Trotor)llLrotor _inert=aL

(41)

(42)

(43)

(44)

(45)

(4_)

irotor r_tnerttai _.rotor

rotor Z_Lrotor _.d inertial

._t r_trlertia4o_ _rotor _nrotor .rrotor_lnertlai --rotor

_q'rotor _inertl_i J 71L_nert,alJrotor _l_otor _inert,al

We now recast the above equation in the following form

_.rotor rrrotor D,nert,_l--1 fninertlo,_ _rotor _-_ _ -.4 _ nlnertla_ r_i

_inerttai = [.*rotor 11"rotor J [llLrotor 7",nertta* + _ otrrotor)arotor ti.ert,,u]' (47)
i=l

rotor ,nertt°| --1 inertial --rotor rotor rotor anerttal --rotor

-[Iro,orR.otor ] [Rrotor S(w,._.r,,., (48))R, ...... _Iro,or Rrotor _oi..r.o4]

:.rotor Drotor rrrotorl--I rnmnert=al -.rotor _. _,/ -,a _nin_rtlaL _-_i "_
_inerttal -_ *_inertma4[drolorJ tn,otor _'inertloL + D(rrotor)-ttrotor #inert,all (49)

Rrotor r yrotofl--l _inefttal o/ --rotor _ nrotof rrotor'nlnertioi .rotor
-- tnert'alLlrotorj [Lrotor O_inert,a|)lYinertt_llrotor _rotor _inertial (50)

Step 4.

We derive the force b_a_ce equations by first calculating the expression for the linear momentum of the rotor
in the following manner.

rotor
_rotor _ rotor -*rotor17l IJ r o t o r

rotor _tnertl_L ...rotor

17"1' J_rotor _inert|aL

Step

Newton,s law asserts that the rate of change of lineax momentum equals the applied force. That is,

n

_inerttaL_i]_inerttaL _ _ d "rotor

rotor L.rotor _rotor "rotor

= m Vro, or +_ro, or × Lro,or (52)
rotor _.rotor _/ r_tnertlaL _rotor _ rotor nlnertt_| -.rotor

= m Vro,or +,-_t*trotor _i,,,rt,o*,m _rotor Vi,,.rt,oL (53)
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:.rotor
We now compute V.otor in (53) in the following manner utilizing (14) - (16).

=to,or _rd mrotor _rfT.o,o,- (54)
v..... = _La, ...... ,i i...,o,

roroto r 1T :.rotor r--rotor _T _,. ro(o," _ -_roto,- (55)
L,Ltnert=aej UInertlal -- [_lnerttalj "-_tnert,6(J 1Jinertla=

.... ..4 .rot ..... (56)..... t,._- .... R.... S(w,...,,.=)r, ...... ,= ]'I.ro¢o. e Uinert=a_ --

_rotor

Substituting the expression for v.oto_ from equation (56) in the force balance equation (53), we recast the force

balance equation as,

n

R ....... ' Z _: ro, ...... t,_, : ...... ' ......... ' ..... ,or _..oto_ (57)''rotOr nertta4 _ 771 _ro¢or l}i_ertla| -- ?n _rotor D_Jinert=al] inert=al

I=1

rot........... _._otor _o.... ,,.4_..oto_ (58)
Jf-IF_ *_l'f_.,rotO,r ;,#Jiner¢lG_).t.roto¢ tnertl¢_|

(59)

We now rewrite the force equation (58) in the following form

t/inertl¢_ ?nro¢or

i==l

nrotor C'/ D inertial .ro¢o_ _Dlnertla= r,rotor (61)
_/1Liner t in4 _ 2 Lv.o¢or _inertla_)4S.ro¢_r _tnertlal

Note that the lsst term in equation (61) may be simplified in the following manner.

R_o.,_ .... ,._.=,o_ ..otor _,.e_.oL,,-_oto_ _ro=or .,._otor_rorotor lr_o=or (62)
inertlalD_-rLrotor _Jinertia4)aero¢or _inert=a| _ X_inertla_O_ cdrOtOrjLlxinertma|j Uinertla(

rot_ _ro_ -.rotor
= S(R, ...... ,w .... )v, ...... , (63)

.to,or -._o,or (64)= S(_,._rt,o,)V_..r,,o,

Substituting the expression in equation (64) in equation (61), we arnve at the force balance equations,

n

"_rotor 1 Z -tl_' .rotor -*trOt ......... tot = (65)

_ _._.,,,,, (66)
Fnrolo_

Collecting the force and torque balance equations, we write the dynamic equations of the magnetic bearing as

follows.

