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ABSTRACT

A neural network controller has been developed to accommodate disturbances and nonlinearities

and improve the robustness of a magnetically suspended flywheel energy storage system. The
controller is trained using the back-propagation-through-time technique incorporated with a time-
averaging scheme. The resulting nonlinear neural network controller improves system
performance by adapting flywheel stiffness and damping based on operating speed. In addition, a
hybrid multi-layered neural network controller is developed off-line which is capable of improving
system performance even further. All of the research presented in this paper was implemented via
a magnetic bearing computer simulation. However, careful attention was paid to developing a
practical methodology which will make future application to the actual bearing system fairly
straightforward.

INTRODUCTION

Artificial neural networks are massively parallel systems of densely interconnected simple
processing elements which work together to adaptively produce a complex input/output functional
relationship through a learning process. Since they were developed based on the understanding of
how the human brain functions, physically neural networks can be visualized as a very simple
model of the massive interconnections of neurons which make Qp the human brain.

Neural networks have been developed over the past 40 years. In the 1950's, research was
carried out utilizing neural networks composed of individual neurons (nodes) called perceptrons.
A considerable amount of progress was made with these networks and associated learning
algorithms; however, they were only capable of learning linear relationships [1,2]. Because the

ability to learn and represent nonlinear relationships is highly desirable, in ensuing years many
researchers pursued methods, to surpass the capabilities of perceptrons. In the 1960's, for
example, Bernard Wldrow developed networks composed of adalines and madalines which
improved the overall capabilities of neural networks even in the area of representing nonlinear
functions [ 1]. However, a practical, universally applicable network and training scheme which
could accurately learn highly nonlinear relationships alluded Widrow and others. It was not until

1974 that the long awaited breakthrough was made by Werbos [3]. His work was popularized by
Rumelhart, et al. [4] in 1986 and is now commonly know as back-propagation. Since that time,
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many researchers have made further advancements in artificial neural networks. Numerous new
network configurations and training algorithms have evolved as well as countless practical

applications [ 1,2].

The building blocks (nodes) of all artificial neural networks perform a very simple two-step
procedure. First, the inputs to a node are multiplied by independent weighting factors and then
added together. Second, this weighted sum is passed through some sort of function, usually a
nonlinear sigmoid function (see Figure 1). By connecting a large number of these elements
together and choosing the correct weighting factors, very complex input/output relationships can be
represented. However, to successfully achieve this goal, an appropriate network configuration and

training algorithm are necessary.

Primarily there have been two main neural network configurations which have developed over
the years. First, there are feed-forward networks which are composed of nodes fully
interconnected from one layer to the next, beginning with the input and culminating at the output

layer (see Figure 2a). Recurrent networks are the second predominant type of network
configuration. In these networks, all or a portion of the nodes are fully interconnected to every
other node and a few or all of the nodes are chosen as inputs and/or outputs (see Figure 2b).

In order to choose the proper weighting values to correctly represent a given relationship, a
network learning technique is necessary. Neural network learning algorithms can also be broken
down into two main categories: supervised and unsupervised. In supervised learning, desired

input/output pairs are provided and the network adapts in such a way as to learn the associated
relationship. Unsupervised learning, on the other hand, does not have desired input/output pairs
available to learn from. Instead, a performance criterion is utilized to judge whether the correct

relationship has been learned to a desired accuracy.

NEURAL NETWORK CONTROL SYSTEMS

Neural networks have been successfully implemented as system controllers in a number of

different ways. Primarily, existing control system designs have been utilized with neural
networks replacing various system components. For example, neural networks have been used as
inverse plant controllers, self-tuning regulators, and as part of model reference adaptive control
systems [5-7]. For this research, the existing PD controller in the magnetic bearing system was
chosen to be replaced with a neural network. A PD-like neural network control system can be
developed by feeding time-delayed inputs and direct inputs into the input nodes of a neural
network. With these inputs, a derivative can be developed as well as a nonlinear proportionality

resulting in a PD-like controller configuration.

Specific research in the area of neural network controller development for magnetic bearings has
been limited to date. The main contribution has come from the Swiss Federal Institute of

Technology. Researchers there have completed two stages of research. First, they have
successfully developed a neural network controller capable of suspending a one degree-of-freedom
iron sphere computer simulation. Second, they have experimentally suspended a single degree-of-
freedom floating ball using a control system consisting of a standard linear controller and a neural
network running in parallel [8]. This research produced significant results and provided the
motivation to pursue further developments in this area. There are, however, a number of
limitations in this research that need to be overcome. First, only a very small scale application was

dealt with (i.e. mass = 0.013 kg). Second, only self-suspension was investigated. Rotation,

especially at high speeds, produces a great deal of complications. And third, inefficient training
algorithms based on random adaptation methods were used. The inherent instability of magnetic
bearings makes these methods much less than ideal. Therefore, in order to address these areas and
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pursuethedevelopmentof aneuralnetworkcontrollerfor magneticbeatingsfurther,a more
thoroughanalysisisconsideredin thisresearch.

