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1. INTRODUCTION

During GFY_91, Draper Laboratory was awarded a task by NASA-JSC under contract
I<_

number NAS9--I=8_to study and evaluate the potential for achieving safe autonomous

landings on Mars using an on-board Autonomous Hazard Detection and Avoidance

(A/IDA) system. This report describes the results of that study 1.

The AHDA task had four objectives, shown in Figure 1.1. The primary goal of the

first year's effort is to develop the necessary tools for simulating a closed-loop AHDA

landing, while an expected follow-on task for the second year would evaluate the

performance of such a system. Due to unforeseen budget cutbacks, however, the follow-

on task was canceled. This report summarizes the progress made during the first year,

with primary emphasis on describing the tools developed during the year. Some

cursory performance evaluation results, originally slated for the second year, are also

presented.

• To demonstrate, via a closed-loop simulation, the ability to autonomously
select safe landing sites, and the ability to maneuver to the selected site.

* To identify key issues in the development of AHDA systems.

• To produce strawman designs for AHDA sensors and algorithms.

• To perform initial trade studies leading to better understanding of the effect
of sensor/terrain/viewing parameters on AHDA algorithm performance.

Figure 1.1. The AHDA Task Objectives

To achieve the objectives in Figure I. I, a simulation testbed integrating terrain

models, sensor models, hazard detection algorithms, site selection algorithms, and

terminal descent guidance algorithm was produced. Since past studies have indicated

the potential usefulness of optical sensors in hazard detection [Carmer, et. al., 1990].

this study placed particular emphasis on modeling passive intensity and laser ranging

sensors, as well as assessing their usefulness within a hazard detection system. Lastly,

although many factors can influence the performance of an AHDA system, we have

elected to assess the impact of several (presumably) dominant parameters on hazard

detection. These parameters include terrain type, signal-to-noise ratio, resolution, and

1 Some of the simulation tools used in thls effort were developed under Draper Laboratory's
Corporate Sponsored Research Program.
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Intensity Image Sensor Parameters

• Terrain Type:

• Spatial Resolution:

• Signal-to-Noise Ratio:

• Sun Azimuth Angle:

• Sun Elevation Angle:

Nominal, Rocky

0.75 m/pix - 3.0 m/pix

20dB- 7.5dB

0 deg - 180 deg

3O dcg- 6O deg

Range Image Sensor Parameters

• Terrain Type: Nominal, Rocky

• Spatial Resolution: 0.25 m/pix - 0.75 m/pix

• Range Noise (l-a): 0.0 m - 0.2 m

F_ure 1.2. Parametric Analysis Variables and Values

sun angle. The range of values considered in this study for each parameter is shown in

Figure 1.2.

Results of this study indicate that the use of an on-board hazard detection system can

increase the probability of finding a safe landing site. Specifically, we analyzed a

scenario in which the intensity sensor is first used to select initial candidate landing

regions, and the laser ranger subsequently interrogates the candidate regions in order

to select a final landing site. The primary conclusions of this sequential process, based

on a small sample size, are shown in Figure 1.3.

The remainder of this report will expand upon the procedures used in the analyses, as

well as the results obtained. Specifically, Section 2 reviews some background material,

and Section 3 discusses the approach that was adopted in order to assess AHDA

capabilities. Section 4 describes in some detail the procedures used in this study;

• The availability of safe landing sites depends greatly on number of hazards in
the terrain.

• The intensity hazard detector can reduce the ranging laser search space by
eliminating areas which appear too hazardous.

• An intensity sensor, operating (without the benefit of the ranging sensor) at
20 dB S/N and 0.75 m/pix resolution, can increase the probability of selecting
a safe landing site by a factor of three on rocky terrain.

• With nominal terrain, the landing site selected from intensity images was
indicated to be hazard-free by the simulation.

• A laser ranger (when used in conjunction with an intensity sensor) operating
at 0.25 m/pix resolution and 0.1 m (1-c) range noise selected sites that
contained no hazards in the case examined in this study.

Figure 1.3. A Summary of the Results



Section 5 shows the results of this study, and Section 6 contains the conclusions.

Section 7 contains the summary and a discussion of future work. Acknowledgments

and references are given in Sections 8 and 9, respectively. Four appendices provide

additional details regarding specific aspects of this study. Appendix A provides a

detailed discussion (including derivations) of the various modules in the simulation

test-bed. Appendix B shows some back-of-the-envelope calculations of the processing

power necessary for real-time support of an AHDA system. Appendix C is an informal

discussion of the issues and lessons learned during the development of the simulation

test-bed. Lastly, some sample images used in the analysis are shown in Appendix D.



2. IlACKGROI/ND

Future spaceexplorationmissionswill requirethe ability to safelyland vehicles--

without the aid of humans-- onplanetaryandlunar surfaces.Therearetwo aspectsto
this requirement:the ability to performsafelandingson planetarysurfaces,and the

ability to achievesuch landingsautonomously.Weaddresseachof theseproblemsin

the followingparagraphs.

Tofacilitate the analysisof autonomouslandingson Mars, a surfacemodelof Mars

wascreated[Moore,1987].Threetypesofmodelsaregiven:slopefrequency

distribution, rock sizedistribution, and mechanicalpropertiesfor various materials.

ThesemodelsarebasedonViking data,previouswork, and experience.In particular,

surfacedata from the Viking imagingcamera,and data from the Viking infrared

thermal mapper,areusedto obtainrock sizedistributions. Similarly, radio echoes

from the Martian surfaceprovidedslopedistribution information. The rock size

distributions aregivenfor threecases:smooth,nominal, and rocky.

UsingMoore'srock distribution of theViking II landing site, it hasbeenshownthat

blind (i.e.,unguided)landingson Marshavean unacceptablyhigh probability of failure

[Engel,et. al., 1989]. In fact, it wasshownthat theVikingII landerhada 30°/6to 40°/o

probabilityof failure, and a MarsRoverSampleReturn (MRSR)vehicle(seebelow)can
havea probabilityof failure ashigh as9%,dependingon terrain roughness[Engel,et.

al., 1989].Theseresultshavemotivatedthe searchfor safelandingtechniques.

The ability to achievesafelandingsautonomously is motivated by the exploration

missions currently envisioned by NASA. In particular, the Space Exploration

Initiative (SEI) will require substantial support from robotic missions [Stafford, 1990].

Although some robotic missions may be accomplished telerobotically (i.e., via earth-

based human control), the - 40 min round trip transmission delay between Mars and

earth makes this option infeasible. Without a man in the loop, these robotic missions

must land autonomously.

Two candidate approaches to achieving safe autonomous landings have been

proposed: precision landing and hazard detection and avoidance. In the precision

landing case, a set of navigation aids are used to guide the vehicle to the pre-selected safe

landing site. In the hazard detection and avoidance case, the vehicle uses its on-board

sensors to find a safe site in real-tlme, and the vehicle maneuvers to the selected site.

The primary differences between these two approaches are the a prior/knowledge

requirements, the necessary navigation infrastructure, and the resulting landing

accuracies. A vehicle employing AHDA requires very little a prior/knowledge of the
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terrain, and is expectedto achievea landingaccuracyof I - 2 km with respect to the

"nominal" landing spot. Because it needs very little in the way of infrastructure, a

vehicle utilizing AHDA is an attractive approach for precursor robotic missions to

achieve safe autonomous landings on Mars. The remainder of this report will focus

exclusively on the AHDA approach.

A survey of sensors potentially capable of supporting hazard detection was

performed by ERIM [Carmer, et. al., 1989]. In this study, sensor options including

lasers, synthetic aperture radars, interferometric imaging techniques, and passive

intensity sensors were considered. In each case, the ability to detect surface slopes as

well as the presence of boulders was analyzed. One recommended sensor option for

supporting hazard detection is a sensor suite comprised of laser ranging and passive

intensity sensors. This combined system is necessary because, although laser rangers

are capable of resolving hazards, the slow imaging rate associated with lasers precluded

the examination of a sufficiently large landing area for the presence of hazards. This

combined laser ranging / passive intensity sensor option is the one we believe to be the

most reasonable, and is the option analyzed in this study.

