
f_

N94- 36501

I 7 o I77q
EV[PACT OF ADA

IN THE FLIGHT DYNAMICS DIVISION:

EXCITEMENT AND FRUSTRATION

John Bailey
Software Metrics, Inc.
4345 High Ridge Rd.
Haymarket, VA 22069

703-385-8300

Sharon Waligora
Computer Sciences Corporation

10110 Aerospace Rd.
Lanham-Seabrook, MD 20706

301-794-1744

Mike Stark
NASA/Goddard

Software Engineering Branch
Greenbelt, MD 20771

301-286-5048

ABSTRACT

I In 1985, NASA Goddard's Flight Dynamics Division (FDD) began

i investigating how the Ada language might apply to their software development
•_ projects. Although they began cautiously using Ada on only a few pilot

[projects, they expected that, if the Ada pilots showed promising results, they
l would fully transition their entire development organization from FORTRAN to
: Ada within 10 years. However, nearly 9 years later, the FDD still producesI

80 percent of its software in FORTRAN, despite positive results on Ada
i

i projects. This paper reports preliminary results of an ongoing study,
' commissioned by the FDD, to quantify the impact of Ada in the FDD, to

determine why Ada has not flourished, and to recommend future directions

regarding Ada. Project trends in both languages are examined as are external
, factors and cultural issues that affected the infusion of this technology. This

i paper is the first public report on the Ada assessment study, which will
conclude with a comprehensive f'mal report in mid 1994.

INTRODUCTION

The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration's

Goddard Space Flight Center (NASA Goddard) spends approximately $10M per year

developing attitude ground support system (AGSS) and simulator software for scientific

satellites. As the prime contractor in this area, Computer Sciences Corporation (CSC) develops

most of this software.

Nine years ago, the FDD began investigating Ada and object-oriented design as a means to
improve its products and reduce its development costs, with the intention of completely

transitioning to an Ada development shop within 10 years. The FDD pursued Ada for reasons

similar to those of other forward-looking software organizations in 1985. For example, Ada

was considered to be more than just another programming language. Since it embodied several

important software engineering principles and contained features to ensure good programming

practices, its proper use was expected to lead to advances in the entire software development

SEW Proceedings 422 SEL-93-003

https://ntrs.nasa.gov/search.jsp?R=19940031994 2020-06-16T10:58:35+00:00Z

process. Furthermore, through increased reuse, reliability, and visibility, using Ada was

expected to reduce costs, shorten development cycles (project durations), and lead to better and

more manageable software products. These goals of greater reuse, lower cost, shorter cycle

times, and higher quality became the expressed objectives for learning and using the Ada

language at the FDD.

The FDD piloted the use of Ada on its smaller, less risky projects (satellite simulators) that were

regularly developed on a VAX minicomputer where a reliable Ada compiler and tool set were

available. Early pilots showed promising results and led to a complete transition to Ada for

developing simulators in the VAX environment. The results of the early Ada studies and

successes have been presented at previous Software Engineering Workshops as well as at Ada-

and OOD-related conferences (Reference 1). Unlike those previous papers, which compare the

measures of Ada projects with the existing FDD baseline measures in 1985, this paper

compares the Ada projects with contemporary FORTRAN projects. The impact of Ada is

assessed in the context of the evolving FORTRAN process.

Table 1 presents the high-level characteristics of the Ada and FORTRAN projects included in

this study. Notice that all Ada projects were developed on the VAX minicomputers, whereas all

the FORTRAN projects were developed on IBM mainframes. Not only are the projects small

or, at most, medium-sized by industry standards, but they tend to be short-lived, with

operational lives ranging from just a few months to a few years. We have factored these

organization-specific software characteristics into the recommendations made in the last section
about the future use of Ada and FORTRAN at the FDD.

Table 1. Elements of the FDD Environment

Application Computing
Environment

Ground Support IBM mainframes

Simulators DEC VAX

* Thousands of source lines of code

Language Typical

System Size

FORTRAN 200 KSLOC*

Ada 60 KSLOC*

THE ADA EXPERIENCE

Over the past 9 years, the FDD has delivered approximately 1 million lines of Ada code.

Figure 1 illustrates the growth of Ada experience in this environment. The curve shows the
accumulated amount of code as each project was delivered (the time before the first project

delivery is foreshortened for clarity). The scale on this figure is in thousands of physical lines
of source code, or KSLOC (i.e., editor lines or carriage returns), and therefore includes

comments and blank lines.

Although SLOC is the traditional measure of software size in the FDD, we used statement
counts to measure software size for this study. We chose statement counts (i.e., the number of

logical statements and declarations) because they are not sensitive to formatting and because

SEW Proceedings 423 SEL-93-003

they are a more uniform indicator across the two languages both of functionality delivered and

development effort expended (Reference 2). The average number of physical lines per
statement varied somewhat over the period studied because of changes in programming style.

By the last projects studied, the average number of lines per FORTRAN statement had risen
from about 2 to more than 3, whereas the number of lines per Ada statement had fallen from

over 6 to close to 4.