_, .= , _,.er=,a_ _, _ (67)
@Jinertmai:*r°t°t" = l_inerttalL_rotm'Jnr°t°rrrrotorl- I fDmnerftalL_q_r ot or _.r.;.otoi_inertta¢+ -- O_rrotor }/trotor [inertla_J

.rotor f,rotorl-Z o,nert'at ct-r °tor _rotor /rotor R,-ert'a_roto_,= ( (68)
_rLiner¢ialL4_ot_J JI_'_otor _\_J*nert,al] a_snertlal _O_O_r _Ot_ Iner[

, (69)_rot¢ I _Inertmal

IN(hereto ( -- _ir_ ro¢or

3.2 Dynamical Equations using Quaternions

As we saw in the previous section in equation 69 the force balance equations essentially are a restatement of F = ma

in the inertial coordinates. So we will only consider the angular momentum equations.

d " rotor-

T;ros_. = -_ [ H. o,orJ

_ro¢or _-_ i rotor " rotor _rotor _ rotorr_o, or + ÷'to, or X _'otor = Iro, or_oto. + _.otor X H_otor

_.==1

Let us look at the first term on the right h&nd side of 71 initially.

rotor " rotor .rotor d _ iner_°_ _rotor ;nert|al * _

Lotor._rotor = l.otor dt (qrotor w,.e.t,o_ro_or
rrofor _ • iner¢l°_ .rotor inertloL * t_r¢lO_ .--rotor tntr(l°_ =

= lrotor [qro*or _Jinerttolqro¢or + qrotor _inertmaiqrotor

(70)
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._ inertial _rotor , inertial*_

qrotor tdinertialqrotor )

.rotorz inertial . 1 .rotor _ _rotor inertial* inertial ,-.,rotor inertial*

lOJinertialqrotor qrotor _dinertialqrotor= Jro,or(qroto_ I_O:inertial +

inertial _rotor inertial* inertial t I _rotor _ inertial*

--qrotor tOinertialqrotor qrotor I'_Winertial._qrotor )

rotor inertial 1 rotor rotor * *r e " t _ • - nertial __ inertial _rotor inertial*

= lrotor(qrotor I_tdinertiallOJinertialqrotor t qrotor tOinertialqrotor

2

rrotor ( inertial .-*rotor inertial * _

-'_ 1rotor I.qrotor OJinertialqrotor )

Substituting this back into 71 we get

n

Trotor_r°t°r "JI- _ _rotor X l/_rlotor rrotor[ inertial .-*rotor inertial*_ .rotor rotor= 1rotor [qrotor O_inertialqrotor ) "_- 02roto r X I'_roto r

i=l

n

inertial _rotor inertial* _'_[ inertial -4 inertial* tnertial _i inertial* x

qrotor Tinertialqrotor + _.¢[qrotor rinertialqrotor X qrotor l_intrtialqrotor )

i=1

_rotorz inertial .-*rotor inertial*_ -- inertial _rotor inertial* inertial r_rotor inertial*
= 1rotor [qrotor O_inertialqrotor ) _ qrotor Winertialqrotor X qrotor Flinertialqrotor

(71)

(72)

n

.-.rotor inertial . * rrrotorl--I r inertial -*rotor _"_[ inertial --A inertial* inertial _i \Winertial = q rotor tirotorJ [qrotor rinerti_l + _.w[qrotor rinertialqrotor X qrotor inertial)

I=1

inertial _rotor inertial * inertial _rotor ,

--qrotor Winert,alqrotor X qrotor n, nertialJ (73)

Comparing equations 68 and 73 we see the equivalence of both these derivations.

