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Abstract

We describe a conceptually novel and powerful technique to achieve fault detection
and fault tolerance in hardware and software systems. When used for software fault

detection, this new technique uses time and software redundancy and can be outlined as

follows. In the initial phase, a program is run to solve a problem and store the result.

In addition, this program leaves behind a trail of data which we call a certification trail.

In the second phase, another program is run which solves the original problem again.

This program, however, has access to the certification trail left by the first program.

Because of the availability of the certification trail, the second phase can be performed

by a less complex program and can execute more quickly. In the final phase, the two

results are compaxed and if they agree the results are accepted as correct; otherwise an

error is indicated. An essential aspect of this approach is that the second program must

always generate either an error indication or a correct output even when the certification

trail it receives from the first program is incorrect. We formalize the certification trail

approach to fault tolerance and illustrate realizations of it by considering algorithms

for the following problems: convex hull, sorting, and shortest path, We discuss cases in

which the second phase can be run concurrently with the first and act as a monitor. We

compare the certification trail approach to other approaches to fault tolerance.

Keywords: Software fault tolerance, error monitoring, design diversity, data structures.

1 Introduction

In this paper we describe a novel and powerful technique for achieving fault tolerance in systems.

Although applicable to both hardware and software implementation, we restrict our discussion

of this technique to implementation in software. To explain our technique, we will first discuss

_. a simpler method. In this method the specification of a problem is given and an algorithm to

solve it is constructed. This algorithm is executed on a paxticular input and the output is stored.

Next, the same algorithm is executed again on the same input and the output is compared to the

=. earlier output. If the outputs differ then an error is indicated, otherwise the output is accepted

as correct. This method requires additional time, so called time redundancy [16, 22]; however, it

requires no additional software. It is particularly valuable for detecting errors caused by transient

_ fault phenomena. If such faults cause an error during only one of the executions then either the

error will be detected or the output will be correct.
A variation of the above method uses two separate algorithms, one for each execution, which have

_ been written independently based on the problem specification. This technique, called N-version

programming [9, 3] (in this case N=2), allows for the detection of errors caused by some faults in

I Research pavti_lly supported by NSF Grants CCR-8910569 and CCR-8908092.

_Research paxtiad]y supported by NSF Grant CDA-9015667.

3Rese_ch partially supported by NASA Grant NSG 1442.

https://ntrs.nasa.gov/search.jsp?R=19940031557 2020-06-16T10:45:30+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42785476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


q

/
FirstExecution],,,,,,

i CertificationTraill Output- orError

SecondExecution

Figure 1: Certification trail method.
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-- the software in addition to those caused by transient hardware faults and utilizes both time and

software redundancy. Errors caused by softwaxe faults axe detected whenever the independently

,__ written programs do not generate coincident errors.

" A significant drawback to the above approaches is the overhead required. Either extra time

is required to run the algorithms seriMly on a single processor or extra hardware is required to

run them in parallel. The technique we will describe is designed to achieve similar types of error

-" detection capabilities while reducing the required resource overhead. The central idea, as illustrated

in Figure 1, is to modify the first Mgorithm so that it leaves behind a trY] of data which we ca]] a

certification trail. This data is chosen to Mlow the second algorithm to execute more quickly and/or
-- have a simpler structure than the first algorithm. As above, the outputs of the two executions are

compared and are considered correct only if they agree. Note, however, that we must be careful in

defining this method or else its error detection capability might be reduced by the introduction of

data dependency between the two Mgorithm executions. For example, suppose the first algorithm

execution contains an error which causes an incorrect output and an incorrect trail of data to be

generated. Further suppose that no error occurs during the execution of the second algorithm. It

appeaxs possible that the execution of the second algorithm might use the incorrect trail to generate

an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,

we can regard the two executions as "adversaries. _ The second execution must guard against an

incorrect certification tra_l "fooling" it into producing an incorrect output. The definitions we give

below- exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

-- Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the

domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of
solutions) for the problem. We say an algorithm A solves a problem P ifl" for all d E D when d is

-- input to A then an 8 E S is output such that (d,s) E P.
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Definition 2.2 Let P : D -, S be a problem. A solution to this problem using a certification

trail consists of two functions Fl and F2 with the following domains and ranges Ft : D -, S × T

and F2 : D x T --, S U (error}. T is the set of certification trails. The functions must satisfy the
following two properties:

(I) foralld E D thereexistss E S and thereexiststE T such that

F (d)= (s,t)andF2(d,t)--8and(d,s)eP
(2) foralld E D and forMl tE T

either(F2(d,t)--s and (d,s)E P) or F2(d,t)= error.

We also require that FI and F2 be implemented so that they map dements not in their respective

domains to the error symbol. The definitions above assure that the error detection capability of

the certification trail approach is comparable to that obtained with the simple time redundancy

approach discussed earlier. (That is, if transient hardware faults occur during only one of the

executions then either an error will be detected or the output will be correct.) It should be further

noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach Mso allows for the detection of faults in software. As in 2-

version programming, separate teams can write the algorithms for the first and second executions.

Note that the specification now must include precise information describing the generation and

use of the certification trail. Because of the additional data available to the second execution,

the specifications of the two phases can be very different; similarly, the two algorithms used to

implement the phases can be very different. (This will be illustrated in the convex hull example to

be considered later.) Alternatively, the two algorithms can be very similar, differing only in data

structure manipulations. (This will be illustrated in the shortest path example to be considered

later.) When significantly different algorithms are used, the probability that both algorithms will

contain or be affected by faults which generate matching errors should be reduced. When very

similar algorithms axe used it is sometimes possible to save programming effort by sharing program

code. For example, the code implementing any data structures needed by the program might be

different, while the code that uses the data structure operations would be the same. This approach

is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the

ability to detect errors in the software it does not change the ability to detect transient hardware

errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps

even probable) that the majority of software errors will be in the data structure implementation.

Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-

ever, it is clearly possible to implement the method with assistance from dedicated hardware. It

is also possible to generalize the basic idea we have suggested. We discuss some of these gener-

alizations in a later section. Finally, we note that a wide variety of approaches to software fault

tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-

known and significant problems in computer science: the convex hull problem, sorting, and the

shortest path problem. It should be stressed that the certification trail is not limited to these

problems. Rather, these algorithms have been selected for illustrative purposes.
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3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail

solution is based on a solution due to Graham [13] called Graham's Scan. For basic definitions in

computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some

statistical applications of convex hull computations. For simplicity in the following discussion we

will assume the points are in so called general position, i.e., no three points are co-linear. It is not

difficult to remove this restriction.