.-- 1000

|
80o

g

o

GOESIM

GRODY

SAMPEXTS

EUI_ETELS

EUVEDSIM

GOADA

TONSVAX

I I

1987 1988 1989 1990 1991 1992 1993

FASTELS

TOMSTELS

Figure 1. FDD Ada Experience and Focus

The four regions under the curve in Figure 1 give a rough approximation of the evolution of

goals and objectives for the study and use of Ada in the FDD. Initially, the main concern was

familiarization with the language, although the initial projects also stressed reusability as a major

objective. Soon, the focus turned to the structured generalization of systems, and the success

of these generalizations led to an overall improvement in the efficiency of the Ada software

development process. Recently, there has been an additional focus on optimizing the

development process specifically for use with the Ada language. This optimized process has

been specified and documented in a recent supplement to the standard software development

process guidebook used by the FDD (References 3 and 4). These Ada study goals for reuse,

generalization, and process provided the framework for the evolution of the use of Ada in this
environment. We discuss them further in the following section when we compare the Ada

software with the FORTRAN software developed during the same 9-year period.

We examined the degree of usage of the many Ada language features on the various projects to

verify that Ada developers were, in fact, using the full capability of this technology. We found

evidence that the use of Ada has matured by looking at changes in the use of the language

features over time. Figure 2 shows four views of the evolving language usage. Notice that the

use of generics and strong typing increased, whereas the use of tasking decreased along with

the average package size. Also, this maturation of language use appears to be leveling off,

which suggests that sufficient thought has been given to using the language to enable a standard

approach to evolve. These patterns indicate that the FDD developers have become skilled with

Ada and have determined an appropriate style and usage for the languag e in this environment

and application domain.

SEW Proceedings 424 SEL-93-003

,- 80

v

.o,o

20

n

2.5-

_ 2.0-

o
lu
o. 1.5-

O 1.0-
O
.J

m o.5-

o

GENERICS

/
! • I |
i I i w

1985

PACKAGE SIZE

|

1993

I I I ! I

1985 1993

.06

_.04
(jr)

Q.

o..02

.._

'0.0

10

(/)

6
Q.

I-

2

0

STRONG TYPING

i 1 i
• i i

1985 1993

TASKING

i i I I a

1985 1993

Figure 2. Maturing Use of Ada at the FDD

Comparing Ada and FORTRAN Baselines

The original FDD goals of increased reuse, lower cost (in terms of effort), shorter cycle times,

and higher quality can be measured by comparing data from the Ada and FORTRAN projects.

Previous papers (References 1 and 5) have documented improvement on Ada projects over the
1985 FORTRAN baseline. But, while the FDD was gradually maturing its use of Ada on the

satellite simulators, the FORTRAN process also continued to evolve on the larger, mainframe

projects. The following sections compare the evolving Ada and FORTRAN baselines between
1985 and 1993 in each of the initial four goal areas and in terms of the evolving software

process. In this way, the improvements seen on Ada projects can be assessed within the

context of the evolving FORTRAN baseline.

Reuse

During the 9 years that Ada has been used at the FDD, we have seen considerable improvement

in the ability to reuse previously developed software on new projects. Figures 3 and 4 show,

for Ada and FORTRAN projects respectively, the percentage of each project that was reused

SEW Proceedings 425 SEL-93-003

®
1,o

rr

.o
tR.

90

80

70

60

5O

4O

30

20

10

0

o oo- 8
Figure 3. Verbatim Ada Reuse by Project

without change from previous projects. (The minimum unit of reuse is a single compilation

unit; no credit is given if only a portion of a compilation unit is reused. The percentages are

computed by dividing the total size of the reused compilation units by the total size of the

project.) The first breakthrough in high verbatim reuse of Ada occurred in 1989 when a set of

generics purposely designed for reuse were demonstrated to be sufficient to construct nearly

90 percent of a new project in the same domain.

The dip in the amount of reuse on the eighth Ada project was caused by a change in the domain

that required modification to the Ada generics and additional new code development.

SpecificaUy, the original domain where high reuse was achieved was simulation software for

90

8O

7O
t/)
"_ 60

n,-

50
q)
_ 4o
ID

n
30

20

lO

Figure 4. Verbatim FORTRAN Reuse by Project

SEW Proceedings 426 SEL-93-003

three-axis stabilized spacecraft. When a spin-stabilized spacecraft was simulated for the first

time, a substantial drop occurred in the verbatim reusability of the library generics. This

incompatibility was rectified over time so that the generics can now accommodate either a three-

axis or a spin-stabilized spacecraft. The slight drop in the most recent examples of reuse to

around 80 percent, as compared with the earlier successes with high reuse that were closer to

90 percent, was caused by performance tuning on the latest projects. Performance issues are

discussed again in the next major section of this paper.

Figure 4 shows the corresponding picture of verbatim reuse on the FORTRAN projects during

the same 9-year period. At its peak, the amount of verbatim reuse achieved was nearly as great

as with the reusable Ada generics, and the first successes occurred at nearly the same time as the

first highly successful Ada reuse. (The first high-reuse FORTRAN project was the

corresponding ground support system for the same satellite mission as the first high-reuse Ada

simulator.) Again, a change in domain to spin-stabilized missions caused a drop back to the

low levels of reuse observed on the earlier projects in the late 1980s.

The FORTRAN reuse approach differs from that used on the Ada projects, however. Instead

of populating a reuse library with a set of generics that can be instantiated with mission-specific

parameters, as was done in the Ada projects, the FORTRAN reuse library actually consists of

two separate program libraries, together comprising nearly 400,000 source lines of code. One
of these libraries is for three-axis stabilized spacecraft and the other is for spin-stabilized

spacecraft. Subsystems from the appropriate library must be used in an all-or-nothing fashion.

