
NASA-CR-196081

Overset Methods, Inc. 0MI 02-93
A Nonpro_t Pnbhc BeheSt Corporation

PROGRESS REPORT

for NASA GRANT NCC 2-806

SUBMITTED TO

NASA Ames Research Center

Computational Aerosciences Branch

Point of Contact:

Dr. Terry L. Holst

By

Overset Methods, Inc.

262 Marich Way

Los Altos, CA 94022

Overset Grid Applications on

Distributed Memory MIMD Computers

Principal Investigator: Dr. Kalpana Chawla

-- n

,.0 _ ,,0

o', _ 0
Z _ 0

0

C_w 0

w_
l,.- I,-

C
O_.a

ooo_n

i t.-_ o.

June 30, 1994

https://ntrs.nasa.gov/search.jsp?R=19940031890 2020-06-16T10:41:07+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42785418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OVERSET GRID APPLICATIONS ON

DISTRIBUTED MEMORY MIMD COMPUTERS

Kalpana Chawla

Research Scientist, Overset Methods, Inc.

MS 258-1, NASA Ames Research Center

and

Sisira Weeratunga

Research Scientist, Computer Sciences Corporation

MS T27A-1, NASA Ames Research Center

Moffett Field, California 94035-1000

An extended abstract submitted for presentation at the

33rd AIAA Aerospace Sciences Meeting and Exhibit

Reno, NV

January 9-12, 1995

Abstract

Analysis of modern aerospace vehicles requires the computation of flowfields about complex 3-D geometries

composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven

structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by

decomposing the complex physical domain into a collection of overlapping subdomalns. This flexibility is ac-

companied by the need for irregular intergrid boundary communication among the overlapping component grids.

This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed

memory, M1MD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data

for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis

are also presented.

Introduction

Justifying Parallelization:

The complexity of Computational Fluid Dynamics (CFD) simulations attempted at present is very closely related
to the sustained CPU performance of the readily available computer resources. Simplified, 2-D flow analysis

simulations can be carried out using conventional high performance workstations on a regular basis. However, 3-D

unsteady, viscous flow analysis still requires the very best of computing hardware. Most of the current generation

of vector supercomputers such as the Cray C-90 and the NEC SX-3 are fully capable of providing the compute

resources required for such simulations. However the high cost of such machines and their consequent limited

availability have spurred efforts aimed at seeking more cost effective approaches to high performance, numerically-

intensive computing. The most prominent among a number of such computational strategies being currently

investigatedundertheumbrellaof the national High Performance Computing and Communications Program

(HPCCP) is the one based on the exploitation of the relatively high degree of concurrency and the spatial data
locality inherent in numerical algorithms used for aerodynamic simulations. Under these conditions, distributed

memory, multiple instruction, multiple data (DM-MIMD) computers offer excellent long-term prospects for
greatly increased computational speed and memory at a cost that may render the 3-D flow analysis of complex

shapes on a routine basis more affordable. Among the recent advances in computer hardware technologies
that lend credence to such expectations are the advent of mass-produced high-performance Reduced Instruction

Set Computing (RISC) microprocessor chips, high density Dynamic Random Access Memory (DRAM) chips

and high-speed interconnect networks that are easily scalable to the level of hundreds of nodes. The essential

remaining ingredient required for the success of this mode of computing is the development and implementation

of underlying numerical algorithms in a manner that is conducive to retaining high parallel efficiencies when the

number of processors used range at least in the low hundreds. This often requires a complete top down analysis

of the entire numerical scheme in search of exploitable concurrency associated with various algorithmic phases

and a complete understanding of the essential data dependencies. This is followed by the design of a parallel

implementation strategy that is capable of achieving a near optimal load distribution among all participating

computational nodes and simultaneously attempts to minimize the inter-processor communication costs. Such

considerations usually require changes in one or more of the following: a) the scheduling of various tasks associated

with the underlying numerical scheme, b) the manner in which the associated data is organized and c) the

algorithms used to perform some tasks. This sometimes leads to radical re-englneering of the existing serial
implementations. A further complicating factor in this endeavor is the lack of advanced software development

tools for the current generation of DM-MIMD computers comparable to those found on vector supercomputers

to aid in the program development effort.

Justifyin_ Overset Grids:

An inescapable fact when computing flowfields around modern aerospace vehicles is the associated geometrical

complexity. This is further compounded by the presence of regions with widely varying resolution requirements

surrounding such vehicles. Although a vigorous research effort is currently underway in the CFD community

to develop unstructured grid flow solvers to deal with such geometrical complications, their suitability for high

Reynolds number flow simulations over complicated geometries is yet to be firmly established. On the other
hand, the use of well proven structured grid flow solvers in combination with the overset grid approach 1, 2 has

proven to be a viable alternative to the fully unstructured grid approach for simulating high Reynolds number
flows around complex configurations.

Overset Grid Background:

In the overset grid approach, the complex aircraft configuration is first decomposed into a set of components, each

with a relatively simple geometry. This is followed by the independent meshing of each such component using

logically structured curvilinear meshes. To ensure adequate spatial resolution of the flow field, additional overset

grids can be used in critical regions based on a-priori knowledge of the flow field. Finally, these component

grids are overlaid to yield a larger composite grid that can be used to compute flow fields around complex

configurations. Such an approach gives rise to a locally structured but globally unstructured flow solver.