Definition 3.1 The convez hull of a set of N points, S, in the Euclidean plane is defined as the

smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a

subset of the points in ,,¢. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-

ion. Sometimes it is necessary for the algorithm to "backup" the construction by throwing some

vertices out and then continuing. The first step of the algorithm selects the point with minimum

x-coordinate (using minimum y-coordinate to break ties), and calls it p;. For each other point q

in S we compute the slope of the line plq. Sort the points of S (except for/h) by this slope (since

the points are in general position, the slopes axe distinct). Number these vertices P2,P3,.-.,PN.

It is not hard to show that after these three steps the points when taken in order, Pl,P2,.--,Pn,

form a simple polygon; although this polygon might not be convex. It is possible to think of the

algorithm as removing points from this simple polygon until it becomes convex. This code below

performs this by "walking" through the vertices in order. The main FOR loop iteration adds points

to the polygon under construction. After a point is added, the inner WHILE loop checks the angle

formed by the addition of this point. (Note: We measure angles as follows: Given the three points

q,,_-t,q,_,pk we measure the angle from q,n-lqm to q,_Pk in the clockwise direction.) If the angle

is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding

point on the polygon) is removed. Note that this will change the preceding angle, which may

now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is

encountered. Figure 2 illustrates the construction of a convex hull using this algorithm, from the
hull.

When the main FOIl loop is complete the convex hall has been constructed.

Algorithm CONVEXHULL(S)

Input: Set of points, S, in R 2

Output: Counterclockwise sequence of points in R 2 which define convex hull of 5"

1 Let/)1 be the point with the smallest z coordinate (and smallest y to break ties)

2 For each point p (except pl) calculate the slope of the line through pl and p

3 Sort the points (except/)1) from the smallest slope to the largest.

Call them P2,...,p,L

4 ql :=/>1; q2 := l_; q3 := P3; m = 3
5 FORk=4tonDO

6 WHILE the angle formed by q,_-l,q_,Pk is _> 180 degrees DO
7 m:=m-1

8 END WHILE

9 m:=m+l

10 q,,, := Pk
11 END FOP,.

12 FOR i = 1 to m DO, OUTPUT(q;) END FOR
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Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property

that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in 5' containing the eliminated point.

Theorem 3.2 Let p, a, b, and e, be points in the plane such that no three are co-linear, p has the

smallest z-coordinate of the four points (and the smaller y-coordinate if another other point has the

same z-coordinate) slope(_) < slope(If6) < slope(H). If the angle abc is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays

pTz and p_. Note that the line segments pa and pc are in the half plain z >_ p=, and in at least one

_case the inequality is strict, since no three points are co-linear. This implies that the angle ape (in
the clockwise direction) must be greater than 180 degrees. Since the angle abc is also obtuse, both

p and b must be on the same side of line _'d. Therefore, b is inside the triangle pac. I

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding Pk, the angle formed by

qm-l,qm,P_ is obtuse (measured in the clockwise direction), then q= is contained in the triangle
Pl , q,n- l , Pk .

Proof: slope(_--'_-'_m_l) < slope(_) < slopeOh'--'-_). |
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In the firstexecutionthe code CONVEXHULL isused. The cer_tificationtrailisgenerated by

-- adding an output statement withinthe WHILE loop. Speci_-_an angle greaterthan 180

degreesisfound inthe WHILE loop testthen the 4-tupleconsistingof qm,q,n-t,l_,Phisoutput to

the certificationtrail.The tablebelow shows the 4-tuplesof points that would be output by the

_ algorithmwhen run on the example in Figure2. The points|nthe tableare given the same names

_i*_-ii_i_sin Figure 2. The finalconvex hullpoints_,...,qm are also output to the certificationtrail.

Finally,the trailoutput does not consistof the actualpointsin R 2. Instead,itconsistsof indices

to the originalinput data. This means iftheoriginaldata Consistsofsl,s2,.. ,sn then ratherthan

!! !ii!i_ou(put_t_e_nt in R 2 correspondingt0 si the number-/is output. Ifpoint coordinateswere

_ outpiitinsteadof theseindices,the second executionwould have to verifythat the pointson the

trailare members of S.

Point not on convex hull Three surrounding points

P3 P4,P1,P2

_s ..... _,Pl,P4

Ps, Pl,Pe

E

Second execution: Let the certificationtrailconsistofa setoi'4-tuples,(z_,ax,b_,c_),(z_,a_,b_,c_),

...,(z_,a,,b_,c,)followedby the supposed convex hull,q_,_,...,q,n. The code for CONVEX-

HULL isnot used inthisexecution.Indeed,the algorithmperformed isdramaticallydifferentthan

CONVEXHULL.

Itconsistsof fivecheckson the traildata.

i.That there is a one to one correspondencebetween the input points and the points in

....

ii.That for i_ {I,...,r},ai,hi,and ciaxeamong the input points.

iii.For i6 {I,...,r}that z, lieswithinthe triangledefinedby ai,bi,and ci.

iv. That foreach tripleof counterclockwiseconsecutivepointson the supposed convex hullthe

angle formed by the pointsisacute.

v. That there-isa unique pointamong the pointson the supposed convex hullwhich isa locally

ma.xim_l point.We say a pointq on the hullisa localmaziraura pointifitspredecessorinthe

counterclockwiseorderinghas a strictlysmallerI/coordinateand itssuccessorin the ordering

has a smMIer or equal !/coordinate.

Ifany of these checksfallthen executionhaltsand "error"isoutput. As mentioned above,the

traildata actuallyconsistsof indicesintothe input data. This does not unduly complicate the

checks above; in factitmakes iteasiertoverifythe firstand second conditions.

Time complexity: In the firstexecutionthe sortingofthe input pointstakesO(n log(n))time

where n isthe number of input points.One can show that this cost dominates and the overall

complexity isO(n log(n)).

It ispossibleto implement the secondexecutionso that allfivechecksare done in O(n) time.

Because indicesintothe input data axe used,the firstconditioncan be checked by verifyingthat

each index isused exactlyonce,and thatallindicesare between 1 and N. The second condition

may checked simply by verifyingthateach index isbetween I and N. Checking that a point lies



within a triangle is a geometric calculation that can be done in constant time. Checking that the

angle formed by three points is acute requires only constant time. The third and fourth checks can

be done in O(n) because the certification trai/contains indices into the input data as described

abOve. The uniqueness of the "local maximum', requires only a constant time calculation at eachpoint, so it may checked in//near time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trai/solution for the convex

htdl problem. Although the definition is phrased /n terms of functions, not algorithms, we can

Simply define the functions Fl (d) and F_(d, t) on Particu/ar arguments as the Values Computed by
the associated algorithms.

Using our formal defm/tion of certification trai/s, let D be the set of all finite planar point sets

T. Let S be the set of convex polygons, with vertices in Counterclockwise order (the restriction to

counterclockwise ordering makes the convex huU unique). Then the problem we are considering is
HULL : D _ S where HULL(T) is the polygon in S that forms the convex hull of T.

