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Modelling and Control of a Rotor Supported by Magnetic Bearings

R. Gurumoorthy* A. K. Pradeep!

July 20, 1993

Abstract: In this paper we develop a dynamical model of a rotor and the active magnetic bearings
used to support the rotor. We use this model to develop a stable state feedback control of the magnetic
bearing system.

We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler
Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state
feedback control of the actively controlled magnetic bearing to control the rotor position under imbalances.
The control law developed takes into account the variation of the model with rotational speed. We show
stability over the whole operating range of speeds for the magnetic bearing system. Simulation results
are presented to demonstrate the closed loop system performance. We develop the model of the magnetic
bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing.
We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces
amongst redundant actuators.

1 Introduction

Several representations of rigid body rotations, including Rotation Matrices, Cayley -Kline parameters, Euler Pa-
rameters & Spinors ( [K.W86] [PP80] [OB79] ) have been developed. Conventional methods of deriving rigid body
dynamics utilize the Euler angle parametrization of the space of orientations of the rigid body. Such a parametrization
of SO(3) suffers from coordinate singularities. The singularities are entirely a result of the choice of parametrization.
A parametrization that is globally nonsingular is the parametrization utilizing Euler parameters (unit quaternions).
In this paper we develop the dynamical equations describing the rigid body model of a rotor supported by actively
controlled magnetic bearings, using rotation matrices (parametrized by euler angles) and using euler parameters.

We begin this paper by giving a brief description of the various mathematical terms and ideas that will be used in
defining rotation matrices and euler parameters [YCBDB82]. We present some of the properties of rotation matrices
and quaternions. We derive the dynamical equations of the rotor supported by active magnetic bearings using both
rotation matrices and quaternions. We present the development of a stable state feedback control law and simulation
results of the system when controlled by this state feedback control Jaw. Most magnetic bearing systems are comprised
of redundant sensors and actuators. We present a linear algebraic technique utilizing the method of least squares to
average multiple measurements and split the actuation forces amongst redundant actuators.

2 Preliminaries
The magnetic bearing system utilizes many frames of reference, in which various quantities such as positions, velocities

and angles are described. In this section we will set out the notation by which we will refer to the various quantities.
Also we will present some of the definitions and facts necessary for the derivation of the dynamical equations.
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2.1

In this section we will set out the notation by which we will refer to the various quantities.
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Notation

Vectors will be referred to by lower case letters, with an arrow on top. Position vectors will be represented in
either Cartesian or spherical coordinate systems. Representation of vectors in Cartesian coordinate systems
will be the X, ¥, 7 components of the vector. Vectors would also be represented as column matrices. The
components of the column matrix would not contain an arrow.

Example 2.1 The vector @ would be represented in either of the two ways.

- ¢ Vs

i = a;X +ayY+azZ
az

i = ay
aQ:

The components of a vector would be written without the arrow on top.

Matrices and tensors will be referred to by upper case letters. Dimensions and components of the matrix will
always accompany the notation. Example: A € RIx3

Variables and constants will be denoted by lower case letters, and will be accompanied by a statement concerning
their dimension. Example: 8 € S.

When referring to variables, which are described in a frame of reference, the subscript of the variable will refer

to the frame of reference. Example: & 2tor,

We will use three frames of reference primarily.

1. The first frame of reference is the fixed inertial frame of reference. This frame will be referred to as the
inertial frame, and the subscript inertial will accompany variables described in this frame of reference.
The orthonormal coordinate vectors of this reference frame will be denoted as X.‘ner..'a(, Yinertial, Z.',.",.-az.

2. The second frame of reference is rigidly attached to the center of mass of the rotor, and moves with the
rotor. This frame will be referred to as the rotor based reference frame, and the subscript rotor
will accompany variables described in this frame of reference. The orthonormal coordinate vectors of this
reference frame will be denoted as X,o,or, ?romr, Zm,o,. The orientation of the rotor frame is along the
principal axes of inertia of the rotor. The origin of the rotor frame is at the center of mass of the rotor.

3. The third frame of reference is attached to the center of the magnetic bearing. We will say more about
this frame later. The origin of this frame is coincident with the center of the bearing. This frame will be
referred to as the bearing based reference frame, and the subscript bearing will accompany variables
described in_’this reference frame. The orthonormal coordinate vectors of this reference frame will be
denoted as A'beanng, Y'bearing, Zbearing-

¢ Rotation matrices relate the orientation of vectors in one frame relative to another. The convention we employ

through this report would be as follows.

X X

O me—2 o

Y = R;::me—l Y (1)
Z frame—1 Z frame=2

where R;:::::l is a rotation matrix that expresses the basis vectors of frame — 2 in terms of the basis vectors
of frame — 1. The rotation matrix can be expressed as a combination of basis vectors of both the frames in
the following manner. Given that the basis vectors of frames 1 and 2 are represented with the appropriate

subscript,
3] v 72
X]rame—? . ‘Xjrame—l }.}frame—2 ' A]rame—l Zframr:—2 . Xfra.me-l
-2 o o ¥ > 7 o ‘
R;;:z:—l = Afv-ame—'l : Yfrnme—] },]ram:—2 . yjrame—] erame—2 ’ Y]rame—l (2)

frame~2 " erame—l Yfrume—-? N erame—l Zframe——2 . Zfra.me—l

o Position vectors of objects will be referred to in the following manner.

object

z—frame
—obpect __ object (3)
frame ry—frame

object

z—frame



e The cross product form of a vector is referred to as S(-). That is

-

ixb = S(a)b
[ 0 —a, ay
S(a) = a, 0 —a,
L ay a: 0
M a,
a = ay
| Oz
. [ b
Po= | b,
| b
® A unit vector in the direction of an object will be represented as
object
r—frame
—~object _ objyect
frame - y—frame
object
z—frame
~object
_ frame
- —object
”r]rarne”2
—object object 2 object 2 object 2
”rframe”?' \/[r.r—frume] +[ry—frume] + [Tz—framel

¢ By norm, we refer to the Euclidean norm of the vector throughout this report.

e If the object being referred to is the origin of a coordinate frame, it will be referred to as 7

To set the ideas clear, consider the following examples.