When considering AHDA systems, one issue of significant concern is the availability

of safe landing sites within the vehicle's divert footprint. Two separate studies, using

different statistical assumptions, have addressed this concern. In one study, where

rocks are assumed to cluster (modeled as a normal distribution) around uniforrrdy-

distributed cluster centers, a MRSR-style vehicle had between 10% - 50% probability of

finding a safe landing site, depending on terrain roughness, pin-point landing

accuracy, and degree of clustering [Pien, 1990]. In a separate study, the spatial

distribution of rocks was modeled as a random-walk with various correlation

distances. This study concluded that there are anywhere from a few to several tens of

safe landing sites available within a 250 m x 250 m area [Hain, 1990]. Although both

these studies analyzed the existence of landing sites with respect to boulders only, these

studies also point to the availability of safe landing sites despite different statistical

and modeling assumptions, provided the hazard detection system can find them.

In order to assess the ability of a laser ranger to support a hazard detection system,

ERIM performed a 3-D laser simulation incorporating laser sensor models and image

processing algorithms [Reiley, 1992]. The study concluded that, in order to have a high

probability of correct hazard detection while retaining low false alarm rates, near ideal

imaging conditions are necessary. These conditions include near-nadir viewing

geometry, high signal-to-noise ratios, and high spatial resolution. Furthermore, the
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Figure 2.1. A Divert Trajectory ProJ'de

study showed that the probability of false alarm increases dramatically when the

imaging conditions deviated from near ideal.

The vehicle trajectory imposes several constraints on the AHDA system as well.

Figure 2.1 shows the profile of a near fuel-optlmal trajectory that diverted to a landing

site approximately 800 m away from the nominal landing site (NLS). This trajectory

illustrates the range of aspect angles (relative to the divert site) that may occur during a

divert trajectory, reaching as low as 10 deg. Hence if near-nadir viewing geometries are

required (as indicated by the ERIM study described above) then site selection must occur

higher in the trajectory, the trajectory must be modified at the cost of additional fuel in

order to enhanced the viewing geometry, and perhaps divert over a smaller footprint.

Another way in which vehicle trajectory and dynamics affect the AHDA system is that

the AHDA system must select a new landing site as early in the propulsive descent phase

as possible (in fact, it would be desirable for site selection to be performed during the

parachute descent phase). This is because the reachable footprint shrinks rapidly as a

function of divert commit time, as shown in Figure 2.2 [Brown, 1989]. In particular, the

origin of the axes in Figure 2.2 denotes the nominal landing site (NLS). The horizontal

axis denotes along-range distance in meters, and the vertical denotes cross-range

distances. Three contours indicating the divert footprint, or the "reachable area," are

shown. The outermost contour is a full throttle divert from an altitude of 1.4 km at a

velocity of 119 m/s; this divert was initiated at time T = 0. The middle contour shows
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Figure 2.2. Divert Footprint as a FUnction of Divert Commit Time

the remaining footprint for a divert occurring 6 s (T = 6l later, and the innermost divert

occurred at T = 12 s. As this figure indicates, in order to maximize the available

footprint, divert site selection and divert commit must occur as early in the propulsive

phase as possible. (Additional details can be found in [Pien, 1991].)

For the purposes of this study a MRSR-style trajectory and vehicle have been

assumed [Gamber, 1990]. This MRSR trajectory necessitates the use of an aeroshell

during the entry phase for aerobraking. At approximately 6 km altitude, a parachute is

deployed. The parachute '_/anks" the vehicle away from the aeroshell to begin the

parachute descent phase. The parachute phase lasts for approximately 45 sec, at the end

of which engines are ignited and the parachute is jettisoned to begin the propulsive

(a.k.a. powered) descent phase. The vehicle stays on this propulsive phase for

approximately 45 sec, and terminates by performing a soft landing on the surface. In

the context of a hazard detection scenario, it is during the propulsive phase that the

vehicle has the ability to maneuver toward the site selected by the hazard detection sys-

tem. Hazards, in this study, refer to boulders or holes greater than 1 m in diameter, as

well as slopes steeper than 15 deg over the baseline of the vehicle. The vehicle footprint,

i.e., the diametric distance between footpads, is assumed to be 6 m in diameter, and the

divert range is assumed to be approximately 1 km radius.



3. APPROACH

In order to address the complex integration issues that arise in an AHDA system, a

closed-loop simulation test-bed was built. A high level view of the AHDA closed-loop

simulation is shown in Figure 3.1. The simulation takes as inputs a simulated Martian

terrain height map, a nominal trajectory, and a set of sensor parameters. The terrain

simulation code, produced by JPL, fractally simulates the surface of the Martian

terrain, and subsequently emulates various geological effects [Gaskell, 1989]. As

output, the AHDA simulation produces the location of the final landing site, as well as

the divert trajectory and the sequence of range and intensity images acquired by the

vehicle during its descent. To produce the desired output, modules for simulating

passive intensity images, laser range images, and relevant sensor effects were created.

The simulated sensor images are then given to a hazard detector, which segments the

image into safe and hazardous regions. A landing site selector subsequently selects an

appropriate landing site on the basis of past information and the current sensor image.

The position of the desired landing site is passed to the guidance module, which

performs the necessary computations to maneuver the vehicle toward the selected site.

The simulation also includes a Mars environment model and a vehicle model.

Additional details concerning the simulation are given in Appendix A.

Two types of optical sensors have been selected for consideration in the AHDA

system: laser range and passive intensity sensors. In a passive intensity sensor, a

detector array receives light reflected off of the terrain, using the sun as the primary

source of illumination. A laser ranger, on the other hand, raster scans the field-of-view

and returns, for every detector element on the detector array, the line-of-sight (LOS)

range between the detector plane and the corresponding point on the ground. The

SIMULATION
I NPUT MODULES OUTPUT

Terrain
Profile

Nominal

Trajectory

Sensor 41)
Parameters

F'/gure 3.1.

Ideal Range Image

Ideal Intensity Image

Sensor Effects

Hazard Detection

Landing Site Selector

Guidance Model

Environment Model

Vehicle Model

Final

Landing
Site

Divert

Trajectory

Image
Sequences

Simulation Test-Bed Overview
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Figure 3.2. Hazard Detection Imaging Events

primary advantage of using a laser ranger is that it provides explicit three-dimenslonal

shape information, whereas one must infer shapes when given only an intensity image.

The disadvantages of using a laser, however, are complexity and power requirements.

Because of the explicit shape information contained in range images, it is highly de-

sirable to use range information to facilitate hazard detection. Due to the slow imaging

rates (as constrained by power consumption and signal-to-noise requirements),

however, the utilization of a laser ranger makes sense only over small areas of the

terrain, and from relatively close ranges. One alternative is to supplement the laser

ranger with a high image-rate passive intensity sensor capable of "screening"

potentially safe areas and subsequently reducing the laser search area. This is the

approach we have adopted.

Note that the particular approach we have adopted -- that of utilizing intensity

images for coarse-scale screening and laser range images for high resolution hazard

detection -- reflects our bias towards considering boulders as the primary hazard. If

slopes were the primary hazard, then we may adopt an approach in which lasers are

first used for coarse-scale slope detection, and the remaining regions are subsequently

examined by a high resolution intensity sensor.

The sequence of imaging events shown in Figure 3.2 was selected as the initial

approach to analyzing a multi-sensor hazard detection system. We emphasize that this

is only one approach to imaging during vehicle descent, it should not be interpreted as

the approach. We assume that there is some way of reducing the oscillatory motion that

occurs on the parachute phase, either via firing the reaction control Jets or via the use of

flap-type control surfaces. A number of intensity images can be obtained in rapid

succession, say with At of 0.2 s between images. Assuming each intensity image is

acquired at medium resolution (- 2 m/pix), then at 512 x 512 pixels per image, each

image will cover a field of view of approximately I km x I kin. Thus within a small
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number of images (on the scale of four), the entire footprint can be covered, within a

very short time span (- I s).

As each image is acquired, a contrast-based hazard detection algorithm is used to

produce the n most promising landing areas. At the end of the intensity image

acquisition process, a queue of n landing areas, in increasing order of contrast, is

passed to the vehicle's mission planner. Assuming each 128 x 128 range image requires

an image acquisition time of 1 s, then the mission planner will point the laser ranger at

each of these n regions during the last n seconds of the parachute phase. (The range

image acquisition takes place during the parachute phase so as to maximize the divert

range during the propulsive descent phase, as well as to avoid the potentially adverse

effects of plume and dust during the propulsive phase. Range image acquisition takes

place at the end of the chute phase because this maximizes the oscillation damping

period and minimizes the line-of-slght range, thus increasing the signal-to-noise ratio

and improving the image quality.) The laser ranger will interrogate each region in

priority order with 0.25 - 0.75 m/pix resolution. As soon as a sufficiently large region is

found to be free of hazards, the process stops. If a large enough site cannot be found.

then the vehicle will commit to the largest hazard-free site.