Overlaying of grids in this manner results in embedding of outer boundaries as well as the solid body regions

of one grid within the computational domains of the other grids. As a result, the grid points belonging to the

latter grids that lie within an embedded solid body region as well as some prescribed neighborhood around it are

'blanked-out', i.e., excluded from the computation. Such points are commonly referred to as hole points and the

grid points that lie in the fringes of these blanked-out regions form artificial interior boundaries. They are used

to impose the influence of the embedded solid body upon the surrounding component grid. The union of the
outer boundaries of the embedded minor grids and the artificial interior boundaries delineated by the blanked-out

regions form the inter-grid boundaries of the composite grid system. The values of flow field variables at grid
points lying on these inter-grid boundaries need to be obtained through interpolation from the solutions of the

other component grids in which they are embedded in.

Inter-Grid Communication:

The interpolation process required to compute values of flow field variables at grid points lying on the inter-grid

boundaries serves to communicate the influence of the solution on one grid to those on the other grids. In practice,

this intergrid boundary point (IGBP) data interpolation process is carried out at the beginning of each time step

oftile timemarchingschemeadaptedfor theflowsolversusedwithineachcomponentgridandisreferredto as
theintergridcommunication.Theintergridcommunicationschemeseeksthenecessaryinterpolationdatafrom
thehexahedralcomputationalcellofthedonorgridthatcontainstheIGBPinquestionandsuchcellsarereferred
to asthedonorcells.Thereforetheoversetgridapproachrequirestheidentificationof thefollowingentitiesin
alltheqomponentgrids:a)holepoints,b) IBGP's,c)donorcellsandd) tri-linearinterpolationcoefficients.For
thetestcasesconsideredin thisstudy,weusedDCF3D3softwarerunningonaworkstationto accomplishthis
taskasa preprocessingstep.It shouldbenotedthat this intergridcommunicationprocesscanhavea highly
irregularstructuredependingupontherelativepositioningof thecomponentgrids. Thedistributionof the
IGBP'swithin thecomputationalspaceof eachcomponentgridisgenerallyverynon-uniform.In additionthe
correspondingsetof donorcells may be distributed among multiple donor grids. Conversely each donor grid

may be contributing data to IGBPs belonging to many other component grids. Finally, just as in the case of the
IGBP's, the donor cells within a component grid can have a highly non-uniform distribution with respect to its

computational space.

Objectives:

The objectives of this study are three fold: a) design of a scalable parallel implementation strategy for the overset

grid, implicit flow solvers on DM-MIMD computers when the number of processors range in the hundreds, b)
development of intergrid communication data structures and inter-processor communication strategies for its

implementation on the DM-MIMD computers and c) validation of the parallel implementation strategy and the
assessment of its scalability as well as the overall performance potential through the use of realistic composite

grid configurations. Two DM-MIMD computer testbeds were chosen for this validation and evaluation process,

viz. the 128-node Intel iPSC/860 and the 208 node Intel Paragon. Each node of the iPSC/860 is equipped

with 8 Mbytes of memory as opposed to 32 Mbytes on the Paragon. Two test problems are selected here for the

evaluation of the overset grid flow solver. These problems require the solution of the Navier-Stokes equations and
the use of nmlti-zone overset grid topology. The first test problem is the Navier-Stokes simulation of flow past

a delta wing with thrust reverser jets, flying in ground effect (the V/STOL configuration). CPU performance is
compared for solution of this 4-grid problem on the Cray YMP/C-90, the Intel iPSC/860, and the Intel Paragon.

In addition, the parallel I/O performance of the Intel is evaluated to determine if the frequent writing of solution

required for the detailed analysis of this unsteady flow problem can keep up with the sustained computational

rate of the parallel computer. Also, several strategies used for improving the parallel I/O performance are

discussed. The second test problem is the Navier-Stokes simulation of flow past the FLAC (Fighter Lift and

Control) wing with deflected leading and trailing edge flaps (the High-Lift configuration). The 20-grid setup

of this problem offers an opportunity to evaluate load balancing issues and the grid partitioning strategies for

realistically complex geometries.

In the following sections, the parallel implementation strategy is summarized and the geometry of the two
selected problems is described along with the boundary conditions. Component grid partitioning strategies based

on 1) the aspect ratio of each grid, and 2) minimization of intergrid communication load imbalance associated
with each processor, are explored. The CPU and parallel I/O performance are compared for the selected test

problems on the Cray YMP/C-90 and the DM-MIMD computers.

