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ABSTRACT

A neural network controller has been developed to accommodate disturbances and nonlinearities
and improve the robustness of a magnetically suspended flywheel energy storage system. The
controller is trained using the back-propagation-through-time technique incorporated with a time-
averaging scheme. The resulting nonlinear neural network controller improves system
performance by adapting flywheel stiffness and damping based on operating speed. In addition, a
hybrid multi-layered neural network controller is developed off-line which is capable of improving
system performance even further. All of the research presented in this paper was implemented via
a magnetic bearing computer simulation. However, careful attention was paid to developing a
practical methodology which will make future application to the actual bearing system fairly
straightforward.

INTRODUCTION

Artificial neural networks are massively parallel systems of densely interconnected simple
processing elements which work together to adaptively produce a complex input/output functional
relationship through a learning process. Since they were developed based on the understandin gof
how the human brain functions, physically neural networks can be visualized as a very simple
model of the massive interconnections of neurons which make ap the human brain.

Neural networks have been developed over the past 40 years. In the 1950's, research was
carried out utilizing neural networks composed of individual neurons (nodes) called perceptrons.
A considerable amount of progress was made with these networks and associated learning
algorithms; however, they were only capable of learning linear relationships [1,2]. Because the
ability to learn and represent nonlinear relationships is highly desirable, in ensuing years many
researchers pursued methods to surpass the capabilities of perceptrons. In the 1960's, for
example, Bernard Widrow developed networks composed of adalines and madalines which
improved the overall capabilities of neural networks even in the area of representing nonlinear
functions [1]. However, a practical, universally applicable network and training scheme which
could accurately learn highly nonlinear relationships alluded Widrow and others. It was not until
1974 that the long awaited breakthrough was made by Werbos [3]. His work was popularized by
Rumelhart, et al. [4] in 1986 and is now commonly know as back-propagation. Since that time,
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many researchers have made further advancements in artificial neural networks. Numerous new
network configurations and training algorithms have evolved as well as countless practical
applications [1,2].

The building blocks (nodes) of all artificial neural networks perform a very simple two-step
procedure. First, the inputs to a node are multiplied by independent weighting factors and then
added together. Second, this weighted sum is passed through some sort of function, usually a
nonlinear sigmoid function (see Figure 1). By connecting a large number of these elements
together and choosing the correct weighting factors, very complex input/output relationships can be
represented. However, to successfully achieve this goal, an appropriate network configuration and
training algorithm are necessary.

Primarily there have been two main neural network configurations which have developed over
the years. First, there are feed-forward networks which are composed of nodes fully
interconnected from one layer to the next, beginning with the input and culminating at the output
layer (see Figure 2a). Recurrent networks are the second predominant type of network
configuration. In these networks, all or a portion of the nodes are fully interconnected to every
other node and a few or all of the nodes are chosen as inputs and/or outputs (see Figure 2b).

In order to choose the proper weighting values to correctly represent a given relationship, a
network learning technique is necessary. Neural network learning algorithms can also be broken
down into two main categories: supervised and unsupervised. In supervised learning, desired
input/output pairs are provided and the network adapts in such a way as to learn the associated
relationship. Unsupervised learning, on the other hand, does not have desired input/output pairs
available to learn from. Instead, a performance criterion is utilized to judge whether the correct
relationship has been learned to a desired accuracy.

NEURAL NETWORK CONTROL SYSTEMS

Neural networks have been successfully implemented as system controllers in a number of
different ways. Primarily, existing control system designs have been utilized with neural
networks replacing various system components. For example, neural networks have been used as
inverse plant controllers, self-tuning regulators, and as part of model reference adaptive control
systems [5-7]. For this research, the existing PD controller in the magnetic bearing system was
chosen to be replaced with a neural network. A PD-like neural network control system can be
developed by feeding time-delayed inputs and direct inputs into the input nodes of a neural
network. With these inputs, a derivative can be developed as well as a nonlinear proportionality
resulting in a PD-like controller configuration.

Specific research in the area of neural network controller development for magnetic bearings has
been limited to date. The main contribution has come from the Swiss Federal Institute of
Technology. Researchers there have completed two stages of research. First, they have
successfully developed a neural network controller capable of suspending a one degree-of-freedom
iron sphere computer simulation. Second, they have experimentally suspended a single degree-of-
freedom floating ball using a control system consisting of a standard linear controller and a neural
network running in parallel [8]. This research produced significant results and provided the
motivation to pursue further developments in this area. There are, however, a number of
limitations in this research that need to be overcome. First, only a very small scale application was
dealt with (i.e. mass = 0.013 kg). Second, only self-suspension was investigated. Rotation,
especially at high speeds, produces a great deal of complications. And third, inefficient training
algorithms based on random adaptation methods were used. The inherent instability of magnetic
bearings makes these methods much less than ideal. Therefore, in order to address these areas and
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pursue the development of a neural network controller for magnetic bearings further, a more
thorough analysis is considered in this research.