(4)

(5)

(6)

~frame—2—origin
Jrame-1 -

Example 2.2 The origin of the rotor coordinate frame, as observed in an inertial reference frame would be

represented as

rotor—origin

r—snertigl
rotor—origin

y—tinertial
rotor —origin
z—inertial

~rotor—origin __
inertial -

We tag the word origin when we ezplicitly refer to the origin of a coordinate frame.

¢ Homogenous Transforms

(7)

Mappings between points in the Euclidean group S£(3) to points in SE(3) are represented as 4 x 4 matrix

transformations that map a position and orientation of a frame to another position and orientation.

mappings are termed homogenous transforms, and in coordinates are specified as follows.

Such

frame—-2
Tframe—l SE(3) - SE(B)
Xjramc—l Xframe-2
erume—] _ Tfra.me—2 ernme—?
Z - frame—1
frame—-1 frame=2
1 1
frame—2—origin
r:r—frame-—l
R_frame—2 frame—2—origin
T]ru'me—2 — frame—1 y—frame—1
frame—1 - frame—2—origin
z—frame—1
[0 0 0] 1

The inverse of a homogenous transform

[Tf rame—21-1

frame—1

Tframc—2

irame—1 18 represented and given as follows.

frame—1
- T]ramc—2
frame—2—origin
z—frame—1 .
frame—2—origin
y—frame—1 .
frame—2—origin
z—frame—1

[Rfrarne—2]T

frame—1

__[Rframe—2]T

frame—1

— % 3

[0 0 0]
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Example 2.3 The homogenous tranformation tranforming coordinates of the origin of the bearing coordinate frame
as observed in the inertial coordinate frame to the same coordinates as observed from the rotor reference frame would

be represented as follows.

bearing—origin
x—rotor
bearing—origin
—rotor L
eartng—origin
z—rotor

1

2.2 Definitions

bearing—origin
z—inertial
bearing-origin

_ T‘"Crti“' Ty _inertial
- rotor earing—origin
z—inertial
1
inertial—origin
T—rotor o
Rinerhal tnertial—origin
— rotor y—rotor L
- inerttal—origin
z—rotor
[0 0 o) 1

bearing—origin
x—inertial |
bearing—origin
—inertial
earing—origin
z—tnertial

1

We will use the properties of linear vector spaces, quaternions and quaternion algebr‘a. In this section we begin by
defining vector spaces and algebras. We then proceed to state/derive the properties of rotation matrices and euler
parameters (quaternions and quaternion algebra) [L.A79] [AR88] [AR89] [RA8T] [K.W86].

Groups: A groupis a set X with an internal operaticn X x X — X, such that

¢ the operation is associative

(zy)z =z(yz) Vz,9,2z € X,

e there is an element ¢ € X called the identity such that

ze=ex=1r V rz€X,

e for each z € X there is an element of X called the inverse of z (written z 7" ), such that

Usually this group operation is referred to as multiplication. If the operation is commutative then it is referred
to as addition and the group is called an Abelian Group.

Ring: A ringis a set X with two internal operations called multiplication and addition, such that

e X is an abelian group under addition,

o multiplication is associative and distributive with respect to addition.

If the group has an element ¢ € X such that ez =ze =z Yz € X it is called a ring with identity. Also, if
z € X has an inverse, then it is said to be regular.

Field: A fieldis a ring with identity, all the elements of which (except zero, the additive identity) are regular.

Module: A module X over a ring R is an abelian group X with an external operation, called scalar multiplication,

such that
a(r +y)
(a+ Bz
(aB)x

ar + ay
ar + fzr
aBr)

forall o, € Rand z,y € X.

Algebra: An algebra A is a module over a ring R with identity with an internal operation called multiplication such

that

e Ais aring,

e the external operation (o, z) — ax is such that

a(ry) = (az)y = z(ay).

Vector Spaces: A vector or linear spaceis a module for which the ring of operators is a field. Its elements are called

vectors.
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Quaternion: Quaternions can be viewed in many ways. A quaternionis defined as an operator with a scalar go and
a vector part ¢, expressed either as a sum of its parts,

q = {go+¢}

or as a four dimensional vector,

=13

If go = 0 then the quaternion is called a vector quaternion, and if § = 0 then it is said to be a scalar guaternion.
In this paper we notate the quaternions by boldface letters.

2.3 Properties of Rotation Matrix

The rotation matrix that relates the orientation of one frame relative to another requires the specification of three
angles, and can be parametrized in a number of ways. We now indicate two commonly utilized parametrizations.

o Fixed Axis Rotations: Let frame — 1 and frame — 2 be coincident to begin with.
—~ Rotate frame — 2 through an angle §, about the vector X;mme_l.
~ Rotate frame — 2 through an angle 8, about the vector ?frame._.].