We have briefly derived the dynamics equations of the magnetic bearing system using euler parameters, as they

have many advantages. Euler Parameters are defined everywhere and they have a nonsingular mapping with the

rotational velocity uT. Using Quaternion algebra the above expressions can be further simplified. Simple expressions

for all composite rotations and rotating reference frames can be developed [K.W86]. Euler parameters have also been

shown to be as efficient computationally as rotation matrices and more compact in storage [JR90].

4 Small Angle Assumption

We have derived a detailed nonlinear model of the rotor supported by active magnetic bearings. We will now present

the standard assumptions made in deriving the dynamical equations of the magnetic bearing and the simplification
achieved on the nonlinear model [FK90].

In the magnetic bearing system, let the spin axis be z and the pitch and yaw axes be y and z axes. Let the

spin angle, pitch and yaw angles be 8_,0u,0_. Usually we assume that the angles 0u,0_ are very small so that

cos(0_), cos(0_) _ 1, sin(gu),sin(0_) _ 0. Also we can reasonably assume that the product of velocities and angular

velocities are small and can be ignored. The external forces acting on the system are the forces at the two radial

bearing systems F_, F_ and F_, F_; the force at the axial bearing F_ and the external torque rmoto_ applied along

the spin axis. With these assumptions the equations of motion of a rotor supported by magnetic bearings reduce to

k

gu 0u
Oz Oz

= F

# fl

dy o'y

X

y

Z

Oz [ F_Fx

+a f_,
rl
r_

Tmotor
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where F E _12×a2 and G E

06 x 6

0 0

0 0

F= 0 0
08x8 0 0

0 0

0 0

where a E _+ is a constant

1 0

G= 0 0
0 0

0 0

0
J_

5 Feedback

_.12 X6

16×6

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 -wa
0 0 _va 0

dependent on the inertias J,, Jy.

06X6

0 0 0 0
1 0 0 0

1 l 0
0 M M 1
0 0 0 72_

-- l-z- l-z 0
0 Jv J_

_!z 0 0 0
J_

control of the rotor motion

The rotor system motion is decoupled between the spin axes and its pitch and yaw axes.Hence for the design of a

linear state feedback controller we shall consider the dynamical equations of only the pitch and yaw axes motions of

the rotor system, given by

"- [ O'x' I'×' ] [ 0]O.x. A[_o] 4x (74)

where _ = [x_ .rl,rlZl._2z2x22;2j23 4 1 2 3 41T E _S, U = [ulu2u3U4] T E _4 , A : _+ _ _4x4 , B E _,x,.

1 1 0 0

0 0 !

A[_v]= 0 0 0 0 &B= 0 0 _ _ (75)
0 0 0 --_va -- J_ Y_

0 0 wa 0 _ _J!zjv 0 0

3 4 3 a:_form
Note that the x_, x_ subsystem and x_, x_ subsystem form two decoupled 2 × 2 systems, while x_, a:_, z_,

a coupled 4 × 4 system. Let us choose the control

-klxl - k2z2

k2:r2 (76)B-' -k_x_- 2 2
B _ 3 3 3 3-kl zl - k2x2

4 4 4 4-klxl - k2x 2

such that k_ > Ofori = 1,2 : j = 1... 4. We can now show that this control stabilizes the x_, x_, z_, z_ system at all

speeds w.

Theorem 5.1

Given (G1) The system given by equation 7_

(G£) Feedbacks u given by equation 76

Then (T1) u l, u 2 stabilize the system at all speeds ¢v.

Proof: db t> Let us choose a Lyapunov function candidate V as follows:

-lzl +
V =

2

Taking the derivative of the Lyapunov function we get

.,1='1,

_l ;EIZ2Z_., _ _- -_
3=1

3 4 3 4
--;da_2_ 2 Jr ¢.daT2_ 2

]ffi4

k_z- _
L-#-- 2 2

j=l

< 0 ifx_ fi=Oforj = 1...4
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Figure 1: y vs time : w = 0
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Figure 2: 0y vs time : w = 0

Hence by Lyapunov theorem x_ converge to 0 for # = 1. • - 4. As the maximum invariant set containing the set x_ = 0
is x_ = 0, by LaSalle theorem [M.V78] x_ also converges to 0. Hence the system is stable at all w. <1

5.1 Simulation Results

We simulate this system using the control system simulation package SIMNON. We present the simulation results of

applying the state feedback control given by equation 76 to the magnetic bearing system. We simulate the system
response y and Oy under the feedback when there is no spin (Figures 1,2) and with a spin of lOOrad/sec (Figures 3,
4).

