
N94- 36067

/:/z" r.., "/

/ol/

Experimental Evaluation of Certification Trails using Abstract

Data Type Validation

Dwight S. Wilson I
Dept. of Computer Science

Johns Hopkins University
Baltimore, MD 21218

Gregory F. Suilivsa 2

Dept. of Computer Science

Johns Hopkins University
Baltimore, MD 21218

Gerald M. Ma_on s

Dept. of Computer Science

Johns Hopkins University

Baltimore, MD 21218

Abstract

Certification trails are a recently introduced and
promising approach to fault-detection and fault-

tolerance [11, 12]. Recent experimental work [13]
reveals many cases in which a ¢ertifcation-trall sp-

proach shows for significantly faster program execu-

tion time than a basic time-redundancy approach. A.]-

gorithms for answer-validation of abstract data types

ate presented in [12] and allow s certifcation trail ap.

proach to be used for a wide vatiety of problems. In

this paper, we report on an attempt to s_ess the per-
formance of algorithms utilising ¢ertlfication trsKs on

abstract data types. Specifically we have applied this

method to the following problems: heapsort, Huff.man

tree, shortest path, and skyline. Previous results used

certification trails specifc to a particular problem and
implementation. The approach in this paper allows
certification trails to be localized to "data structure

modules," making the use of this technique transpar-
ent to the user of such modules.

Keywords: Software fault tolerance, certification

trails, error monitoring, design diversity, data struc-
tures.

1 Introduction

To explain the essence of the certification trail tech-

nique for software fault tolerance, we first discuss 2-

version proglsmming [4, 2]. Using 2-version (or more

generally, N-version) programming, two (or N) im-
plementations of an algorithm are executed on s given

input, and the results compared. If the outputs agree,

they ate accepted, otherwise an error is flagged. This

technique will detect s variety of software faults as well
as transient hatdwate faults. A variation of this tech-

nique is to execute a single program twice and compare

1 RcseLrc.h partially supported by NSF Grants CCR-8910569

stud IBM Technology Interchange Program Grant.

2 {_'scar¢_ pro-tinily supported by NSF Grants CC_.8g10569
and CC{L8908092.

_JR.esesrch partially supported by NASA Grant NSG 1442.

results, this is called time redundancy. Although there

ate a few software faults that may be detected using

time redundancy (e.g., uuinitislised pointer errors), it

_s more effective in catching transient faults.

The certification trail technique is designed to

achieve similar types of error detection capabilities but

expend fewer resources. The central idea, is to modify

the first algorithm so that it leaves behind a trail of

data which we can a certij_cation Lrai]. The second

algorithm may then make use of this data, which is

chosen so that the algorithm executes more quickly

and/or has s simpler structure than the first algo-
rithm. As above, the outputs of the two executions

ate compared and are considered correct only if they

agree. Note, however, we must be careful in defining

this method or else its error detection capability might
be reduced by the introduction of data dependency

between the two s]gorithm executions. For example,

suppose the first algorithm execution contains n er-
ror which causes an incorrect output and an incorrect

certification trni] of data to be generated. Further sup-
pose that no error occurs during the execution of the

second algorithm. It appears possible that the execu-

tion of the second algorithm might use the incorrect
trail to generate an incorrect output which matches

the incorrect output given by the execution of the first
algorithm. Intuitively, the second execution would be

"fooled" by the data]eft behind by the first execution.

The definitions we give below exclude this possibility.

They demand that the second execution either gensr-

stes a correct answer or signals the fact that an error
has been detected in the data tral].

Early work on the certification trail focused on ere-

sting trails for specifc implementation of problems.
For example the trail given in [11] for the convex h"II

problem is specific to the Graham scan algorithm. In

genera/, the two algorithms used in this approach can

be quite different. A more recent approach is to con-
struct a certification trail for an abstract data type.