— Rotate frame — 2 through an angle 8, about the vector erame—l-

The resulting rotation matrix, relating the coordinate vectors of frame — 2 to the coordinate vectors of frame — 1
can be given as

cos#, —sinf, 0O cosfy, 0 sinéd, 1 0 0
R;:::z:f = sinf, «cosf, O 0 1 0 0 cosf, —sinf,
0 1 —sinfy, 0 coséf, 0 sinf; cosé;

Comment 2.1 Note that as the successive rotations are performed about the fired azes, the rotation matrices are
premultiplied in the order in which the rotations are performed.

cosfl;cosfy, cosf,sinfy,sinf; —sind,cosd, cosh,sin @y cosf; + sin 8, sin 8,

R;:::::f = | sinf,cos#, sin#h,sinbysinb; + cosh.cosf; sinb,sinb,cosb, — cosb, sin b, (10)
—sinfy, cos By sin 8, cos By cos 8,
e 2
S rame—z | =
v =R Y )
z Z

frame—1 frame—2
e Moving Axis Rotations: Let frame — 1 and frame — 2 be coincident to begin with.

— Rotate frame — 2 through an angle 6, about the vector Z,mm,_z.
— Rotate frame — 2 through an angle 8, about the vector ?fram5_2.

— Rotate frame — 2 through an angle . about the vector )-[:fm,f.e_z.

The resulting rotation matrix, relating the coordinate vectors of frame—2 to the coordinate vectors of frame—1
can be given as

cosf, -—sinf. 0 cosfy, 0 sind, 1 0 0
RiTameT? = sinf, cosf; O 0 1 0 0 cosf, —siné,
0 1 —sinfy, 0 cosé, 0 sinf; cosf,

Comment 2.2 Note that as the rotations are performed about the moving azes, the rotation matrices are post-
multiplied in the order in which the rotations are performed.

cosf.cosfy cosf,sinfysinf, ~sinf,cosf, cos8.sin by cos b, + sin 8, sin 0,

R;:::::f = | sinf,;cosfy sinf,sinby,sind; + cosd,cosf, sinb,sin b, cosf,; — cos b, sin b, (12)
—sin by cos By sin 8, cos 8y cos b,
X b'¢
2 _ pframe=-2 2
Z - Rframc—l ): (13)
z frame—1 Z frame-2
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We now note three important properties of rotation matrices.

T -2 _ ~f -2 -2

RITame=? = S(G)ramel)Riramel] (14)
d rame~21T 2T <f = —2
SIRjeme Tl = —(RIZIRIZNTSG1ARD (15)
S(RiAmeTla) = RIamiZiS(a)Rjamel (16)

We will now derive expressions for angular velocity of the object as a function of the derivatives of the parametriza-
tions of the orientation angles. We will now derive the derivatives of the elementary rotation matrices.

[ 1 0 0
R(8;) = 0 cosf; —siné; (17)
L O sind, cos 8
4 (10 0 .
d—R(B,) 0 —sind; —cosfy |0: (18)
t L0 cosd; —sinb:
[0 0o 0 1 0 0
= 0 0 -8, [ 0 cosf. —sinb, (19)
0 6: 0 0 sind, cosf.
= S(6:)R(6:) (20)
d .
’d—tR(oy) = S(8y)R(8y) (21)
%R(o,) = S5(6.)R(8:) (22)

For the case of fixed axis rotations, we note that

RiTams=t = R(6:)R(8,)R(8:) (23)
LRI = [ ROIIR6,)RE:) + RO:)(5 ROIRE:) (24)
+R(0;)R(09)[~;;R(8,)] (25)

%1?.;;:",,_‘::2 = S5(8.)R(8:)R(8,)R(8:) + R(8:)S(8,)R(8,)R(8:) (26)
+R(8:)R(8,)S(8:) R(8:) (27)

LRyt = S(0:)RO)RE,)RE:) (28)
+R(6:)S(6,)RT(8:)R(8:) R(8,) R(9:) (29)
+R(8:)R(84)S(8:)[R(6:)R(8,))" R(8:)R(8,) R(6:) (30)

%Ri:::::? = [S(8:) + S(R(9:)8,) + S(R(8:)R(6)8:) 1R ImT (31)
S(@)remeTh)RITeme=? = [S(6:) + S(R(8:)8y) + S(R(6:)R(8,)0:)]R1A0T (32)
S(@reme=l) = S(6:) + S(R(8:)8,) + S(R(6:)R(6,)6x) (33)

We simplify the above expression to get,

0 -84, 0
S@ime) = |4 0 o (39)
0 0 0
0 0 cos G,éy
+ 0 0 sin 0,9y (35)
—cos8.8, —sind.4, 0
0 sin 840 cos @y sin 8.6.
+ —sinf,8; 0 —cos 8y cos 9.8 (36)
—cos §y sin O,é, cos 8y cos G,é, 0
0 frame=2 Sframe—-2
z—frame—1 y—frame—1
= fiaf':‘:v:z—l 0 - ::r—nj'::;i—l (37
., Jrame=2 frame~2 0
y=frame—1 r=—frame—i
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if}'::;,:_l [ cos é, cos 6.0, — sin 9,6",,
gisz;z_l = cos 8y sin 8,6, + cos 8.6, (38)
“’Z:(}T:;iq | éz - sin 8y9l1
[ cosfycosf, —sinf, 0 9:;
= cosfysind, cos#, 0 0,!4 (39)
—sin 8 0 1 4.

Note from equation (39) that determinant of the matrix relating the angular velocities of frame —2 and the derivatives
of the parametrization cos6,. Therefore, the matrix is invertible for small values of the angle 6,,.

2.4 Properties of Quaternions

We will present here the properties of quaternion algebra that we use in this paper ! [K.W86) [OB79]. We will also
derive the derivatives of quaternions.