To perform hazard detection, two independent algorithms are used -- one operating

on intensity images, the other operating on range images. In the intensity hazard

detector case, a simple contrast detector is implement. More specifically, a moving

window is applied across the entire image. At every window location, the intensity

standard deviation is calculated. The window location (or equivalently, the

corresponding patch of terrain) with the smallest intensity standard deviation is

assumed to be the location of the safest landing site. We emphasize that this Is merely

an heuristic designed to eliminate regions with high concentrations of large boulders

(hence producing greater amounts of bright and shadowed regions, and subsequently

increasing the observed intensity variations) ; It /s not meant to be a fool-proof hazard

detection algorithm. For the range hazard detector case, a topographic map is first

constructed, from which polnt-wise slopes are computed and subsequently thresholded

to produce safe/hazardous labels. The hazard detection algorithms are described in

greater detail in Appendix A.
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4. PROCEDURE

Although a conceptual scheme for implementing combined range/intensity hazard

detection was described in the previous section, due to simulation limitations

(memory requirements and processing time), some modifications were made in

practice. We describe in this section the actual simulation parameters used in

producing the results.

The coordinate system we chose is a planet-fixed system such that the X-axis points

east, Y-axis points north, and the Z-axis denotes altitude. Additionally, the origin of

the coordinate system is also used to define the lower left comer of the low-resolution

terrain file (the JPL terrain generation program was designed such that all calls to the

program must be referenced relative to the lower left comer of the low-resolution

terrain file). Vehicle positions cited in this report will be in units of meters relative to

this coordinate system

A simple parabolic trajectory was used to simulate the vehicle trajectory; Figure 4.1

shows a plot of the trajectory profile. In particular, a planar trajectory was used, and

Figure 4.1 shows the XZ-plane of the trajectory, where the Z-component denotes the

5500

5250-

5000-

.
4750-

4500-

4250-

, 4000 -
0

3750
N

3500

3250
I I I I I

13500 13550 13600 13650 13700 13750

X-Component (Eastward, m)

13800

F_gure 4.1. Image Sequence Trajectory Proj_de --
X- and Z-Components of the Vehicle Position Vector
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altitude, and the X-componentdenotesthe eastwardcomponentof the vehicleposition

vector;theY-componentwasheldnearconstant(seebelow).Noparachutedynamics

weresimulatedfor this trajectory. Thebaselinesetof imagingevents,correspondingto

the conceptualdesigndescribedin theprevioussection,is shownin Table4.I. Thefirst

five intensity imagesbracket the nominallanding site in acrossconfiguration(see

Figure4.2),andareobtainedwith a Atof 0.2 sbetweenimages,at 2.0m/pix resolution.

Dueto memorylimitations,wewereunableto make512x 512 intensityimages,hence

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Table 4.1

t

1.05

1.25

1.45

1.65

1.85

5.10

5.70

6.20

6.70

7.20

7.70

8.20

8.70

9.20

9.70

10.2

10.7

11.2

11.7

12.2

12.7

13.2

13.7

Image Sequence Trajectory and Image Acquisition Parameters.

Position vector components are in units of meters.

Im TyPe

Intensity

Intensity

Intensity

Intensity

Intensity

Range

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

Intensity

lies

2.0

2.0

2.0

2.0

2.0

0.7

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

Pos-x

13523

13527

13532

13536

13540

13607

13619

13630

13639

13650

13661

13671

13681

13692

13702

13712

13723

13733

13744

13754

13764

13775

13785

11132

11132

11132

11132

11132

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

11133

Pos-z

5373

5349

5324

5300

5275

4854

4772

47O2

4632

4561

4489

4416

4342

4267

4191

4114

4O37

3958

3878

3798

3717

3634

3551

(_qmment

Intensity

Image

Acquisition

Phase

Range Im Acq Phase

Descent

Images

for

Error

Checking

and

Image

Sequence

Display

(No Feedback

Given to the

On-board

AHDA

System)
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Image 3
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Image 2

Nominal

Landing
Site

Image 4

Figure 4.2. Scan Configuration of the First Five Intensity Images

each image in this sequence, be it range or intensity, is 128 x 128 pixels. At the end of

the intensity image acquisition phase, a queue of minimum-contrast regions is created.

We assume this process takes = 2 s to complete. At the end of the queue-creation phase,

the laser ranger is aimed at the best region on the queue, and proceeds to acquire a laser

range image at high resolution -- 0.75 m/pix (laser pointing and laser image acquisition

is assumed to take = 1 s). In this particular sequence, the first region scanned by the

laser was found to be safe, and thus the laser imaging phase is terminated. For the

remainder of the sequence, intensity images of the new landing site are taken once

every 0.5 s (so that a complete image sequence from the beginning of the hazard

detection phase to near-touchdown can be obtained for error checking and display

purposes), but no feedback is given to the AHDA system past the laser image acquisition

phase.

Note that the sequence shown in Table 4.1 is an east-bound trajectory, since the X-

component is increasing while the Y-component is (roughly) constant. This sequence

started with a nominal landing site of (14,247 m, 11,134 m, 2,204 m) relative to the

coordinate system origin; the selected safe landing site was offset from the nominal by

(-24 m, -98 m, +32 m). That is, the selected safe site is approximately 100 m south of the

nominal site. To make the simulation generic, the origin of the imaging coordinate

15



Table 4.2 Intensity and Range Image Viewing Geometries

Intensity Image Viewing Geometry

• Line-of-sight Range:

• Vehicle Elevation Angle:

4350 m

77 deg

Range Image V'wwing Geometry

• Line-of-sight Range:

• Vehicle Elevation Angle:

3850 m

75 deg

system, and hence the low resolution terrain, can be placed at any location on the

surface of Mars.

Because of the execution time associated with a single run of the closed-loop

simulation, the effect of sensor degradations on hazard detection performance was

considered from only two points along the trajectory -- one for range and one for

intensity analysis. These two points are selected as follows. Although Table 4.1 shows

23 images, the selection of the (new) landing site is performed on the basis of the first 6

images -- the five intensity images and the one range image. In fact, since the range

image is taken on the basis of the least contrast region selected from image 4, the entire

site selection process is really performed on the basis of two images -- images 4 and 62.

Thus, parametric analyses (i.e., the analysis of the effects of sensor degradations and

illumination conditions on hazard detection algorithm performance) are performed

over the same terrain patches as those in images 4 and 6. The imaging geometries of

these two images are shown in Table 4.2; the baseline sensor parameters used in the

parametric analyses are shown In Table 4.3.

An overview of the procedure used in the performance evaluation process is shown in

Figure 4.2. Figure 4.2 is divided into two parts: the closed loop simulation steps are

shown on the left, and the parametric analysis steps are shown on the right. The

simulation starts with an initialization process, which includes inputting a set of

parameters specifying viewing conditions and sensor parameters. After initialization,

the simulation clock T is set to some to, and the simulation begins. First, the guidance

2Note that, the fact that all decision making occurred on the basls of images 4 and 6 is an
artifact of the particular trajectory and the nominal landing site we selected. Decisions based
on different images will likely be the result if different trajectories or nominal landing sites were
used.
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Table 4.3 Baseline Intensity and Range Image Parameters

Baseline Intensity Image Parameters

• Line-of-sight Range 4350 m

• Spatial Resolution 0.75 m/pix

• Signal-to-Noise Ratio 20 dB

• Vehicle Elevation Angle 77 deg

• Sun Azimuth Angle (wrt vehicle) 13 deg

• Sun Elevation Angle 45 deg

• Image Plane Size 128 x 128 pix

Baseline Range Image Parameters

• Line-of-sight Range 3850 m

• Spatial Resolution 0.25 m/pix

• Range Noise (1-_) 0.1 m

• Vehicle Elevation Angle 75 deg

• Image Plane Size 128 x 128 pixels

and navigation modules produce the vehicle position and line-of-sight (LOS) vectors for

time T = to. From these vectors, the terrain point (the point on the terrain that will

become the center of the sensor image) is computed. A hlgh-resolution patch of terrain

centered about the terrain point is generated using the sensor parameters input during

the initialization step, and a sensor image is created. The hazard detection algorithms

are executed next, and if the acquired image is a range image, then site selection is

attempted. If a safe site is found, then the vehicle targeting point is updated to reflect

the new landing site. If the acquired image is an intensity image, then a priority queue

of the least contrast sites is maintained. In either case, the simulation clock is updated

and the cycle repeats.