That is, given the answers to operations allowed on

that type, our algorithm checks the correctness of

these answers. This method has the advantage that

the certification trnil techniques are localised to the

0730-3157/92 $3.00 @ 1992 I__,

--F'_e_,lllO_ PAGE BLANK I_,.)i' I-'tLM..-_B

https://ntrs.nasa.gov/search.jsp?R=19940031560 2020-06-16T10:45:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42785473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

outlnes implementing data structure operations, and

nay then be applied to • wide variety of problems

"-without special coding. Ia many eases it may be pos-

sible to use existing code with only minor modifica-

ion. Code using these routines is run twice, the first

• .ime generating the trail, the second time using it. Al-
ternately, the trail checking may be done, in parallel,

i.e., we perform the checking as the trail is being gun-
_rated. A programmer using • library of these routines

"need not be familiar with certification trail techniques.

Object oriented programming techniques may be par-
ilcularly useful for implementation of such "certified"

_ata types.

j "!i

! L_ Formal Definition of a Certification

Trail

: In this section we wi]l give a formal definition of a

certification trail and discuss some aspects of its real-
_ations and uses.

"_Deflnltion 2.1 A problem P is formalised as • rela-

tion, i.e., a set of ordered pairs. Let D be the domain

{that is, the set of inputs) of the relation P and let
--S be the range (that is, the set of solutions) for the

problem. We say an algorithm A solves a problem P
iff for All d E D when d is input to A then an s _ S is

autput such that (d, s) E P.

Definition 2.2 Let P : D -, S be • problem. A

solution to this problem using a certi/ication trail con-
_,ts of two functions Fl and F2 with the following do-

mains and ranges Ft : D -, S x T and F_ : D x T --,

- S U {error}. T is the set of certij_cation traib. The
_- functions must satisfy the following two properties:

(I) for all d E D there exists s E S and there
exists f E T such that

-" Fx(d) = (s, t) and F,(d, t) = s and (d, s) 6 P

(2) for all d E D and for all t 6 T

either (Fa(d,t) = s and (d,,) E P)

._-_ 2 or Fa(d, t) = error.

We also require that F1 and Fa be implemented

_so that they map elements which are not in their re-

spective domains to the error symbol. The definitions
above assure that the error detection capability of the

_certification trail approach is comparable to that ob-

tained with the simple time redundancy approach dis-

cussed earlier. (That is, if transient hardware halts

- occur during only one of the executions then either u

error will be detected or the output will be correct.)

It should be further noted, however, the examples to

be considered will indicate that this new approach can

shto save overall execution time.

$ Answer Validation Problem for Ab-

stract Data Types

Our general approach to applying certiflcatioa

trails uses the concept of an abstract data type. Some

exsraples of abstract data types are given later in this

paper. Here we mention some important common

properties and give • short mnstrstioa. Each abstract

data type has • well defined data object or set of d•t•

objects. Each abstract data type hua carefully de-
fined finite collection of operations that can be per-

formed on its data object(s). Each operation takes •
finite number of arguments (possibly sero). In sddi-

tion, some but not All operations return answers. An

example of an abstract data type is • priority queue.
The data object for • priority queue is an ordered pair

of the form (i,k) where i is an item number and k is
• key value. A priority queue has two operation.: in-

sert(i,k) and delmln. The insert operation has two

arguments: item number i and key value k. The in-
sert operation does not return an answer. The delmin

operation has no arguments, but it does return an an-

swer. The precise semantics of these operation, are

given later in this paper.
For each abstract data type we may define an an-

swer validation problem, lutuitivdy, the answer vail-

dntion problem consists of checking the correctness of

a sequence of supposed answers to a sequence of op-

erations performed on the abstract data type. More

formally, the input to the answer validation problem

is • sequence of operations on the abstract data type

together with the arguments of each operation. In

addition, the sequence ¢ontnins the supposed answers
for each of the operations which return answers. In

particular, each supposed answer is paired with the

operation that is supposed to return it.

The output for the answer validation problem is the
word "correct" if the answers given in the input match

the answers that would be generated by actually per-

forming the operations. The output is the word fin-
correct" if the answers do not match. It is sho useful

to allow the output word to say "ill-formed". Thh out-

put is used if the sequence of operations is in-formed,

e.g., an operation has too many arguments or an ar-

gument refers to an inappropriate object.
The answer validation problem is similar to the idea

301 O_QINAI. p

r_

i.."