Quaternion addition: The sum of two quaternions x and y is given by

Io+yo]

x+y=[ F+7

Quaternion product: The product of two quaternions x and y is given by
xy = -7 zo y = Toyo — - §
T | zol4Zx f Tl zoFHwi+Txg |

Quaternion conjugate: The conjugate of a quaternion q is given by

At

Quaternion norm: The norm of a quaternion q is defined to be
2 2, o oo
lall*=qd"q=g"+¢-¢
This is analogous to the euclidean vector norm of a four dimensional vector.
Quaternion Inverse: The inverse of a quaternion q is defined as

-1

= *q‘,
lal|?
It can be verified that this inverse has the property that
-1 -1
19 9=qq " =1

Rotation operation: A rotation of a vector & by 8 about an axis # is given by
azq’

where q is the quaternion given by

qz[ cos(2) }

sin(£)7

The derivatives of the Quaternion representing a rotation operation are given by
. 1
4= a{5v}
- 1- 1,1,
4 =a{;w} +a{50}{ 7}

where @ is the angular velocity and w is the angular acceleration.
The angular velocity and angular accelerations are given in terms of the quaternions through the following relations:

*

@ =2q"q

%=2q"3+24"

1 Boldface letters represent quaternions
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Let us now calculate the derivative of the conjugate of the quaternion. As the quaternions representing a rotation
operation are unit quaternions (unity norg), the inverse is the conjugate. Hence

1 = aq’
0 = 4q"+4ad’
«$ —1' L
¢ = -qd4q
= -q°qq’
o 1o
= —-q Q{EW}Q'

2.5 Relation between Rotation Matrices & Euler Parameters

The operation of rotation by an angle g about an axis i can be represented by both a rotation matrix (R) and euler
parameters (q) as

R = cos(8)T + (1 — cos(#))iiA” + sin(8)7ix

_ | cos )
i [ sin(3)7 ]

These two representations can be related as follows:

R=(qo2 —fTﬂlsx3+2§'€T+2qoix

3 . Dynamical Equations of the Rotor

In this section we derive the equations of motion of the rigid body rotor supported by active magnetic bearings. We
begin this section, with a derivation using rotation matrices, and then proceed to do the same using euler parameters

(quaternions).

3.1 Dynamical Equations using Rotation Matrices

To eliminate ambiguity regarding the specification of reference frames, we will primarily work in the rotor reference
frame, and finally transform the coordinates to the inertial reference frame. We derive the dynamic equations of the
magnetic bearing in a systematic manner. For an excellent exposition on kinematics, refer to [RS94].

Step 1.

We compute the angular momentum of the rotor about the origin of the rotor reference frame, denoted as HIior

as
jrotor rotor —wrotor
rotor — Irotor Wrotor (40)
Step 2.

We utilize the principle of torque balance to relate the rate of change of angular momentum to the net torque.
We note here that by net torques (T7°°°") we refer to the summation of the applied torques (77°°", and the moments
of the applied forces (F*) about the origin of the rotor reference frame. It is to be understood of course that the
quantities on either side of the equality will be referenced in one coordinate frame. Indeed to avoid ambiguity, we
will henceforth refer to each of the aforementioned quantities in a single coordinate frame. Expressing all quantities
in the inertial reference frame, we get

rotor — Irotor Runerhal —rotor
rotor - rotor {ilrotor  “inertial

Step 3.
We utilize Newton’s torque balance equations to derive the following.
Trotor . d Hrotor
rotor - It'[ rotor]
n
—rotor E -« AL rotor LTotor —rotor [yrotor
Trotor + Trotor X Frotor = Irotor"‘)rotor + Wrotor X Hrotor
=1
n
inertial srotor § : ~ tnertial fXi _ rotor LTotor
Rrotor Tinertial + Trotor X Rrotor inertial = Irozor"‘)rotor
=1
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nncrnn(-rotor snertial protor [} rotor
Rralor Yinertial X Rrotor R'neruanrotov

rotor LTotor

Rlnzrnal srotor
rotor “rotor

snertial
rotor  Tinertial E rotor Rrotar

tnertsal
—rotor

snertial rotor rotor pinertial ~rotor
+Rrotor Winertial X R!nernnljrotof Rr‘o(or “Jtnernnl)

rotor LTotor

nertiaf ~rolor z : mertial ¢
Rrotor Tinertial + S(Trotor Rrolor

tnertial raotor “rotor
=1
Rlnertluls —rotor rotor rotor pinertial wrotor
rotor ( tnerttal tnertitaldrotor {lrotor Winertial
where 73, is the point of application of the force }3,,",,0‘, and is given as
$ '
Tr—rotor T:—u\erna(
1)
r
y—rotor —_ Tunertml g-—-nernal (41)
' - rotor
Tz—rotor rl—lﬂef‘ld‘
1 1
rrotor—-orlyln 1
x—nertial Tz—inertral
Rlnerncl Rlnerhal rrocor—orlgln N
= rotor rotor y—nertial Ty=inertial (42)
= rotor—origsn [ X
T i—inertiai Tz—inertial
[0 0 o] 1 1
. rotor
We now compute &yqr in the following manner utilizing (14) - (16)
Lrotor rotor 1T Grotor
Wrotor = R[Rinern’a(] Winertial (43)
rotor 1T Lrotor rotor 1T o/ ~rotor ~rotor
= [Rinertml Winertial — [Rtnerlml S(winernn()winernal (44)
rotor T Lrotor
[Rinernnl Winertial (45)
snenml rotor
= Rrolor Winertial (46)
. . N Lrotor . . .
Substituting the expression for &, from equation(46) in the torque balance equation, we get
otor

n
inertial grotor z = snertial 03 Jroter inertial LTotor
Rrolor Tinertial + S(rrocw)RrOtor inertial = rctor Rro:or wlnernol
=1
tnertial ~rotor rotor rotor pinertial —rotor
+Rro¢or S ln:rnn() in:rhn(Irotor rotor tnertial
We now recast the above equation in the following form
Lrotor - rotor inertialy—1 Rlnerhal =rotor S - Runertlal 47
Winertval - [ rotor ro‘or ] [ rotor Tinertial + (rrolor) rotor mertml] ( )
=1
rotor pinertialy—1 inertial —~rotor rotor rotor inertial «rotor
-[Irotor Rrotor ] [Rrocor S( inertial inertiai{rotor rotor inertial (48)
Lrotor rotor ro(or =1y pinertial »rotor lnertml
Winertial = Rinzrnat rotor] [Rrotor Tinertial + s(rrolor)Rrotor nertual] (49)
=1
rotor rotory—1 pinertial —rotor rotor rotor ‘pinertial «=rotor
Rinerrml rotar] ReGeor S(wiﬂeﬂml)Rinernnllrotor Riotor Winertial (50)
Step 4.

