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SUMMARY _. /3

The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion !

control resolution and macroscopic travel in a precision magnetically-suspended motion control

system are presented in this paper. Noise sources in the transducers, electronics, and mechanical

vibrations are used to develop the control design.

INTRODUCTION

Precision motion control at the nanometer level is required in many potential applications,

e.g., for semiconductor manufacturing, large-travel probe microscopy, probing and analysis of

integrated-circuit structures, and the testing of micromachines. Magnetic suspension makes pos-

sible performance of precision motion control systems which can not be achieved by other means

[1]. An important requirement in precision motion control systems with magnetic suspension is

that the disturbance influence on control coordinates of motion should be below a given value.

There are fundamental trade-offs between the conflicting objectives of reducing sensitivity to dis-

turbances (mechanical vibrations) and parameter uncertainty on the one hand, and filtering out

any internally generated noise (sensor noise) on the other. It is the existence of these trade-offs

which makes control system design for fine-motion control systems difficult. This paper deals with

analysis of achievable disturbance attenuation in precision magnetically-suspended motion control

systems. The objective is to get an Angstrom resolution in a 100 #m cube of accessible travel of

the suspended platen.

DESCRIPTION OF THE SYSTEM

The magnetically-suspended six-degree-of-freedom motion control stage will be floated in oil to

support its weight, provide mechanical damping, and high-frequency coupling [2]. In one possible

design, the platen is suspended by a symmetric arrangement of twelve electromagnets M1 - M12

(Fig.l). The electromagnets are mounted in the machine frame and act on ferromagnetic targets
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mounted in the platen. These electromagnets are arranged symmetrically at the corners of the

platen. Since the electromagnets can exert only attractive forces, the actuators are arranged in

pairs on opposite faces of the platen. The capacitance probes C1 - C6 provide measurement of

the coordinates of the platen.

Magnet Force Measurements

In order to design a control system for the purpose of achieving levitation of the platen, accurate

measurements of the magnet force characteristics were made. To carry out these measurements,

the magnetic bearing calibration fixture has been used with the following characteristics [3]: mea-

surement of the electromagnet actuator force from minimum to maximum core flux density at

separation gaps ranging from 10 to 1000 microns; peak force capabilitly on the order of hundreds

of newtons; adjustment of the target separation gap as well as the rotation of the target relative

to the actuator.

To study the magnetic force dependence of angle position of the platen, the measurements

of magnetic force for maximum possible platen rotation about the short and long axis of the

electromagnet were made. According to the magnet force measurements, it was accepted that

in the first approach we can neglect the influence of rotation on the force characteristics of the

electromagnets. The force of each electromagnet is the function of current of the electromagnet i_

and the gap between the surface of the electromagnet and platen target q_

F._ = k_,ii - kq, q_,

i = 1, ..., 6.

The negative sign in the formula shows that the magnetic: : force decreases When gap incre_es.

(1)

Fluid damping

The platen will be floated in low-vapor-pressure viscous oil in order to support its weight and

thus minimize power dissipation. The oil flotation provides several advantages. First, oil increases

the high-frequency coupling between the platen and the frame. At frequencies above those which

are well controlled by the active suspension, the platen motions are controlled through vlsc0us

coupling to the frame. Second, the oil supplies viscous damping to platen and frame vibrations

and resonances. Such resonances can be troubling for ultra-precision control systems, and it is far

better to solve them in the mechanical domain rather than attempting to compensate for them in

the feedback controller domain. There are two kinds of damping influence from the fluid to the

floated moving platen. The first one is the force of inertial friction of the fluid or its resistance

to shear. This force is propotional to the contact area of the two separate surfaces, the speed of

relative motion, and inversely proportional to the distance separating the two surfaces having the

relative motion.
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F,_ = _A v, (2)
q

where # - viscosity of fluid; A - area; q - separating distance; v - speed of movement. The second

one is the squeeze film damping force. The load-carrying phenomenon arises from the fact that

a viscous lubricant cannot be instantaneously squeezed out from between two surfaces that are

approaching each other. It takes time for these surfaces to meet and during that interval, because

of the lubricant's resistance to extrusion, a pressure is built up and the load is actually supported

by the oil film. If the load is applied for a short enough period, it may happen that the two surfaces

will not meet at all. According to the design (Fig. 1), the nearest distance between the platen and

the frame is the distance between the surfaces of the capacitive sensors and their targets on the

platen. For one capacitive probe we have the case of a single circular plate of radius R approaching

a flat plate. For this case the damping force F4 is [4]

Fd2- 3rrpR4v (3)
2q 3

The comparison of the equations (2) and (3) shows that the squeeze film damping force is much

greater than the shearing damping force and therefore, we can neglect the latter in the calcula-

tions. Formula (3) allows us to estimate the desirable forces of electromagnets which they have to

provide for movement of the platen along the corresponding coordinate.

The results of the damping force calculations allow us to make the conclusion that due to the

large mechanical damping, which we can control through the choice of the fluid viscosity, area of

the contacting surfaces and the distance between the contacting surfaces, we do not need addi-

tional electrical damping implemented in the controller design. So, to control the platen motion

we can use the simple proportional controller.