This style of reuse explains why there was a sharper drop in reuse when the change of domains
occurred in the FORTRAN projects as compared with the Ada projects. In the Ada projects, it

was still possible to reuse a sizable portion of the three-axis library without modification for the

first spin-stabilized mission, whereas none of the large FORTRAN library to handle three-axis
missions could be reused verbatim for a spinning satellite. The developers again achieved high

levels of reuse in their FORTRAN projects by developing a separate complete subsystem library

for spin-stabilized spacecraft that was analogous to the three-axis library. Since these two
FORTRAN libraries embody over 80 percent of the functionality for any new ground support

system, the FDD has since set up a special dedicated team to maintain them. This team is

charged with keeping the software up to date with new requirements, while retaining its

backward compatibility with previous systems. Estimates of the project-specific effort

expended by this team are added to each FORTRAN project that reuses subsystems from the

libraries.

An important distinction between the reuse styles adopted for the two languages is that the two
FORTRAN libraries must be augmented as needed to handle new missions in their respective

domains, whereas the Ada generics form a collective set of smaller components that requires
little or no further modification to handle missions in either domain. To avoid the risk of

introducing errors for existing clients, the maintainers augment the FORTRAN subsystems as

necessary by adding new code rather than by generalizing or modifying their existing code.
This causes the FORTRAN libraries to grow over time. In contrast, the Ada developers directly

handle the generics needed for each project and further generalize them if necessary. By

copying the generics into each project library that needs them, slight changes can also be made

to eliminate unnecessary dependencies. The maintenance and configuration control

disadvantages of having separate copies of the reusable components in each client project's

SEW Proceedings 427 SIEL-93-003

library are less an issue with the simulators, which have short operational phases, than they

would be with the longer-lived AGSS projects.

Cost Reduction

Figures 3 and 4 clearly show the points when dramatic improvements in reuse were achieved in

both the Ada and the FORTRAN projects. The first Ada simulator and the first FORTRAN

ground system to exhibit high reuse were both written to support the Extreme Ultraviolet

Explorer (EUVE) satellite mission. Because of the nature of satellite mission support, the
simulator is typically completed first so that it can be used to test the ground system. (In the

case of EUVE, the Ada simulator was completed about 4 months ahead of the corresponding

FORTRAN ground system.) Since these first successes with reuse almost coincided, and since

they are associated with measurable changes in the development approach, we divided the Ada

and the FORTRAN project sets into two groups depending on whether or not they were

completed before the EUVE experience.

The left-hand side of Figure 5 shows the average costs in hours to deliver a statement of Ada,

both before the successes in reuse and since (EUVE and subsequent projects). The figure

shows that the productivity of delivering Ada software has doubled since high reuse has been
achieved.

0.9 -- .85

liii;iiiii_ii_ili;i_iii1

0.8 -$._-:_'...:.:::$:::_.'.<::..::

0.6 !il_-:._",i_;.__:::_:_:_:.$_-_:_:!:i:i:_$!:

i _.;'_:::-5:':_:!.:_$:!il

:::::::::::::::::::::::::::::

!."..:__._ $_$._-_:-_::_:_

0.2 _i:_:_::_:_:_:_:'>.':_:_:?_:!:i

::::::::::::::::::::::::::::::

O.1 __:_:_:;_:_:_'_

.42
.48

.65

::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::

..................

::::::::::::::::::::::::::::::

:!:_:!_:!:!:!:!:_:!:!:_:!:_:_:T:!

:!:_:!.'::_:!:!:!_:!:!::.-':_:'_:i:i

.:-:-:.:.:.:-:-:.:.:---:-:-:.:.:.

_ady
FORTRAN

Early Recent Recent
Ada Ada FORTRAN

Figure 5. Effort To Deliver One Statement: Ada vs. FORTRAN, Early vs. Recent

The right-hand side of the figure shows the average costs in hours to deliver a statement of

FORTRAN before and after the high-reuse process. Again, there is a marked improvement,

though not as great a reduction as in the Ada projects. Although we have no hard data to
normalize statement counts in Ada with statement counts in FORTRAN, we suspect they are

roughly comparable measures of functionality (Reference 2). Assuming comparability, these
results lead us to believe that Ada is somewhat more expensive than FORTRAN for

conventional software development, but that reuse can lower the cost of an Ada delivery more

than it can lower the cost of a FORTRAN delivery. We could conclude that FORTRAN is more
cost effective for short-lived software but that Ada should be used for software that is likely to

have a longer life through future reuse. We revisit this observation in the final section of the

paper.

SEW Proceedings 428 SEL-93-003

Shorter Cycle Time

Ada was also expected to lead to shorter cycle times or project durations. Figure 6 shows that

this goal was met not only by the Ada projects but also by the FORTRAN projects. Again, the

first high-reuse project in each language is the first project of each of the recent sets represented

by the fight-hand (darker) bars.

3O
29

,-. 25
¢/1
e-

20

,_15

_ lO
D

22

i:_:_:__:_:_:!:_:_:_:_:_:_:_::.:i.:_!:
:.:.:.:+:+:.:.:.:.:.:.:.:.:+:.
::_:!_:_:_'/_g__'_

•; .:_•, • ,:.x.:,:,:::::::5

I ::::::::::::::::::::::::::::::::::::

- 1::i::_::.._ii_;iii#._i::i_
:.:,:+:+: :.:.:.:.:.:.:.:.:.:<.:

0
Early
Ada

15

19

Recent Early Recent
Ada FORTRAN FORTRAN

Project Averages

Figure 6. Average Project Duration: Before and After Reuse Process Adoption

The software development process did not change as suddenly as the reuse results, however.