Since sensor degradation analyses are to be performed using the same viewing

geometry and field-of-views as images 4 and 6 of the closed-loop simulation, the terrain

corresponding to these field-of-views can be generated off-line. However, because the

terrain simulation does not incorporate the appropriate Martian boulder distribution

as described in [Moore, 1987], a module for imposing the appropriate rock model is

necessary. (Note that this rock model is not added to the closed-loop simulation. This

is because the rock model, as a module completely separated from the JPL terrain
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CLOSED LOOP SIMULATION PARAMETRIC ANALYSIS

T+AT
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I
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Figure 4.2. Overview of the Parametric Analysis Process
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model,is not ableto keepboulderlocationsconsistentwith resolutionchanges.Hence
this rock distribution modelcanbeusedon static imagesonly. andnot aspart of

an imagesequence.)Thus. afterthe creationof the terrain file. a rock distribution

modelis invoked,andsubsequentlysensordegradationsusedin the parametric

analysiscanbeapplied,and sensorimagesincorporatingthesedegradationsare

created. Similarly. aftercreatingthe terrain, aground truth imageis created. The

groundtruth ofan imageis a pixel-by-pixellabelingof the imageasto whethereach

pixel is hazardousornot. Thegroundtruth imageis obtainedby taking anoise-less.

nadir-viewed,high resolution rangeimageof the terrain, and subsequentlyperforming

a rangehazarddetectionon it. Havingcreatedtheground truth, performance

evaluationsonvariousdegradedimagescan thenbeperformed.
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iS. RE_uL'r$

Using the sequence, trajectory, and procedures described in the previous section,

analyses of the hazard detection system were performed. Two separate terrain cases

were examined: nominal boulder size distribution and rocky boulder size distribution

[Moore, 1987]. Furthermore, the performance of both the intensity and the range

sensors (as well as the corresponding hazard detection algorithms) are independently

analyzed. In particular, intensity hazard detection is used to extract regions that have

minimal contrast 3, and range hazard detection is used to extract candidate safe landing

sites that are at least 5 m in radius 4 (from the minimum contrast regions).

Figure 5.1 illustrates the relationship among the various regions selected by the two

sensors during different parts of the decision making process. In particular, Figure 5. la

m

Im 4

256 m

(cO Image 4 Field-of-View (FOV)

Image 4 FOV

Minimum

Contrast

20m _

20 m

256 in

256 m

(b) Selection of minimum
intensity contrast region,"

center of region is denoted by X

Range Image FOV

× 90 in

::_imi_ili_il!lililili!i!il

90 m

(c) Range image FOV centered
about X -- the center of the

minimum contrast region

Range Image FOV

Candidate
Landing Site

90 In

90m

(d) Selection of candidate
landing site from range

image

Figure 5.1. Relative Sizes of Terrain Regions Scanned

3 Each intensity region is 20 m x 20 m. The size of this region represents a heuristic upper
bound of the error in the vehicle's ability to touchdown at a site selected during the parachute
phase when no LOS range information is available.

4 A 5 m radius circle represents a heuristic upper bound of the landing error when range
information is included as input to the landing site redesignation module.
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showsthe patchof terrain correspondingto image4 beingscannedaspart ofthe

intensity imageacquisitionprocess. In Figure5.lb, aminimum contrast regionis

selectedfrom the intensity image. Figure5.lc showsthe acquisitionof arangeimage
centered about the center of the minimum contrast region. After acquiring the range

image, the hazard detection system attempts to select a 5 m radius candidate safe

landing site; this process is shown in Figure 5. ld.

To assess the degree of hazard associated with the terrain, a large number of random

Landing sites are examined, where each landing site is defined to be a 3 m radius circle

(i.e., vehicle footprint radius). More specificaUy, given any region of interest (which

can be the 20 m x 20 m area selected by the intensity hazard detector, the 5 m radius

circle selected by the range hazard detector, or the entire field-of-view), a suitable

number of 3 m radius circles are (uniformly) randomly sampled within the region. If a

random sample contains any hazardous pixels, then the corresponding sample is said

to have "failed," otherwise its said to be "safe." The ratio of the number of safe samples

to the total number of samples is an indication of the degree to which the region is con-

sidered safe {or hazardous), and is termed the "safeness" of the region.

Because the range sensor scans the patch of terrain centered about the least contrast

intensity region, one would expect the range image field-of-view to be safer than the

intensity field-of-view. Table 5.1 compares the safeness values for the intensity field-

of-view versus the range field-of-view, for both the nominal and the rocky cases. In

particular, note that the intensity contrast detector selected a region that is 100% safe

in the nominal case.

Table 5. I. FOV Safeness as a F'unction of Terrain Model

Nominal

Rocky

Results are shown in groups.

I Intensity FOV
94.6%

72.2%

Ranqe FOV

100.0%

82.6%

Section 5.1 contains results of the intensity image

analysis; Section 5.2 contains range image analysis results. In each case, results are

shown separately for nominal and rocky terrains. In the intensity case, two

performance numbers are given: because contrast is used as an heuristic indicator of

terrain safeness, the first number (labeled Best Site) shows the safeness associated with

the 20 m x 20 m region selected by the intensity contrast detector as having the/east

contrast. The second number, labeled Average, is the average safeness oftheflve

regions selected as having the least intensity contrast. Note that because safeness does

not necessarily vary monotonically with intensity contrast, since contrast is merely
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an heuristic indicator of safeness, it is possible for the 5-region average safeness to be

better than the safeness of the best site.

In the range hazard detection case, two numbers are also used to provide slightly

different insights into algorithmic performance: the safeness and size of the selected

site. Clearly, the safeness and size of the selected site are not independent, since the

probability of finding a safe landing site depends on the size of the landing site.

Therefore, both numbers are given as indicators of the quality of the selected site. If the

site radius exceeds 5 m, then a safeness assessment is made. A selected site is

considered too small if it is less than 5 m in radius, hence safeness is not computed for

such sites.

_, 1 INTENSITY IMAGE ANALYSIS RESULTS

Results of the intensity image analysis based on the nominal boulder size

distribution are shown in Tables 5.2 - 5.5, where performance as a function of

resolution degradation is shown in Table 5.2; performance as a function of S/N is

shown in Table 5.35; performance as a function of sun azimuth angles is shown in Table

5.4, and performance as a function of sun elevation angles is shown in Table 5.56. For

each degraded image, the image resolution, signal-to-noise ratio (S/N), sun azimuth

angle, and sun elevation angle are shown. Additionally, the safeness of the minimum

contrast region, as well as the averaged safeness of the 5 minimum contrast regions, are

shown. The safeness corresponding to these regions should be compared to the safeness

of the terrain corresponding to the entire field-of-view, which is 94.6% (see Table 5.1).

Tables 5.6 - 5.9 show the performance of the intensity hazard detector on rocky

terrain. Table 5.6 shows performance as a function of resolution degradation; Table 5.7

shows performance as a function of S/N degradation; Table 5.8 shows performance as a

function of sun azimuth angles, and Table 5.9 shows performance as a function of sun

elevation angles. Again, performance numbers should be compared to 72.2%, which is

the safeness of the terrain corresponding to the entire field-of-view (from Table 5.1).