Development of model for system dynamics

According to the equations for magnetic forces and moments we have the following model for

system dynamics

m_ + b=5: - 3kqx = F=d,_ + k_(il + i2 + i3); (4)

rnij + b_it- 2kqy = F_,_, + k,(i4 + is); (5)

m5 + bz_" - kqz = Fzd,_, + k_is; (6)

J=:_ + b_,'_ - 2n2kq"/ = M=d,. , + Lk,(is - i,); (7)

3L 2
gy¢ + bo¢ - --_--kq¢ = My,,,_ + Lk,[il - 1(i2 + i3)1; (8)

J_O + baO - vf3n2kq9 = M_,,., + Lk,(i3 - i2); (9)
,, o,

where m-mass of platen; J=,J_,J,-inertia moments of platen about axes x, y, z; 3, _), _, _, ¢,

- accelerations of the platen along corresponding coordinate; Fi,,_, - disturbance force ; M_,_,
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disturbance moment; bi, (i = x,y, z,"/, _b, 0) - damping coefficients along corresponding coordi-

nate i; 5, y, _, "_, ¢, 0 - velocities of the platen along of corresponding coordinate. The previous

equations show that in the first approach we can use the equation for each coordinate indepen-

dently of the other coordinates and design the controller only for this coordinate.

CONTROL SYSTEM DESIGN

An important requirement in precision motion control systems with magnetic suspension is

that the disturbance influence on control coordinates of motion should be below a given value.To

provide low-noise control system design, the analysis of disturbances and their mathematical mod-

els are necessary. The system under consideration is shown in Fig.2, where P and C are the plant

and controller transfer functions. The signals in the system are as follows: r- reference or com-

mand signal; _ - tracking error; _ - control signal, controller output; .f- plant disturbance; x - plant

output; s - sensor noise.

Analysis and mathematical model of disturbances

2

The main disturbances in the system are mechanical vibrations of the frame and sensor noise.

To analyze the mechanical vibration disturbance, the measurements of the floor vibrations using a

Wilcoxon research seismic accelerometer, model 731, and a DT-2823 data acquisition board for a

PC-computer were used. The measured signal of vibration acceleration is presented in the Fig.3.

The histogram of the measured vibration acceleration signal shows that signal amplitudes follow a

Gaussian probability distribution with a mean of zero (Fig.4). For a Gaussian distribution there is

correlation between standard deviation or root-mean-square (R.U_) value and peak-to-peak value

which is shown in Table 1. This correlation allows an estimate of the peak-to-peak value of random

process if the RMs value is known. To analyze the spectral range, the spectrum of vibrations

was measured using HP-35665A dynamic signal analyzer. This spectrum showed that the spectral

range of vibrations is inside the 0 - 35 Hz region. Therefore, we can accept that vibration distur-

bance is the white noise with some spectral density which goes through the low-pass filter with

the noise bandwidth equal to 35 Hz. According to this mathematical model the vibration signal

looks as white noise with spectral density Sf(w) = 1.41 • 10 -gN_ which goes through a first-order
8_C

low-pass filter with a transfer function

where T1 = .O071sec.

1
- (10)

_,s, Tls + 1'

The graph of the imitation signal of vibration and the histogram of the imitation signal are shown

in Fig.3 and Fig.4 respectively and show good coincidence between real and imitation signals.

The analogous method was used for the design of the mathematical model of the sensor noise.

Similarly, the sensor noise looks as the white noise with spectral density Ss(w) = 3.33.10 -13 y-"8ec

which goes through a first-order low-pass filter with a transfer function
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1

W2(s) - T2s + 1' (11)

where T2 = .O0025sec.

For noise and error amplitudes which follow a Gaussian (normal) probability distribution with a

mean of zero, the mean square value equals the variance a 2 of the output error signal and RMS

equals the standard deviation a. Mean square error a 2 for our system looks as follows:

a2 - 1 /_ P(jw) 2S rw_& ° 1 /__ P(jw)C(jw) [2S+(w)dw. (12)- I1+ J + I1+
Our control problem may be formulated as follows. Assuming that the noise and the disturbance

are the stationary random functions having known correlation functions or spectral densities, it

is required for known structure of the controller to find the parameters which would provide the

stability of a closed-loop system and minimize noise level of the output signal.

Analysis of One-Degree-of-]_eedom System

According to the previous conclusions we can analyze the dynamics of our system for each

coordinate independently. So, let us analyze the one-degree-of-freedom system corresponding to

vertical linear motion of the platen. The system under consideration is shown in Fig.5. In this

case the equation of the movement of the platen looks as follows:

m_ + b:::i: - kxx = Fai,t- kii, (13)

where Fdist = -m&I - disturbance force, caused by the vibrations of the frame relative to inertial

space; Fd = -bxYc - damping force; Fm = kii - kxx - force of electromagnet; xrn = xf + x, Xm =

51 + i?; Xm is the coordinate of the platen relative to the inertial space, xf is the coordinate of

the frame relative to the inertial space, and x is the gap between the electromagnet and platen

which it is necessary to stabilize during the functioning of the control system. To make the system

closed-loop we need to add to the equation of motion (13) the equation of the x position sensor

of the platen

us=k,x, (14)

where u, - output voltage of sensor; ks - proportional coefficient which represents transforma-

tion of displacement into sensor output voltage; and the equation of controller which transforms

output voltage of sensor into control current of electromagnet with some proportional coefficient k¢:

i = ]%X.