_u

I

fL

I
r

IL

!

j--

sin..

of u acceptuce test which is used in the recovery
block approach [I0] to software fault tolerance. The

main difference is that an answer validation problem

is dependent upon s sequence of answers, not just an

individual answer. Hence, if an incorrect answer sp.
pes_ in the sequence, it may not be detected imme-

diately. It is gu_anteed, however, that an incorrect

will be detected at some point during the processing

of the entire sequence. By Allowing for this latency in
detection, it is possible to create s much more efficient

procedure for solving the answer validation problem.
The most important aspect of the answer validation

problem is the fact that is is often possible to check the

correctness of the uswers to s sequence of operations

much more quickly than actually calcu]sting what the

answers should be from scratch. In other words, the
answer validation problem has a smaller time com-

plexity thu the origins] abstract data type problem.

For example, to cnlculate the answers to a sequence

of n priority queue operations takes fl(nlog(n)) time
in the decision tree mode]; however, it is possible to

check the correctness of the answers in only O(n) time
[12]. This speed is very useful in fault-detectlon sp.
pIications.

It is possible to run an answer validation algorithm
for some abstract data type concurrently with some

algorithm which uses the abstract data type. The an-
swer validation algorithm could act as a monitor mak-

ing sure that all interactions with the abstract data

type are handled correctly. This is valuable because

many algorithms spend a large fraction of their time

operating on abstract data types. Note, the overhead

of this monitor is less than the overhead of actually
performing the data type operations twice.

4 Schema for using Certification Trails

Suppose that we have developed an efficient solu-

tion to the answer validation problem for some ab-

stract data type. By efficient we mean the time com-

plexity of the answer validation problem is smaller

than the time complexity of the original abstract data
type problem. Further, suppose that we wish to run

an algorithm, say A, which uses that abstract data

type. To apply the certification trail method we can

use the following schema to yield the two executions:

First Execution:

Execute algorithm A.

Each time u abstract data type operation is per.

formed. Append to the certification trail the identity
of the operation, the arguments and the answer.

Second execution:

Phase One:

Validate the correctness of the operations ud sup-
posed answers given in the certification trail. If the
validation returns _incorrect" or "ill-formed" then

output "error s and stop. Otherwise, continue.

Phase Two:

Execute algorithm A.

Each time u abstract data type operation is per-
formed. Read the next entry in the certification trail

Make sure that the operation and the arguments in the
certification trail agree with those requested in the sl-

gorithm. If not output "error" and stop. Otherwise,
use the answer given in the certification trail and con-
tinue.

This schema can yield execution times which are
significantly faster than the execution time obtained

by running ulgorlthm A twice. Yet the schemes yield
comparable fault detection capabilities. Note, the first

execution can be slower than s simple execution of al-

gorithm A since it must output a certification trail.

However, the second execution can be significantly

faster than a simple execution of the algorithm since

the interactions with the abstract data type take less

time overall. The net effect can yield a major speed-
up.

Suppose an algorithm uses multiple abstract data
types and suppose there are efficient answer validation

algorithms for each of these abstract data types. It is

easy to see how our method generalises. We can leave
behind a generalised certification trail which consists
ofs seperate certification trail for each of the abstract

data types. The effect on the speed up of the second
execution will be cumulative.

5 Generalized Priority Queue

We now describe a somewhat general abstract data

type. We are able to solve the answer validation prob-
]em for restricted versions of this data type. The data
consists of a set of ordered pairs. The first element in
these ordered pairs is referred to as the item number

and the second element is called the key value. Or-

dered pairs may be added and removed from the set,
however, at all times the item numbers of distinct or-

dered pairs must be distinct. It is possible, though,

for multiple ordered psL-s to have the same key value.
In this paper the item numbers are integers between
I and n, inclusive. Our default convention is that i is

302

an item number, k is a key value sad h is a set of or-

! tiered pain. A total ordering on the pairs of s set can
be defined lexieographieally as follows: (i, h) < (i', _')

iff k < k _ or (k = k_ and i < i_). The abstract data

i I types we will consider support a subset of the following

_ operations.

member(i) returns a boolean vulu¢ of true if the set
contains sn ordered pals with item number i, otb.

erwise returns false.

insert(i, Jr) adds the ordered pair (i,/_) to the set. We
require that no other pair with item number i be

in the set.

delete(1) deletes the unique ordered psiz with item
number i from the set. We require that a pair

_ with item number i be in the set initially.

changekey(i, k) is executed only when there is an or-
dered ps_ with item number i in the set. This

part is replaced by (i,/I).

deletemin returns the ordered pair which is smallest

according to the total order defined above and
•" deletes this pair. If the set is empty then the

token "empty" is returned.

rain returns the ordered pair which is smallest accord-

i,.. in K to the total order defined above. If the set is

empty then the token "empty" is returned.

max ud deletemax these operations are similar to

--" miss and deletemln, using the largest element in-

stead of the smsJ]est one.