The description of the algorithms above defines functions FI and F2. We must show that both

conditions of Definition 2.2 hold. The fo//owing two hmmas, Which we state without proof, are

required.

_rnma 3.4 Let p be a polygon on n points lh,p2,...,p_. P is a convez poly9o n iff p is simple

rnd each angle PiPjpt is less than or equal to 180 degrees, where i is in 1, 2, ...n, j = (i + 1) rood n,
nd I¢ = ( i + 2) rood n.

emma 3.5 [f p is a non-simple polygon, then either p has more than local mazima, or theterior angle at SOme vertez is greater than 180 degrees, one

leorem 3.6 F1(d) and F2(d, t), as defined above, constitute a certification trail solution for the

,blem HULL.

_of- We must prove that both conditions of Definition 2.2 are satisfied by these functions.'art 1: Reca// that the first condition is:

Fl(d) = (s,t) and F2(d,t) = s and (d,s) E for al/d E D there exists s E S and t E T such

P- Intuitive/y, this means that ff both executions
orm correctly, then they will both output the convex hull of the input, which is Unique. Note

generation of the certification trai/does not affect the output of the Graham Scan algorithm.

the condition on FI (d) is satisfied by the correctness of the Graham Scan algorithm, the proof

hich is wel/ known /20]. To show that F2(d, t) = ,_, note that a copy of _ is contained on the

t. Our description of F2(d, t) states that s is output unless one of the five checks above fails.

;rivial to verify that the first three of these checks must be satisfied. The fourth check cannot

ince the polygon described by ._ is convex (because (d, _) E P). Similarly, ff the fifth check

then the polygon described by s has two locaJ maxima, and this is not possible for a convex

)n.

,t 2: The second condition is: for all d E D a//t E T either (F2(d, t) = s and (d, s) E P) or
) = error. Intuitively, this means that given an input and arbitrary trail, F2(d ' t) produces a

n to the problem or flags an error. Our definition of F2(d, t) states that the polygon Q Stored

trail is output un/ess one of the five checks fails. We must therefore demonstrate that if al/

;cks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of

ats d. The first condition guarantees that every point in d is classified as a htt//point or a_n

7



Linterior point. The second condition guarantees that the triangles used to identify interior points

are formed from input points, and the third check verifies that the interior points are indeed inside

their respective triangles. Note that we do not attempt to verify that the triangles on the trail are

_,the ones that would be produced by Fl(d). In general, for a given interior point, there may be

several triangles of input points in which it is contained. Together, the first three conditions imply

r. that all points in H are also in Q, since it is impossible for a hull point to be contained in a triangle.

'_.._Note that these three checks do not exclude the possibility that interior points are present in Q,

nor do they guarantee that the ordering of the hull points in Q is correct. The final two checks

will accomplish this. If the last two checks are satisfied, [,emma 3.5 states that O is simple, and
"_therefore it must be convex by Lemma 3.4.

Thus, Q is a convex polygon whose vertex set is a superset of the vertices of H, i.e., H is

:ontained in Q. This implies that no other point from the input set may be a vertex of Q, since any
_nput point that is not a hull point is interior to H and therefore interior to Q. Finally, it is clear

that the ordering of the vertices of Q and H must be the same (although there might appear to

)e two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
-___:heck). Therefore if all five checks succeed, then the output of F2(d, t) will be the convex hull of d.

This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
herefore a certification trail solution to the convex hull problem. II

-_.2 Other convex hull algorithms

"-'_:..3is possible to use this technique to provide certification trails for other convex hull algorithms.

The key is that for each non-hull point p we must find a triangle ofinput points (not necessarily hull

oints), containing p. For some convex huh algorithms, a containing triangle is available directly or

-_,Ln be easily computed when it is determined that a particular point is not on the hull. However,

this is not true of all convex hull algorithms. If, however, we allow extra overhead during the first

cecution we may apply this technique to any planar convex hull algorithm, provided that the
-_.Jtput is a polygon and not merely an unordered llst of hull vertices.

Let H = ql,q2, qa...,qh be the convex hull of a set of n points. We label the points so that ql is

e point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the

-_maining points occur in sorted angular order around ql. Now for each non-huU point p, we may

determine which triangle Plpipi+l it lies in with a binary search. Thus we may determine containing
! angles for the non-hull points in O(nlogh) time. Under several distributions the number of hull

-t_ints is much smaller than the number of input points [20] so this overhead will often be quite
small.

4- Sorting

_S_ :ting is one of the most important basic problems in computer science. There is a massive body

oi-fiterature discussing sorting and a significant fraction of computer time is spent performing sort

operations. We will see how the certification trail approach may be applied to this problem. Assume

;tl t a particular sorting algorithm takes as input an array of n elements and outputs an array of
n-dements. The algorithm is supposed to place the data into non-decreasing order.

Note that it may not appear necessary to use a certification trail for this problem. It might seem

;:_ t all that is required is to verify that the output is in non-decreasing order. Unfortunately, this

s_ot sufficient and we must also verify that the output consists of the same elements as the input.
k certification trail is required to perform this check efficiently.

8
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The informationplacedon the trailisa permutation relatingthe input and output arrays.This

permutation iscreatedby adding an Item Number fieldto the elements being sorted,such thatthe

i-thelement islabelledwith item number i.Aftersorting,the permutation isobtained by reading

the Item Numbers from the elements in theirnew order.

The second algorithmreadsthe permutationfrom the trail,usesitto rearrangetheinputelements

in lineartime,and checks that they axe now insortedorder.Additionally,itisnecessaryto check

that the the informationon the certificationtrailactuallyisa permutation ofn elements,i.e.,each

number from 1 to n occurs exactlyonce. Should any of these checks fail,the second algorithm

outputs "error",otherwiseitoutputs the sortedelements.

Note that the certificationtrailgivenforsortingisquitedifferentthan thatgiven forthe convex

hullproblem. In the lattercase,the certificationtrailwas constructedfor a particularalgorithm,

and the code executing that algorithm modified to produce the trail.In thiscase,the sorting

algorithm isnot changed. Insteadthe databeingsortedismodified by a preprocessingstep,and the

necessaryinformationextra_:tedby a postprocessingstep.Thus thistechniquemay be implemented

as a "wrapper" axound existingsortroutines,no matter which algorithm isimplemented.

Experimental dMa ispresentedin Section6.

4.1 Proof of correctness

For concretenesswe consideronly the sortingofintegers,though the proofdoes not depend on this

condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-

decreasing sequences of integers. Let P : D -* S be the sorting problem, i.e., (d, s) E P iff s is a

permutation of d (by definition of S, s is a non-decreasing sequence). Note that for every d E D,

there is a unique s E S such that (d, s) E P. Let T consist of finite sequences of integers. For z a
member of amy of the sets D, S, or T, we will aJso denote the sequence of integers by zl, z2, ..., ZN.