Equation for variance er_ of the output signal looks as follows

(15)

l f_w

27r ×_

2 2 2
(Yx = _7xf "t- O'xs

1

I m(jod)2 -I- bx(jOd)"4- (kikcks - kx) Wl(jOd)]2Sf(°d)dod

(16)
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+2-_ _ [rn(jw) 2 + bx(jw) + (k_kcks- kx) W2(jw)12Ss(w)dw

TI(bxT1+ 1)
2(k, kcks- kx)T_((b_T_ + 1)(k,k¢k_T_ + b_ - kxT_) - (k, kck,- k_)T1)) Sf(w)

T (k, kc)2(b T2+ 1)
2(k, kck,,- kx)T2((bxT2 + 1)(k, kck, T2 + b_ - kxT2) - (k, kck,- kx)T2)) S_(_°)"

Equation (16) is of great importance, because it allows us to solve the problem of trade-offs be-

tween the conflicting objectives of reducing sensitivity to mechanical vibrations and filtering out

the sensor noise. We can evaluate the value of the variance and, therefore, the peak-to-peak

deviation of the output signal in relation with the parameters of the system and choose these

parameters in accordance with the required peak-to-peak deviation of output signal and system's

bandwidth. The first integral in equation (16) is decreasing with increasing coefficient k_ of the

controller and the second one is increasing in this case. This is clear if the time constants T1 and T2

in equation (16) are equal to zero. Fig.6 represents the graph of dependence of the first and second

integrals in (16) and their sum of controller coefficient. Therefore, the equation for mean square

of output signal deviation has the extreme value (in particular, a minimum) and we can find this

coefficient of the controller which produces this minimum. The predicted, according to correlation,

PP,=8.a, (17)

peak-to-peak deviation of x coordinate and peak-to-peak deviation from simulation results for

different controller and damping coefficients are shown in Fig.7. The results of Fig.7 show that for

controller coefficients above 20 [-_] (system bandwidth above 20 L[r_al_aeeJJ,the sensor noise dominates

and we can neglect the influence of the vibration acceleration noise. The typical sensor noise and

simulated error motions of the oil floated stage under closed loop control are shown in Fig. 8. The

pure proportional controller reduces the system sensitivity to noise and we can get Angstrom-scale

stability of the closed-loop system.

Correlation of the parameters of the system and bandwidth

To analyze the correlation of the system parameters and bandwidth we can roughly define the

bandwidth Wb of our control system as cross-over frequency and find it as frequency _a¢ for which

[p(jw)C(jw)l k_k_ • k_r )l =I( 1

2 2 2 2 2

k_k_k_ - k_m _ k_k,_k,

= - (is)

For parameters of the system: km= 3.33N/A; k, = 2 • 105v/m; rn -- lkg

Wb = 6.66 • 105 k_.

The points of different bandwidth are shown in Fig.7.

w
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Simulation of asymptotic tracking

To evaluate the correspondance of the designed control system to the required objective of a

100 #m accessible travel, the simulation of asymptotic tracking of the platen in vertical direction

was made. The nonlinear dependence of the damping force from the separation gap according to

equation (3) was used in the simulation. The results of simulation are shown in Fig. 9, where the

force equals the sum of forces of three pairs of vertical electromagnets (Fig.l) and current equals

the sum of currents in those electromagnets. The results of the simulation show that the control

system provides required asymptotic tracking of a reference signal and an acceptable level of the

currents in electromagnets.

CONCLUSIONS

Experimental measurements of the accelerations in laboratory and the noise of real capacitive

probes combined with the statistical approach to the design of the control system and simulation

of the system under closed-loop control indicate that the required peak-to-peak deviations of the

platen coordinates and system's bandwidth can be achieved through the appropriate choosing

of the proportional controller coefficients, fluid film damping coefficients, and appropriate sensor

noise filtering. Thus the stage should be capable of operating to its specified resolution in common

laboratory environments without the need for any special vibration isolation devices.

A hardware prototype of a precision magnetically-suspended six-degree-of-freedom motion con-

trol stage with Angstrom resolution is now under construction, allowing experimental verification

of the performance which has been analytically predicted.
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Figure 1: Schematical system design
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Figure 2: Scheme of general system
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Table 1: Correlation between peak-to-peak and RMS values

for Gaussian random processes

Peak-to-peak value, N (_

N=1..8; (3'- standard deviation(RMS)

Probability of appearance of

amplitudes, greater then N

1 (_ 32%

3 (_ 13%

4 (_ 4.6%

5 (_ 1.2%

6 (_ .27%

7 _ .047%

8 _ .0063%
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