Solution of Overset Grid Problems

As a prelude to the development of a parallel implementation strategy, a brief conceptual overview of the

generic mathematical algorithms underlying the overset grid flow solvers is presented in this section. It is as-

sumed that within each component grid, the Navier-Stokes equations along with the relevant physical/numerical

boundary conditions are discretized using the appropriate spatial and temporal discretization procedures. This

in conjunction with the imposition of the intergrid interpolation conditions at the IGBPs results in a system

of nonlinear algebraic equations for each component grid that can be represented by the following generalized
vector functions:

_.(('_In+l i,-_n+l (-_nq-1 ¢_n'_ _,_"_1 ,'_2 ,...,Q_+I,...,._N ,'_iJ 0, (i 1,2,...,i,...,N). (1)

where Q_+I is the vector of discrete flow field variables belonging to the i-th component grid at the time level

(t + At) and N is the total number of component grids involved. It should be noted that Fi may not be a

functionof all Qi,(i = 1,2,..., N). The exact functional dependence is determined by the relative overlapping

positions of the component grids.

Implicit Approach:

There are a variety of iterative approaches available for the solution of the system of equations given by Eq. (1).

The implicit flow solvers used in this study use a non-iterative time marching scheme for its solution. In this

approach, the system of equations are linearized about the already known solutions Q_', (i = 1, 2,..., N). Then

the resulting global system of linear algebraic equations are given by:

A n A s A n AQ_ -FI(QI,Q2,...,QN) \

I i',IA: A_'2 'A_'N2'2-.- _,N AQ_ -F2(Q,,Q2,...,QN)"n ,
• . "-. : . = . (2)

n I_ nA n A n AQ_v --FN(Q1, Q2,... ,QN) /
A ,1 N,2 " • • N,N

n , n-4"-I n n n n-'l-1 _ n
where Ai, j = (OFi/OQ_)(Q1, q2,-.-, ON) and Qi - qi + AQ_', (i = 1, 2,..., N). The off-diagonal block
matrix elements Ai,j, (i _ j) of the global Jacobian matrix represent the intergrid coupling effects between

component grids i and j through the interpolated values at IGBPs. These block matrix elements are themselves
sparse matrices with highly irregular structure. Due to the use of tri-linear interpolation for intergrid commu-

nication, they generally have a maximum of eight non-zero elements per row. Again, some of these off-diagonal

block matrix elements may be null matrices, depending on the relative locations of the component grids. The

diagonal block matrix entries A. n. represent the implicit coupling of variables within a component grid, similar
SjS

to those found in well known uni-grid flow solvers. The correction vector (AQ_, AQ_,..., AQ_v) needed to

update the flow variables in all component grids is given by the solution to this large, sparse system of linear

equations. There are many approaches available for the solution of this system of linear equations and the

method selected should be capable of providing a sufficiently accurate solution with a high degree of reliability in

addition to being amenable to efficient implementation on DM-MIMD architectures. In the following paragraphs,

we conceptualize some of the available algorithm alternatives for the solution of Eq. (2), and discuss some of the
advantages and disadvantages associated with each such alternative. The obvious first choice is the fully-coupled

approach, where the system of equations (2) is directly inverted. While such a direct inversion scheme would

lead to an unconditionally stable time marching scheme for the overset grid problem, it would be prohibitively

expensive in terms of computer resource requirements (CPU time and memory), for solving problems of practical

interest to the computational aeroscience community. In addition, due to the highly irregular sparsity structure

of the coefficient matrix, the direct inversion of Eq. (2) would not lend itself to an efficient implementation

on DM-MIMD computers. An alternative avenue within the context of the fully-coupled approach is to seek a

solution to Eq. (2) through a matrix-free iterative scheme, which is designed, if feasible, to be significantly more
economical both in terms of memory and CPU time requirements and at the same time be more amenable to

efficient implementation on DM-MIMD machines• We defer the consideration of such a solution scheme to future
efforts.

Partitioned Analysis Approach:

The alternative to the fully-coupled approach to solving of Eq. (2) is the partitioned analysis. In this approach,

some of the off-diagonal block matrix entries, which are responsible for the intergrid coupling effects are moved to

the right hand side of Eq.(2) by evaluating their contributions based on the temporally extrapolated approxima-
tions to the relevant elements in vectors Q_,+I, (i = 1, 2,..., N). These predicted values are usually obtained as a

suitable linear combination of their values at the previous time levels, n, (n - 1) etc. The primary motivation for

this approximation is the resulting decoupling across the inter-grid boundaries, of the solution of the large system

of equations represented by Eq. (2), into solution of a series of smaller sub-systems of linear equations repre-

sented by its diagonal block matrix entries. There are two commonly used variants to the partitioned analysis

approach. If the effect of all the off-diagonal block matrix entries in Eq. (2) are to be approximately represented

on its right hand side, based entirely on the extrapolated values to the discrete field variables required during

intergrid communication, then system will be solved through an approach similar to a block-Jacobi scheme. If

on the other hand, the matrix in Eqn. (2) or some permuted form of it is reduced to a block lower or upper

triangular matrix by approximately representing the effects of only some of its off-diagonal block matrix entries

on the right hand side through extrapolation in time, then the underlying system is solved by an approach akin

to the classical block-SOR method. In this staggered approach, the effect of some of the off-diagonal block matrix

entries are represented on the right hand side using the most recently computed discrete field values, instead

throughtemporalextrapolation.A majorityof the currently available serial implementations of the overset grid

flow solvers falls into this category.

