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ABSTRACT

This note is concerned with the regularity of solutions of algebraic Riccati equations

arising from infinite dimensional LQR and LQG control problems. We show that

distributed parameter systems described by certain parabolic partial differential equations

often have a special structure that smoothes solutions of the corresponding Riccati

equation. This analysis is motivated by the need to find specific representations for Riccati

operators that can be used in the development of computational schemes for problems
where the input and output operators are not Hilbert-Schmidt. This situation occurs in

many boundary control problems and in certain distributed control problems associated
with optimal sensor/actuator placement.
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1. INTRODUCTION

In [LCT], Lupi, Chen, and Turner considered a distributed parameter LQR problem for an

Euler-Bernoulli beam model. Although this problem has been considered by several

people over the past ten years, the approach in [I.L-T] is of interest in that they make no

prior assumptions regarding the form of the controls/actuators in an effort to make

decisions about where actuators and sensors are best placed. In particular, in [LCT] they

assumed that the input operator was the identity. Miller and van Schoor [MRS] also

considered the problem of constructing kernels for integral representations of feedback

control laws obtained by solving LQR control problems for various beam models. They

used these kernels to shape and design area averaging polyvinylidene fluoride sensors (a

type of piezoelectric film). These sensors enable the real-time implementation of full state

feedback for the infinite dimensional system governed by the Euler-Bernoulli equation

(also, see [MvS]). As in [LCT], Miller and van Schoor assumed the existence of an

integral representation for the feedback control law and then proceed to "approximate"

these kernels by using finite element models. In both papers, fundamental mathematical

questions concerning the existence of integral representations and the smoothness of the

corresponding integral kernels are not considered. These issues are important in the

development and analysis of rigorous numerical approximations. Also, the ability to

accurately compute these kernels is an essential component in the study of actuator/sensor

placement.

During the past ten years considerable effort has been devoted to the study of Riccati

equations associated with LQR and LQG control of distributed parameter systems in

Hilbert spaces. In the recent papers by Rosen ([R1], [R2]) and De Santis, C,ermani and

Jetto [DGJ] it was shown that, under suitable assumptions on the system input, output and

weighting operators, that the Riccati operator is Hilbert-Schmidt. This observation made

it possible to develop an approximation theory in the space of Hilbert-Schmidt operators

and, as noted in [DGJ], the smoothness action of Hilbert-Schmidt operators can be

exploited to relax the hypothesis that approximation schemes converge to the dual

semigroup. In addition, if the Riccati operator is Hilbert-Schmidt, then one has explicit

representation theorems that can be used to analyze the convergence of numerical

approximations.

The papers noted above represent two basic approaches to the problem. Rosen JR1]

considered the problem for control systems where the generator of the semigroup was

strongly coercive and developed a theory for this restricted class of systems. In [DGJ] the

approach was to consider general dynamical systems (not necessarily analytic semigroups),

and then require that certain system operators (input, weighting, etc.) be nuclear. The

problem we consider in this short note lies between these two approaches, although it is

more in the spirit of Rosen [R1]. We extend Rosen's results to control systems governed

by parabolic equations without requiring that the other system operators be Hilbert-



Schmidt. Indeed, the results below apply to a large class of control problems with

unbounded input operators. In order to focus the discussion we consider only the LQR

problem. However, the ideas and methods extend to LQG and MinMax control problems.

2. THE PROBLEM DESCRIPTION

Consider the control system

(2.1) :c(t)-Ax(t)+ Bu(t),x(O)= xo

with controlledoutput

(2.2) z(t)-Cx(t)

and cost function

J(u) - I i_{(z(t),z(t) >+(u(t), u(t) )}dt.