MAGNETICBEARINGFLYWHEEL ENERGYSTORAGESYSTEM

TheUniversityof Marylandhasdevelopedacombinationelectro/permanentmagnetbearing
systemfor usein flywheelenergystorage.Thedesignconsistsof amotor/generatorsandwiched
betweentwopancakemagneticbearingswhich supportacompositeflywheel(seeFigure3). Each
degreeof freedomin thesystemis controlledbyanindependentcontroller,andaSISOmodelof
thepancakemagneticbearingandcontrolsystemis shownin Figure4. In thebearing,aposition
transducersensesthepositionof theflywheelandgeneratesacontrolsignalto drive the
electromagneticcoilsproducingtheappropriatestabilizingforce. Unfortunatelyfrom asystem
designstandpoint,theresultingcontrolandstabilizationof thesystembasedon linearcontrol
theoryis not robustdueto anumberof nonlinearitiesanddisturbances[9]. Thefollowing
nonlinearitiesanddisturbanceswereincorporatedinto themagneticbearingcomputersimulation
whichwasdevelopedusingButcher'sfifth-orderRunge-Kuttamethod[10]. First, the
nonlinearityassociatedwith thepoweramplifiersaturationwasincluded.Thenonlinear
relationship(Ki) betweenthecurrentsuppliedto theelectromagnetsandtheresultingcorrective
force(Fc)wasalsotakeninto accountin theanalysis.(seeFigure5) And finally, thenonlinearity
associatedwith thetouch-downgapdueto theback-upmechanicalbearingwasconsidered.The
disturbancesincludedin thisresearcharethoseresultingfrom themassimbalanceof theflywheel,
geometricerrorduetomanufacturingandassemblytolerances,anderrorattributableto the
sensors.

NEURAL NETWORKCONTROLLERTRAINING TECHNIQUE

Outof all of thenumeroustrainingtechniquesdevelopedfor neuralnetworks,only afractionof
themarecapableof addressingtheuniqueproblemsencounteredin controllertraining. A number
of candidateswereevaluated[2],andtheback-propagation-through-timemethodwaschosen
becauseof itsrelativesimplicityandprovenperformance.

TheBack-propagation-through-timetechniqueisbasedon thewell documentedlearning
algorithm:back-propagation[1,2,4]. Back-propagationisasupervisedtrainingtechniquewhich
performsa gradientdescentsearchfor theoptimalnetworkweights. In controlsystem
applications,theproperinput/outputrelationshipnecessarytoproducethedesiredresponseof the
plantis to belearned.Sinceback-propagationis asupervisedlearningtechniquewhichrequires
sampleinput/outputpairsof thisunknownrelationship,it cannotbeuseddirectlyasacontroller
trainingmethod.

In D.H. NguyenandB. Widrow'spaper[5], thefollowing two-stepprocedurewasoutlinedto
circumventthis problem.First,a neuralnetworkis trainedto emulatetheplant. To train this
network,appropriateplantinput/outputpairsneedto bedeveloped.Usingthesepairs,thenetwork
canveryeasilybetrainedvia back-propagationor someothertechnique.Thisprocedureclosely
parallelstheplantidentificationprocedurecommonlyperformedin linearcontrolsystemdesign.
Thesecondstepof theprocedureis developingarelationshipbetweentheplantoutputerrorand
theerrorin thecontrolsignal. Becausetheplantemulatorisa neuralnetwork,theerrorassociated
with theplantoutputcanbeback-propagatedthroughit. This back-propagatederrorproducesthe
desiredrelationshipbetweentheoutputandthecontrolsignalerrors.Thecontrolsignalerrorin
turncanbeback-propagatedthroughthecontrollerandusedto adaptthecontrollerweights
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appropriately (see Figure 6). Because the plant output error cannot be back-propagated through the
plant, the neural network emulator had to be developed.