In fact, the schedule for the first high-reuse project in each language was more similar to earlier

projects than it was to the subsequent high-reuse projects. 1 This is because the overall

development process changed only after the EUVE project demonstrated that substantial savings
could be achieved through large-scale reuse. To minimize risk, the first high-reuse project in

each language was conducted using a more traditional schedule and staffing level. When

management was able to observe the potential savings from reuse, procedural and scheduling

changes were made to allow an expedited development process whenever high reuse was

possible. So, whereas reuse can permit shortened project schedules, it is also necessary to
accommodate this different behavior with an appropriately pared-d.own process. For example,

the FDD now specifies a single design review in place of the traditional preliminary and critical

design reviews whenever the majority of a new system can be constructed from existing code.

Reliability

The last explicit goal for the planned Ada transition was to increase the quality of the delivered

systems. The density of errors discovered during development, measured on all FDD projects,
is used to reflect system quality and reliability since quantitative operational data were not

1 Because they behaved more like traditional projects, one might argue that the first high-reuse project in each

language actually belongs to the early project set (represented by the left-hand bars of each pair). This would

further accentuate the difference between early and recent projects.

SEW Proceedings 429 SEL-93-003

collected. 2 Development-time errors are a useful reflection of quality because they reveal the

potential for latent undetected errors and indicate spoilage and rework during development that,

in turn, impact productivity and schedule.

12
¢/)

_10
£
,,,_ 8

_1..-
a_. 2

0

10.5

Early Recent
Ada Ada

ProjectAverages

Recent
FORTRAN

Figure 7. Reduction in Error Density in New or Modified Code: Ada and FORTRAN

The number of errors discovered per thousand statements of new and modified software before

delivery is shown in Figure 7. Since the densities shown are based on only the new and

modified code (verbatim reused code was not included in the denominator), we do not attribute

these reductions to reuse. Instead, we attribute the reduced error rate to improvements in the

development process that were instituted on all FDD projects during this period. These

improvements included the use of object-oriented or encapsulated designs and the use of

structured code reading and inspections. The fact that these process improvements were applied

to projects in both languages is reflected by the similarity in the error-density reductions
observed.

Process

An evolving development process was cited in the preceding discussion as being the reason for

improvements in schedule and quality. We characterized the process by examining the

distribution of effort across the various software development activities performed. The activity

distributions shown in Figure 8 provide evidence that the more recent projects were conducted

using a different process than the early projects. The figure shows the average number of staff-

hours per project consumed by each of the four defined activities for software projects at the

FDD. The dark bars for each activity show the averages for the first five Ada simulator

projects, and the light bars show the average effort per activity for the five subsequent Ada

simulators that achieved higher levels of reuse. (To fairly average the efforts for each activity

among projects of varying sizes, the activity data for each project were first normalized by

project size.) The savings exhibited for the later set of projects is due not simply to reuse alone

2 So far, operational reliability, in terms of mean time to failure, has been adequate and it has therefore never

become a measurement or improvement goal. The amount of maintenance effort expended on the operational

systems is now being tracked, however.

SEW Proceedings 430 SEL-93-003

but to the process change adopted to accommodate that reuse. The evidence for this is that the

EUVE simulator (the sixth Ada project, see Figure 3) was the first to achieve a high level of

reuse but, because it used a traditional process, its individual profile more closely resembled the

earlier low-reuse group than the later high-reuse group.

5000

= 4000o
-r

3000

G)

2000

iooo

3468

4709

1090

3961

45O0

2098

Design Code Test Other
Activity

[] Recent Ada

Figure 8. Average Effort by Activity: Early vs. Recent Ada Projects

Figure 9 shows the average effort by activity for the FORTRAN projects that were completed

during the same period. Again, the effort magnitudes are normalized, and the projects are

divided into an earlier group of lower reuse projects and a more recent group of higher reuse

projects. As with Ada, a reduction in effort is shown for each activity when comparing low

reuse with high reuse, although the net reduction is less in FORTRAN. Unlike the Ada results,
however, most of the reduction occurs in the coding activity instead of being spread more

evenly across every activity.

--i
o

a:,
¢:

(D

o')

<

10000

8000

6000

400O

2000

0

6779

5230

8481

2302

7635

5448

9293

Design Code Test Other
Activity

4646

JEE Early FORTRAN [] Recent FORTRAN I

Figure 9. Average Effort by Activity: Early vs. Recent FORTRAN Projects

SEW Proceedings 431 SEL-93-003

Notice that the shape of the activity distribution of the early projects in the FORTRAN set is

virtually identical to the activity distribution of the early projects in the Ada set (the dark bars in

Figures 8 and 9). However, as noted, the distributions for the recent, high-reuse projects differ

between the languages. This suggests that the Ada and FORTRAN processes have each

evolved in a different way even though they both had a common point of departure. The main

lessons from this illustration are that the software process matured and improved during the

time that Ada was used and that this evolution affected both the Ada work and the FORTRAN

work, although in different ways. This process change is responsible for the reduced schedules

shown in Figure 6. Also, the differing net reductions in effort reveal why Figure 5 showed a

greater drop in cost for the Ada projects than for the FORTRAN projects when the benefits of
reuse started to accrue.