Definition 4.2 The function F1 : D -_ S x T is defined as follows. Given an input sequence d

of N integers, Fl(d) - (s, t) where s is the unique element of S such that, (d, s) E P and t is a

permutation of 1,2,3,...,N s.t., si = dr, for all i = 1,2, ...N. Note that unless d consists of N distinct

integers, there will be more than one possible t. The t produced by Fl(d) may be chosen arbitrarily.

Since for every d E D, there exists a unique s E S with (d, s) E P, the function F1 is well defined.

Definition 4.3 The function F2 :DxT -_ SU{error)is defined as follows. F2(d, t) = dt_ ,dr2, ...,dtN

(where d consists of N integers) iff

i. t contains at least N integers.

ii. The first N integers of t are a permutation of _1,2, ...N).

iii. dti __ d_,+l for i = 1,2,...,N - 1.

Otherwise, F2(d,t) = error. Note that though t may contain more than N integers, F2(d,t)

depends only on the first N.

The definitions of the functions F1 and and F2 correspond to the informal descriptions of the

sorting aigorithms given in the text above.

Theorem 4.4 Fl and F_ are a certification trail solution to the sorting problem P.

9
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Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: We must prove that for all d E D there exists s E S and t E T such that Fl(d) = (s,t)

and F2(d,t) = s and (d,s) E P. If Fl(d) = (s,t), then by definition (d,s) E P. We must show

that F2(d, t) = s. t is a permutation of {1, 2, ..., N}, so the first two conditions of Definition 4.3 are

satisfied. Furthermore, by Definition 4.2, dr, = si for i = 1, 2, ...N. Since s E S, it is a nondecreasing

sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore F2(d, t) - s.

Part 2: We must show that for all d E D and all t E T either (F2(d, t) - s and (d, s) E P)

or Fu(d,t) = error. Pick d E D with length N. Pick t E T. The interesting case is when t is a

permutation of {1,2, ..., N}. If not, then either the first N integers of t are not such a permutation,

in which case F2(d, t) - error. We may ignore the possibility that t consists of such a permutation

followed by more integers, since F2 depends only on the first N integers of t.

Examine the sequence dq, dr2,,, dtn. If there is an i such that dr, > d_,+, then the third condition

of Definition 4.3 is violated so F2(d, t) = error. Otherwise F2(d, t) = d_,dt2, ...,dt_. Furthermore,

this is a non-decreasing sequence, so it must be in S. FinaLly, since this sequence is a permutation

of d, (d, F2(d, t)_) E P.

Therefore, both conditions of Definition 2.2 are satisfied, so FI and F2 constitute a certification

trail solution to sorting. I

Note that we defined T as the set of all finite sequences of integers. We could have instead defined

T as the set of permutations of {1,2, ...N} for all positive N. This would make the function F2

"simpler", in that it doesn't have to verify that that certification trail consists of a permutation (it

would, however, have to verify that it consists of a permutation of the correct size). In this case,

checking that the trail t is indeed a permuation (i.e., actually in its domain) would be left to the

implementation of the function.

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Our approach is applied to

a variant of the Dijkstra algorithm [II] as explicated in [i0]. First we require some preliminary
definitions.

Definition 5.1 A graph G = (V,E) consists of a vertez set V and an edge set E. An edge is an

unordered pair of distinct vertices which we notate with the following style: Iv, w] and we say v is

adjacent to w. A path in a graph from vl to vk is a sequence of vertices v3,_,..., vl, such that

[vi, v_+_] is an edge for i E {1,...,k- 1}. Let w be a real function defined on E. The length of a

path from vt to vk is the sum of w([vi, vi+l]) for each edge [vi, vi+l] in the path.

Let G = (t, E) be a graph and let w be a positive rational valued function defined on E. Given

a vertex vl in V, find a set of shortest paths from vl to each other vertex in V. Note that since w

-., is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure

that are required. Since many different data structures can be used to implement the algorithm, we

initially describe abstractly the data that can be stored by the data structure and the operations

that can be used to manipulate this data. The data consists of a set of ordered pairs. The first

element in these ordered pairs is referred to as the item number and the second element is called
i

the item value or just indue. Ordered pairs may be added and removed from the set, however, at

all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for
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multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Our default convention is that i is an item number, z is a value and

h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographicaUy

as follows: (i,z) < (i', z _) iff z < z _ or (z = z _ and i < i'). Our data structure should support a
subset of the following operations.

member(/, h) returnsa boolean valueof trueifh containsan ordered pair with item number i,
otherwise returnsfalse.

insert(i,z,h) adds the orderedpair(i,z) to the set h.

delete(i,h) deletesthe unique orderedpairwith item number ifrom h.

changekey(i,z,h) isexecuted only when thereis an ordered pairwith item number iin h. This

pairisreplacedby (i,z).

deletemin(h) returnsthe orderedpairwhich issmallestaccordingto the totalorder definedabove

and deletesthispair.Ifh isthe empty setthen the token "empty" isreturned.

predecessor(i,h) returnsthe item number ofthe orderedpairwhich immediately precedesthe pair

with item number iin the totalorder.Ifthereisno predecessorthen the token "smallest"is
returned.

.. A description such as the one above describes an abstract data type. There may be several

possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail

-- allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.

Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm

-- on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter h omitted

to reduce clutter. Member operations are also omitted from the table. The second column gives

contents of h after the execution of each instruction. The third column records the order pair

deleted by deletemin operations. The fourth column records the information (if any) output to the
certification trail by this operation.

_ This certification trail is created by modifying the insert(i, z, h) and changekey(i, z, h) operations

performed during the first execution. The modified instructions perform the same operations
described above and in addition output the following information to the certification trail.

insert(i, z, h) Output the item number of the predecessor of (i, z) (as defined above) to the trail.

If there is no predecessor, output the token "smallest". Note that depending on the data

structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, h) operation.

changekey(i, z, h) Output the predecessor of the ordered pair (i, z) (i.e., pair resulting from the
-- change) to the trail. If there is no predecessor, output the token "smallest" to the trail.

We shall see that this information allows a faster and simpler data structure implementation to be
•... used for our second algorithm.

The algorithm proceeds by maintaining a set S of vertices for which shortest path lengths are

known, and a "frontier" set F of vertices adjacent to members of S along with the best known path

11
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lengthfrom vl.At each step,we findthe vertexv in F with smallestknown path lengthand place

itin S, F isthen updated by examining the neighborsof v. New verticesmay be added to F or a

shorterpath (passingthrough v) may be found toexistingverticesin F.