/-
_.o 1o

Figure 3: y vs time : w = 100
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, le ;le

Figure 4: O_ vs time : w = 100

5.2 Magnetic Bearing Model

In this section we present the basic equations for a single axis magnetic bearing, and two associated pole excitation

schemes. The dynamical equations of the magnetic bearing may be written as follows.

(77)

$o = _o (78)

where

¢o E _ flux at pole location 0 (79)

¢, C _ flux at pole location r (80)

uo E _ Control at pole location 0 (81)

u_ E _ Control at pole location 7r (82)

Let the control force F generated by the magnetic bearing be the net force produced by the bearing elements at

the angles 0 and x (the positive and negative poles in a pair). Indeed,

F= Fo-F. (83)

We shall design the feedback control of the rotor using the net force as the control actuation. Treating this

requisite force as the commanded output of the magnetic bearing subsystem described by equations 77,78, we design

the flux feedback as a deadbeat controller. Inherent in this approach is the assumption that the flux feedback loop

would be run at a much faster rate than the bandwidth of the force feedback system.

Discretizing the flux equations in the following manner.

[ ] [ ]+[ 1¢_(k + 1) = ¢,_(k) Tu,_(k)

where

uo(k) = is the net control voltage at pole 0 (85)

u,_(k) = is the net control voltage at pole 7r (86)

We now note the relation between force and flux is given the following form

---- /_! ..... ltu,[¢0(k + 1) - ¢_(k + 1)] (87)F(k + 1) " 2

where the magnetic constant Klo,-c¢-11,_ E _ relating the forces produced due to fluxes applied is assumed to be

known. Choose the control inputs in equation (84) to be of the following form.

-_o(k) + v0(k) (88)
uo(k) = T

-¢,,(k) + ,,. (k) (89)
,,.(k) = T
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where

co(k} E _ is an exogenous control input, specified later

_(k) _ _ is an exogenous control input, specified later

Substituting equations (88) and (89) in (84), we get,

o_.(k+t) = _,,.(k)

Substituting equation (92) in (87), we get,

P(k + 1) 2= K_ .... 1,_{_o(k)-_(k)]

We consider the following choices for choosing the control inputs vo(k) _nd v,_(k).

5.2.1 Mutually Exclusive Scheme

Choose the control to be

w(k)= -F(k + l)
_*.," o_,'¢e -- II .=

Now choose the controls vo(k) and v,(k) in the following manner.

w(k)>0 - ..(k) 0

v0(k) = 0

(90)

{91)

(92)

(93)

(94)

(95)

(96)

5.2.2 Biasing Scheme

Choose the foUowing structure for the controis vo(k) and v_(k).

vo(k) = Vbio, + v_,,obt¢(k) (97)

v.(k) = vb,°, - v..... bt.(k) (98)

where

_bia$

_arlab|e

E _ is a constant biasing input (99)

E R is a varying control input (100)

Note that such a structure for vo(k) and v,f(k) implies that

• 2

z_1..... .,,_b,0(k) - ,,_(k)] = K_..... _,_/(,,_,°. + v_..,o..(k)) _- [(,,_,o.- ,,..... ._(k)) _]

= K/ .... It,,.[4vbi..v.o.,obi_k] (101)

We now choose the control v ..... ble(k) to be

V,,o,.,,_b_,(k) = F(k + 1)
K/ .... lh,=vb,°o (102)

where the control F is chosen to stabilize the rotor motion.

Both these excitation schemes have their advantages and disadvantages. In the constant biasing scheme, we note

that the force to flux equations become linear. Also by choosing as the control is scaled by Vbmo, change in force (or

equivalently currents) required for a certain net force can be reduced. But maintaining a constant biasing voltage may

increase the losses. An alternative might be to use permanent magnets to provide the bias voltage. In the mutually

exclusive scheme we provide a force (or current) in only one pole, from a pair, at any time. On the other hand, the
force to flux relations are nonlinear.