Summary of the Comparisons

Quantitative data over the past 9 years show clear improvements attributable to the use of the

Ada language in all of the initially specified goal areas. Many of these improvements were

directly related to the increase in reuse. Interestingly, the FORTRAN systems showed

comparable results over the same period, which leads to two possible interpretations. We could

claim that because Ada did not provide a substantial improvement over FORTRAN, the FDD's

continued involvement in the new language is unnecessary. However, Ada quickly did at least

as well as the established language in the domain, and because it is a more modern language

than FORTRAN, we could claim that Ada should be adopted for all future FDD development.

Regardless of the interpretation chosen, it is safe to say that we found no quantitative evidence
to indicate that Ada could not be used successfully on all FDD projects. The next section

presents our additional findings beyond these quantitative results that affected the overall

acceptance of Ada at the FDD.

Unforeseen Factors Impeding the Adoption of Ada

Given the encouraging Ada project results and the motivations of the forward-thinking

managers who originally set out to transition to Ada, why hasn't the FDD successfully adopted

Ada? As stated earlier, only a fraction of all new software developed at the FDD is in the Ada

language. Our investigation discovered several unforeseen factors that have impeded the FDD's

transition to Ada. These factors were poor initial system performance, the lack of adequate tool

support, and developer bias. This section discusses these factors and their impact on the
transition to Ada.

Performance

System performance was not an explicitly stated goal for the programs developed in Ada, but it

turned out to be a major issue. By 1985, the programmers in the FDD had achieved such

proficiency with FORTRAN software design and implementation that even the most complex

flight dynamics systems performed adequately without paying any special attention to

performance. Thus, performance had become an implicit consideration and was not addressed

in software requirements, designs, or test plans.

Figure 10 depicts the relative response times of the delivered simulators between 1984 and

1993. A smaller response time indicates better performance. The figure reveals that the first

SEW Proceedings 432 SEL-93-O03

Ada simulator performed very poorly compared with predecessor FORTRAN simulators.

Because Ada language benchmarks had shown that Ada executed as fast as equivalent

FORTRAN programs and because performance was not an explicit goal, developers of the first

Ada project paid little attention to performance. Instead they focused on learning the language

and developing reusable software. It should come as no surprise that novice users of this fairly

complex language did not produce an optimum design or implementation. But, because this

system was delivered for operational use, the FDD users' first encounter with an Ada system

was negative. This feeling was compounded by the fact that, because of scaled-down

processing requirements, the FORTRAN simulator delivered immediately before the first Ada
simulator was the fastest simulator ever delivered.

"1-
"17

-n

o
"1-

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

[] FORTRAN • Ada

Figure 10. Relative Response Times for Ada and FORTRAN Simulators

In 1990, the FDD conducted a performance study (Reference 6) to determine why the Ada

systems executed so much more slowly than the fastest FORTRAN system. The study
discovered that some of the coding techniques practiced in FORTRAN to achieve high

efficiency actually worked against efficiency in Ada and that some of the data structures around

which the designs were built were handled very inefficiently by the DEC Ada compiler. The

study resulted in a set of Ada efficiency guidelines (Reference 7) for both design and code that

is now being followed for all new Ada systems. Interestingly, in order to follow those

guidelines, the last two Ada projects in Figure 10 had to forgo a certain amount of reuse. (The
slower POWlTS simulator was completed before these guidelines were available and also had

considerably more complex processing requirements.) As shown in the figure, the typical Ada

simulator now performs better than most of the earlier FORTRAN simulators. However, first

impressions are very important, and the perception of many of the FDD programmers and users

is that Ada still has performance problems and that systems demanding high performance

should not be implemented in Ada.

SEW Proceedings 433 SEL-93-003

Ada Development Environments

Finding adequate vendor tools to support Ada development in the FDD was a major obstacle.

In 1985, when the FDD began its work with Ada, most computer vendors were actively

developing Ada compilers and development environments. The FDD believed that vendor tools

would be widely available within a few years. But, consistently usable Ada development

environments and reliable Ada compilers did not become available across the platforms used to

develop and execute FDD software systems.

All the Ada projects included in this study were developed using DEC Ada on VAX

minicomputers that were rated by FDD developers as having a good set of Ada development

tools to facilitate the development process. However, 80 percent of the software developed in

the FDD must execute on the standard operational environment, which is an IBM mainframe.

And traditionally, FDD systems have been developed on their target platforms. Unfortunately,

an adequate Ada development environment for the IBM mainframe was never found.

The FDD conducted several compiler evaluations and a portability study between 1989 and

1992, all of which declared the IBM mainframe environments unfit for FDD software

development. In 1989, the FDD evaluated three compilers (Reference 8) and selected one for

purchase and further study. Somewhat discouraged by this study which rated the best compiler

as having only marginal performance for flight dynamics computations and no development

tools, the FDD investigated an alternative approach. Since Ada was touted to be highly

portable, they conducted a portability study to determine whether FDD systems could be

developed in Ada on the VAX and then transported to the mainframe for operational use. This

study (Reference 9) ported one of the existing operational Ada simulators from the VAX to the

IBM mainframe using the Alsys IBM Ada compiler, version 3.6. The study found that

relatively few software changes were required and that the resulting system performed

adequately on the mainframe, but that rehosting was extremely difficult because of compiler

problems and the lack of diagnostic tools and library management tools. Although rehosting the

system required only a small amount of effort, it took nearly as much calendar time as was

needed to develop the system from scratch.