A direct consequence of this partitioned analysis approach to solving the system of equations (2) is its

conditional stability with respect to the time step size At. In order to avoid numerically unstable computations,
time step size At has to be bounded by a value determined by the highest temporal frequency component present

in the solution of the overset grid problem. In addition, the severity of the stability restrictions is also likely to

depend on the fraction of the IGBPs relative to the total number of grid points and the characteristics of the flow

field in regions where the intergrid boundaries are located. For some overset grid problems, these restrictions are

likely to prove to be too severe, giving rise to solution schemes that are unconditionally unstable for all practical

purposes. Therefore it is assumed that for the class of overset grid problems of interest to this study, the transient

response is primarily dominated by the relatively low frequency components and that the component grids are
designed such that the placement of intergrid boundaries in critical flow regions are avoided. Consequently, the

partitioned analysis approach is likely to prove to be a cost-effective alternative for solving the system of equations

(2). As in the case of block-Jacobi vs. block-SOR schemes, the restriction placed on the value of At is likely to
be more severe in the case of the first variant of the partitioned analysis approach. The restrictions placed on

At through numerical stability requirements may be alleviated to some degree through the use of sub-iterations

within a time step. In spite of the above mentioned drawbacks, the partitioned analysis approach can provide

several significant computational and software engineering advantages over the fully-coupled approach. Among

these are; 1) ability to use proven and independently developed discretization/solution algorithms within each

component grid involved, 2) preservation of high degree of software modularity and 3) excellent prospects for

efficient parallel implementation on DM-MIMD computers. Furthermore, within the context of the partitioned

analysis approach, incorporation of additional coupled disciplines such as controls, thermal analysis etc. can be

accommodated relatively easily.

Block-Jacobi Approach:

In this paragraph we examine the algorithmic details of the block Jacobi-variant of the partitioned analysis

approach for overset grid problems. This variant is represented by the following system involving a block

diagonal coefficient matrix:

(A2,2 n =

: : : " i

0 8 A_V,N \ Aq_v I -RTv

where the right hand side vectors are defined by:

R_ = -F_'(Q_, Q_,..., Q_,..., Q_v) -

(3)

N

n p= n pAi,jAQj -Fi (Q1, Q2P,---, Qn,... , Q_v) (4)
./=_,(j#i)

and AQ_ = Qi_ Q_, (jp = 1,2,..., N). The temporlly extrapolated values of the discrete flow variables required
for the intergrid data interpolation process are given by formulae of the type:

(m--I)

Q_= E akQY -_,
k=0

and ak are appropriately chosen constants. Following algorithmic facts are evident from the above analysis: a)

all intergrid data dependencies appear only in the right hand side vectors, b) all intergrid data interpolation and

communication requirements can be accomplished concurrently and c) all component grid sub-problems can be

solved concurrently.

Parallel Implementation Strategy

In this section, we provide a brief overview of some of the DM-MIMD architectural features that influenced

our parallel implementation strategy followed by an abbreviated discussion of some salient features of the im-

plementation. The DM-MIMD implementation of an overset grid flow solver based on explicit update of the

intergrid boundary values presents several options. This is primarily due to the MIMD characteristics of the

architecture. In this section, we provide a brief discussion of the options available and the factors influencing
the choices. For the remainder of this discussion, we assume a DM-MIMD computer with a fixed number of

processors and an overset grid problem involving a fixed number of grids. In addition, the computational load

associated with each grid, largely a function of the number of grid points associated with it, is also assumed to

be fixed during the entire simulation. However, we allow for the possibility of a) time marching scheme used for

the advancement of the solution and b) the physical effects included in the simulation, within each component
grid to be different. The time marching schemes used within each component grid possess a certain degree of

concurrency. Although this inherent degree of concurrency may vary from grid to grid, it can generally be ex-

posed through some form of grid partitioning and is commonly referred to as data parallelism. In the block-SOR

like variant of the overset grid flow solver, the solution within each component grid is advanced in time in a

predetermined sequence. Consequently, in this approach, the degree of exploitable concurrency at any given time

is limited to that available within the component grid being processed at the time. This results in a situation

where the degree of exploitable concurrency may vary as a function of the processing time. In contrast, the use

of the block-Jacobi like variant allows more than one component grid to be advanced in time concurrently. This

permits the exploitation of an additional degree of concurrency, available across all or some fixed subset of the

component grids involved. This extra level of parallelism is generally exploited through concurrent processing of

more than one component grid at a time on distinct clusters of processors and is commonly referred to as task

parallelism. Such an implementation allows the simultaneous exploitation of the task parallelism available across
the component grids and the data parallelism available within each component grid. In addition, on a MIMD

computer, the fraction of the total number of processors assigned to each cluster can be made to be directly

proportional to the fraction of total computational load associated with the component grid being processed on

that cluster of processors. This is generally sufficient to ensure a reasonably good static load balance across all

the clusters of processors participating in the solution of tile overset grid problem.