To efficientlyfindthe vertexto add to S, the algorithm uses the data structureoperations

describedabove. As soon as a vertexv isadjacentto some vertexu in S, itisinsertedin the set

F. The value for v isthe shortestknown path to v,which isthe v-Mueof u (shortestpath to u)

plus the weight of edge vto.The arrayelement prefer(v)isused to keep trackof this"best"edge

connecting v to S. As the treegrows,informationisupdated by operationssuch as insert(i,z,h)

and changekey(i,z,h). The deletemin(h)operationisused to selectthe next vertexto add to the

span of the currenttree.Note, the algorithmdoes not explicitlystorepaths. Implicitly,however,

if(v,z) isreturnedby deletemin,thenprefer(v)indicatesthe predecessorof v on the shortestpath
from vl.

Algorithm SH ORTEST- PATH(G,vl ,weight)

-- Input: Connected graph G = (V, E) where V = (1,..., n} with edge weights.
Output: Lengths of shortest paths from t_ to all other vertices.

1 FOR ALL u E V, u) := oo END FOR

-_ 2 vl):=0

3 F := vl;

4 WHILEF_DO

_ 5 (v, k):= deletemin(F)

6 FOR EACH Iv,w] E E DO

7 IF v) + weight([v, to]) < to) THEN

8 to) := v) + weight([v, to]); prefer(to) := v

9 IF member(to, F) THEN changekey(to, to), F)

10 ELSE insert(w, to), F) END IF
I1 END IF

12 END FOR

13 END WHILE

14 FOR ALL u E V - {vl}, OUTPUT(u)) END FOR
•. END SHORTEST-PATH

Note that thiscode may be easilymodifiedtooutput theshortestpaths as wellas theirlengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data

type is implemented with a balanced search tree such as an AVL tree [1], a red-black tree [14], or

_ a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains

two fields, InSet, a boolean, znd Value, storing the same type as the value used in the ordered

pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered

pairs in h and is based on the total order described earlier. For each item number i, the InSet field

of the i-th array element is true if and only if there is a pair with item number i in the set. The

Value field of the i-th array element stores the value of the pair with item number i, if there is one

_- in the set. It is undefined if there is no such pair in the set. This axray allows rapid execution of

operations such as member(i, h) mad delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different

data structure is used to implement the ADT. We call this data structure an indezed linked list

and it is depicted in Figure 5. It consists of an axray and a doubly linked list. The array is indexed

from 0 to n and contains pointers to the elements of the linked list. Except for the first element,
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Operation Set of Ordered Pairs Delete Trail

insert(2,50) (2,50) smallest

insert(3,60) (2,50),(3,60) 2

deletemin (3,60) (2,50)

insert(4,130) (3,60),(4,130) 3

insert(5,62) (3,60),(5,62),(4,130) 3

deletemin (5,62),(4,130) (3,60)

changekey(4,103) (5,62),(4,103) 5

deletemin (4,130) (5,62)

changekey(4,94) (4,94) smallest

insert(6,72) (6,72),(4,94) smallest

deleternin (4,94) (6,72)

deleternin (4,94)

deletemin empty

f

m

Table 1: Example of operations and trail.

each element in the list contains a data field storing an ordered pair. The first element stores a

special ordered pair (0, "smallest _t) which is guaranteed to compare less than any other ordered

pair. The list is maintained in sorted order based on the total ordering defined above for ordered

pairs. This list represents the contents of the set h. The i-th element of the array points to the node

containing the ordered pair with item number i, if such an element is present in h. Otherwise the

pointer is nil. The 0-th element of the array points to the node containing (0, %mallest _r) Initially,

all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(h)
operations quickly. The array provides rapid random access to the elements. We now describe the

implementation of the data structure operations.

-- insert(i,z, h) Read the next value from the certification trail. This value, call it j, is the item

number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To

insert this element, we follow the j-th array pointer to the list node containing the pair (j, 10.

-- There is one special case, if "smallest _ is read from the trail rather than an item number,

we follow the 0-th pointer. A new node is allocated and inserted into the list just after the

node containing (j, y). The data field of this node is set to (i, z). Finally, the i-th pointer is

set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,

given that the next item on the certification trail is 3. When the insert(i,z, h) operation is
performed, some checks must be conducted:

mm_

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be "smallest" or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nll before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,

if the j-th pointer points to (j, y) and its successor before the insertion (ignoring the

14
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specialcase when (j,_)is the lastelement of the list)is (j',y'),then we must have

(j, y) < (i, x) < (j', y').

Ifany of thesechecksfalls,then the executionhaltsand "error"isoutput.

delete(i,h) ifthe i-thpointerisnil,haltexecutionand output "error".Otherwise followthe i-th

pointerto findthe listnode containing(i,x).This node isremoved from the list.Note that

sincethe listisdoubly linked,thisisa constant time operation.The i-thpointeristhen set

to nil.The only conditionthat must be checked isthat the i-thpointerisnot nilbeforethe

deletion

changekey(i,z,h) To perform thisoperation,itsufficestoperform delete(i,h) followedby insert(i,z,h).

The next item forthe certificationisread when the insert(i,z,h) operationisperformed. If

any of the conditionsrequiredby eitherof these operationsfails,then executionhaltsand

"error"isoutput.

deletemin(h) The 0-th array pointeristraversedto the listhead (which contains(0,"smallest_r)).

The pointerto the next node in the listisfollowed.Ifthereisno next node then "empty" is

returned. Otherwise,let(i,z) be the pairstoredin that node. We remove the node from the

list,set the i-tharrayelement to nil,and return(i,z).

member(i, h) The i-th array pointer is examined. "False" is returned if it is nil, otherwise "true"
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,

but is described for completeness. Follow the i-th pointer to the node containing the pair

(i, z). Follow the pointer from that node to the node preceding it on the list (note that this

node will always exist). If this is the special node (0, %mallest_), return _smallest", otherwise

return the item number of the pair stored in this list.

There are two variations to this scheme that are worth noting. First, we could implement a

singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the

extra pointer. Note, however, that operations such as delete(i, h) require access to predecessors in

"- order to update the list quickly. This can be provided by modifying the operations delete(i, h),

changekey(i, z, h), and predecessor(i, h) so that they output predecessor information to the trail.

_- The other variation also uses a singly linked list but removes the need for extra certification trail

-- information for delete(i, h) and changekey(i,z, h) operations. It uses the technique of marking a

list node for deletion rather than removing them from the list node immediately (the appropriate

pointer in the array is still set to nil immediately). When performing other operations, we check

for and remove any marked nodes immediately following nodes visited. The total running time is

still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in

"- O(log(n)) time where IVI = n. There are at most O(m) such operations and O(m) additional time

overhead where [El - m. Thus, the first execution can be performed in O(mlog(n)) In addition,

it provides us with a relatively simple and illustrative example of the use of a certification trail.