MAGNETIC BEARING FLYWHEEL ENERGY STORAGE SYSTEM

The University of Maryland has developed a combination electro/permanent magnet bearing
system for use in flywheel energy storage. The design consists of a motor/generator sandwiched
between two pancake magnetic bearings which support a composite flywheel (see Figure 3). Each
degree of freedom in the system is controlled by an independent controller, and a SISO model of
the pancake magnetic bearing and control system is shown in Figure 4. In the bearing, a position
transducer senses the position of the flywheel and generates a control signal to drive the
electromagnetic coils producing the appropriate stabilizing force. Unfortunately from a system
design standpoint, the resulting control and stabilization of the system based on linear control
theory is not robust due to a number of nonlinearities and disturbances [9]. The following
nonlinearities and disturbances were incorporated into the magnetic bearing computer simulation
which was developed using Butcher's fifth-order Runge-Kutta method [10]. First, the
nonlinearity associated with the power amplifier saturation was included. The nonlinear
relationship (Kj) between the current supplied to the electromagnets and the resulting corrective
force (F) was also taken into account in the analysis. (see Figure 5) And finally, the nonlinearity
associated with the touch-down gap due to the back-up mechanical bearing was considered. The
disturbances included in this research are those resulting from the mass imbalance of the flywheel,
geometric error due to manufacturing and assembly tolerances, and error attributable to the
SENsors.

NEURAL NETWORK CONTROLLER TRAINING TECHNIQUE

Out of all of the numerous training techniques developed for neural networks, only a fraction of
them are capable of addressing the unique problems encountered in controller training. A number
of candidates were evaluated [2], and the back-propagation-through-time method was chosen
because of its relative simplicity and proven performance.

The Back-propagation-through-time technique is based on the well documented learning
algorithm: back-propagation [1,2,4]. Back-propagation is a supervised training technique which
performs a gradient descent search for the optimal network weights. In control system
applications, the proper input/output relationship necessary to produce the desired response of the
plant is to be learned. Since back-propagation is a supervised learning technique which requires
sample input/output pairs of this unknown relationship, it cannot be used directly as a controller
training method.

In D.H. Nguyen and B. Widrow's paper [5], the following two-step procedure was outlined to
circumvent this problem. First, a neural network is trained to emulate the plant. To train this
network, appropriate plant input/output pairs need to be developed. Using these pairs, the network
can very easily be trained via back-propagation or some other technique. This procedure closely
parallels the plant identification procedure commonly performed in linear control system design.
The second step of the procedure is developing a relationship between the plant output error and
the error in the control signal. Because the plant emulator is a neural network, the error associated
with the plant output can be back-propagated through it. This back-propagated error produces the
desired relationship between the output and the control signal errors. The control signal error in
turn can be back-propagated through the controller and used to adapt the controller weights
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appropriately (see Figure 6). Because the plant output error cannot be back-propagated through the
plant, the neural network emulator had to be developed.

The exact step by step desired plant output is not known for the magnetic bearing system.
Therefore, an operating range is used as a more general system constraint in this work. The neural
network controller and plant are allowed to progress unaltered for a predetermined period of time
or until the operating range is exceeded. After this time, a performance criterion is calculated and
used to back-propagate the associated plant error through the neural network emulator and
controller. Since the controller and plant progressed through a number of time steps before
resulting in the output error and since the final controller output is not solely responsible for the
final state of the plant, this back-propagation procedure is continued through as many time
iterations as the system progressed in the forward mode. In this way, there is an error and weight
update associated with each controller output. It is this back-propagation of the output error
through numerous time steps that gives back-propagation-through-time its name. A graphical
representation of this procedure can be seen in Figure 7, where the C's, E's, and P's represent the
neural network controller, emulator, and plant respectively.

MAGNETIC BEARING SYSTEM IMPLEMENTATION

For the magnetic bearing system, the plant was defined as the power amplifier, voltage supply,
actuator coils, flywheel dynamics, and position transducer (see Figure 4). The remainder of the
system was replaced by the neural network controller.

Emulator Development

The first step in the back-propagation-through-time technique is the training of a neural network
plant emulator. In order to train the emulator, the appropriate inputs and outputs for modeling the
plant need to be determined. Utilizing discrete linear control system design representation, the
plant's dynamics in state-space notation can be expressed as:

x(k+1)=Ax(k) + Bu(k). (1)

Utilizing this representation, the present state of the plant and the plant inputs were chosen as the
inputs to the neural network emulator. The network outputs were chosen to be the future states of
the plant. The appropriate plant states were determined to be the coil current and the position and
velocity of the flywheel as sensed by the position transducer. The control signal and disturbance
force were chosen as the plant inputs. The corresponding inputs to the emulator are the control
signal, disturbance force, and present states of the plant (coil current, position, and velocity). The
outputs are the resulting states of the plant one time step later.