The exact step by step desired plant output is not known for the mag.netic bearing system.
Therefore, an operating range is used as a more general system constraint in this work. The neural
network controller and plant are allowed to progress unaltered for a predetermined period of time

or until the operating range is exceeded. After this time, a performance criterion is calculated and
used to back-propagate the associated plant error through the neural network emulator and
controller. Since the controller and plant progressed through a number of time steps before

resulting in the output error and since the final controller output is not solely responsible for the
final state of the plant, this back-propagation procedure is continued through as many time
iterations as the system progressed in the forward mode. In this way,.there is an error and weight

update associated with each controller output. It is this back-propagauon of the output error
through numerous time steps that gives back-propagation-through-time its name. A graphical
representation of this procedure can be seen in Figure 7, where the C's, E's, and P's represent the
neural network controller, emulator, and plant respectively.

MAGNETIC BEARING SYSTEM IMPLEMENTATION

For the magnetic bearing system, the plant was defined as the power amplifier, voltage supply,
actuator coils, flywheel dynamics, and position transducer (see Figure 4). The remainder of the

system was replaced by the neural network controller.

Emulator Development

The first step in the back-propagation-through-time technique is the training of a neural network

plant emulator. In order to train the emulator, the appropriate inputs and outputs for modeling the
plant need to be determined. Utilizing discrete linear control system design representation, the

plant's dynamics in state-space notation can be expressed as:

x(k+l)=Ax(k) + Bu(k). (1)

Utilizing this representation, the present state of the plant and the plant inputs were chosen as the
inputs to the neural network emulator. The network outputs were chosen to be the future states of
the plant. The appropriate plant states were determined to be the coil current and the position and
velocity of the flywheel as sensed by the position transducer. The control signal and disturbance
force were chosen as the plant inputs. The corresponding inputs to the emulator are the control

signal, disturbance force, and present states of the plant (coil current, position, and velocity). The
outputs are the resulting states of the plant one time step later.

Because the magnetic bearing system is inherently unstable, it is not practically possible to
obtain the sample input/output pairs necessary for training the emulator without having a controller
in place. It would also be very expensive and impractical to build a controller just to obtain the data
necessary to develop another control system. Therefore, an alternate method of training the
emulator is necessary. One of the practically useful characteristics of the back-propagation-

through-time technique is its relatively high tolerance to emulator error. Because it is a one-step
predictor, as opposed to a multi-step predictor, it only requires relatively accurate modeling over
one time step. Linearization of a system over a single time step produces satisfactory accuracy in
most cases. Therefore, sample I/O pairs were generated based on an easily developed linearized
model of the plant. Following this approach, a suitable magnetic beating emulator was trained. A
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conjugategradientlearningalgorithmwasusedfor trainingtheemulatorinsteadof back-
propagationbecauseof its superiorspeedandaccuracy.Theseadvantagescanbedemonstratedby
comparingtheresultsobtainedfrom learningasinewave.Theconjugategradientmethodlearned
theproperrelationshipapproximately17timesfasterwhileachievinganRMSEvalueoneorderof
magnitudebetterthantheback-propagationroutine. Whenappliedto trainingtheemulator,the
conjugategradientmethodachievedanRMSEvalueof 3.17x 10-8ona trainingsetconsistingof
600I/O pairs. Theresultingnetworkwassubsequentlytestingonasetof 400I/O pairsproducing
acomparableRMSEvalueof 3.94x 10-8.

ControllerTraining

Becausenetworktrainingis atrial anderrorprocedureandthemagneticbearingis aninherently
unstablesystem,bearingdamageisverypossibledueto excessivefailures. To overcomethis
problem,atwo-stagetrainingprocedurewasimplemented.Thefirst stagewasto train thenetwork
toperformself-suspension.Oncethiswasaccomplished,thebeatingwasallowedto rotateat
increasinglyhigherspeedswhile thecontrollercontinuedto learn. If thespeedis notincreasedtoo
quicklyandappropriateoperatingrangesarechosen,learningis ableto continuewithoutany
failurestakingplaceafterself-suspensionis accomplished.This is becauselearningtakesplace
whenthedesignatedoperatingrangeisexceeded;andif thisrangeischosencarefully,thesystem
will remainstablethroughoutthisphaseof training.

Beforethis two-stagetrainingprocedurewasstarted,onemoreconcernwasdealtwith. Neural
networksproduceaninstantaneousresponsewhile atimedelayexistsin theactuatorcoil. This
combinationresultsin anoverlysensitivecontrollerwhich in turncausessysteminstability. The
neuralnetworkcontinuallyattemptsto instantaneouslybringthesystemto apointof equilibrium
withoutbeinginfluencedin anywaybypreviousoutputs.Therefore,thenetworkdoesnotallow
sufficienttimefor theactuatorto respondproperlyto counteractthedestabilizingforcebeforea
newandpossiblycontradictorycommandis given.