If Q = C'C, then J becomes

(2.3)

where the state weighting matrix Q is self-adjoint and non-negative definite. Although it is

possible to consider more general systems or the case with Q unbounded and B bounded,

we limit our discussion to systems satisfying the following standing hypothesis:

(H)

6)

The spaces X, Z and U are separable Hilbert spaces and;

The linear operator A is the generator of a Co-semigrou p S(t) on X and there

exist M > O, o_ > O such that IIS(t)ll.:Me-'.

(ii) The operator C:X --* Z is a bounded linear operator from X to Z.

(iii) The (possibly unbounded) linear operator B maps U into X and B:U --*

[Dom(A *)]'. Moreover, ihere exists a gamma with 0 s y < 1, such that

A-Y B E L(U,X).



(iv) For each x 0 _. X there exists a control u(.) _ L2(O , oo ;D r) such that the

 nctional y(u) in (2.3) is ite.

When the optimal control exists, it is given in feedback form

(2.4) u (t) - - B'ex.,, (t) -

where P is the non-negative definite solution to the algebraic Riccati equation (ARE)

(2.5) (Px, AY)x +(Ax, PY)x-(B'Px, B'Py)v+(Cx, Cy)z -O

for all x, y in Dom(A).

In [R1], R2], [DGJ] and [GJP] it is assumed that C and B are bounded linear operators.

Rosen [R1] assumes that A is strongly coercive, PBB*P is Hilbert-Schmidt whenever P is

Hilbert-Schmidt and that Q is Hilbert-Schmidt. On the other hand, De Santis, Germani

and Jetto [DGJ] make no additional assumptions on A, but require that C be Hilbert-

Schmidt and B be bounded from U to X. The assumption that C be Hilbert-Schmidt

implies that the weighting operator Q = C*C is nuclear. Hence, the assumption on Q in

[DGJ] is stronger than the corresponding condition in [R1]. The two problems are not

mutually exclusive and, as one might expect, there is no unified theory. In this paper we

consider problems with B unbounded and Q not Hilbert-Schmidt. Unbounded B

operators allow us to treat certain boundary control problems and problems with

piezoelectric actuators/sensors. Also, the case where Q - B - I x (the identity on X) arises

naturally in the solution of optimal sensor/actuator location problems (see [BK1], [KM]
and [LL'T]).

We consider here the case where A generates an analytic semigroup. The following

theorem may be found in [LT].

Theorem 2.1 Assume that hypothesis (H) holds. IrA generates an analytic semigroup_
then there exists a self-adjoint, non-negative definite bounded linear operator P = P
that solves the ARE (2.5). Moreover;

(a)

(b)

(c)

For each _ > O, the operator [A']I-*P belongs to L(X,X).

lf A is self-adjoint, normal or has a Riesz basis of eigenvectors, then
be taken to be O.

The operator B*P belongs to L(X, U).

can



Observe that ifA has a compact resoivent, then P is compact. In general it is not possible

to conclude that P has additional smoothing properties unless more is known about the

operators A, B and C. Consider the following example:

Example 2.2 Let X = Z = U = L2(0,1 ) and set A = C = I. If B = _I, then P = I is the

unique positive-<lefinite solution to the ARE (2.5). Hypothesis (H) holds and A generates

an analytic semigroup. However, P is not compact.

In certain specific cases it is possible to obtain additional information about the regularity

of the Riccati operator P. In the next section we consider a parabolic control problem

similar to the one treated by Rosen (see [R1], [R2]) and use classical representation theory

to show that P is Hilbert-Schmidt. This particular approach not only yields very precise

information about the smoothness of P, it leads to a rather simple proof.

3. A PARABOLIC CONTROL PROBLEM

In order to keep the present paper short we shall limit our discussion to a 1D parabolic

control problem. Although problems in higher dimensions can be treated in a similar

fashion (subject to the Sobolev imbedding theorems), the analysis is more complex and

will appear in a future paper.

We consider the operator A defined on the state space X = L2(0,1 ) with domain

(3.1) Dom(A)- H0X[0,1]l") H2[0,11,

and for q9__.Dom(A)

(3.2)
d 2

[Aqg](_)- _-i-qg(_).