-- In the second execution each data structure operation can be performed in O(1). There are still

at most O(rn) such operations and O(m) additional time overhead. Hence, the second execution

can be performed in O(m) time, i.e., linear time.
-- Section 6 contains results of timing experiments with this technique.
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5.1 Proof of correctness

We wish to prove that the two algorithms given above constitute a certification trail solution to the

SHORTEST-PATH problem, i.e., that the functions Fl(d) and F2(d, t) defined by these algorithms

satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above.

Let S be the set of finite sequences of answers to data structure operations. Let P be the relation

(d,s) where d E D'and s E S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set.

Note that we are examining all finite sequences of data structure operations, not just "legal"

•- ones. That is, may attempt to perform an insertion with an item number already in use, attempt

to perform deletion on an item number not being used, etc. We assume that if one of these "illegal"

__ operations is attempted, the operation will output "error" and terminate processing. Thus, we can
define the answer sequences for these "illegal" sequences.

Definition 5.3 Let Fl(d) be defined by the result of executing the operations on any of the stan-

dard data structures described above, with the insert(i, x, h) and changekey(i, z, h) operations mod-

ified to output trail information. Let F2(d, t) be defined by the result of executing the operations
using the indexed linked list implementation described above.

Theorem 5.4 Fl(d) and F_(d,t) meet the conditions of Definition _._ (that is, Fl(d) and F2(d,t)
constitute a certification trail solution for P).

_ Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: The first condition we must verify is that for all d E D there exists s E S and there

exists t E T such that Fl(d) = (s,t) and F2(d,t) = s and (d,s) E P. Let (s,t) = Fl(d). The
•- modifications of the data structure operations that produce trail output do not affect how the data

structure is maintained. Proofs of correctness for the standard data structures are well known, so
we may assume (d, s) E P. We must demonstrate that F2(d, t) -- s.

_. This may be proven by showing that after each operation that modifies the set h, the elements

stored in the indexed linked list (our implementation) correspond to the elements in the set h (the
__ abstract definition). We must also demonstrate that if this relationship is maintained, then correct

U- output is generated by operations that generate output.

To demonstrate this, we show that each operation maintains the following invariants.

=_ i. If the pair (i, z) is in h U (0, "smallest"), then the i-th pointer in the array of pointers points
to the list node containing (i,x).

-._ ii. If, for some i, there is no pair in h with item number i then the i-th pointer is nil.

iii. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,

this implies that it is pointed to by exactly one pointer from the array).

The first two conditions assert that the indexed linked list and the set h contain the same

-- elements (ignoring the special list head element in the linked list). The last two invariants allow us

to demonstrate that the linked list operations function correctly.
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Clearly each of these conditions is true before the first operation is performed (the set of pairs

is empty, all pointers except the 0-th are nil, and (0, "smallest") is the only list node).

Assume that the above conditions are satisfied after the first k operations, and that the output

generated by any of the first k operations is correct. We claim that the invariants will will remain

satisfied after the (k+ l)-st operation, and that if the (k+ l)-st operation generates output, it will be

correct. Let s(k + I) denote the output produced by the (k + l)-st operation (where F1(d) = (s, t)).
Consider each possible operation. For brevity, we omit details for "illegal* operations, i.e., those

that violate the precondition of the operation. Similarly, we omit details of the special case of
"smallest" being read from the trail.

insert(i, z, h) The trail t contains the item number j of the predecessor of (i, z). Call the predecessor

(j, y). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs

"error" and execution halts. Since the indexed linked list correctly represents h at this point,
this agrees with the result returned by Fl(d), i.e., s(k + 1) = %rro_ _. After the insertion is

performed, the i-th pointer is set to the new node containing (i, z), so the first condition is

satisfied. No other nodes are added to the list, so the second condition will remain true. The

third condition is satisfied since (j, y) is now the immediate predecessor of (i, x). Since no
other pointer in the array has been changed, the fourth condition is still true.

delete(i,h) This operation sets the i-th pointer to nil, and removes the node containing (i,z)
from the list. This satisfies the second invariant. Deleting a node cannot violate the third

invariant. Since no other nodes are removed and no other pointers are changed, the first and
-" fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum

-- element in h must correspond to the node following the special list head node, ca]] the pair it

contains (i, x). This pair is the correct output for this operation. As with delete, the above

four conditions remain true after this node is removed and the i-th pointer set to nil.

-- changekey(i, x, h) We have implemented changekey(i, z, h) as an insertion followed by a deletion.
Since both of those preserve the invariants, changekey(i, z, h) must do so as well.

-- member(i,h) By assumption, the indexed [inked list correctly represents h before this operation,

so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, h) By assumption, the indexed llnk list correctly represents h, and furthermore it is

currently in sorted order. Thus, the list element preceding the node containing (i, z) is the
predecessor. Since this operation changes neither h nor the indexed linked list, the invariants
remain satisfied.

=- This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d E D and for all t E T either (F2(d,t) = s and

(d, s) E P) or F2(d, t) -- error. Intuitively, this states that if F2(d, t) is passed an arbitrary trail, it

,. either outputs a correct answer, or it outputs "error _. We prove an even stronger condition. Let

t_o_,e_ be the trail returned by Fl(d), i.e., Fl(d) = (s, tco, r_a). Then either t_,,._ is a prefix of t,
or F2(d, t) - error.

If to_._ is a prefix of t, then we are done. The algorithm describing F2(d, t) does not examine
any part of the trail after tc_rrea, SO F2(d,t)= s.
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If tco,r,ct is not a prefix of t, let p be the position at which they first differ. Let O be the number

of the operation that uses the trail data at p. Then operation 0 is either an insert(i, z, h) or

changekey(i, z, h)operation. If it is an insert operation, then tcorrect contains the item number of

the predecessor of (i, z). Since t contains a different value, call it j, at this location, the insert(i, z, h)

operation will fail one of it's three checks. Either j will not be valid item number, or the j-th

pointer will be nil, or the pair (j,y) will not be the predecessor of (i,z). The argument for the

changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, Ft(d) and F2(d, t) are a certification trail solution to P, the problem of evaluating

data structure operations. |

Definition 5.5 Let D be the set of finite graphs G = (V, E)with edge weights consisting of positive

integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples

of positive integers. Let P be the relation that associates each graph with the tuple consisting of

the minimum path lengths to each vertex. Let SPI(d) be the function defined by the SHORTEST-

PATH algorithm with the data structure defined for the first execution. Let SP2(d, t) be the function

defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.6 S Pl(d) and S P2(d, t) constitute a certification trail solution for P.