We derive the force balance equations by first calculating the expression for the linear momentum of the rotor
in the following manner.

rotor rotor —rotor
rotor = ™ Urotor
rotor pineriial —rotor
= m Rromr inertial

Step 5
Newton's law asserts that the rate of change of linear momentum equals the applied force. That is,

R:,:;:“"Z et = [E5227] (51)

=1

rotor Lrotor —rotor Frotor

= Vrotor + Wrotor Lrotar (52)
rotor Lrotor snertial =rotor rotor pinertial -rotor

= m Vsotor + S(Rrotor uin:rnal)m Rroror inertial (53)
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We now compute 17:2:: in (53) in the following manner utilizing (14) - (16).

Lrotor d rotor T —rotor
Veotor = -L-i—t lncrnall Vinertial (54)
rotor T Lrotor rotor T oy ~rotor ~rotor
= [Rinernul] Vinertial — [Rlnernul] S(wtnernal )vincrnal (55)
inertial Z7 007 snertial ~rotor ~rotor
= Rrocw Vinertial — Rrotor S( lnertlnl)vlnernal (56)

o . _rofor . . .
Substituting the expression for Froror from equation (56) in the force balance equation (53), we recast the force
balance equation as,

'nerzu:l § rotor pinertial 47oto7 rotor pinertial ~rotor —rotor
rotor ulerhal = m Rrotor vlnertln( —-m rotor S(winernat)vinernul (57)
=1
rotor inertial wrotor inertial wrotor
+ S(Rrotor |n=rh¢l) Totor Uinertial (58)
(59)
We now rewrite the force equation (58) in the following form
rotor 1 z : ] ~rotor —rotor
Yinertsali = mrotor F\'nertml + S(winernal Vinertial (60)
=]
rotor inertial wrotor snertial wrotor
RinertiulS(Rrocor Winertial Rroror Yinertial (61)
Note that the last term in equation (61) may be simplified in the following manner.
rotor I~ snertial ~rotor inertial —rotor rotor ~rotor rotor T rotor
Rlnernulb(Rrotor Ginertial)Brotor  Vinertial = inertial “"'rotor)[ inertial} Yinertial (62)
rotor  —rotor\ —rotor
= S(Rvnernolurocor Vinertial (63)
—~rotor —rotor
= S(winertml)vinernal (64)
Substituting the expression in equation (64) in equation (61), we arrive at the force balance equations,
rotor 1 ' ~rotor —rotor ~rotor ~rotor
Vinertial — ymrotor E Fineﬂial + S(winernul)vinertml - S(winertml)vinerlml (65)
(X 3
1 n
§ : i
= W Flnerllal (66)
1=1

Collecting the force and torque balance equations, we write the dynamic equations of the magnetic bearing as

follows.
Lrotor rotor rotory—1r pinertial -tolar - inertial 3¢
Winertial = Rincrnal[Irator] [Rrotor Tinertial + S(rrolor)Rrocor Fnernal] (67)
=1
rotor rotory—1 pinertial —~rotor rotor rotor :nerhul-rotor
- -'nertml[ rotor] Rv-olor S(winertml) incrlmllro(of Rrolor Winertial (68)
l n
s rotor ‘
Vinertial = mrotor E F-nerhal (69)
1=

3.2 Dynamical Equations using Quaternions

As we saw in the previous section in equation 69 the force balance equations essentially are a restatement of F = ma
in the inertial coordinates. So we will only consider the angular momentum equations.

d =
rotor rotor
rotor - ?d—t[ rolor] (70)
Frotor z rotor LTotoT ~rotor [jrotor
Trotor + Trotor X rotor - rotor Wrotor + wro(or Hrc(or

=l

Let us look at the first term on the right hand side of 71 initially.

rotor Lrotor rotor d | inertial <rotor inertial ')

rotor¥Yrotor = rotor E( rotor Winertiatrotor
_ Irotor «inertial «rotor inertial® inertial Trotor inertiai *
- rotor( Qrocor WinertiaiQrocor + rotor "‘JlnerCmKQrotor
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tnertial wrotor s inertials
+qrolor WinertialQrotor )

rotor_inertialy 1 wrotor —rotor tnertial* inertial #7Totor inertial®*
= Iro!or Ayotor {iwﬂncrtial}winertiaIQrotor + Qrotor WinertialQrotor
inertial wrotor inertial® inertialg 1 ~rotor tnertial®
~Qrotor WinertialQrotor Qrotor {Ewincrtial}qrotor )
rotor inertial ¢ 1 —rotor ~rotor snertial* inertial “rotor inertial®
- rotor (qrotor {iwinerh‘al WinertialQrotor + Qrotor WinertialQrotor

inertial wrotor 1 ~rotor
—Qyrotor wdnerhal{i

inertial *
wincrtia!}‘lrator )

Irolor inertial #rotor inertial*
- rotor (qrotor WinertialQrotor )