6 Multiple Sensors &: Redundant Actuators

In many situations, we measure the same output with multiple sensors and the measurements have to be averaged in

some manner. Similarly, in the case when we have redundant actuators (more than the necessary three orthogonal

pairs), we need to apportion the actuation forces in an optimal sense, between all the actuators. Linear least squares

theory provides us with a method for doing these [RH88] [Aub79] [J.L55]. In this section we will look at using the

least squares estimation schemes for averaging measurements from multiple sensors and splitting the forces among
redundant actuators.
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Theorem

Given (G1)

If (II)

Then (T1)

Theorem

Given (GI)

GCe)
e(s)

If (11)

Then (TI)

Theorem

Given (GI)

(Ge)

If (II)

Then (TI )

6.1 Linear Least Squares

Definition 6.1 ,4 complete inner product space X is called a Hilbert space.

Definition 6.2 Given a Hilbert space X, and a subset U E A'. the orthogonal complement of U, denoted by U _" is

defined as follows.

U ± = {z 6 X:< z,u >= 0V u 6 U} 1103)

That is, the orthogonal complement of a set U 6 X is the set of all vectors in X that are orthogonai to every vector

in U.

6.1 Projection Theorem

A Hilbert space X.

U E X is a closed subspace of X.

The Hilbert space X can be decomposed into the direct sum,

X= U(gU x (104)

Definition 6.3 Let U 6 X be a closed subspace of a Hilbert space X. Decompose a veqtor £ 6 X into the direct sum

£ = £o + £l where £o E U and £1 E U j'. Then £o is called the orthogonal projection of the £ 6 X onto the subspace

UEX.

6.2 Projection Theorem

A Hilbert space X.

A direct sum decomposition of X = U (9 U'.

A vector £ E X.

£o is the orthoyonal projection of £ onto the closed subspoce U E X.

£ - £o is the orthoyonal projection of £ onto the close subspoce U J"

6.3 Minimum Norm

A Hilbert space X, and a vector £ E X.

A closed subspace U E X.

£o is the orthogonal projection of £ onto the subspace U.

For each ff E U,

II£- £0ll _< I1£- _11 (105)

Given two Hilbert spaces X, Y, let the operator A be such that A : X --* Y. We now make the following

definitions.

Definition 6.4 The range of A : X -- Y denoted as 7_(A) = {A[x] E Y ¥ x E X}.

Note that the range of A is the set of all vectors in Y that are obtained by the action of the operator A on every

element in X. That is, 7Z(A) C Y.

Definition 6.5 The null space o/A: X -- Y denoted_V'(A) = {x E X : A[z] = 0y}

Note that the null space of A is the set of all vectors in X that are mapped by A into the zero element of Y. It is

clear that 2q'(A) C X.

Definition 6.6 The ad]oint of a linear operator A : X -- Y, denoted as A*', is defined as follows.

• A*:Y--X

, <A[z],V>y=<z,A*[y]>x VxEX, yEY.

where < • > x is the inner product defined in space X, and < • > Y is the inner product defined in space Y.

The usefulness of the adjoint operator will become evident in the solution of linear equations. The following properties

of the axljoint operator are vital to its use.

. Given an operator on a Hilbert space A : X -- Y, and its adjoint A" : Y -- X, it can be shown that

1. ,V(A) = Af(A'A)

2. 7_(A) = _(AA*)

• Given an operator on a Hilbert space A : X _ Y', and its adjoint A" : Y -- X, it can be shown that there exist

orthogonal direct sum decompositions of Hllbert spaces X and Y of the following form.

1. X = _(A') (gA/(A)

2. Y = "P..(A) (9,,V'(A*)
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6.2 Least Squares Solution of y = A[x]

Given a linear operator on the Hilbert space A : X --* Y, and a specific yl E Y, we define the solution of the linear

equation yl = A[x] as {x E X: yl = A[z]}.

There are three cases that merit consideration.

• If the operator A : X --* Y is such that the R(A) = Y and the A/'(A) = {0x}, then the solution of y_ = A[x]

exists and is unique. The solution is given as x = A-l[yl]. Note that the inverse A -1 : Y --* X exists. Such a

solution corresponds to a system of linear equations with as many equations as there are unknowns.