Proof: If SPt(d) = in, t), then the correctness of Dijkstra's algorithm implies that (d,s) E

P. The algorithms that compute SPt(d) and SP2(d,t) are the same except for data structure

implementation. Theorem 5.4 implies that if these algorithms generate the same data structure

operations, then the same sequence of answers will be generated. Thus, to demonstrate that

SP2(d, t) = s, it must be shown that the same sequence of data structure operations is generated

by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure

operation to be performed is dependent only on the input and the result of previous data structure

operations. For example, at line 9, either an insert(i, z, h) or a changekey(i, z, h) is performed,

depending on the result of a member(i,h) operation. The input graph d is identical for both

algorithms, thus the first data structure operation performed must be the same. Assume that the

first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers

to those operation will be the same. Since the (k + 1)-st operation depends only on the input and

the results of the previous k operations, it must also be the same for both algorithms. Therefore

the same sequence of data operations is performed in both algorithms, so SP2(d, t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail

t contains the "correct" trail as a prefix, or one of the data structure operations will fail, resulting

in an "error" output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results

of deletemin(h) are not output nor are they stored in the certification trail. It might be possible for

incorrect answers to be returned by deletemin(h) operations while still producing correct shortest

paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this

since the correct output is produced. By proving that the answers to deletemin(h) operations axe

the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-

ing the ones described in this paper. Algorithms for solving these problems were implemented, both
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with and without the use of certification trails. Timing data was collected on both the certification

trail solutions and the basic solutions. The following tables summarize these results.

H

w

Size Basic Algorithm First Execution Second Execution Speedup Percent

(Also Generates Trail) (Uses Trail) Savings
5_)00 0.61 0.62 0.07 8.73 43.62

10000

25000

50000

1.33

3.68

7.68

1.34

3.68

7.74

0.14

0.36

0.71

9.56

10.22

10.75

11.35

44.54

45.12

100000 16.23 16.30 1.43

200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

44.94

45.39

i

D

I

Size

1oooo

Basic Algorithm First Execution

_ _Als0.Generates Trail).,

500000

1000000

0.28 0.30

Second Execution

(Uses Trail)
0.04

Speedup

7.00

Percent

Savings

39.29

50000 1.80 1.90 0.19 9.47 41.94

100000 3.96 4.08 0.41 9.66 43.31

23.95 24.69 2.14 11.19 43.99

50.23 11.474.3851.57 44.31

Table 3: Sort

I

m

=:7

fm_

= ,

=.,

Size Basic Algorithm

100,1000 0.04 0.05

250,2500 0.15 0.16

500,5000 0.31 0.33

1000,10000 0.70 0.76

2000,20000

2500,25000

1.58

2.06

First Execution

(Also Generates Trail)

1.67

2.15

Table 4: ShortestPath

Second Execution

(Uses Trail)

0.02

Speedup

2.00

2.50

Percent

Savings
12.50

0.06 26.67

O.11 2.82 29.03

0.23 3.04 29.29

0.45 3.51 32.91

0.55 3.75 34.47

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The

, system was run as a standaione machine in single user mode during timing experiments.

Much of the data presented in the timing table is essentially self-explanatory relative to the

certification trail technique and algorithms considered. However, a brief discussion of the table

_ entries is appropriate.

_-_ The column labelled Basic Algorithm contains timing data which gives the execution time of the

-- algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.
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The First Ezecution column gives the execution time of the algorithm in producing the output

with the additional overhead of generating the certification trail.

The Second Execution column gives the execution time of the algorithm in producing the output

while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary

Execution. One reason this figure is important is that it is possible for the two algorithms to run in

different environments (different hardware, programming language, etc). A high speedup indicates

that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained

by using the certification trail method as compared to 2-version programming approach. The time

required for a 2-version programming approach was estimated by doubling the time reported in the

Basle algorithm. This assumes that both versions take approximately the same amount of time to

execute.

In addition to the tables,the timing information for the convex hullalgorithm is plottedin

Figure 5. Plotsforthe other two examples are similar.

Examination of the data collectedforthe convex hullalgorithmindicatesthat:

• The overhead in generatingthe certificationtrailisvery small,lessthan 2% of the running

time of the basic(no certificationtrail)algorithm.

• The second executionisveryfast,achievingan orderof magnitude speedup forlargerinput

sizes.This suggeststhata single_second algorithm_ processcould easilyhandle the output

generated by several"firstalgorithm_ processesrunning in parallel.Alternately,the high

speedup would allowthe secondexecution to be run on lower performance (and hence less

expensive)hardwaxd. Finally,the largespeedup and reduced code complexity may make it

possibleto take advantage of a formallyverifiablelanguage (which may requiresignificant

overhead) in implementing the second algorithm.

The data for sortingindicatesthat the certificationtrailalsorequiresvery low overhead and

resultsin a largespeedup. For the shortestpath problem the overhead isstillvery low, and the

speedup, while not as dramatic as forthe firsttwo problems,isstillquiterespectable.

7 Comparison With Other Techniques

The certificationtrailapproach sharessimilaritieswith other valuablefaulttoleranceand fault

detectiontechniquesthathave been previouslyproposed and examined, but ineach case thereare

significantand fundamental distinctions.These distinctionsaxe primarilyrelatedto the generation
and characterof the certificationtrailand the manner in which the secondary algorithm usesthe

certificationtrail.

Firstconsiderthe important and usefultechniquecalledN-versionprogramming [9,3]. When

using thistechniqueN differentimplementationsof an algorithmare independentlyexecuted with

subsequent comparison ofthe resultingN outputs. There isno relationshipamong the executionsof

the differentversionsofthe algorithmsotherthan thatthey alluse the same input;each algorithm

isexecuted independentlywithoutany informationabout the executionofthe otheralgorithms.In

marked contrast,the certificationtrailapproach allowsthe primary algorithmto generate a trail

of information which can be read by the secondary algorithm. The advantages of utilizingthis

additionalinformationaxe shown in the body of thispaper. In effect,N-versionprogramming can

be thought of relativeto the certificationtrailapproach as the employment of & nulltrail.
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Another valuable technique, known as the recovery block approach [2, 18, 211, was proposed by

-- RandeU. It uses acceptance tests and _lternative procedures to produce what is to be regarded as

a correct output from a program. When using recovery blocks, a program is viewed as a being
structured into blocks of operations, which after execution yield outputs which can be tested in

-- some informal sense for correctness. The rigor, completeness, and nature of the acceptance test

is left to the program designer, and many of the acceptance tests that have been proposed for

use tend to be somewhat straightforward [2]. When using certification trails it is clearly possible
-- to combine the second execution and the comparison test to yield a program which certifies the

correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy

strict formal properties of correctness. Also note that the certification trail technique emphasizes

-- the capability of generating additional data to ease the certifying process and does not rely solely
on data which would normally be computed. It should be possible to fruitfully combine the ideas
of recovery blocks and certification trails.