Basedon this insight,a time-averagingschemefor theneuralnetworkcontrolsignalwas
developed.This time-averagingmethodtakestheinstantaneousoutputof thenetworkand
averagesit with previousoutputsoveraspecifiedtimeperiod. Thisproducesacontrolsignal
whichtakesintoaccountpreviousoutputsandalsocausesa smoothsignalto result. As longas
thetime-averagingperiodischosenappropriately,this techniquetendsto producea stablesystem
(seeTableI).

A numberof differentnetworkconfigurationsweresuccessfullytrainedusingthemodified
back-propagation-through-timetechnique.Theperformancecriterion(E) usedduringtrainingwas

E = oqx + o_2x; (2)

whereoqand_2werecalculatedbasedof theemulatorsuchthatthepositionandvelocityof the
flywheelhadcomparableeffectsontheweightupdatingprocedure.Thevaluescalculatedwereas
follows: o_1 = 1.0 and 0_2 = 0.00036 [2].

In the first stage of controller training, self-suspension, the networks learned quickly allowing
less than ten failures on average. The operating range specified for this stage was the entire touch-
down gap (0.00015 m). The resulting neural networks were capable of controlling the system at
1000 rpms. Operating at this speed, the networks went through an additional training procedure,
after which the weights were fixed. For this stage of training, an operating range of 0.00002 m
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wasspecifiedin conjunctionwith amoderatemassimbalancecorrespondingto asinusoidal
disturbanceof 10Newtons.A summaryof thetrainingrun for thenetworkwith thebest
performanceis shownin TableII.

Thebestperformingcontrollerunexpectedlyturnedoutto beasingle-layernetwork. Even
thoughtheoreticallyanonlinearcontrollershouldbeableto producebetterresultsthanalinear
controller,this is only trueif thepropernonlinearfunctionis developed.It turnsout thatan
optimalcontrolsystemfor amagneticbearinghasanonlinearrelationshipwith respectto flywheel
rotationalspeed.Thismeansthatin orderfor acontrollertrainingalgorithmto producean
appropriatenonlinearnetwork,arelationshipinvolvingtherotationalspeedof theplantneedsto be
included. Thiswasnot thecasefor this trainingprocedure;therefore,theresultingnonlinear
relationshipsdevelopedby themulti-layeredneuralnetworkscannotbeexpectedto becorrect,and
neithercantheybeexpectedto outperformasingle-layernetwork.Thisanalysisis alsoconfirmed
by theresultsof Krodiewski,et al [11].

In additionto thetrainingof thesenetworksusingback-propagation-through-time,ahybrid
multi-layeredneuralnetworkcontrollerwasdevelopedoff-line utilizing experimentalresultsof the
previouslytrainednetworks. In thisnetwork(seeFigure8),thespeedof theflywheelanda+ 1
biasactastheonly inputs. Experimentallydeterminedcontrollerstiffnessanddampingfactors
appearasweightsin thesecondlayer. Thesecausetheeffectivestiffnessanddampingvaluesto
varybasedon thespeedof theflywheel(seeFigure9). Theoutputsof thethird layerof nodesare
theeffectivestiffnessanddampingfor thegivenspeed.In thefourth layerof nodes,thesevalues
aretakenasinputsin additionto theflywheel'spositionandvelocity. This layerof nodesis made
upof two productunitswhichmultiply theinputstogetherratherthancalculatingaweightedsum.
Finally, theoutputsof thesetwo nodesarefedinto thefifth layerof nodesproducingthecontrol
signal(Vo).

PerformanceResults

Comparisonof thebestperformingtrainedneuralnetworkcontroller(NN) andthelinearcontrol
system(LCS)producedanotherunexpectedresult. As canbeseenfrom Figure 10,the
performanceenvelopesfor thelinearcontrollerandtheneuralnetworkareverysimilarin thelow
to mid-speedrange.However,in thehigherspeedrange,theneuralnetworkperformancefar
exceedsthatof thelinearcontroller. A single-layerneuralnetworkisonly capableof producinga
linearrelationship;therefore,thequestionastowhy it is ableto outperformalinearcontrolsystem
designneedsto beanswered.Uponcloseranalysis,it turnsout thattheneuralnetworkin
conjunctionwith thetime-averagingschemeis ableto producea nonlinearrelationshipwith respect
to therotationalspeedof theflywheel. At low speeds,thetime-averagingperiodis negligible
comparedto thetimeperiodassociatedwith themassimbalance.However,astheflywheel speed
increases,thetimeperiodof themassimbalancerelateddisturbanceforcedecreases.Meanwhile,
thetime-averagingperiodremainsfixed. As thespeedof theflywheelincreasesaboveacertain
level,thetime-averagingperiodbecomessignificantandcauseslowereffectivecontrollerstiffness
anddamping.Thisphenomenonbecomesmorepronouncedastheflywheel speedincreases,and
resultsin thedesirednonlinearcontrolsystemrelationshipnecessaryto improveperformance.
Hence,thecombinationof thetrainedsingle-layerneuralnetworkcontrollerandthetime-averaging
techniqueactuallyresultsin a nonlinearratherthanalinearcontroller.Furtherperformance
improvementscanbeseento beachievedthroughtheuseof thehybridmulti-layeredneural
networkcontroller(HMLNN).