In the following discussion, we summarize some of the advantages and disadvantages associated with each

approach. A more detailed description can be found in Ref. 4. The two factors that have the most influence over

this issues are the variation of the degree of exploitable concurrency and the associated computational load across

the set of component grids. Both of these factors are primarily influenced by a) the type of mathematical model,

b) the nature of the computational algorithms, and c) the number of grid points, used within each component

grid. The secondary factors are the nature of the physical/numerical boundary conditions applied, as well as the
number of IGBP's and donor cells associated with each grid. In most realistic overset grid problems, primarily

due to the underlying geometrical complexity, there is a significant variation of both the computational load

and the available degree of concurrency among the participating component grids. In some extreme cases, this

variation could be as much as an order of magnitude or more. When a fixed number of processors are used

to solve an overset grid problem with such a heterogeneous character by processing each component grid in a

given sequence, two adverse implications arise. First, in the case of component grids possessing only a reduced

degree of concurrency or smaller computational loads, it may not be possible to gainfully utilize all the allocated

processors for performing the underlying computational tasks. This would lead to idling of some of the assigned
processors. Even when the computational attributes of the component grid are such that all processors can be

gainfully utilized, grids with smaller computational loads would incur higher parallel implementation overheads
due to reduced task granularity. This would invariably lead to lower parallel efficiency. In addition, one may

also be compelled to search for alternative algorithms with higher degree of extractable concurrency that have

the potential for being accompanied by higher memory and/or arithmetic overhead as well. In contrast, the

concurrent computation of either all or a subset of the participating grids on distinct clusters of processors,

where the number of processors assigned to each component grid from the fixed pool of processors is decided on

the basis of their computational loads and the inherent degree of exploitable parallelism, would invariably result

in an implementation with no idle processors at any time during the simulation and with higher overall parallel

efficiency. This is due to the fact that each individual grid would now be computed using only a fraction of the

total available processors, which according to Amdahl's law would have a higher parallel efficiency compared

with the case of processing the same grid on all of the available processors. In addition, the task granularity

associated with the implementation would also be higher, resulting in reduced overheads and still higher parallel

efficiencies.Also,giventhesmallernumberof processorsassignedto individualgrids,this approachrequires
algorithmspossessingonlya moderatedegreeof exploitableparallelism.Thesecondaryfactorsinfluencingthis
choiceare;1) memoryrequirementsfor eachgridvs. that availableona fixednumberof processors,2) I/O
performanceto andfromsecondarystoragedevicesrelativeto thesustainedcomputationalperformanceand3)
availabilityofsystemsoftwaretoperformprocessor-to-processorcommunicationbetweentwoprocessorswhoare
membersof twodifferentgroupsof processors.

A carefulconsiderationofallthesefactorsresultedinourdecisiontoimplementthevariantoftheoversetgrid
approachgivenbyEqn.(3).Thisnon-iterativetimeintegrationschemewasadopteddueto theconcurrencyit
affordsacrossall theparticipatingcomponentgrids.Thetotalnumberofavailableprocessorsis first partitioned
into N groups, where N is the number of component grids involved. Then, each component grid is assigned

to one of the distinct groups of processors. The number of processors assigned to each group as a fraction of

the total processor count is directly related to the fraction of estimated computational load associated with

the grid assigned to that group of processors. Since it is not possible to assign a fraction of a processor to a
group, this method of processor assignment is not likely to produce perfect static load balance in most cases. In

addition, on some DM-MIMD computers, the number of processors that can be assigned to a group is subject to

some constraints. For example, on the Intel iPSC/860, number of processors in each group need to be a power
of two. This can lead to further complications in achieving a good static load balance across the component

grids. At the beginning of each new time step, the time marching process starts by simultaneously interpolating

and exchanging the temporally extrapolated field data necessary for updating the values at the IGBPs of all

component grids. During this data exchange, a subset of processors from each of the N group of processors

are participating in inter-processor communications. This is then followed by the simultaneous and independent

computation of the updated values of the flow fields in all the participating component grids.

The data parallel, Single Program Multiple Data (SPMD) implementations of the different implicit time

integration schemes associated with each component grid can be carried out independent of one another. This

is a direct consequence of the software modularity afforded by the overset grid approach. However, when the
governing equations and the implicit time integration scheme used are the same for more than one component grid,

only one implementation of that type of flow solver is necessary. Due to the MIMD nature of the architecture,

each cluster of processors is capable of executing the same SPMD implementation of the solver for different

component grids. A detailed description of the data parallel implementation issues pertaining to the numerical

algorithm used for the time integration of the flow field can be found in Ref. 5.

DM-MIMD implementation of OVERFLOV_, an implicit Navier-Stokes solver utilizing the diagonalized form

of block Beam-Warming scheme 7 is used to solve the conventional dependent variable vector [p, pu, pv, pw, e]T

where p is density, u, v, and w are velocity components, and e is the total energy per unit volume. The following

tasks are performed in the diagonalized scheme to obtain a new solution after one step:

1 Enforcing the boundary conditions.

2 Formation of the R.H.S. comprising of the 2nd-order central-differenced Euler and viscous terms, and the

2nd/4th order central-differenced smoothing terms.

3 Multiplication of diagonal, 5X5 block similarity transformation matrices.

4 Formation and inversion of the scalar penta-diagonal systems.

5 Update of the solution.

The version of the parallel implementation used for this study is based on the one-way pipelined Gaussian

elimination algorithm for the solution of the multiple, independent scalar pentadiagonal systems encountered

during the inversion of the approximately factored equations. This was chosen primarily due to the low memory

requirements associated with it.