5 Signal-to-noise, for this study, is defined as the ratio of the peak signal to the average noise.
6 The sun azimuth angle is defined in world coordinates. Thus, an azimuth of 0 deg has the sun

aligned with the X-axis, which points eastward. The sun elevation angle is defined with respect
to the azimuth. Thus an elevation angle of 135 deg when the azimuth is 0 deg is equivalent to an
elevation angle of 45 deg when the azimuth Is 180 deg.
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Table 5.2. Intensity HD Performance on Nominal Terrain -- Resolution Degradations

0.75 m/p

1.5 m/p

2.25 m/p

3.0 m/p

S/N

20 dB

20 dB

20 dB

20 dB

SunAz

269 deg

269 deg

269 deg

269 decj

SunEI

45 deg

45 deg

45 deg

45 decj

Best Site

100%

100%

100%

100%

Averaae

100.0%

97.8%

95.4%

96.8%

Table 5.3. Intensity HD Pel

20 dB

15 dB

10dB

7.5 dB

rormance on Nominal Terrain -- S/N Degradations

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

SunEI

45 deg

45 deg

45 deg

45 de9

SunAz

269 deg

269 deg

269 deg

269 de9

Best Site

100%

100%

100%

100%

Averaae

100.0%

100.0%

100.0%

100.0%

Table 5.4. Intensity HD Performance on Nominal Terrain --
Sun Azimuth Angle Variations

Resol

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

s/.___B

15dB

15 dB

15 dB

15 dB

15 dB

Sun Az

0 deg

45deg

90 deg

135 deg

180 de_

Sun El

45deg

45deg

45 deg

45deg

45de9

Best Site ]

100%

100%

100%

100%

100%

Averaqe

100.0%

100.0%

100.0%

100.0%

100.0%

Table 5.5. Intensity HD Performance on Nominal Terrain --
Sun Elevation Angle Variations

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

S/N

15 dB

15 dB

15 dB

15 dB

15 dB

15dB

SunAz

45deg

45deg

45deg

45deg

45deg

45de_

SunEI

30 deg

45deg

60 deg

120 deg

135deg

150 de9

Best Site

100%

100%

100%

100%

100%

100%

Averaae

100.0%

100.0%

100.0%

97.4%

100.0%

100.0%
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Table 5.6. Intensity HD Performance on Rocky Terrain -- Resolution Degradations

Resol

0.75 m/p

1.5 m/p

2.25 m/p

3.0 m/p

S/N

20 dB

20 dB

20 dB

20 dB

SunAz

269 deg

269 deg

269 deg

269 decj

SunEI

45 deg

45 deg

45 deg

45 de_l

Elest Site

95%

94O/o

85%

100%

Averaae

91.0%

84.6%

68.0%

78 .O%

Table 5.7. Intensity HD Performance on

20 dB

15dB

10dB

7.5 dB

SunAz

269 deg

269 deg

269 deg

269 decj

Rocky Terrain -- S /N Degradations

Resol

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

_est Slte I

95%

95%

95%

95%

SunEI

45deg

45 deg

45 deg

45de_

Averaae

91.0%

84.6%

82.4%

89.4%

Table 5.8. Intensity HD Performance on Rocky Terrain --
Sun Azimuth Angle Variations

Resol

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

15 dB

15 dB

15 dB

15 dB

15 dB

SunAz

0 deg

45 deg

90 deg

135 deg

180 decj

SunEl

45 deg

45deg

45deg

45deg

45 de_

Best Site

95%

100%

100%

95%

95%

Averaae

88.6%

88.6%

87.2%

87.8%

96.8%

Table 5.9. Intensity HD Performance on Rocky Terrain --
Sun Elevation Angle Variations

Resol

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

0.75 m/p

S/N

15dB

15 dB

15 dB

15 dB

15 dB

15 dB

SunAz

45deg

45 deg

45deg

45deg

45deg

45deg

SunEI

30 deg

45deg

60 deg

120 deg

135deg

150 deg

Best Site

95%

100%

99%

95%

95%

95%

Averaae

84.8%

88.6%

88.6%

88.8%

85.6%

83.6%
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Contrast

l_igure 5.2. The Correlation Between Contrast and Safeness

Recall in general, contrast will not vary monotonically with safeness. Figure 5.2

shows the relationship between contrast and the safeness of each region (i.e., for each 3

m radius random landing attempted), for the case of rocky terrain, 0.75 m/pix

resolution, and 20 dB S/N. That is, Figure 5.2 corresponds to the case shown in the first

row of Table 5.6, in the sense that the Best Site value of 95% corresponds to the leftmost

point (i.e., the least contrast point) in Figure 5.2, and the Average value of 91% is the

average of the 5 leftmost points in Figure 5.2. Lastly, a dashed llne indicating the least-

squares fit is shown. The correlation coefficient of the data is 0.417, which, with degree

of freedom > 70, is 99.9% significant. This implies the null hypothesis (i.e., the

hypothesis that the observed correlation is due purely to chance) can be rejected, and

the observed correlation between safeness and contrast is statistically significant.

5.2 RANGE IMAGE ANALYSIS RESULTS

Although intensity image analyses were performed for nominal and rocky terrain

cases, range hazard detection performance is shown for the rocky terrain case only.

This is because the range field of view of the nominal case for the particular trajectory

and nominal landing site we selected, having already passed the intensity hazard
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detector, contained no hazards, and thus a//regions examined were safe. This was

shown in Table 5.1.

Table 5.10 shows the effect of range noise and resolution on the range hazard detector

for the rocky terrain case. Two numbers are shown in each cell -- the size of the selected

site is shown as the top number, and the safeness of the 5 m region about the center of

the selected site is shown as a percentage in parenthesis. A site is selected when it is the

largest circle within the field-of-view that is free of any (detected) hazards. When the

selected site is less than 5 m in radius, region safeness is not calculated.

It should be noted that the values shown in Table 5.10 are obtained from the range

hazard detection algorithm threshold set at 0.9 m hazards, instead of 1 m hazard (see

Appendix A for a detailed description of the hazard detection algorithm and threshold

selection). This is because we felt that, in an operational system, tolerance would have

to be built Into the hazard detection system. Figure 5.3 shows, for the 0.25 m/pix case,

the differences in the radii of the selected landing sites that occur when the hazard

detection system is set for 0.6 m hazards instead of 0.9 m.

It is worthwhile describing the errors that occurred on the 0.5 m/pix case of Table

5.10. In this case, there was a small hazard (with only 1 hazardous pixel in the ground

truth) that was missed. Subsequently, the selected site contained this pixel. The effects

of this missed detection are 1) unsafe landing areas exist within the selected region, and

2) the radius of the selected region became larger (14 m from 10.5 m). It turns out that

although the 0.75 m/pix case also failed to locate the same hazard, because the site

selector chose a different landing region, no unsafe landing areas existed within this

region. When the hazard detection threshold is lowered to 0.6 m, the 0.5 m/pix case was

able to designate the hazardous area correctly, and subsequently selected a landing site

that was safe (see Table 5.11).

Table 5.10. Range Hazard Detection Performance on Rocky Terrain

Resolutlon

0.25 m/plx

0.50 m/pix

0.75 m/plx

0.00

10.5 m

(100%)

14.0 m

(46.7%)

10.5 m

(100%)

0.05

10.5 m

(100%)

14.0 m

(40.0%)

10.5 m

(100%)

Range Noise

0.10

10.5 m

(100%)

10.5 m

(100%)

8.9m

(100%)

(m)

0.15

2.3 m

(-)

3.5m

(-)

4.5m

(-)

0.20

1.5m

(-)

2.9m

(-)

2.3 m

(-)
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Figure 5.3. The Effect of Varying Hazard Detection Threshold on the
Size of the Selected Landing Site Radius.

Table 5.11. The Ef[ect of Hazard Threshold on Site Selection for the Noiseless Case

Resolution

0.25 m/plx

0.5 m/pix

0.75 m/pix

Threshold = 0.6 m

10.5 m (100%)

10.0 m (100%)

10.5 m (100%)

Threshold = 0.9 m

10.5 m (100%)

14.0 m (46.7o/0)

I0.5 m (I00%)
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8. CONCLUSIONS

Several conclusions can be made from the results shown in the previous section. We

start with the intensity hazard detector.

From Table 5.1, it is apparent that using the intensity hazard detector as a screener

can provide a useful reduction of search space for the laser ranger. In fact, on nominal

terrain, the intensity hazard detector was able to select regions that contained no

hazardous pixels. Even on rocky terrain, the utilization of the intensity sensor in

isolation provided good performance. For example, operating the intensity sensor at

0.75 m/pix resolution at 20 dB S/N, the intensity hazard detector selected regions that

were consistently above 90% safe, from terrain that was only 72.2% safe. More

specifically, the first row of Table 5.6 shows a case in which the average safeness of the

five sites with the least contrast is 91.0%, which translates to a three-fold reduction in

the probability of selecting hazardous landing sites (from 27.8% to 9%). When

considering only the "best site" probabilities, the reductions are even more dramatic. It

has also been shown that the intensity contrast is positively correlated to the safeness

of each contrast region (Figure 5.3). Thus, even without the utilization of a laser ranger

as the second stage of hazard detection, using contrast as an indicator of terrain

safeness is superior to random (blind) landings.