Substituting this back into 71 we get

n
zrotor E : - ] rotor s _inertial #Totor inertial®* —rotor rotor
rrotor + rrotor X rotor - Irotor (qrotor wtncrtmlqrotor )+wrotor x rotor (71)
=1
n
inertial orotor inertial® inertial -« inertial* inertial inertial*
rotor TinertialQrotor + (qrotor TinertialQrotor X Qyrotor inertialQrotor )
1=1
rotor s inertial @rotor inertial* tnertial «wrotor inertial* tnertial ffrotor tnertial*
- Iro:or (qro:or WinertialQrotor ) + Qrotor inertialArotor X Qrotor inertialQrotor (72)
n
=rotor inertial *ryrotory—1r, _inertial orotor inertial tnertial™® inertial 3
Winertial = q rotor [ rotor] [Qrotor Tinertial + (qrotor TinertialQrotor X Qrotor Finertial)
1=1
inertial »rotor tnertial® inertial fFrotor
“Yrotor inertialQrotor X Qrotor xnertml] (73)

Comparing equations 68 and 73 we see the equivalence of both these derivations.

We have briefly derived the dynamics equations of the magnetic bearing system using euler parameters, as they
have many advantages. Euler Parameters are defined everywhere and they have a nonsingular mapping with the
rotational velocity . Using Quaternion algebra the above expressions can be further simplified. Simple expressions
for all composite rotations and rotating reference frames can be developed [K.W86]. Euler parameters have also been
shown to be as efficient computationally as rotation matrices and more compact in storage [JR90].

4 Small Angle Assumption

We have derived a detailed nonlinear model of the rotor supported by active magnetic bearings. We will now present
the standard assumptions made in deriving the dynamical equations of the magnetic bearing and the simplification
achieved on the nonlinear model [FK90].

In the magnetic bearing system, let the spin axis be z and the pitch and yaw axes be y and z axes. Let the
spin angle, pitch and yaw angles be 8,,0,,8.. Usually we assume that the angles 6,,8, are very small so that
cos(fy), cos(8:) = 1, sin(8),sin(f.) = 0. Also we can reasonably assume that the product of velocities and angular
velocities are small and can be ignored. The external forces acting on the system are the forces at the two radial
bearing systems F;,le and F;, FZ; the force at the axial bearing F, and the external torque 7moror applied along
the spin axis. With these assumptions the equations of motion of a rotor supported by magnetic bearings reduce to

oA - -

z
y y
z z
O:x 0z F.
by by F,
9z 6z F?
: = F & +G Fi{
i v F?
2 z Tmotor
fr 6z
8y 8y

L bz J [ 0z |
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where F € ®12%1% and G € R'¥*°.

" Oexe Isxse
0 0 0 0 O 0
0 0 0 0 O 0
F= 0 0 0 0 0 0 0
6 9 0 0 0 0 O
0 0 0 0 0 -—wa
L 0 0 0 0 wa 0
where @ € R* is a constant dependent on the inertias Jx, Jy.
[ 06 xs ]
5 0 0 0o 0 0
1 1
0o % & 0 0 0
G = 0o 0 O = x 0
o o 0 o 0 4
4 &
L 0 ‘0 0' . T 0
o % -% 0o 0 0 |

5 TFeedback control of the rotor motion

The rotor system motion is decoupled between the spin axes and its pitch and yaw axes.Hence for the design of a
linear state feedback controller we shall consider the dynamical equations of only the pitch and yaw axes motions of

the rotor system, given by

Lo Osxs  faxa | o Osxs |
T [ Ouxe Al ] Tt [ B |* (74)
where T = [x}rft?z:rézgzgz;]T ER®, u= [u1u2u3u4]T eR, AR R Be REXE,
00 0 0 B o 0
00 0 O 0 0 N M
AWl=14 0 o -we |¥B=| 0 o _‘% _Ji‘i (75)
0 0 wa O Lok o o0

(=

‘,V v

Note that the £}, z} subsystem and z?, 2 subsystem form two decoupled 2 x 2 systems, while 23,23, 23, 23 form
a coupled 4 x 4 system. Let us choose the control
—klzl — kjz3
—k3z? — K21l (76)
—kz} — k323
—kizt — K3z}

« = B!

such that k! > 0fori =1,2:5=1---4 We can now show that this control stabilizes the i, 22,2}, 22 system at all
speeds w.
Theorem 5.1
Given (G1) The system given by equation 74
(G2) Feedbacks u given by equation 76
Then (T1) u',u” stabilize the system at all speeds w.

Proof: #b Let us choose a Lyapunov function candidate V as follows:

j=4 12 2
v = j=1 kizi” + 23
2
Taking the derivative of the Lyapunov function we get
=4
. 2
vV = Zk{ziz% — k]z]z) — kix]
=1

3.4 3 4
—war,T,; + wary Ty
=4

2

— .

= E kyz;
=1

0 ifz} AO0forj=1---4

A
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Figure 1: y vs time : w = 0

Figure 2: 6, vs time: w = 0

Hence by Lyapunov theorem z; converge to 0 for j = 1---4. As the maximum invariant set containing the set zJ = 0
is z{ = 0, by LaSalle theorem [M.V78] z] also converges to 0. Hence the system is stable at all w. d4é

5.1 Simulation Results

We simulate this system using the control system simulation package SIMNON. We present the simulation results of
applying the state feedback control given by equation 76 to the magnretic bearing system. We simulate the system
response y and 8y under the feedback when there is no spin (Figures 1,2) and with a spin of 100rad/sec (Figures 3,
4).