Thedisturbanceforcedueto amassimbalancecanbewrittenin theform:
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Fd= m eoff-sin(c0t); (3)

wherem is themassof theflywheelandeis themassimbalancedistance.Usingthisrelationship,
newperformancecurvescanbegenerated.As canbeseenfrom Figure 11,performancemeasured
by thisnewindexis alsoimprovedthroughtheuseof theneuralnetworkcontrollers.Thisresult
is verysignificantbecauseit demonstratesthattheneuralnetworkis muchmorelikely to beableto
controlthesystemathigherspeeds.It alsosuggeststhatcomparableperformancecanbeobtained
with aneuralnetworkcontrolledsystemsubjectedto reducedmanufacturingtolerancesanda
systemusingalinearcontrollerandmuchtightertolerances.

CONCLUSIONS/RECOMMENDATIONS

In thisresearch,thehistoricaldevelopmentsandbasicoperatingprinciplesof artificial neural
networkshavebeendiscussed.Theback-propagation-through-timetechniquehasbeendescribed
andmodifiedto produceaverypracticalcontrollertrainingtechniquefor themagneticbearing
system.Thetrainingprocedurehasbeenimplementedonacomputersimulation,andtheneural
networkcontrollersweresuccessfullytrained.Theresultingsystemperformancecharacteristics
werecomparedwith thoseof theexistinglinearcontrolsystem.Significantlyimproved
performancewasachievedfor boththesingle-layerandhybridmulti-layeredneuralnetwork
controllers.Theseimprovementsdemonstratetheadvantagesof usingneuralnetworksin control
systemdesignespeciallywhenthedesiredcontrollerresponseis nonlinear.

In orderto produceevenbetterperformingnonlinearcontrollers,thedevelopmentsof this
researchcanbeextended.Theon-linetrainingtechniquecouldbemodifiedto includethe
rotationalspeedof theflywheelasatrainingparametersothattheappropriatenonlinear
relationshipwouldbe learnedby amulti-layeredneuralnetwork.Theinclusionof thecoil current
asaninput to thecontrolsystemshouldalsobe investigated.Thisaddedinputmaybeableto
improvecontrollerperformancefor bothstandardlinearcontrolsystemsandneuralnetworks.In
addition,anevenmoreaccuratecomputersimulationcouldbedeveloped.Thesimulationusedin
thisresearchincludesmostof theimportantsystemcharacteristics.However,thereareafew areas
thatstill needto beaddressed[9]. At highspeeds,anumberof factorsbeginto play asignificant
role. For example,gyroscopiceffectsat highspeedsmaketheassumptionof independentcontrol
axesincorrect.Materialdeformationathighspeedsalsoalterssystemperformancedueto growth
of theair gap. Additionally,magneticmaterialpropertiesalterdueto eddycurrentsandhysteresis.
Therefore,all of thesecharacteristicsneedtobe takenintoaccountin ordertoobtainanaccurate
model. However,nosimulationis everperfect. Therefore,controllertrainingshouldbe
performedon theactualmagneticbearingflywheelenergystoragesystemin ordertopractically
proveandimproveon theresultsobtainedthroughsimulation.
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Figure 7. Back-propagation-through-time procedure.

Table I. Time-averaging Period Results

Tirne-averaging
Period

0.0002 sex.

0.0005 sex.

0.0010 sex.

Results

unstable

stable - better performance at low to medium speeds

stable - better performace at higher speeds
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Table II. Neural Network Controller Training Results

Training

Self-suspension

1000 rpm

Network weights
(normalized)

w(1,1) = -0.636254
w(1,2) = -0.455918

w(l,l) =- 1.31773
w(1,2) = - 0.777021

Adjusted
weights

w'(1,1) = -6.36254
w'(l,2) - -0.022796

w'(1,1) =- 13.1773
w'(1,2) = - 0.038851

Controller Stiffness

, f(x)=I/(l+cxp(-x))

-0. I! _3.2 f(x)= x

+_---_.q"x,_---::=...................._ .... __..._.o,._--__o

_ i.0

Controller Damping

Figure 8. Hybrid multi-layered neural network controller.
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