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ABSTRACT

As a Shutle approaches the Space Station Freedom for a
rendezvous, the Shuttie’s reaction control jet firings pose a
risk of excessive plume impingement loads of Freedom
solar arrays. The current solution to this problem, in
which the arrays are locked in & feathered position prior to
the approach, may be neither accurate nor robust, and is
also expensive. An alternative solution is proposed here:
the active control of Freedom's beta gimbals during the
approach, positioning the arrays dynamically in such a way
that they remain feathered relative to the Shutde jet most
likely to cause an impingement load. An artificial neural
network is proposed as a means to determining the gimbal
angles that wouid drive plume angle of attack to 2ero.
Such a network would be both accurate and robust, and
could be less expensive to implement than the current
solution. A network was trained via backpropagation, and
results, which compare favorably to the current solution as
well as to some other alternatives, are presenied. Other
training options are currently being evaluated.

NOMENCLATURE
Name Description Units
E body-to-inertial -
matrix
F external force force
P vector from CG length
R distance from earth
center length
d closure distance length
m spacecraft mass mass
T closure rate length
NMime
A relative position length
a plume attack angle rad
n approach cone ang. rad
w orbit rate rad
Mime
INTRODUCTION

The electrical power system of Space Station Freedom
(SSF) draws power from the Sun by means of photovoltaic

solar arrays. Beta gimbals rotate these arrays about their
masts, enabling the arrays to maintain position relative to
the sun or to reach some commanded orientation.

Berthing of the Shutile with Freedom is accomplished by
maneuvering the Shuttle within a small distance of the
station, as illustrated in Figure 1. During this maneuver,
Shuttle attitude and approach closure rate are corrected by
its Reaction Control System (RCS) jets. It is possible at
times for certain RCS jets to fire in the general direction of
an array. The plume of a jet firing, illustrated in Figure 2,
would in such a case induce & structural load on the array.
NASA's concern was that an excessive load from a plume
impingement could cause a failure of the array mast near
the beta gimbal.

The baseline solution to the problem of excessive plume
loads is array festhering — the positioning of arrays prior
1o the approach such that their surfaces are parallel to the
direction vector of a critical plume, and the subsequent
locking of the gimbals. The locking mechanism design
fimits error margin in feathered position. The structural
redesign also means a large cost increase to be incurred by
the Space Station program, as is the case with most
redesigns [1].

An alternative to this bascline solution is proposed: leave
the beta gimbals active during approach, use their control
systems to dynamically increment the feathered position of
the arrays, and use an artificial neural network (ANN) to
generale commanded gimbal angle. Active gimbal control
allows for greater error margin in feathered position than
do locked arrays, and active control also ensbles the
gimbals 1o reject disturbances within the capability of their
motors.

A neural network design is proposed that will provide
gimbal commands that drive the angle of attack of plumes
on the arrays 10 near zero. The network was trained via
backpropagation, using as an objective function the error
between optimal and actual beta gimbal commanded angle.
The resulting proposed control architecture is shown by
block diagram in Figure 3.

APPROACH MODEL

During approach, the Shuttle astronauts will keep the
closure velocity somewhere near a defined function of the
closure distance. Experimental work done in this area [3]
led to the adoption of the so-called *0.1% Rule,” which is
achieved by controlling the closure rate to near 0.1 per
cent of the closure distance, given like units.



The astronauts have a second goal: that of maintaining the
line of sight (LOS) within pre-set limits. This is done (1)
10 enable the Shutile to remain aligned with the target with
as few lateral RCS firings as possible, and (2) 10 minimize
the effects of LOS rates on the astronauts’ perspective of
the target [5). These objectives lead to the
recommendation that the astronauts maintain position
within an "approach cone, " (as shown in Figure 2) with
veriex at the berthing point of the target and predetermined
half-angle.

The SSF and the Shuttle are both modeled as 2 single rigid
body with six degrees of freedom. The relative motion of
the two bodies is controlied by the Shuttle RCS, and
follows the 0.1% Rule and stays within a S-degree
approach cone. The equations of spproach dynamics are in
Shuttle body-fixed coordinates.

The equation for motion in the nadir direction is

Fus | For
me m, (1)
= d2x _5,dz _ 2
de2 20dt 0'x
and for motion tangential to the orbits,
Fes _ Fur
g mny (2)
. dz dx
dz | 2%ae
and for out-of-planec motion,

The motion between two berthing points, one on each body
and separated from their respective CGs by a vector (Pp
and Py), is given by
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The critical parametens in proximity operations analysis are
those that pertain to the 0.1% Rule and the approach cone.
The closure rate is given by

(%)

€
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and closure distance is given by

d= Lezdt (6)
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Angular position within the approach cone is given by

n, = tan?(d, / d,)
n, = tan?(d, / d,)

(7)

Antitude and position control of the Shuttle is provided by
44 RCS jets, of which the first 38 have thrust capabilities
ranging from about 690 10 about 880 Bbf. The other six
offer 25 Ibf of thrust and are automatically controlled

A simple controller was used 1o simulate the behavior of
the perfect astronaut. 1kt wasn’t important for this study
that flight data be matched exactly ~ the goal was to create
training data that gave "optimal” gimbal angles for various
combinations of the six available inputs.