If u operntion violates one of the reqnirements de-
" scribed above then it is considered to be ill-formed.

Also, if u operation has the wrong number or type of

s2guments it is considered to be in-formed.
b Many different types and combinations of data

structures can be used to support different subsets of

these operations ei_iciently. Specificedly we are inter-
sated in allowing the insert, delete, rain, sad deletemin

"- operations. It is possible to process a sequence of O(n)

operations in O(n log(n)) with implementations using
: : heaps or balanced search trees such as AVL trees [I],

red-black trees [6] or b-trees [3]. Answer validation

of these operations can be performed in O(n) time

[12, 15].

6 Examples of the use of Data Strue-

ture Certification

In this section we evaluate the use of certification

ttu_s for data structures as applied to four well-known

and significant problems in computer science: sorting,

the shortest path tree problem, the Huffman tree prob-

lem, and the skyline problem. We have implemented

basic nlgorithms for these problems and algorithms

which generate sad use eertification trs_. Timing

data was collected using a SPARCstation ELC.

The timing information reported in the tabl¢_ con-
sists of the tun time of the basic nlgorithm (i.e., no

certification trail), the run time of the trail-generatlng

nlgorithm, the tun time of the trail-using nlgorithm,

the percentage savings of using certification tralh, and

the speedup achieved by the second phase of the ¢ertl-
flcation trail method. The percentage savings is com-

puted by comparing the total run time of algorithms

for generating sad using trails against twice the run
time of the basic algorithm. The speedup is computed

by dividing the run time of the basic algorithm by the
run time of the algorithm that uses the certification

trail.

Apart from the data structures, the implementa-
tion of both phases of the certification trail version of

each ulgorithm is nearly identlcJd to the implements-
tion of the basic version. The only difference in the
code for the two phase* is a parameter passed to the

data structure code indicating whether & certification

trail should be generated or used. All code implement-

ing the certification trails is localised to the modules
implementing the data structures, ul]owlng the gener-
ation and use of the trail to be transparent to the user

of these modules. Due to space constraints only an

abbreviated discussion of the algorithms is given.

6.1 Heapsort

Sorting is a fundamental operation in computer sys-

tems, and there exist several sorting algorithms. Sort-

ing may be implemented with s priority queue (or

more specifically, a heap) by inserting all elements

and performing dcletemin operations until the queue

is empty.
Input data was generated by creating sets of inte-

gers chosen uniformly from the interval [0, 10000000].
Timing results are based on fifty executions at each

input sine.

6.2 Huff'man Tree

Given a sequence of frequencies (positive integers),

we wish to construct s Huffmsa tree, i.e., s binary tree

with frequencies assigned to the leaves, such that the
sum of the weighted l_th lengths is minimised. This

is s classic algorithmic problem and one of the original

solutions was found by Huffmsn [7]. It has been used

3o3

Sis,

10O0O
300OO

$0o00
1oo000
2oo0o0

80o000

Ba_I¢ Gene_to

A||orlthm Trail
0.44 0.4|

0._ t .08
2.TI 2.80
[.8T 8.0S

12.71 1|.01
19.07 |0.25

U J@

Trail

0.11
0.30
0.60

1.38
2.47

8.?a

Table 1: Heapsort

% Suvln| Speedup

84.80 4.00
8T.]4 4.2e

IT.sT 4.$3
07.00 4.7"/
SO.SO S.LS

10.04 S.27

Sin Bui¢ Generute Use _ Suvin I Speedup

Al|orlthm 'Frail Trail
S000 0.U 0.41 0.14 |?.28 2.71

10000 0.88 OAT 0.29 80.1_ 3.84
20000 1.70 1.00 0.01 30.80 2.08
$0000 4.00 S.gO 1.68 80.78 8.22

100000 10.76 11.47 |.12 8|.14 $.45
1S0008 10.1'0 17.87 4.0S 8|.64 8.$8

Table 2: Huff.man Tree

extensively in data compression algorithms through

the design and use of so called Huff.man codes. The

tree structure and code design are based on frequencies
of individual characters in the data to be compressed.