The only task that requires close interaction and coordination among different clusters of processors from the

software implementation point of view is that associated with the interpolation and exchange of flow field data
at the IGBPs. This data interpolation and exchange has to be carried out in the context of grid partitioning

dictated by the independent, data parallel implementations of the component grid flow solvers within the clusters
of processors assigned to them: In addition, this phase of the Computation should exploit as much concurrency

as possible with minimum of synchronization barriers to maintain the overall efficiency of the parallel implemen-
tation. This was accomplished through the use of a distributed, concurrent implementation of the interpolation

algorithms and a loosely synchronous approach to interprocessor data communication involving a highly irregular

communication pattern.

Thisintergridboundarydataexchangeprocessrequires the design of a new distributed data structure for
the processing of IGBPs and their associated donor cells. Also a procedure for initializing the highly irregular

interprocessor communication pattern among processors belonging to different groups was required. Further

details with regard to the distributed data structures used and the procedure followed for establishing the inter-

group communication pattern will be available in the completed paper. The establishment of this inter-group

communication pattern as well as the actual exchange of intergrid boundary data was achieved through the

use of interpartition communication software libraries developed for this purpose on the Intel iPSC/860 s and

the Intel Paragon 9. This software mechanism extends the facilities available for direct processor-to-processor

communication within a cluster of processors to direct processor-to-processor communication between processors

belonging to different clusters of processors. As a result, completely independent software implementations

for the component grid time integration schemes can be easily interfaced, thereby preserving a high degree of

software modularity on the DM-MIMD computers.

In realistic configurations, there is a high probability for the existence of highly non-uniform distributions of
IGBPs and donor cells with respect to the computational spaces of the component grids. Since the computational

spaces of the grids are independently partitioned using a 3-D uni-partitioning scheme, it is almost impossible to

ensure the eqi-distribution of the IGBPs or the donor cells involved among the processors in different clusters.

As a result, it is very likely that significant load imbalances would exist within each group of processors as well

as across the groups of processors. This load imbalance would be tolerable, as long as the time spent on intergrid

communication is a small fraction of the time required by the component grid time integration scheme that takes

the longest time to complete.

Test Problems

The V/STOL Configuration

The computational setup of this configuration 1° consists of a 60 ° delta planform in a free stream of Mach

number 0.064, at 6.4 ° angle of attack (a), with two choked jets located at the inboard trailing edge. The jet flow

is at a nozzle pressure ratio (NPR) of 1.8 and is exhausted at an angle of 45 ° to the chord of the delta planform.
The height, h, of the delta wing above the ground plane is h/b = 0.25, where b is the wing span. Symmetry

about the y = 0 plane passing through the center line of the delta wing is assumed. The geometry is discretized

by generating 1) a C-H grid around the delta wing, 2) a cylindrical grid around the jet pipe, 3) a jet trajectory

conforming grid, and embedding the three grids in 4) a Cartesian ground plane grid (Figs. 1, 2, 3).

Fig. 1: The ground-pJane grid.

The data transfer between the grids is achieved using chimera intergrid communication a scheme whereby the

first three grids make holes in the fourth grid. The first three grids receive solution information at their outer

boundaries from the fourth grid, and the fourth grid receives solution information at the hole boundaries from

the first three grids. Solution is not computed within the hole boundaries of the fourth grid.

Fig. 2: The delta wing grid.

Delta wing

Fig. 3: The pipe and the jet grids.

Boundary Conditions:

On the deita wing and pipe surfaces, a no-slip condition is used, and on the ground, a moving wall condition

is used to match the experimental conditions. For both the solid surfaces, density and pressure values are

extrapolated from one grid point above the surface. The in-flow and top boundary conditions are specified as

free-stream, and the out-flow is extrapolated. At the jet exit the velocity and pressure ratio are set to the
experimental conditions.

The High-Lift Configuration

The computational setup of this configuration consists of the FLAC wing with deflected leading and trailing

edge flaps at a Mach no. of 0.18, and a Reynolds number of 2.5 million. To compute the air flow at various flap

settings, it was decided to use gridding strategies that would minimize the need to regrid the whole geometry

at different flap deflection angles. The selected component grid strategy is shown in Fig. 4a. Grids terminate at
boundaries between fixed and moving parts, viz. flaps. Flaps have their own grids so that flap rotation about a

hinge line on the lower surface of the wing can be accomplished by rotating the flap grid. As the flaps rotate,

they slide down the upper surface of the wing. The flap tips and the internal wing tips that get exposed when the

flaps deflect have to be discretized to account for viscous effects (Fig. 4b). Due to airfoil sections with extremely

sharp leading and trailing edges, these tips and the wing tip (Fig. 4c) can not be discretized using standard

wrap-around grids. However, they lend themselves easily to polar grids slapped on the tips, with the singularity

located at the leading or the trailing edge itself (Fig. 4d). Volume grids are then grown from these polar grids
to cover the air gaps. The extremely thin and sharp wing tip is discretized using three grids; two polar grids for

the leading and trailing edge areas and one cartesian grid for the region not covered by the polar grids (Fig. 4c).
The whole wing-flap system is thus resolved using 18 grids.