In order to simplify the proof, we begin with the case where Z = X = L2(0,1 ), C - Q - IL2

and B:U----._[Dom(A')]' satisfies (H)-(iii). The extension to general C operators and

unbounded input operators B satisfying hypothesis (H) is straightforward. We note that

if B is bounded into X, then (H) is satisfied.

The controlled heat equation is (see [R1], [R2]) written as

(3.3) _t 02w(t,_)--_w(t,_)+[Bu(t)](_), 0<_<1, O<t,



with boundary conditions

(3.4) w(t,O)-O, w(t,1)-O, O<t

and cost function

÷** 1

(3z) J(u)- f{j,tl (t, +lu(t,
0 0

This problem has the form (2.1)-(2.3) and hypothesis (H) holds. The operator A is self-

adjoint and generates an analytic semigroup on X. Also, the finite cost condition (H)-(iv)
holds for any B.

Note that Q is not Hilbert-Schmidt (it is not even compact). Therefore, the results in [R1]
and [DGJ] do not apply to this problem. However, we shall show below that the Riccati

operator P is Hilbert-Schmidt. Moreover, the special structure of the generator A can be

exploited to obtain additional information about the functional gains. We shall need the

following representation theorem which goes back to Fullerton in 1946 (see Theorem 6 on

page 277 in [F1]).

Theorem 3.1 Let T be a bounded linear operator mapping L2[0,1 ] into C"[0,1]. Then

there exists a function k(_, t) such that T has the representation

1

(3.6) [Trp](_j) - j" k(_,t)ep(t)dt,
0

where the kernel k(_j, t) satisfies the following conditions;

(/) k(_,t) _z2([0,1],, [0,1]).

(ii) For each _ • (o, 1), the mapping _----. k(_, t) belongs to C" [0,1] for almost

all t and for a < m,

(3.7) _k(_,t) EL2([O, 1] x [0,1]).
o_

(iii) For each ¢pELz[0,1],

(3.8)
oct I 1 a

o -_-k(g,t)_p(t)at.

5



The following result establishes the existence of an integral representation for the Riccati

operator and provides information about the smoothness of the kernel.

Theorem 3.2 Assume C - Q - IL,and B:U-----_,[Dom(A')]' satisfies(H)-(iii).IfP =

P* is the unique non-negativedefinitesolutionto the algebraicRiccatiequation (ARE)

defined by the system (3.1)-(3.5),then P isHilbert-Schmidt. Moreover, there existsa

function k(_,t)such thatP has the representation

(3.9) [Pqu](g3)"f k(_,t)_(t)dt,

where the kernel k(_, t) satisfies the following conditions;

(1) k(_,t)-k(t,I_)_-Cl([O,1]×[O,1]) •

(2) For each ¢p_..z[0,1], ap - Pq9 _E Cm[0,1] and

(3.10) 0 I

Proof. Let .4 be the extension of A defined by (3.1) - (3.2) to H2[0,1]. It follows from

Theorem 2.1 that P and/kP are bounded linear operators on L2(0,1 ). Therefore, there

exist constants c 1 and c2 such that for all q9_/..z[0,1 ], Pq9 _H2[0,1], _ 65L2[0,1] and

(3.11) ]lpqgllL2< c_llq_lL2 and _PcplL ,:c2]_[L _.

_ is equivalent toThe space Dora(A) - H_t0,1l with graph norm hl lllo_:>- 11'11,2+ * _2

H2[0,1] (see [A]). It follows from the Sobolev imbedding theorem that

Dom(A)- H2[0,1] is continuously imbedded in C_[0,1] and hence there exists a constant

c3 such that for all ap EH2[0,1]

Let cp___/_[0,1] and ap - Pq9 6_H:[0,1]. Then,

and it follows from (3.11) that

6



Consequently, P is a bounded linear operator from L2[0,1 ] into C_[0,1]. Applying

Theorem 3.1, yields the representation (3.9).