In this paper we ate concerned only with the Huff-
man tree, the interested reader should consult [7] for

information about the coding application.
The Huff.man tree is built from the bottom up ud

the overall structure of the algorithm is based on the

greedy "merging" of subtrees. An stray of pointers,
ptr, is used to point to the subtrees u they ate con-

structed. Initially, n single vertex subtrees are con-

structed, each one associated with s frequency num-

bet in the input. The algorithm repeatedly merges the
two subtrees with the smallest associated frequency

values, assigning the sum of these frequencies to the

resulting tree. A priority queue data structure shows

the algorithm to quickly find the subtrees to merge st

each step.

Data for the timing experiments was generated by

choosing integer frequencies uniformly from the range

[0, 100000]. Timing results are based on fifty execu-
tions for each input sise.

6.3 Shortest Path

Given a graph with non-negative edge weights and
a source vertex, we wish to find the shortest paths
from the source vertex to each of the other vertices.

This is another classic problem and has been examined
extensively in the literature. Our approach is applied

to Dijkstru's algorithm.

Dijkstra's algorithm is a greedy algorithm. At each
step, there exists • set of vertices $ to which shortest

paths ate known, and a set T of vertices adjacent to

members of this set. The best paths known to mere-

304

--_se B-,ie Generate U_ % Ssvin t Speedup

Al|orithm Trail '_ail
360,2S00 O.t| 0.14 0.0(, 84J.U 2.|0

$00_6000 0.$1 ' 0.$1 0.12 S$.?I |,00

750_7S00 0.$0 0.$| 0.10 M.Sl |.06
1oOOtlOOOO 0.70 0,75 o.2$ 87.07 8.1e
20OO,_tO000 1.74 1.0S 0.$3 87.@4 $.86

_so0,3sOoo 2._2 2.08 0.aS 04.|1 8.4|

Table 3: Shortest Path

bern of T are examined, and the vertex e, with the

minimum path length is removed from T and added to

$. A data structure that supports insert, delete, and
deletemin can be used to implement this algorithm.

Input graphs of JVJ vertices sad IEIedges were gen-
erated by choosing a set of IEJdistinct edges uniformly

from all possible such sets, then rejecting graphs that

were not connected. IEI was chosen sufl_clently huge
that each selection is connected with high probability,

resulting in few rejections. The input sises were cho-

sen to keep the ration IEI/IVI constant, for in practice
the running time of the algorithm is affected by this

ratio. Timing results ate based on fifty executions st

each input sise. The sise column of Table $ contains

an ordered pair indicating the number of vertices and

edges.

6.4 Skyline

Given s set of rectangles with with collineat bot-

tom edges, the skldine is the figure resulting from re-
moving all hidden edges. The problem of computing

the skyline of a set of rectangular buildings by ellm-

inating hidden lines is discussed ia [8]. The method
used is divide and conquer and it constructs a sky-

_ne in O(nlog(n)) time. In this paper we use s plane
sweep algorithm that can be easily implemented in

terms of operations on priority queues. Plane sweep

algorithms sze widely used for computations] geom-

etry problems [9], and typically use a priority queue
for event scheduling, and may be amenable to use of

certification trsi] techniques.

Using a plane sweep algorithm, we compute the

skyline as follows. Initialise a vertical sweep llne to
the left of sll the rectangles (we may assume thst all

rectangle are to the right of the y-axis). As we sweep
the line to the right we maintain a collection of the

heights of the rectangles encountered. For each reef-

angle R, the height of R is added to the collection
when we encounter R's left edge and removed when

we encounter its right edge. The height of the skyline

at any point re, is the maximum height in the conec-

tion when the sweepKne is at z = zo. Detaib ate given
below. A structure supporting insert and deletemin is

snse BMIe Generate Ose _e S'e_vinK Speedup-
-:"* ' Alsorilhm Trsi| "Frail

1000 0.26 0.27 0.11 34.00 2.]_ --
2OO0 0.IS 0.60 0.22 2T.U 2.1J

_ S000 1.5'1 1.70 0.68 80.70 2.06
,,, _ 10000 |.N 4.01 1.17 82.00 8.80

20000 8.88 8.?e 2.30 H.?$ 8.66
. a0000 18.20 14.02 3.Si IS.e0 8.74

Table 4: Skyline

ell that is needed to order the events, and s structure

-- supporting insert, max, and delete is required to store

the rectangle heights. A priority queue (supporting

insert ud can be used to order the sweepline events,

and &generalised priQrlty queue to store the rectangle
heights.