In the fall of 1992, the FDD again conducted a compiler evaluation on what were supposed to

be greatly improved products. This study (References 10 and 11) selected a different compiler

than the earlier study, using the ported simulator as one of its benchmarks. Although the

chosen compiler performed better than other candidates and was accompanied by a limited tool

set, the study warned against using it to develop real-time or large-scale FDD systems because

of its inefficient compiling and binding performance, immature error handling, and poor

performance of file input/output. Finally, late in 1993, the FDD achieved some limited success

developing a small utility in Ada (the FAST General Torquer Command Utility) on an IBM

RS-6000 workstation and porting the software to the mainframe.

Figure 11 (a simplification of Figure 2) shows a sharp decline in the amount of Ada

development late in 1990. It was at this point that the FDD had planned to begin developing

parts of the larger ground support systems in Ada on the mainframes. But results of the early

Ada compiler evaluation and the portability study made it clear that developing on, or even

developing elsewhere and porting to, the mainframes was not feasible. Thus, continued growth
in Ada stalled.

SEW Proceedings 434 SEL-93-003

OO0 -
m

8oo

eoo

400

_) 200

O m

Planned / FASTELS

growlhJ TO.S_..._
Turning point /i

\

EUVEDSI_,. .. - " " ° °

/o.o
GOA D_. *

UAR STELe..

GOESIM_.*¢ '_¢°

I I I I I I l

1987 1988 1989 1990 1991 1992 1993

Delivered
lines

New lines

Figure 11. Drop in Ada Growth Coincides With Trouble Migrating to Mainframes

At the same time, the FDD's simulation requirements changed, reducing the number of

simulators required to support each spacecraft mission from two to just one. 3 This change

resulted in a reduction in the amount of software targeted to be developed in Ada. The net result

was a significant reduction, instead of an increase, in the rate of Ada software delivery. The

drop in Ada development is even more dramatic when you eliminate the amount of reused
software and consider only the investment in new Ada code. The flatter dashed line below the

curve for cumulative delivered size in Figure 11 shows only the number of new and modified

lines being developed.

The unavailability of an adequate Ada development environment on the IBM mainframe was

clearly a significant stumbling block to the FDD in its transition to Ada. We feel that as long as

the mainframes remain the principal operational environment at the FDD and as long as

mainframe development or deployment of Ada systems remains awkward, there appears to be

no straightforward way to increase the use of Ada within the Division.

In addition to its disappointment with the mainframe development environments, the FDD also

experienced only limited success in using Ada to develop an embedded system. As part of a

separate research and development effort, the FDD developed an embedded application on a
Texas Instruments 1750A machine using the Tartan Ada compiler. Unfortunately, the two-

vendor situation led to interface problems between the hardware and software; the lack of

diagnostic tools contributed to insoluble problems that resulted in an end product with reduced

capability. This experience contributed to the general feeling among the FDD developers that

there was not yet a satisfactory level of vendor support for Ada development.

3 Before this point, both a telemetry simulator and a dynamics simulator were developed for each mission. Since

1990, only an enhanced telemetry simulator has been required.

SEW Proceedings 435 SEL-93-003

Developer Perspective

As with any technology infusion effort, developers' bias for or against a technology can

significantly facilitate or impede the transition. To get a reading on the current perspective of

the developer community, we identified and interviewed 35 FDD developers who have been

trained in or have developed systems in Ada. Each developer was asked which language they

would choose for the next simulator project and which language they would choose for the next

ground support system and why. Figure 12 shows their responses.

SIMULATORS (ADA)
GROUND SUPPORT

SYSTEMS (FORTRAN)

I! !ii i iiiiii

Figure 12. Developer Preferences for Programming Language

Most agreed that Ada should be used for the next simulator, whereas FORTRAN should be

used for the next ground support system, citing the availability of reusable components and

architectures as the deciding factors. But, also notice that 25 to 30 percent of the developers

seemed to have a language bias because they chose the language not customarily used for each

type of application. The 23 percent who preferred to use FORTRAN for simulators cited the

complexity of the Ada language and poor performance as reasons to abandon Ada, while the

30 percent who preferred to use Ada to build the next ground support system felt that Ada was

a better language for building larger systems.

Nearly all the developers pointed out that adequate tools are essential for efficient and accurate

development using Ada, whereas FORTRAN development can be accomplished with little or no

tool support. However, the two most enthusiastic Ada developers felt that they were

sufficiently proficient with the language to overcome the lack of tools on the mainframe

computers. Interestingly, at the other extreme, several the developers did not care one way or

the other about which language they used for software development; two developers specifically

commented that "Ada is just another language."

The two significant minority groups who were the most opinionated about language use, one in

favor of Ada and the other opposed, have been fairly vocal and forthcoming with their views

over the past several years. Thus, there may be an observable effect from these biases on the

remaining group of developers who have not yet been trained in or exposed to Ada. We plan to

investigate these possible effects through additional developer surveys before this study is
concluded.

SEW Proceedings 436 SEL-93-003

CONCLUSIONS AND RECOMMENDATIONS

In 1985 Ada was arguably more than just another programming language. However, by

exposing the organization to the concepts of information hiding, modularity, and packaging for
reuse, that which was "more than a language" was adopted, to the extent possible, by the

FORTRAN developers as well as by the Ada developers. We hypothesize, and in fact have

anecdotal evidence to support the theory, that Ada served to catalyze several language-

independent advances in the ways in which software is structured and developed across the

organization, and that these benefits have been institutionalized by process improvements. 4

Because many of the intended benefits of Ada have already accrued at the FDD and because the
mainframe obstacle continues to hamper the complete adoption of Ada, we recommend that the

FDD not mandate the use of Ada for all software developmertt at the FDD.