The data transfer between the grids is achieved, once again, using chimera intergrid communication scheme

whereby the 18 FLAC grids are embedded in a fine global grid which in turn is embedded in a coarse and bigger

global grid. The 18 FLAC grids make holes in the fine global grid and receive solution information at their outer

boundaries from this grid and from each other. The hole boundary in the fine global grid receives information

from the 18 FLAC grids. The fine global grid makes a hole in the coarse global grid and receives information at
its outer boundary from the coarse global grid, whereas the coarse global grid receives solution information at

its hole boundary from the fine global grid.

Boundary Conditions:

On all the FLAC wing surfaces, a no-slip condition is used, and density and pressure values are extrapolated

from one grid point above the surface. The in-flow and top boundary conditions are specified as free-stream,

and the out-flow is extrapolated. Viscous wall condition is used on the yz plane at the root to simulate the

wind-tunnel wall corresponding to the experimental set up.

Results

The V/STOL Configuration:

The four overset grids comprising the V/STOL configuration were loaded into four different processor clusters.

Various mesh partitionings were explored across the processors in a cluster based on grid aspect ratio and

intergrid communication load considerations. It was determined that the grid aspect ratio based partitioning

optimizes overall efficiency by far. Excellent load balancing was obtained when 112 nodes were used on the Intel

iPSC/860 in the manner listed in table 1.

Increasing the number of nodes for grid 4 adversely affected the load balancing and did not result in improved

performance. On the Paragon, 156 nodes were split in the manner shown in table 2. Performance comparisons

for this simulation requiring about one million grid points are shown in table 3. It should be pointed out that

memory reported for the MIMD machines is that associated with the number of nodes used and not the required
memory. Fig. 5 shows the performance of this problem on the Intel Paragon for various numbers of nodes grouped

in an optimum fashion.

10

Leading

Fig. 4: The FLAC wing grids.

15.@

10.0.

_-secs/

Point /

step

5.0

•

A

D

• V/STOL Configuration

_aHlgh Lift Configuration

A
I A
v _a

50 100 150

Paragon Nodes

Fig. 5: The Per_rmanceonthe Paragon.

200 250

11

I/O Performance on the Intel iPSC/860

The unsteady jet flow associated with the VSTOL configuration requires that for detailed analysis, solution

be written to the disk every so often. The sustained I/O performance of the iPSC/860 was measured at 0.3
mbytes/sec for solution files written out in the standard plot3d format i.e

((((q(i,j, k, n), i = 1, imax),j = 1,jmax), k = 1, kmax), n = 1, 5)

where 5 corresponds to the 5 dependent variables. Writing a comprehensive solution file to the disk implies that

all nodes must write the solution values corresponding to the grid points that are solved on them. Further, these
solutions must be written at specific location in the solution file to make it comprehensive. It is evident then

that some time can be saved by writing all 5 dependent variables corresponding to a grid point in one shot rather
than writing one dependent variable for all grid points and then the next one, and so on. As a result, solution

was saved in a modified format (q(5,i,j,k)) that favors the iPSC/860 architecture and the output performance

was measured at 1.1 mbytes/sec. This is substantially better than the performance obtained with the standard

format, however, it is deemed inadequate for unsteady problems requiring frequent output of solution. Reasons

for poor I/O performance on the iPSC/860 and fixes implemented to improve the same will be summarized in

the full paper.

The High Lift Configuration:

The twenty overset grids comprising the High-Lift configuration were loaded into twenty partitions on the

Paragon. Again, various grid partitionings were explored across the processors in a group based on grid aspect

ratio and intergrid communication load equi-distribution considerations. Once again, grid aspect ratio based

partitioning provides far superior performance compared to the intergrid communication load equi-distribution

based partitioning. The partitioning used for a total of 207 nodes allocated for this problem is tabulated in table
4. CPU performance obtained using other optimum partitionings used for higher number of nodes are shown in

Fig. 5.

Conclusions

Overset multi-zone Navier-Stokes computations comprising of a large number of grids have been performed or_
two DM-MIMD architectures. An overset grid implicit flow solver has been successfully implemented on two

DM-MIMD parallel computers, the Intel iPSC/860 and the Intel Paragon demonstrating the validity of the

chosen parallel implementation strategy.

Two realistic test problems comprising of widely varying grid sizes, one with four grids, and the other
with twenty grids, were used to evaluate the efficacy of the parallel implementation strategy and the overall

performance of the overset grid implicit flow solver. For both the cases, it is shown that grid aspect ratio based

partitioning yields optimum performance. Intergrid communication load equi-distribution based partitioning

yields sub-'optimal performance indicating that intergrid communication costs are indeed a very small fraction

of the cost to advance the component grid solutions through one time step.

The CPU performance for the selected test problems is compared on the Intel iPSC/860, the Intel Paragon,

and the Cray YMP. It is shown that reasonable performance can be obtained on the Intel machines when

compared against the YMP. The performance obtained on the Intel Paragon falls short of the performance

expected of a post iPSC/860 generation Intel machine, however, the current performance data is based on a code

that has not been optimized for the i860XP processor used on the Paragon.