Input data was generated by choosing integral rect-

-. angle heights uniformly over the range [0, I00000].
The z-coordinates of the left edges were chosen uni-

formly over the range [0, 90000] and the width of

each rectangle was chosen uniformly over the range
_- [I, I0000]. Timing results are based on twenty execu-

tions for each input size

7 Conclusions

The experimental data in this paper shows the util-

ity of the certification trail approach using abstractdata types. This paper supplements [13] which pro-

vides experimental data illustrating the advantages of
_implementation specific certification trails over classi-

;_ cal time redundancy. We have shown that the more

t-'general approach of checklng abstract data types also
provides performance superior to classical time redun-

dancy. This is significant because a wide range of nl-

._gorithms may be represented as a sequence of oper-
ations on abstract data types. The certification trs_]

approach may therefore be used on these programs,

= without requiting per problem "ad hoc" techniques.
"-Creation ofl;brary routines or class libraries for these

data types allows the certification trail technique to be

_used transparently, and may show it's use with only
•r._minor modlilcations of existing code.

LReferences

m

t_

[1] Adel'son-Vel'skii, G. M., and Landis, E. M., "An

algorithm for the organisation of information",

Soviet Math. Dold., pp. 1259-1262, 3, 1962.

305

[2] Av_ienLs, A., "The N-version approach to fault

tolerant software," IEEE Tmnm. on Software En-

9/neee/ng, vol. II, pp. 1491-1501, Dec., 1985.

[3] Bayer, R., and McCreight, E., "Organisation of

large ordered indexes", Acta Inform., pp 173-189,
1, 1972.

[4] Chen, L., and Avisienis A., "N-version program-

ruing: s fault tolerant approach to reliab_ty
of software operation," D@est of the 1978 Fault

Tolerant Computing Sltmpo*ium, pp. 3-9, IEEE
Computer Society Press, 1978.

[5] Gabow, H. N., and Tarjan, R. E., "A llnear-time

algorithm for a special case ofdlsjoint set union,"

Y. o/Comp, and Sys. Sci., 30(2), pp. 209-221,
198S.

[6] Gulbas, L. J., and Sedgewick, R., "A dichromatic

framework for balanced trees _, Proceedinga o/the
Nineteenth Annual Svmposium on Foundations

of Computing, pp. 8-21, IEEE Computer Society
Press, 1978.

[7] Huffman, D., "A method for the construction

of minimum redundancy codes", Pro¢. IRE, pp
1098-1101, 40, 19S2.

[8] Member U., Introduction to Algorithma: A Cre-

ative Approach Addlson-Wesley, Reading, MA,
1989.

[9] Preparats F. P., and Shamos M. I., Compu-

rational geometry: an introduction, Springer-
Verlag, New York, NY, 1985.

[10] Randell, B., "System structure for software fault

tolerance," IEEE TranL on Software Englneer-

ing, vol. 1, pp. 220-232, June, 1975.

[11] Sullivan, G.F., and Masson, G.M., "Using cer-
tification traits to achieve software fault toler-
ance," Digeat of the 1990 Fault Tolerant Com-

puting SVmpoJium, pp. 423-431, IEEE Computer
Society Press, 1990.

[12] Sullivan, O.F., and Masson, G.M., "Certification

trails for data structures," Digest o/ the 199I

Fault Tolerant Computin 9 Symposium, pp. 240-
247, IEEE Computer Society Press, 1991.

[13] Sullivan, G.F., Wilson, D.S., Masson, G.M., Itoh,
M., Smith, W.S., Kay, J.S., "Experimental eval-

nation of the certification trail method," Techni-

cal Report, Computer Science Department, The
Johns Hopkins University