As can be seen from Table 5.6, resolution has a noticeable effect on the performance

of the intensity hazard detector. The signal-to-noise ratio (Table 5.7J, however, seems

to have a considerably less significant impact, presumably because the noise is

"averaged ove¢ when computing the contrast of a region. The effect of sunlight angles

(Tables 5.8, 5.9] on performance is less clear. Previous studies have indicated that a sun

elevation angle of near 90 ° creates problems for the hazard detection system [Pien,

1990]. When the range of elevation angles is restricted to between 30 ° to 60 °, however,

the impact is not noticeable. Similarly, no clear relationship between the sun azimuth

angle and performance was observed.

In the range hazard detection case, results are easier to interpret. As shown in Table

5.10, when resolution is coarser than 0.25 m/pix, missed detections occur. When the

range noise exceeds 0.1 m, the algorithm has noticeable difficulties extracting safe sites

of appropriate sizes. Alternatively, one can decrease the hazard detection threshold so

as that the algorithm labels smaller objects as hazards. This approach can be used to

increase the performance of the system, but at the expense of decreasing the size of the

selected sites.
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Table 5.12. Strawman Sensor Design Parameters

Intensity Image Sensor Parameters

• Spatial Resolution: 0.75 m/pix
• Signal-to-Noise: 15- 20 dB

Range Image Sensor Parameters

• Spatial Resolution: 0.25 m/pix
• Range Noise (I-s): 0.1 m

Based the above results and conclusions, a strawman set of sensor parameters can be

formulated, as shown in Table 5.12.

Finally, a detailed calculation showing the processing requirements of this AHDA

system is shown in Appendix B. The calculations show that, compared to an off-the-

shelf Sun workstation, the necessary intensity image processing was easily achievable.

For range image processing the worst case analysis showed that slightly less than 1 s

was needed for the processing, whereas 1 s was allocated to the range image processing

in our image sequence. We therefore believe the AHDA system, as described, does not

pose any severe requirements on the processing power of the on-board computer

system.
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7. SUMMARY AND IrUTIJRE WORK

In summary, the ability to achieve safe autonomous landings on Mars by utilizing an

Autonomous Hazard Detection and Avoidance system was demonstrated for a very

small sample size via the Autonomous Landing Simulation Testbed. In particular, of

the cases examined, the simulation showed that improvements in the ability to select

safe landing sites can be achieved by using an intensity contrast detector when

compared to a blind landing system. Furthermore, when the intensity sensor is

operated in conjunction with a high resolution laser ranger, the simulation indicated

that the AHDA system is capable of selecting final landing sites that contain no

hazards. The effect of various imaging parameters on the performance of the hazard

detection system was evaluated, and a strawman sensor design was provided. Lastly, it

was also shown that the processing power necessary for supporting such an AHDA

system is well within the capabilities of current off-the-shelf computing hardware.

Despite the encouraging results, there are several weaknesses within the simulation.

These are topics we plan to address as part of our future work, and we summarize them

below.

First, the results shown were derived from a very small sample size. Specifically, the

results were obtained from a single baseline trajectory over a single patch of terrain

(although the terrain was modified by two different boulder models). Similar results

were obtained when the simulation processed trajectories over other landing sites, but

these other landings were not analyzed to the same extent and their results were not

incorporated into this report.

Second, although a slope hazard detector was used for producing the results in this

report, it should be improved. This is because the slope hazard detector as described in

Appendix A is simply an extension of the boulder hazard detector, and hence is not

really designed for slope detection. A more robust slope detector should be developed.

Third. it should be noted that the simulation testbed was not intended to be a high

fidelity simulation. Specifically. no parachute nor touchdown dynamics were modeled.

Additionally, the sensor simulations produced "normalized" outputs in the sense that

the received power and noise is measured relative to the peak signal, and thus the

simulation did not incorporate "real" system parameters such as power, photon noise,

etc. Furthermore, Poisson intensity shot noise, range ambiguity functions, and range

quantization were turned off in order to reduce the number of parameters in the study

(see Appendix A). Lastly, the terrain simulation produced artifacts which, at times,
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wereclearlyvisible. A morerobust terrain generationprogramis undoubtedlyneeded
in the future.

Fourth, thework describedin this report focusedexclusivelyononetrajectorytype.

Alternativetrajectories,such as thosein which thevehicleentersthe Martian
atmosphereat a considerablysteeperangle,and ignitesthe enginesat higheraltitudes

(see[TRW,1990]),shouldalsobeconsidered.

Lastly,becauseof interestin autonomouslandingson the lunar surface,the
AutonomousLandingSimulationTestbedshouldbemodifiedsothat it can incorporate

boulder and craterdistribution modelsappropriatefor the lunar surface.
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APPENDIXA. TheSimulation Testbed

To simulate images, a sensor LOS direction is first calculated as a function of vehicle

orientation and sensor tilt angles. By combining the LOS vector with the vehicle's

trajectory, instantaneous FOVs can be computed. The ideal image and sensor

simulations are shown in Figure A1. To produce range images, z-buffers are used to

facilitate shadowing (i.e., occlusion). To produce intensity images, z-buffers are used in

conjunction with a Lambertian scattering model [Foley and Van Dam, 1982]. To simu-

late sensor effects, a convolution with the Airy function (if the sensor is diffraction

limited) and a detector-size rectangle function is performed in order to simulate both

the circular lens and rectangular detector response functions. Noise is subsequently

added (Gaussian noise for range images and Poisson noise for intensity), followed by

INPUT

RANGE IM

_ Data }

IDEAL
IMAGE

SIM

Z-Buffer }

SENSOR

EFFECTS
SIM

Convolve with

Airy Funct

Convolve with
Detector Funct

Gaussian

Range Noise

Quantization

INTENSITY IM

Data

Z-B uffer

Lambertian
Scaucring

Convolve with

Airy Funct

Convolve with
Detector Funct

Poisson
Shot Noise

Quantization

Modulo
Function

OUTPUT Range Image Intensity Image

Figure A1. Image Simulation Modules
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Figure A2. An Intensity-Based Hazard Detector

a quantizatlon step. Lastly, a modulo function Is performed on range images, if

necessary, for simulating range ambiguities. For the intensity images used In the

parametric studies, Gaussian noise was used for computational efficiency reasons. For

the range images, the quantizatlon and range ambiguity simulation steps were

eliminated in order to reduce the number of study parameters.

Currently, hazard detection for range and Intensity Images is performed

independently. Several algorithms have been Implemented for hazard detection based

on intensity images. The primary algorithm measures the intensity variation of each

region withIn the Image and subsequently selects the regions with small intensity

variations as candidate landing sites {see Figure A2). More specifically, if, from some

point along the trajectory, the vehicle selects a spot on the ground as the landing site, a

heuristic is used to estimate the vehicle's ability to land at that selected spot (as a

function of slant range distance to the selected spot). This heuristic bound on the

landing accuracy defInes the size of the hazard-free region that must be found. To find

regions with small intensity variations, a sliding window of size determined by the

above heuristic Is moved across the intensity image (windows are 50% overlapped). For

each window, the intensity mean and variance are calculated and stored. After this

process has been performed over the entire image, the windows with the smallest

intensity variance are chosen as candidate landing sites. In practice, since Intensity

images are acquired within a short interval, a constant window size of approximately

20 mx 20 m Is used.
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Theincorporationoftwo additional steps(shownasthe grayboxesin FigureA2)

werealsoexamined.First, the imageundergoesaband-passfiltering stepthat removes

intensity variations introducedby objectstoo large(i.e.,low frequencycomponents]or
toosmall (i.e.,high frequencycomponents)to be of concernto the hazarddetector.The

band-passfilter usedis the differenceof twoButterworth low-passfilters [Jain, 1989].

Oneside-effectofusing theband-passfilter is that it eliminatesthe needfor a separate

noisereductionlow-passfilter. Thesecondsteputilized is a checkon the meaninten-

sity of everywindow in orderto eliminatethe possibility of selectinga totally shad-

owedregion(i.e.,a uniformly dark region)asa candidatelandingsite. That is, the
meanintensityof a windowmust exceedsomethresholdin orderto beselectedasacan-

didatesite. In practice,the improvementin performanceachievedvia the useof band-

passfilters werenegligible,and hencewasnot usedaspart of the parametricanalyses.

Additionally, a thresholdof 0.1 was imposedon the intensity meanin order to
eliminatethe possibility of selectingcompletelyshadowedregionsas landingsites.