Because the magnetic bearing system is inherently unstable, it is not practically possible to
obtain the sample input/output pairs necessary for training the emulator without having a controller
in place. It would also be very expensive and impractical to build a controller just to obtain the data
necessary to develop another control system. Therefore, an alternate method of training the
emulator is necessary. One of the practically useful characteristics of the back-propagation-
through-time technique is its relatively high tolerance to emulator error. Because it is a one-step
predictor, as opposed to a multi-step predictor, it only requires relatively accurate modeling over
one time step. Linearization of a system over a single time step produces satisfactory accuracy in
most cases. Therefore, sample I/O pairs were generated based on an easily developed linearized
model of the plant. Following this approach, a suitable magnetic bearing emulator was trained. A
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conjugate gradient learning algorithm was used for training the emulator instead of back-
propagation because of its superior speed and accuracy. These advantages can be demonstrated by
comparing the results obtained from learning a sine wave. The conjugate gradient method learned
the proper relationship approximately 17 times faster while achieving an RMSE value one order of
magnitude better than the back-propagation routine. When applied to training the emulator, the
conjugate gradient method achieved an RMSE value of 3.17 x 108 on a training set consisting of
600 I/O pairs. The resulting network was subsequently testing on a set of 400 I/O pairs producing
a comparable RMSE value of 3.94 x 10-8.

Controller Training

Because network training is a trial and error procedure and the magnetic bearing is an inherently
unstable system, bearing damage is very possible due to excessive failures. To overcome this
problem, a two-stage training procedure was implemented. The first stage was to train the network
to perform self-suspension. Once this was accomplished, the bearing was allowed to rotate at
increasingly higher speeds while the controller continued to learn. If the speed is not increased too
quickly and appropriate operating ranges are chosen, learning is able to continue without any
failures taking place after self-suspension is accomplished. This is because learning takes place
when the designated operating range is exceeded; and if this range is chosen carefully, the system
will remain stable throughout this phase of training.

Before this two-stage training procedure was started, one more concern was dealt with. Neural
networks produce an instantaneous response while a time delay exists in the actuator coil. This
combination results in an overly sensitive controller which in turn causes system instability. The
neural network continually attempts to instantaneously bring the system to a point of equilibrium
without being influenced in any way by previous outputs. Therefore, the network does not allow
sufficient time for the actuator to respond properly to counteract the destabilizing force before a
new and possibly contradictory command is given.

Based on this insight, a time-averaging scheme for the neural network control signal was
developed. This time-averaging method takes the instantaneous output of the network and
averages it with previous outputs over a specified time period. This produces a control signal
which takes into account previous outputs and also causes a smooth signal to result. As long as
the time-averaging period is chosen appropriately, this technique tends to produce a stable system
(see Table I).

A number of different network configurations were successfully trained using the modified
back-propagation-through-time technique. The performance criterion (E) used during training was

E=o01x + a2x; (2)

where o; and oy were calculated based of the emulator such that the position and velocity of the
flywheel had comparable effects on the weight updating procedure. The values calculated were as

follows: o; = 1.0 and oz = 0.00036 [2].

In the first stage of controller training, self-suspension, the networks learned quickly allowing
less than ten failures on average. The operating range specified for this stage was the entire touch-
down gap (0.00015 m). The resulting neural networks were capable of controlling the system at
1000 rpms. Operating at this speed, the networks went through an additional training procedure,
after which the weights were fixed. For this stage of training, an operating range of 0.00002 m

395



was specified in conjunction with a moderate mass imbalance corresponding to a sinusoidal
disturbance of 10 Newtons. A summary of the training run for the network with the best
performance is shown in Table IL

The best performing controller unexpectedly turned out to be a single-layer network. Even
though theoretically a nonlinear controller should be able to produce better results than a linear
controller, this is only true if the proper nonlinear function is developed. It turns out that an
optimal control system for a magnetic bearing has a nonlinear relationship with respect to flywheel
rotational speed. This means that in order for a controller training algorithm to produce an
appropriate nonlinear network, a relationship involving the rotational speed of the plant needs to be
included. This was not the case for this training procedure; therefore, the resulting nonlinear
relationships developed by the multi-layered neural networks cannot be expected to be correct, and
neither can they be expected to out perform a single-layer network. This analysis is also confirmed
by the results of Krodiewski, et al [11].