[

Figure 3: y vs time : w = 100
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Figure 4: 6, vs time : w = 100

5.2 Magnetic Bearing Model

In this section we present the basic equations for a single axis magnetic bearing, and two associated pole excitation
schemes. The dynamical equations of the magnetic bearing may be written as follows.

do = muo (N

ér = Ux (78)
where

do €R flux at pole location 0 (79)

é- €R flux at pole location 7 (80)

#g € R Control at pole location 0 (81)

ur €R Control at pole location 7 (82)

Let the control force F generated by the magnetic bearing be the net force produced by the bearing elements at
the angles 0 and = (the positive and negative poles in a pair). Indeed,

F = Fo— Fx (83)

We shall design the feedback control of the rotor using the net force as the control actuation. Treating this
requisite force as the commanded output of the magnetic bearing subsystem described by equations 77,18, we design
the flux feedback as a deadbeat controller. Inherent in this approach is the assumption that the flux feedback loop
would be run at a much faster rate than the bandwidth of the force feedback system.

Discretizing the flux equations in the following manner.

golk+1) | _ | ¢olk) Tuo(k)
[ Sn(k +1) ] = [ éx(k) | T | Tun(k) (84)
where
uo(k) = is the net control voltage at pole 0 (85)
u-(k) = Iis the net control voltage at pole = (86)

We now note the relation between force and flux is given the following form
F(k+1) = Korcestue[@3(k +1) = ¢2(k + 1)] (87)

where the magnetic constant Kforce—flur € R relating the forces produced due to fluxes applied is assumed to be
known. Choose the control inputs in equation (84) to be of the following form.

—go(k) + vo(k)

w(k) = - (58)
un(k) = __—_—’¢"(k)T+””(k) (89)
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where

volk) €R is an exogenous control input, specified later {90)

vx(k) € R is an exogenous control input, spectfied later (91)

Substituting equations (88) and (89) in (84), we get,

oo{k +1) { | wo(k)
[ on(k +1) ] = [ vr (k) ] (92)

Substituting equation (92) in (87), we get,
F(k+1) = Kforce stus{vg (k) = v3 (k)] (93)

We consider the following choices for choosing the control inputs vo(k) and v.(k).

5.2.1 Mutually Exclusive Scheme

Choose the control to be
~Fk+1)

= 94
Alorcg—]lu: ( )

wik) =

Now choose the controls wo(k) and v«(k) in the following manner.

wk) >0 — { vo(k) = \/w(k) (95)

ve(k)=0

vo(k) =0
w(k) <0 {MH: 0] (96)

5.2.2 Biasing Scheme

Choose the following structure for the controls vo(k) and v (k).

Uo(k) =  Ubias t+ vvarmb(e(k) (97)

U’r(k) = Ubias — vuunable(k) (98)
where

vbias € R is a constant biasing input (99)

Yvariable € R is a varying control input (100}

Note that such a structure for vo(k) and vx(k) implies that
A,/orce—flus[vg(k) - v:(k)] Kjorcc—jlu:[(”bia; + Uvarxable(k))2 - [(vbiac - Uuarmble(k))z]

= K!orce—]lu:[4vbiasvvnrlablek] (101)

We now choose the control vyariasie(k) to be

Fk +1)

K!orce-ﬂu.rvbinn

vvannble(k) = (102)
where the control F is chosen to stabilize the rotor motion.

Both these excitation schemes have their advantages and disadvantages. In the constant biasing scheme, we note
that the force to flux equations become linear. Also by choosing as the control is scaled by vsias, change in force (or
equivalently currents) required for a certain net force can be reduced. But maintaining a constant biasing voltage may
increase the losses. An alternative might be to use permanent magnets to provide the bias voltage. In the mutually
exclusive scheme we provide a force (or current) in only one pole, from a pair, at any time. On the other hand, the
force to flux relations are nonlinear.

6 Multiple Sensors & Redundant Actuators

In many situations, we measure the same output with multiple sensors and the measurements have to be averaged in
some manner. Similarly, in the case when we have redundant actuators (more than the necessary three orthogonal
pairs), we need to apportion the actuation forces in an optimal sense, between all the actuators. Linear least squares
theory provides us with a method for doing these [RH88] [Aub79] [J.L55]. In this section we will look at using the
least squares estimation schemes for averaging measurements from multiple sensors and splitting the forces among
redundant actuators.
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6.1 Linear Least Squares
Definition 6.1 A complete inner product space X is called a Hilbert space.

Definition 6.2 Given a Hilbert space X. and a subset U € X, the orthogonal complement of U, denoted by Ut is
defined as follows.

Ut ={z€ X :<z,u>=0Yuel} (103)
That is, the orthogonal complement of a set U € X is the set of all vectors in .\ that are orthogonal to every vector
in U.
Theorem 6.1 Projection Theorem
Given (G1) A Hilbert space X.
If (I1) U € X is a closed subspace of X.
Then (T1) The Hilbert space X can be decomposed into the direct sum, »
X=UaU* (104)

Definition 6.3 Let U € X be a closed subspace of a Hilbert space X . Decompose a vegtor © € X into the direct sum
£ =70+ i1 where To €U and i) € U*. Then o is called the orthogonal projection of the F € X onto the subspace
UVekX.
Theorem 6.2 Projection Theorem
Given (G1) A Hilbert space X.
G(2) A direct sum decomposition of X=UaU*.
G(3) A vector € X.
If (I1) o is the orthogonal projection of £ onto the closed subspace U € X.
Then (T1) £ — o is the orthogonal projection of £ onto the close subspace Ut

Theorem 6.3 Minimum Norm
Given (G1) A Hilbert space X, and a vector £ € X.
(G2) A closed subspace U € X.
If (I1) Zo is the orthogonal projection of £ onto the subspace U.
Then (T1) For eachd € U,
1 = Zoll < |12 — 4l (105)
Given two Hilbert spaces X, Y, let the operator A be such that A : X — Y. We now make the following
definitions.

Definition 6.4 The range of A: X — Y denoted as R(A) = {A[z] €Y Yz € X}.

Note that the range of A is the set of all vectors in Y that are obtained by the action of the operator A on every
element in X. That is, R(A) C Y.