However, we also recommend that the FDD continue to use Ada wherever there is a clear or

anticipated advantage. This would include not only the continued use of Ada on satellite

simulators but also the use of Ada on portions of any other projects that are expected to be long-

lived and can be developed and deployed on an Ada-capable platform. As the FDD migrates

away from mainframes and toward workstations, this will be an increasingly large segment of
the software developed. Over the long term, Ada is likely to be a good candidate for future

versions of the large reusable software libraries that are currently written in FORTRAN and

maintained by a separate group of experts who are constantly augmenting the code's function in

order to keep up with the needs of the client projects. Ada can be used to implement those

subsystems, along with many other basic domain functions, as sets of separable and more
maintainable abstractions, which would eliminate the high coupling found in the FORTRAN

versions.

Finally, it is valuable to examine some of the original objectives behind the development of the

Ada language. One of the major motivations for the DoD to develop and adopt Ada was to

provide a common language across many projects, thus enabling the portability of programs,

tools, and personnel. However, such commonality is not as important at the FDD where most
of the software is already written in a single high-order language and is both developed and

operated on a single platform by a seasoned team with low turnover. Besides providing the
DoD with a common language, Ada was specifically designed to be beneficial for large system

development and to be cost effective for systems that must be maintained over long periods of
time. Neither of these situations describe the context in which Ada has been used at the FDD.

If the FDD Ada projects had been large (closer to a million lines of code, for example) then we

suspect that the use of Ada would have been a more important factor. Also, if the systems were

long-lived, with maintenance cycles that were substantially longer than the development cycles,

or even if the longer-lived ground support systems had been able to use Ada, we suspect that

we would have observed more of the advantages of Ada that would not have been mimicked by

the FORTRAN projects.

4 These opinions were commonly held by the project managers of several of the Ada and FORTRAN projects

included in this study.

SEW Proceedings 437 SEL-93-003

THE AUTHORS

John Bailey is an independent consultant in the areas of software measurement and the Ada

language. Sharon Waligora is a member of the Software Engineering Laboratory at Computer

Sciences Corporation and has experience managing and working on the Flight Dynamics

Division's software projects. Mike Stark is an employee of the Flight Dynamics Division at

Goddard and also has experience leading and participating in many of the FDD Ada and

FORTRAN projects.

.

.

REFERENCES

NASA/GSFC Software Engineering Laboratory, SEL-82-1206, Annotated Bibliography

of Software Engineering Laboratory Literature, L. Morusiewicz and J. Valett,

November 1993.

Institute for Defense Analysis (IDA), IDA Paper P-2899, "Comparing Ada and FORTRAN

Lines of Code: Some Experimental Results," T. Frazier, J. Bailey, M. Young,
November 1993.

3. NASA/GSFC Software Engineering Laboratory, SEL-81-305, Recommended Approach to

Software Development, L. Landis, S. Waiigora, F. McGarry, et al., June 1992.

4. _, SEL-81-305SP1, Ada Developers' Supplement to the Recommended Approach,

L. Landis, R. Kester, June 1992.

5. _, SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

"Experiments in Software Engineering Technology," F. McGarry and S. Waligora,
December 1991.

.

7.

.

.

10.

11.

m, SEL-91-003, Ada Performance Study Report, E. Booth and M. Stark, July 1991.

Goddard Space Flight Center (GSFC), Flight Dynamics Division, 552-FDD-

91/068ROUD0, Ada Efficiency Guide, E. Booth (CSC), prepared by Computer Sciences

Corporation, August 1992.

_, "Ada Compilers on the IBM Mainframe (NAS8040) Evaluation Report, L. Jun,

January 1989.

NASA/GSFC Software Engineering Laboratory, SEL-90-003, A Study of the Portability

of an Ada System in the Software Engineering Laboratory, L. Jun and S. Valett, June

1990.

Goddard Space Flight Center (GSFC), Flight Dynamics Division, "IBMAda/370 (Release

2.0) Compiler Evaluation Report," L. Jun, September 1992.

_, "Intermetrics MVS/Ada Version 8.0 Compiler Evaluation Report," L. Jun,
October 1992.

SEW Proceedings 438 SEL-93-003 -

Impact of Ada in the
Flight Dynamics Environment'.

Excitement and Frustration

December 2, 1993

John Bailey, Software Metrics, Inc.

Mike Stark, NASA/Goddard

Sharon Waligora, Computer Sciences Corporation

sMi

Independent Assessment

• Flight Dynamics Division (FDD) began investigating Ada
in 1985

• Expected to transition completely to Ada within 10 years

• Why is only 15% of new code being written in Ada today?

• What is the future of Ada in the FDD?

- Mandate?

- Abandon?

- Change expectations?

- Study further?

10_lse,_N_ 2

SEW Proceedings 439 SEL-93-003

Why Use Ada in FDD?