I/O performance is measured on the Intel iPSC/860 for the unsteady V/STOL problem. The standard plot3d

format is modified to cater to the 860 architecture to yield a performance three times better than the standard
format, however, is still deemed unsuitable for unsteady problems.

Note to the Reviewers

The missing pieces in this work comprise essentially of obtaining the performance of the 20 grid problem on the

Intel iPSC/860. This work is currently in progress. Time permitting, performance numbers will be presented

for the Intel Delta at Caltech, and the IBM SP2 system to be installed at NAS in July 1994.

12

References

1 Atwood,C.A.andVanDalsem,W.R.,"FlowfieldSimulationabouttheSOFIAAirborneObservatory,"AIAA
Paper92-0656,AIAA 30thAerospaceSciencesMeeting,Reno,NV,January1992.

2 Smith, M., Chawla, K., and Van Dalsem, W., "Numerical Simulation of a Complete Aircraft in Ground

Effect," AIAA-91-3293, AIAA 9th Applied Aerodynamics Conference, Baltimore, MD, Sept 23-25, 1991.

3 Meakin, R.L., "Overset Grid Methods for Aerodynamic Simulation of Bodies in Relative Motion," 8th

Aircraft/Stores Compatibility Symposium, Oct. 1990.

4 Barszcz, E., Weeratunga, S.K. and Pramono, E.,"A Model for Executing Multidisciplinary and Multizonal

Programs", RNR Report 93-009, NAS Applied Research Branch, NASA Ames Research Center, Moffett

Field, Ca 94035, 1993.

s Ryan, J.S., and Weeratunga, S., "Parallel Computation of 3-D Navier-Stokes Flowfields for Supersonic Ve-

hicles," AIAA Paper 93-0064, January 1993.

6 Buning, P.G. and Chan, W.M., "OVERFLOW/F3D User's Manual, Version 1.5," NASA/ARC, Nov. 1990.

7 Pulliam, T. H. and Chaussee, D. S., "A Diagonal Form of an Implicit Approximate Factorization Algorithm,"
Journal of Computational Physics 39, pp. 347-363, 1981.

s Barszcz, E., "Intercube Communication for the iPSC/860, "Proceedings of the Scalable High Performance

Computing Conference, Williamsburg, VA., April, 1992, pp. 307-313.

0 Fineberg, S. A., "The Map Library-A Flexible Group Mechanism for the Intel Paragon XP/S," Tech. Report

RND-93-015, NASA Ames Research Center, November 1993.

i0 Chawla, K., Van Dalsem, W. R., and Rao, K. V., "Simulation of a Delta Wing with Two Jets in Ground

Effect," Computing Systems in Engineering, 1, pp. 483-494, 1990.

13

Grid# Gridsize
1 (70,56,70)
2 (83,81,47)
3 (60,71,52)
4 (69,71,35)

Group size

(4,2,4) = 32 nodes

(4,4,2) = 32 nodes

(4,4,2) = 32 nodes

(2,4,2) = 16 nodes

Table 1: Grid partitioning for the V/STOL configuration on the iPSC/850.

grid #

1 (70,56,70)

2 (83,81,47)

3 (60,71,52)
4 (69,71,35)

grid size Group size

(4,3,4) = 48 nodes

(4,4,3) = 48 nodes

(3,4,3) = 36 nodes

(3,4,2) = 24 nodes

Table 2: Grid partitioning for the V/STOL configuration on the Paragon.

Section YMP

1 Proc

time/pt./step 14 micro-sees.

grids solved sequentially

memory 12 MW

Accuracy 64 bit

iPSC/860
112 Proc

Paragon
156 Proc

7 micro-sees. 5 micro-sees.

in parallel in parallel

112 MW 4,992 MW
64 bit 64 bit

Table 3: Performance Comparisons for the V/STOL Configuration.

Grid # Grid size

1 (62,62,62)

2 (62,62,62)
3 (99,38,30)

4 (49,75,30)
5 (99,38,30)

6 (49,57,31)
7 (79,49,33)

8 (36,68,40)

9 (36,57,30)

10 (36,68,30)

11 (26,57,30)

12 (10,32,50)

13 (14,32,50)

14 (11,32,50)

15 (24,55,20)

16 (24,55,20)

17 (24,55,20)

18 (24,55,20)
19 (24,55,20)

20 (24,55,20)

Group size

(4,4,3) = 48 nodes

(4,4,3) = 48 nodes

(3,2,2) = 12 nodes

(2,3,2) = 12 nodes

(3,2,2) = 12 nodes
(2,3,2) = 12 nodes

(4,2,2) = 16 nodes

(2,3,2) = 12 nodes

(2,3,1) = 6 nodes

(2,4,1) = 8 nodes

(1,2,2) = 4 nodes

(1,1,1) = 1 nodes

(1,1,2) = 2 nodes

(1,1,2) = 2 nodes

(1,2,1) = 2 nodes

(1,2,1) = 2 nodes

(1,2,1) = 2 nodes

(1,2,1) = 2 nodes
(1,2,1) = 2 nodes

(1,2,1) = 2 nodes

Table 4: Grid partitioning for the high-lift configuration on the Paragon.

14