Definition 6.5 The null space of A: X — Y denoted N(A) = {z € X : Alz] =0y}

Note that the null space of A is the set of all vectors in X that are mapped by A into the zero element of Y. It is
clear that N(A) C X.
Definition 6.6 The adjoint of a linear operator A : X — Y, denoted as A*, is defined as follows.
e A: Y = X
o <Az y>y=<z.Ay]>x Yz€X, yeY.
where < - >x is the inner product defined in space X, and < - >y is the inner product defined in space Y.
The usefulness of the adjoint operator will become evident in the solution of linear equations. The following properties
of the adjoint operator are vital to its use.
o Given an operator on a Hilbert space A:.X — Y, and its adjoint A*:Y — X, it can be shown that
2. R(A) = R(AA™)
e Given an operator on a Hilbert space A : X — Y, and its adjoint A* : Y — X, it can be shown that there exist
orthogonal direct sum decompositions of Hilbert spaces .X and Y of the following form.
1. X = R(AN & N(A)
2. Y = R(A) ®N(A¥)

350



6.2 Least Squares Solution of y = Az]

Given a linear operator on the Hilbert space A : X — Y, and a specific y1 € Y, we define the solution of the linear
equation y; = A[z] as {z € X : y1 = A[z]].
There are three cases that merit consideration.
o If the operator A : X — Y is such that the R(A) =Y and the A/(A) = {0x}, then the solution of y, = A[z]
exists and is unique. The solution is given as z = A™'[y1]. Note that the inverse A™' : Y — X exists. Such a
solution corresponds to a system of linear equations with as many equations as there are unknowns.

o If the operator A : X -+ Y is such that the R(A) C Y and the N(A) = {0x}, then we note the following,

i = Alz]
Ap] = AY[A[z]]
A'yr] = A*A[z]

where the operator A*A : X — X. Note that N(4*A) = N(A) = {0x}. This implies that the inverse
(A*A)™!' : X — X exists. The solution therefore can be written as

z=(A"A)"' A% (108)

There is a simple geometric interpretation of the above result. Given y; € Y, there is a unique direct sum
decomposition of y; as, y1 = (y11 € R(A)) ® (y12 € N(A*)). That is, the vector in R(A) closest to y is the
vector ¥ — y12. Indeed, the best one could do is to find a solution £ € X such that A[z] = y — y12 = y1:- So
we attempt the following solution,

yi—ye = Alz]
Ay —y2] = AYAz]
Ap] = Af(2] = ATAl2]
A'm] -0y = A"Az)
A'p] = AYA[s]
r = (A*A)TAMy]
The solution (106) is called the least-squares solution of the linear equation y; = Afz]. Such a solution

corresponds to an overdetermined set of linear equations.
o Given a linear operator A: X — Y is such that the R(A) = Y and the {0x} C A(A), we follow the geometric
intuition as follows.

— Solutions exist as R{(A) =Y.

~ Consider any solution z; € X : y1 = A[z;]. This solution has a unique direct sum decomposition of the
form z; = (zi1 € R(A*)) @ (zi2 € N(A)). Indeed, there is no contribution of z;2 € A(A) to the solution
of y1 = A[z). Furthermore, as z;; € R(A*), it is true that there exists w € Y such that z,; = A*[w).

Note that
n = Alzi] (107)
= Alzia+zi2] (108)
= Alzi] (109)
= A[A*[w]] (110)
= AA’[w] (111)

Now note that AA* : Y — Y. Also R(AA*) = R(A) = Y. This implies that A(AA*) = 0y. This
guarantees that (AA*)™" exists. We therefore solve for w in equation (111) as
w=(44%) "'y (112)

Note that the minimum norm solution is certainly one that does not include elements from A(A4). There-
fore, the minimum norm solution of y; = A[z] is zi1 = A*[w] = A*(AA*)~"y:. This solution corresponds
to an underdetermined set of linear equations.

6.3 Least squares solution to multiple sensors and redundant actuators

Let us consider the case when there exists a multiplicity of sensors for the same measurement. Let the actual
measurement we are looking for be z and the multiple sensor measurements be y = Az. Then, to get a mean
measurement, with minimum error to the actual measurement, corresponds to exactly the overdetermined case in the
least squares estimation. The measurement is then given by

1= (A*A) 7 A"[w]
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This (A*A)~' A* is indeed the pseudoinverse of the A matrix.

Now consider the case when we have redundant sensors and we are looking for a force split that minimizes the
norm of the total force applied. Given forces r produced by the redundant actuators, the net force applied is given
by y = Bz. Now, given a force to be applied y, splitting it among the redundant actuators with minimum norm, is
exactly the underdetermined case derived in the least squares estimation. The solution is given by

z = B*[w] = B*(BB*) 'y

Note that B*(BB*)™! is the pseudoinverse of B.

7 Summary

In this paper we have developed the detailed dynamical equations of a rigid body rotor supported by actively
controlled magnetic bearings. We have done this using both Rotation Matrices and Quaternionsto see the equivalence.
Quaternions are more convenient to use, as they provide a nonsingular (invertible) transformation to the angular
velocity W. Also euler parameters are computationally as efficient and more compact in storage than rotation matrices.
In addition, in developing the model of the magnetic bearing system, we have considered two schemes for pole
excitation.

We notice that the model of the bearing system depends on the angular velocity in the spin direction. We have
developed a state feedback controller that stabilizes the system for all speeds of rotation. We also note that this
controller essentially decouples the system into 2 x 2 subsystems. We have presented simulation results showing the
performance of the controller.

Finally we also present a least squares scheme for minimizing the residual in measurements of output with multiple
sensors, and for minimizing the norm of the actuation forces when there are redundant actuators.
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