In addition to the training of these networks using back-propagation-through-time, a hybnd
multi-layered neural network controller was developed off-line utilizing experimental results of the
previously trained networks. In this network (see Figure 8), the speed of the flywheel and a + 1
bias act as the only inputs. Experimentally determined controller stiffness and damping factors
appear as weights in the second layer. These cause the effective stiffness and damping values to
vary based on the speed of the flywheel (see Figure 9). The outputs of the third layer of nodes are
the effective stiffness and damping for the given speed. In the fourth layer of nodes, these values
are taken as inputs in addition to the flywheel's position and velocity. This layer of nodes is made
up of two product units which multiply the inputs together rather than calculating a weighted sum.
Finally, the outputs of these two nodes are fed into the fifth layer of nodes producing the control
signal (vp).

Performance Results

Comparison of the best performing trained neural network controller (NN) and the linear control
system (LCS) produced another unexpected result. As can be seen from Figure 10, the
performance envelopes for the linear controller and the neural network are very similar in the low
to mid-speed range. However, in the higher speed range, the neural network performance far
exceeds that of the linear controller. A single-layer neural network is only capable of producing a
linear relationship; therefore, the question as to why it is able to outperform a linear control system
design needs to be answered. Upon closer analysis, it turns out that the neural network in
conjunction with the time-averaging scheme is able to produce a nonlinear relationship with respect
to the rotational speed of the flywheel. At low speeds, the time-averaging period is negligible
compared to the time period associated with the mass imbalance. However, as the flywheel speed
increases, the time period of the mass imbalance related disturbance force decreases. Meanwhile,
the time-averaging period remains fixed. As the speed of the flywheel increases above a certain
level, the time-averaging period becomes significant and causes lower effective controller stiffness
and damping. This phenomenon becomes more pronounced as the flywheel speed increases, and
results in the desired nonlinear control system relationship necessary to improve performance.
Hence, the combination of the trained single-layer neural network controller and the time-averaging
technique actually results in a nonlinear rather than a linear controller. Further performance
improvements can be seen to be achieved through the use of the hybrid multi-layered neural
network controller (HMLNN).

The disturbance force due to a mass imbalance can be written in the form:
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Fq=me w? sin(wt); 3)

where m is the mass of the flywheel and e is the mass imbalance distance. Using this relationship,
new performance curves can be generated. As can be seen from Figure 11, performance measured
by this new index is also improved through the use of the neural network controllers. This result
is very significant because it demonstrates that the neural network is much more likely to be able to
control the system at higher speeds. It also suggests that comparable performance can be obtained
with a neural network controlled system subjected to reduced manufacturing tolerances and a
system using a linear controller and much tighter tolerances.

CONCLUSIONS/RECOMMENDATIONS

In this research, the historical developments and basic operating principles of artificial neural
networks have been discussed. The back-propagation-through-time technique has been described
and modified to produce a very practical controller training technique for the magnetic bearing
system. The training procedure has been implemented on a computer simulation, and the neural
network controllers were successfully trained. The resulting system performance characteristics
were compared with those of the existing linear control system. Significantly improved
performance was achieved for both the single-layer and hybrid multi-layered neural network
controllers. These improvements demonstrate the advantages of using neural networks in control
system design especially when the desired controller response is nonlinear.

In order to produce even better performing nonlinear controllers, the developments of this
research can be extended. The on-line training technique could be modified to include the
rotational speed of the flywheel as a training parameter so that the appropriate nonlinear
relationship would be learned by a multi-layered neural network. The inclusion of the coil current
as an input to the control system should also be investigated. This added input may be able to
improve controller performance for both standard linear control systems and neural networks. In
addition, an even more accurate computer simulation could be developed. The simulation used in
this research includes most of the important system characteristics. However, there are a few areas
that still need to be addressed [9]. At high speeds, a number of factors begin to play a significant
role. For example, gyroscopic effects at high speeds make the assumption of independent control
axes incorrect. Material deformation at high speeds also alters system performance due to growth
of the air gap. Additionally, magnetic material properties alter due to eddy currents and hysteresis.
Therefore, all of these characteristics need to be taken into account in order to obtain an accurate
model. However, no simulation is ever perfect. Therefore, controller training should be
performed on the actual magnetic bearing flywheel energy storage system in order to practically
prove and improve on the results obtained through simulation.
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Figure 2a. Feed-forward network. Figure 2b. Recurrent network.
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Table I. Time-averaging Period Results

Time-averaging
Period Results

0.0002 sec. unstable

0.0005 sec. stable - better performance at low to medium speeds

0.0010 sec. stable - better performace at higher speeds
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Table II.

Neural Network Controller Training Results

Network weights Adjusted
Training (normalized) weights
w(l,1) =-0.636254

Self-suspension

w(1,2) = -0.455918

w'(1,1) = -6.36254
w'(1,2) = -0.022796

1000 rpm

w(l,1)

- 1.31773
w(l1,2)

- 0.777021

- 13.1773

w'(1
w'(1 - 0.038851

1)
2)

Controller Stiffness

f(x)=x

Controller Damping

Figure 8. Hybrid multi-layered neural network controller
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