Since P = P* the kernel k(_,t) satisfies k(_,t)- k(t,_). It follows from part (ii) of

Theorem 3.1 that k(_,t)= k(t,_)_Cl([O,1]x[O,1]) and (3.10) is a consequence of part

(iii) of Theorem 3.1. Finally, (see page 210 in [RS]) the operator P:L2[O,1]---*L2[0,1 ]

is Hilbert-Schmidt since it has the representation (2.9) with k(_, t) _EL2([0 , 1] × [0,1]).

1

Corollary 3.3 Assume A is defined by (3.1)-(3.2), C =Q - IL_ and B:U----*L2[O,1 ] is

bounded, lf P = P* is the unique non-negative definite solution to the algebraic Riccati

equation (ARE) defined by the system (3.1)-(3.5), then the gain operator K- -B'P is
Hilbert-Schmidt.

Remark 3.4 Observe that ifA is defined by (3.1)-(3.2), then the proof given above goes

through without change for any bounded C:L2[O,1]----_Y and B satisfying (H). In

particular, there is no need to assume that C (or B) is Hilbert-Schmidt (see [R1], [DGJ]

and [GJP]) and B can be unbounded. Also, as noted above, similar results (weaker) are

valid for 2D and 3D problems. Let Q denote a smooth bounded domain in R n, n _ 3, with

boundary F. Although for each 15> 0 the imbedding H2(g2)-------_H3/2÷b(Q)--------_C°(f2)
n

is valid, the imbedding H_+"(Q)-------_C_(Q) holds only for m >--. Hence, one would
2

expect less smoothness for n > 1. These issues will be addressed in a future paper.

4. NUMERICAL RESULTS AND CONCLUDING REMARKS

In this section we present some numerical results to demonstrate the role that the operator

B plays on the smoothness of the operator P. We conducted several experiments for the

operators B-[-A] _ where 15--1/2, 0, 1/4, 1/2, 3/4, andl. Note that if15<l,

then hypothesis (H) is satisfied. When 13- 0, B - IL_ and B - [-A] t-t_2) is compact. We

selected this collection of B operators because as 15----1 the operator

A-1B - A-_A _ = A _-_ in condition (H)-(iii) becomes "less smooth". Observe that if 15 - 1,

then (H_-(iii) is not satisfied for any y < 1.

We use standard linear finite elements to compute k_(_,t)mk(_,t), the "N th order

approximation" of the kernel k(_,t) . Figure 4.1 and Figure 4.2 show the N = 4, 8, 16 and



32 finite element approximations of k(_,t) for the cases B- [-A] (-_/2) and B = IL_,

respectively. Observe the fast convergence kM(_,t) _v-.,. ,,k(_,t) and, as implied by

Theorem 3.2, the kernel k(_, t) is smooth. Figure 4.3, Figure 4.4 and Figure 4.5 contain

analogous plots for B-[-A] _ where 13- 1/4, 1/2 and3/4, respectively. It is

interesting to note that as [5-----_1 the kernels k(_,t) become less smooth. Moreover,

when [5-1 Theorem 3.2 breaks down and kS(_,t) appears to be converging to a

"singular measure" concentrated on the line I_- t. Similar results were observed for

weakly damped hyperbolic problems in [BK1] and for beam equations in [LCI'].

As noted in Corollary 3.4, when A is defined by (3.1)-(3.2), C=Q-IL2 and

B:U-----._L2[O,1 ] is bounded, then the gain operator K--B'P is Hilbert-Schmidt. In

some cases (e.g. U - L2[f2' ] where f_' ___[0,1]) it is possible to obtain explicit integral

representations of K--B'P. The case where B is unbounded requires additional

analysis. Finally, the authors wish to thank J.S. Gibson for Example 2.2 and several

helpful comments.
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