"Ada is more than just another language"

Would lead to a major cultural change

Would drive an integrated well-defined software engineering

process

Would help us build better products

- Reduce life-cycle cost

- Shorten project duration

- Reduce number of errors

- Increase manageability of software

sMi 10015e4s-pN_e 3

FDD Environment

Organization Staff Level > 250

d3

Characteristics

Computing Environment

Language

Typical System Size

Percent of Software

Applications

Mission Support

IBM mainframes

FORTRAN

200 KLOC

80%

Simulators

VAX

Ada

60 KLOC

15%

,_°

1001_:dH_wl 4

SEW Proceedings 440 SEL-93-003

Focus of Ada Study Evolved

FDD Ada Experience

<¢
c
(J
0
.J
v

POWITS

TONSVAX

SAMPEXTS

EUVEDSIM

EUVETELS

UARSTELS

GOESIM

GRODY

FASTELS

TOMSTELS

1187 1188 1/89 1190 1191 1/92 1193

sMi l_l_4_S-W_e 5

The Excitement: Data Show Promise

• Process Improvement

• Product Improvement

- Reuse

- Cost

- Project duration

- Reliability

i_t_4a-(_me 6

SEW Proceedings 441 SEL-93-003

Evidence of Process Change Over Time

30

25-

20-

1
:E 15--

10--

ADA FORTRAN

0 I t
DESIGN CODE

[] EARLY [] RECENT

TEST OTHER DESIGN CODE TEST OTHER

BB E/_LY Bil R[CE_rr

SMi

Activity distribution shows process differences

100151J48-prll_ 7

Maturing Use of Ada

SMi

Ii.

_[---
ILm

_ 2O%"

0
0%

2.5

2-

IL--
. 1.s-

mu. 1-

0.5"

O"

GENERICS

PACKAGE SIZE

g 87_ m m

ii

10'

)E s.
.*E ,

2

STRONG TYPE

M _i m m

TASKING

Use of new features stabilized after experience with domain

SEW Proceedings 442 SEL-93-003

High Verbatim Reuse Achieved
in Both Languages

lOO|

w 901

E 80

_ 7o
_ 60

g.

ADA PROJECTS

o!40

30

20

,o
0 _

1985

II
I I

m

Ada approach uses
generics parameterized
for mission-specific
functionality

1985

FORTRAN PROJECTS

1994

FORTRAN approach

uses separately

maintained utilities,

with mission-specific

functionality added as

needed

1001584_pm_e

Cost To Develop and Deliver

ii
DEVELOPMENT COST DEUVERY COST

1.0- 1.0

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

O.9

ADA

O.6

FORTRAN

Cost to _ a statement

of Ada is

ADA FORTRAN

Cost to deliver a statement

of Ada is lower

5Mi 1001 s848-p_llQe 10

SEW Proceedings 443 SEL-93-003

Reuse Shortens Project Duration

3O

25_

20_

(0
e-

15--
0

10--

S--

ADA FORTRAN

21

13

28

16

EARLY RECENT EARLY RECENT

Both Ada and FORTRAN show 38% reduction due to reuse

1001S_,,l_prcNm 11

Reliability of Systems Increased

14 m

12--

10--

J

IM
2--

0 m

10.4

ADA FORTRAN

u

EARLY RECENT EARLY RECENT

Lower error rates are observed for both languages

10015848-p_ 12

SEW Proceedings 444 SEL-93-003

Measurements Show Process and

Product Improvements

• Ada systems showed improvements in initial

goal areas

• Many achievements are tied to reuse

• Lower error rates in new code are attributed to

process changes

• FORTRAN systems showed comparable results

over same time period

1001.r_48.plllu 13

The Frustration: Other Factors

Derail Progress

• Performance of early systems

• Ada development environments

• Technology transition

llO0"t 5048-ptme 14

SEW Proceedings 445 SEL-93-003

Performance: First Impressions Count

m

l

2.2

2"0 t

1.8

1.6

Weak performance of early simulators gave Ada a bad reputation

100 _SIM8-¢:,_ 15

Ada Development Environments

• VAX Ada

- Adequate performance
- Good tools

• IBM mainframe

- Very poor usability
- Limited set of immature tools

• Tartard1750A

- Separate vendors for hardware and software

- Major hardware/software interface problems

- Required assembler-level debugging

Limited vendor support for Ada environments hampered efforts

5Mi t Oot._a4e..t_ 16

SEW Proceedings 446 SEL-93-003

Mainframe Environment Problems Deterred
Growth

1000--

800-

600--

400--

200--

/
Planned _,_ FkSTELS

growth/ TOMSTELS __p Delivered

Turning poi_ / _ lines

___ _ TONSVAX

EUVEDSlM/_ New lines

_'V/
GOADA[

UARSTELSJ

I I I I I I I1187 11 B 1/89 1/90 1/91 1/92 1193

Even today, Ada cannot be used on the FDD
(mainframe) operational environment

100158,11_prl_ 17

Technology Transition to Ada Has Slowed

1985 1966 1967 1988 1989 1990 1991 1992 1993 1994

Use of Ada drops as a result of deterrents

1001584_._ 18

SEW Proceedings 447 SEL-93-003

Developers' Preferences

ADA SIMULATORS

FORTRAN
MISSION SUPPORT

SYSTEMS

5Mi

II Interviewed 35 developers with Ada exposure

• Reuse was main driver for language preference

• Ada has advantages but requires more tool support

• "Ada is just another language"

Process or Language?

• Data show few quantitative differences between Ada
and FORTRAN

• Process is more significant factor than language

• Ada concepts (generalization, OOD, domain analysis,

information hiding) lay foundation for broad process

improvements

• Structured environment and strong process

management institutionalize improvement

5Mi

SEW Proceedings 448 SEL-93-003

Future of Ada at FDD :_j 7I

• Ada should not be mandated at the FDD

- No pressing need for common language

• Ada should be used as any other method or tool

5Mi 1001se4e-tlyUB 2_

SEW Proceedings 449 SEL-93-003