For rangeimages,a preprocessingstepis first performed prior to invoking the range

hazard detector. This preprocessing consists of: 1) range ambiguity removal, 2) moving

average noise filter, and 3] rotation to a top-down viewing perspective. The purpose of

the rotation is to obtain an aspect-independent representation of the terrain,

corresponding roughly to a topographic or height profile of the terrain. More

specifically, assuming the image is acquired from a camera with a roll angle of 0 (i.e., 0

is the angle between the horizontal axis of the image plane and the horizon) and an

elevation angle of a (measured from the horizontal), the rotations necessary to form the

topographic perspective are: 1) a roll-removal rotation, and 2) an elevation-removal ro-

tation. These rotations, for point (x. y, z), are:

Y -sin0 cos0 0 0 cos_ sin
z

0 0 1 0 -sin _b cos _b

where _ = _/2 - a. The first rotation removes the roll angle, and the second rotation

removes the elevation angle.

The AHDA simulation currently utilizes a simple but brute force range image hazard

detection algorithm: the algorithm measures the point-wise slope between pixels of the

rotated range image to determine if each slope exceeds the hazard threshold. In other

words, the hazard definitions for boulders/holes and slopes are used to impose upper

bounds on the point-wise slopes (as well as the associated spatial extents) that can occur

between two pixels in order for the region between these two pixels to be considered
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hazard-free. The 1 m diameter boulder/hole hazard definition, for example, imposes

the point-wlse slope threshold of

= tan "1 (1 / 0.5),

i.e.. if any two pixels (within 1 m of each other) of the rotated range image produce a

point-wise slope exceeding _, then the region between these two pixels is considered

hazardous by the boulder/hole hazard definition. By repeating this procedure for the

slope hazard definition, every pixel in the rotated image can be labeled with one of four

pixel labels: safe, slope hazard, boulder/hole hazard, or occluded. The last category is

used to denote shadowed (occluded) pixels in the sensor range image, which do not have

a corresponding height value after rotation.

To perform slte selection, one of two algorithms is invoked, depending on the

number of hazardous pixels. The site selection algorithm assumes a binary image as

input, where the binary image indicates the presence or absence of hazards at every

pixel of the image. When the number of hazardous pixels is large, the size of the safe

landing site is small, in which case an exhaustive search for the largest safe landing

site is possible. This is accomplished by examining every pixel in the image, and if the

plxel is safe, then the algorithm recursively checks to see if the neighbors of the pixel

are safe, and so on. Intuitively. this algorithm "grows" a circle of safe pixels around an

initial pixel, until the circle encounters a hazardous pixel.

The circle growing algorithm in fact performs its search a bit more efficiently.

Instead of growing a circle one pixel at a time, it first estimates an upper bound on the

size (radius in pixels) of the largest circle (denote this by n), and subsequently performs

a binary search for the largest safe circle. The binary search reduces the number of

circles to be checked from n to/og2 ru

When the number of hazardous pixels is not as large, an algorithm known as the

Largest Empty Circle [Preparata and Shamos. 1985] is used. The algorithm makes use

of the Voronoi diagram, and can be computed in O(n log2 n) time 7, where n denotes the

number of hazardous pixels (actually, n denotes the number of hazardous pixels plus 4;

the 4 additional pixels correspond to the four corners of the image, which form the

convex hull within which the search for the largest empty circle is performed). Because

of the complex nature of the algorithm, we refer the interested reader to the reference.

7 Intuitively, an algorithm is O(n log 1"0if it requires on the order of n/og n processing steps. A
formal definition of this notation can be found in [Knuth, 1973].
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APPENDIX B. PROCESSING REQUIREMENTS

Processing can be divided into five stages: contrast computaUon and queue merging

for intensity images; image rotation, hazard detection and site selection for range

images. For timing purposes, we assume an on-board serial processor operating at 5.6

rni111on floating point operations per second 8 (i.e., 5.6 MFLOPS). Furthermore, we will

assume reasonable but worst case scenarios in order to bound the processing

requirements. We will assume the imaging strategy described in Sections 3 and 4.

To compute the contrast of an image, we assume a 128 x 128 high resolution (0.5

m/pix) intensity image, which will maximize the size of the neighborhood over which

the mean and standard deviation is to be obtained. At this resolution, a 20 m x 20 m

region spans 40 x 40 pixels, and with 50% overlap, there are 7 x 7 such regions. To

compute the mean of a region, it requires only 1 pass through the region. To compute

the variance, it takes 3 floating point operation per pixel. Thus, the contrast of a region

of size n can be computed in 4n floating point operations. To keep track of the 10 best

regions within the image will require a number of operations on the order of the square

of the number of regions (i.e., = 502). The total number of operations necessary to

compute the mean and intensity of an image, and subsequently returning a queue of the

10 best sites, is therefore less than 320,000, which can be performed within the 0.2 s

processing time allocated per image when assuming a 5.6 MFLOPS processor.

To combine the 5 priority queues (each queue comprised of the 10 least-contrast

regions from each intensity image) into a single priority queue at the end of the

intensity image acquisition phase requires a number of operations less than the square

of the total number of items. Thus, the merging of the 5 queues into one requires a

trivial amount of time.

To analyze the number of operations per range image, we assume the acquisition of a

128 x 128 range image at 0.25 m/pix resolution.

To rotate an image obtained from some aspect angle to a top down perspective, we

multiply the position of a pixel by the corresponding 3 x 3 rotation matrix. This

rotation requires 9 (multiplication) operations, at a total cost of 150,000 floating point

operations (FPOs). To perform boulder hazard detection, the algorithm checks every

pair of points within a 1 m x 1 m (4 x 4 pixels) region about every pixel. Thus, boulder

detection examines 136 points per pixel, and with 1 floating point multiply to

8 Sun SparcStation 2 workstaUon operates at 5.691 MFLOPS single precision arithmeUc
[Wilson, 1991]. For comparison, a SKYBolt accelerator board utilizing an i860 arithmeUc
processor and 64 MB static RAM operates at 80 MFLOPS single precision [Sky Computers,
1991].

38



determinethe slopebetweenanypair of points,the entireboulderhazarddetection

processtakes2.2 million floatingpoint operations(MFPOs).Slopedetection,

dependingon the specificalgorithm,canbesubstantiallyfaster. In particular, a

moving-ballsurfacesmoothingoperation,operatingon a 4 x 4 neighborhood,will bean

orderofmagnitudefaster. Thus,wewill neglecttheboulderprocessingrequirementsin

the analysisof the hazarddetectionalgorithm.

Toperformsite selection,oneof two algorithmsis used,dependingon the numberof

hazardouspixels in the image.Weassumefor the sakeof analysisthat the numberof

pixels in a 5 m radius circleis the switchoverpoint at which the decisionofwhich of the

two algorithmsto invokeis made. At 0.25m/pix, a 5 m radiuscirclecontains1257

pixels.

Whenthenumber ofsafepixelsis lessthan 1257,abinary searchalgorithmfor the

largestcircleof safepixelsis used. Sincetheworstcasescenariooccurswhenthe safe

pixelsarecontiguous(thusformingthe largestpossiblecircle),wewill assumethis to be
thecase.Foreachradius r, the number of pixels that need to be scanned is (2 r)2 = 4 r2.

For any pixel (x,y) within the circle, the average distance between (x,y) to the rim of the

circle is less than 4 pixels (more pixels are near the rim than near the center). Thus,

each of the 1257 points must check, on average, 64 pixels (i.e., 4x42). for a total of 80,500

FPOs. There are also 1282-1257 haT_rdous pixels that must be scanned. Thus in total,

this stage takes 100,000 FPOs.

When the number of safe pixels is greater than 1257, we use the Largest Empty Circle

algorithm [Preparata and Shamos, 1985] to find a circle that doesn't contain any

hazardous pixels. This algorithm makes three n log2 n passes through the data, where

n denotes the number of hazardous pixels. In our case, n is bounded by 1282-1257 =

15,127. Thus, the total number of operation is 3 x 212,000, or 636,000 FPOs. Note,

however, that because of the complexity of the algorithm, precise number of operations

is hard to come by; we have used instead an order-of-magnitude analysis to derive the

636,000 FPOs. Although order-of-magnitude analysis does not bound the coefficient in

front of the n log2 n term, empirically, this coefficient is somewhere between 2 and 3.

Assuming the worst case of a coefficient of 3, the Largest Empty Circle algorithm

requires 2 MFPOs. Combining the 2.2 MFPOs for hazard detection with the 2 MFPOs for

site selection shows that the range image processing requires less than 4.5 MFPOs.