-- Algorithm-based fault tolerance [15, 17, 19] uses error detecting and correcting codes for perform-

ing reliable computations with specific algorithms. This technique encodes data at a high level and
algorithms are specifically designed or modified to operate on encoded data and produce encoded

-- output data. Algorithm-based fault tolerance is distinguished from other fault tolerance techniques
by three characteristics: the encoding of the data used by the algorithm; the modification of the

algorithm to operate on the encoded data; and the distribution of the computation steps in the
m algorithm among computational units. The error detection capabilities of the algorithm-based fault

tolerance approach are directly related to that of the error correction encoding utilized. The cer-

tification trail approach does not require that the data to be executed be modified nor that the

•- fundamental operations of the algorithm be changed to account for these modifications. Instead,

only a trail indicative of aspects of the algorithm's operations must be generated by the algorithm.

As seen in Section 6, the production of this trail does not add significant overhead. Moreover, any
-- combination of computational errors can be handled.

Recently, Blum and Kannan [6] have defined what they call a program checlcer. This interesting
work has been followed by a burst of activity in this general area [12, 7, 25, 8, 4]. Each of these

-- papers, however, describes work which differs significantly from the work we present. A program

checker is an algorithm which checks the output of another algorithm for correctness. An early

example of a program checker is the algorithm developed by Tarjan [23] which takes as input a

•- graph and a supposed minimum spanning tree and indicates whether or not the tree actually is a
minimum spanning tree.

The Blum-Kannan program checking method differs from the certification trail method in two

"- important ways. First, the checker is designed to work for a problem and not a specific algorithm.

That is, the checker design is based on the input/output specification of a problem and no assump-

tions are made about the method being used to solve the problem. Because of this the algorithm

-- which is being checked is treated as a black box. It can not be altered nor can its internal status

be examined and exploited. In the certification trail approach the algorithm being checked is not

treated as a black box. Instead, the algorithm can be modified to generate additional information

(i.e., the certification trail) which is considered to be useful in the checking/verification process. By
exploiting this capability it is sometimes possible to design certification trail solutions which allow

faster checking than Blum-Kannan program checkers. Of course, these faster solutions are more

_specialized than the Blum-Kannan checkers which are guaranteed to work for any algorithm which

solves the original problem. We believe that the added speed often outweighs the disadvantage ofspecialization.

-- The second important difference concerns the number of times that the program which is being

checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial
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number of times. In the certification trail approach the program is run only once. Thus, the overall

time complexity of the checking process can be significantly larger for Blum-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined

in a more general probabilistic context. Certification trails are currently defined only for deter-

ministic programs and checkers. However, it is clearly possible to define them in the more general

probabilistic context.
Other work has been done to extend the ideas of Blum-Kannan to give methods which allow

the conversion of some programs into new programs which are self-testing and self-correcting [12,

7]. However, these methods are also based on treating programs as black boxes and thus have

limitations similar to Bhm-Kannan program checkers. A recent paper by Blum et al. [8] concerns

checking the correctness of memories and data structures. The results described in that paper

differ from our work using abstract data types in one central way. The checkers that they design

are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data

structures of size O(n). Our results do not place space constraints on the algorithm used to certify

the data structure. Without a space constraint we are able to certify abstract data types such as

priority queues which are more complex than the data structures that they check, i.e., stacks and

queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast

checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we
propose. Both methods modify original algorithms to yield new algorithms which output additional

information. We refer to this additional information as a certification trail and they refer to this

information as a witness. In our case we are interested in modified algorithms which have the same

asymptotic time complexity as the original algorithm. Indeed, the modified aigorithm should be

slowed down by at most a factor of two. In [4] the modified algorithm is slowed down by more than

any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of O(T)

then the modified algorithm has a time complexity of O(TX+'). Note that in practice the _ cannot

be too small because its inverse appears in the exponent of the checker time complexity. Another
difference between our methods is the fact that their method requires that the input and output

be encoded using an error-correcting code. The encoding process takes O(N TM) time for strings

of length N. However, many of the checkers we have developed take only linear time so the cost

of simply preparing to use their method appears to be too great in some cases. It is also necessary

to decode the output after the check. Lastly, we note that Fortnow has stated that their result is

currently not practical [24].

8 Generalization and Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical
:- value as well as of theoretical interest. Furthermore, the techniques illustrated are applicable to a

wide range of problems, especially the certification of Abstract Data Types described in the shortest

path example. There are many areas of interest for future exploration, a few of which are described

-- below.

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program

may be used for a variety of problems. Since the certification trail is produced and used by abstract

data type operations, the technique may be used with any algorithm that can be implemented in

terms of those abstract data types. Creating a library of such "certified data types" enables
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programmers to create fault tolerant programs without having to be familiar with the certification

trail technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-

mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-

mentation is likely to come from library code, and hence be highly reliable. In answer to this note

that:

In many algorithms, the code using the data structure is much simpler than the code imple-

menting the data structure.

Although the example above illustrated reuse of using the data structures, it is certainly

possible for this code to be developed separately for the first and second execution programs.

Errors are often found even in code that has been in use for a long period of time. The added

confidence of using this technique may be desirable even for library code.

Even if the library code is highly reliable, the certification trail can be helpful in detecting

errors caused by hardware problems.

Library code may have to be tuned or even rewritten to meet for a particular application or

environment, partially negating the claim of using well-tested code.

Even if fault detection is not an issue, the certification trail technique is useful during program

testing and debugging. Input may be automatically generated and processed. If the output of the

first and second executions differ or an error is otherwise flagged, the input set is flagged. This

reduces the need to otherwise compute output for selected input and enables both more and larger

sets of input to be processed. 2-version programming may be used during debugging in a similar

manner, however certification trails have the advantage of reduced overhead, allowing more test

cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail programs have been executed serially,

i.e., we do not run the second execution until after first execution completed. Actually, except for

sorting, the two executions in the examples above can be run almost-concurrently. The "second"

execution simply reads the information from the certification trail as it becomes available. The two

programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification trail.

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution

after an error is detected. Consider the shortest path example using abstract data types. In

that example, the second execution used an indexed linked llst that performed each operation in

constant time by using the certification trail from the first execution. Suppose that an error had

been detected during the second execution. Rather than simply aborting, it may be possible to

continue execution. This could be done by

• Reorganizing the existing set into some other data structure (such an AVL tree, red-black

tree, etc.) that allows efficient operation without a certification trail.
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• Continuing to use the indexedlinkedlistand ignoringthe restofthe certificationtrail.Note

that thiswould resultin some operationsrequiringmore time.

• Continuing to use the indexed linked list and attempting to use the certification trail for future

operations. This may be possible if the error that occurred has sumciently "local" effect. For

example, if part of a tree structure is corrupted during the first execution, it is still possible

that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on "self-correcting" data structures in which enough

redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.

Using certification trails with such'structures could provide an et_cient detector for corruption of

the data structure.
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