• If the operator A : X --_ Y is such that the R(A) C Y and the JV'(A) = {0x }, then we note the following,

yl = A[x]

A*[y_] = A*[A[x]]

m*[yl] = A*A[x]

where the operator A*A : X _ X. Note that A/'(A*A) = Af(A) = {0x}. This implies that the inverse

(A'A) -1 : X ---*X exists. The solution therefore can be written as

x = (A*A)-IA*yl (106)

There is a simple geometric interpretation of the above result. Given yl E Y, there is a unique direct sum

decomposition of y_ as, y_ = (y_l E R(A)) (t) (y_2 E .£/'(A*)). That is, the vector in R(A) closest to y is the

vector y - yl_. Indeed, the best one could do is to find a solution x E X such that A[x] = y - y12 = y11. So

we attempt the following solution,

yl-yl2 = A[x]

A*[yl - Y12] = A*A[x]

A*[yl]- A*[y12] = A*A[x]

A*[yl]- 0y = A*A[x]

A*[yl] = A*A[x]

z = (A*A)-_A*[y_]

The solution (106) is called the least-squares solution of the linear equation y_ = A[x]. Such a solution

corresponds to an overdetermined set of linear equations.

• Given a linear operator A : X ---* Y is such that the _(A) = Y and the {0x} C Af(A), we follow the geometric
intuition as follows.

- Solutions exist as _(A) = Y.

- Consider any solution x, E X : yl = A[x_]. This solution has a unique direct sum decomposition of the

form xi = (z/l E _(A*)) _ (xi_ E Af(A)). Indeed, there is no contribution of xi2 E .hf(A) to the solution

of yl ----A[x]. Furthermore, as xil E _(A*), it is true that there exists w E Y such that x,1 = A*[w].
Note that

y, = A[_,] (107)

= m[xil + xi2] (108)

= mix,l] (109)

= A[A*[w]] (110)

= AA*[w] (111)

Now note that AA* : Y -----*Y. Also 7¢(AA*) = _(A) = Y. This implies that Af(AA*) = Oy. This

guarantees that (AA*) -_ exists. We therefore solve for w in equation (111) as

w = (AA*)-'y, (112)

Note that the minimum norm solution is certainly one that does not include elements from Af(A). There-

fore, the minimum norm solution of yl = A[x] is xi_ = A*[w] = A*(AA*)-_y_. This solution corresponds

to an underdetermined set of linear equations.

6.3 Least squares solution to multiple sensors and redundant actuators

Let us consider the case when there exists a multiplicity of sensors for the same measurement. Let the actual

measurement we are looking for be x and the multiple sensor measurements be y = Ax. Then, to get a mean

measurement, with minimum error to the actual measurement, corresponds to exactly the overdetermined case in the

least squares estimation. The measurement is then given by

x = (A*A)-1A*[yl]
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This (A*A)-IA * is indeed the pseudoinverse of the A matrix.
Now consider the case when we have redundant sensors and we are looking for a force split that minimizes the

norm of the total force apphed. Given forces x produced by the redundant actuators, the net force applied is given

by y = Bx. Now, given a force to be applied y, splitting it among the redundant actuators with minimum norm, is

exactly the underdetermined case derived in the least squares estimation. The solution is given by

x = B*[w] = B*(BB*)-'y

Note that B*(BB*) -1 is the pseudoinverse of B.

7 Summary

In this paper we have developed the detailed dynamical equations of a rigid body rotor supported by actively

controlled magnetic bearings. We have done this using both Rotation Matrices and Quaternions to see the equivalence.

Quaternions are more convenient to use, as they provide a nonsingular (invertible) transformation to the angular

velocity @. Also euler parameters are computationally as efficient and more compact in storage than rotation matrices.

In addition, in developing the model of the magnetic bearing system, we have oonsidered two schemes for pole

excitation.

We notice that the model of the bearing system depends on the angular velocity in the spin direction. We have

developed a state feedback controller that stabilizes the system for all speeds of rotation. We also note that this

controller essentially decouples the system into 2 x 2 subsystems. We have presented simulation results showing the

performance of the controller.

Finally we Mso present a least squares scheme for minimizing the residual in measurements of output with multiple

sensors, and for minimizing the norm of the actuation forces when there are redundant actuators.
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