In summary, some worst case assumptions have been made in order to bound the

number of floating point operations necessary to support on-board hazard detection

and site selection. For the intensity image processing case, our imaging scenario
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allottedampletime. Forthe range image processing case, our imaging scenario

allotted 1 s for the processing of each range image. With the number of operations

bounded by 4.5 MFPOs. it can be seen that the necessary processing can be performed

within 1 s of a CPU rated at 5.6 MFPO per second. Thus, we believe the AHDA system, as

described, does not pose any severe processing demands.
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APPENDIXC. ISSUES AND LESSONS

In this appendix we enumerate, in no particular order, a set of issues or lessons

learned as part of the simulation testbed development and analysis process.

INTEORATIQN

The integrationaspect ofthe simulationwas probably the most time consuming.

There are severalreasons forthis.First.the mixture oflanguages provided enormous

headaches. The terrainsimulationcode was writteninFortran,the guidance and

navigationcode was writteninAda. and the sensor simulation and hazard detection

modules were writtenin C. Interfaceproblems alsonecessitatedwrapping the entire

simulationin a dummy Ada shellso as to appease the Ada compiler. Because these

pieces of code were written independently, the effort involved in trying to translate

them into a single language, along with continuous debugging and modifications, would

have been enormous. The second reason is that the terrain simulation was written on a

different platform -- the DEC VAX system instead of the Sun workstations, and

differences in their architecture introduced very subtle bugs that took considerable

effort to resolve. Third, because the simulation incorporated modules developed

independently, and more importantly, developed by different individuals, it was

difficult not to treat these modules as black boxes. Although conceptually, one would

like to build large software systems that are highly independent, the tight coupling

necessary for a closed-loop system necessitated software synchronization at many

levels. This coupling introduced significant amount of complexity into the simulation.

_IMULATION HARDWARE REQUIREMENTS

The simulation testbed is large. Because of the terrain and sensor simulations, the

closed-loop simulation requires an almost obscene amount of hardware to run.

Specifically, running on a Sun SparcStationl, the system required 64MB of RAM,

150MB of swap, and 100MB of hard disk storage to hold an image sequence. Even then,

an image sequence almost always run out of memory before the end of the sequence

(within a single UNIX process, no garbage collection is performed on swap until the

process terminates). Thus, a sequence of 40 images typically requires 2 to 3 separate

runs, each one picking up where the previous left off, in order to complete.
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SENSOR SIMULATIONS

The intent of the sensor simulation part of the closed-loop simulation was to provide

some "reasonable" images with which we can begin to devise hazard detection

strategies. As such, there are several ways in which the sensor simulation did not

incorporate as much fidelity as it could have. First, as was mentioned in the body of the

report, no "real" units were used in producing the output. The intensity image outputs

the size of the projected unit area that is reflected back to the sensor plane, assuming a

Lambertian scattering model. Thus the intensity sensor image produced outputs within

the range of 0.0 to 1.0. Although the noise model was initially envisioned to be a

Poisson model, because Poisson is a discrete process, the quantization level of the noise

became another parameter in the simulation. For the results described in the body of

the report, therefore, we used a Gaussian model instead. The laser ranger simulator

emulated a leading edge range detector -- one which returns the line-of-sight range to

the nearest point of the terrain within the instantaneous field-of-view. In practice, if

one included power measurements, one would perform a leading edge range detection by

making sure the returned signal exceeded some threshold, whereas in our case, we

assumed a model in which the surface geometry did not affect the measured range.

Lastly, the issue of whether Lambertian scattering is the correct model for terrain was

ignored.

TERRAIN MODEL

Because our ability to select safe landing sites depends greatly on the terrain, the

terrain model quickly became a vital part of the simulation. There are several ways in

which the terrain generation code can be improved, and we suggest some of them here 9.

First, although the terrain is visually realistic at coarse resolutions, simulation

artifacts are clearly visible at high resolutions. Second, processes that can produce

channels and other dominant geological features are clearly absent. Third, the

incorporation of realistic crater and boulder size and location distributions is highly

desirable. Fourth, the computational aspect of the terrain simulation adds a significant

amount to the processing time, hence a reduction in the processing time would be highly

desirable.

9 We are currently using version 1 of the terrain simulation code. We believe some of the
suggested modifications have already been implemented (and distributed) in version 2 of the
code.
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VEHIGLE, TRAJECTORY, AND TERMINAL GUIDANCE

Without a vehicle design, it becomes almost pointless to perform a high fidelity

vehicle simulation. The vehicle is thus implemented as a point mass, and the

simulation can aim the sensor anywhere at anytime. The next level of fidelity would

presumably incorporate a vehicle body and some constraints on landing site visibility.

The incorporation of a vehicle model at this level of fidelity should probably be

accompanied by a parachute dynamics model.

An interesting fact that arose as part of our testing of the closed loop simulation is

the need to incorporate radar altimeter models into the simulation. In particular, there

was one run in which the slope hazard detector was (intentionally) turned off, and the

vehicle selected a landing site that was 1000 m higher and 400 m up-range (i.e., closer to

the vehicle) than the nominal landing site. Without an altimeter model, the ignition of

the engines were synchronized to a timeline measured with respect to the nominal

landing site. Thus, when the clock showed that the vehicle was approximately 1400 m

above the nominal landing site and that the engines should be ignited, the vehicle was

in fact only 400 m above the (newly) selected landing site, and the vehicle subsequently

crashed (i.e., ran into the ground with a significant velocity). The incorporation of an

altimeter model, however, implies a significant increase in simulation complexity

because the altimeter would have to be coupled to the terrain file.
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APPENDIX D. SAMPLE IMAGES

Representative images used in the parametric studies are shown in this appendix.

Figure DI shows two intensity images with terrain generated using the JPL terrain

simulation program version I. Each image is 128 x 128 pixels, with a pixel resolution

of 0.75 m/pix and an elevation angle of 77 deg. The top image shows the nominal

boulder distribution case, whereas the bottom image shows the rocky case. Note that

several "dominant" boulders have remained stationary within these two images. This

is because version 1 of the terrain generation program can only output terrain with a

fixed number of pixels, and when a field-of-view of some specific size is requested, the

resulting terrain may not have sufficient pixel resolution, and hence may require

interpolation. This is the case seen in Figure D 1. The (large) boulders seen in the image

were of the appropriate resolution prior to interpolation, and no smaller boulders were

needed. After Interpolation, however, there's a noticeable lack of small boulders. The

process described in Section 4 was used to superimpose the appropriate boulder model.

Figures D2 and D3 show the effects of signal-to-noise on an image. The top image in

Figure D2 shows the Intensity image at 20 dB, bottom image of Figure D2 shows the

same image at 15 dB. The top image in Figure D3 shows the same image at 10 dB, and

the bottom image in Figure D3 shows it at 5 dB.

Figures D4 and D5 show the effects of resolution on an image. Figure D4 shows the

intensity image at 0.75 m/pix (top) and 1.5 m/pix (bottom); Figure D5 shows the same

image at 2.25 m/pix (top) and 3.0 m/pix (bottom).

Figure D6 shows an intensity-range pair generated via version 2 of the JPL terrain

generation program. The top image shows the intensity image with a nadir (top-down)

viewing perspective, with solar i11umination from the upper left at an elevation angle of

30 deg, and a pixel resolution of 0.4 m/pix. The bottom image shows the corresponding

range image, with bright intensity indicating a shorter line-of-sight range. We are

currently integrating this version of the terrain generation code into the AHDA

simulation so that we can determine the performance of the hazard detection system on

this (more realistic) terrain.
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Figure D1. Sample Intensity Images.

(Top) Nominal Terrain. (Bottom) Rocky Terrain.
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F_gureD2. The E_fect of Signal-to-Noise on an Intensity Image.

Flop) 20 dB. (Bottom) 15 dB.

46



F_gure D3. The Effect of Signal-to-Noise on an Intensity Image.

(Top) 10 dB. (Bottom) 5 dB.
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Figure D4. The Effect of Resolution on an Intensity Image.

(Top) O. 75 m/pix. (Bottom) 1.5 m/pix.
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Figure D5. The Effect of Resolution on an Intensity Image.

(Top) 2.25m/pix. (Bottom) 3.0 m/pix.
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Y

Figure D6. Images Simulated Using Version 2 of JPL's Terrain Simulation Code.

(Top) Intensity Image. (Bottom) Range Image.
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