Of six RCS firing combinations observed, as shown in
Table 1, only three had any chance of causing an
impingement on an array: jets used for braking (9-29-32)
and those used for out-of plane motion (5-22 or 7-25).
Flight data indicates a transition of plume risk from one
type of firing to the other as closure distance decreases.

Plume impingement force is a function of angle of attack
and closure distance, which indicates that plume angle of
attack (over which the beta gimbals can have some
authority) and closure distance are two fundamental
parameiers 1o consider in minimizing impingement force.

Feathering suggests that plume angle of attack can be
minimized throughout the maneuver. Simulation shows
that zero angle of attack can be achieved if the arrays are
slewed about ten degrees during the maneuver, and if the
approach cooe is scrupulously followed during the
transition period from braking to out-of-plane plume
damape risk.

Both the SSF and the Shuttle are actively controlled during
this maneuver. For cach of the two craft, high-fidelity
attitude control sysiem models were employed. Attitude
control for Freedom [9] is accomplished through the use of
seven RCS jets, pulsing in groups of three.

The beta gimbals consist of direct-drive motors and are
controlled via a PID algorithm. The beta gimbal control
Isw allows for parameter uncertainty in electric motor dead
zone [10] and in gimbal bearing friction [11). The beta
gimbals are active here for dynamic feathering.



NEURAL NETWORK SOLUTION

An antificial neural network, such as shown in Figure 4,
has as in its simplest forms the following ingredients:
neurons (or nodes), which themselves consist of a weighted
summer, a linear transfer function and a non-dynamic
nonlinear limiting function; inputs and outputs based on the
physics of the problem; and a learning mechanism that
takes advantage of known data, which is readily available
here.

This problem appears to be well-suited to a neural network
solution in that it takes advantage of weli-known
characteristics both of the beta gimbalas and of Shuttle
proximity operations. Hunt et. al. [16] lists properties of
ANNSs that are suitable for control applications:

o  Theoretical ability to approximate arbitrary
nonlinear mappings;

o  Directly suitable to parallel processing
architecture.

o Directly applicable to multivariable systems.

Kohonen [17] points out thal "...one category of problems
which is sometimes believed to be amenable to *neural
computing® consists of various optimization tasks”
[emphasis mine], and this task cerainly falls into that
category.

Desirable features of s neural network for this problem
include:
o  Simplicity
Cost effectivencss
Large amount of data
Design stage not time-critical
Smooth motion commands

0 0 00

Characteristics of this problem which may be exploited are:

Astrongaut behavior

Beta gimbal behavior

Jet firing behavior

Attitude control behavior

Ground command behavior
Complete availability of input data

00 0000

Clancy et. al. [18] opted for & single hidden layer, and the
use of radial basis functions (RBFs) as the ncuronal
activation functions. The advantage of RBFs for a problem
such as this is that they can be used to classify inpuis
wherever they fall in the input space. Clancy’s work
yielded a large hidden layer, although his results were
otherwise encouraging.

The network design used for proof-of-concept was trained
via backpropagation [19]. The inputs used here are as
follows:

closure distance

closure rate

approach cone position (two values)
approach conc rate (two values)

© 000

The nonlinearity must be continuousiy differentiable. If
the inputs are known to vary between zero and one,
Rumelhart and others suggest the use of a sigmoid function
— in this case, the inputs may be of either sign, so a
hyperbolic tangent function was used.

Of the various leaming methods available, backpropagation
is commonly used in practice. It is efficient (depending on
the problem), relatively simple to understand, and readily
available in various algorithms via shared software.

The training data for this problem was sclected with the
following assumptions:

(1) Data taken from simulations of approach, using
*ideal” astronaut behaviour.

(2) Data from simulations sampled every 1 second
of approach, for 500 data points per simulation
run.

(3) Runs chosen on the basis of initial conditions of
x and y closure position and x, y and z closure
rate, with two parameters varied from nominal
for each run. This procedure produced 21
simulation runs (for a total of 10500 data points),
described by Table 1.

There is a constant difference in geometry between the two
beta gimbals only, and the resulting weights show that the
same feature in the error surface should impact both
gimbal commands in approximately the samec way. The
petwork error is plotted as a function of 1000 passes
through the training data in Figure 5.

After 24000 passes through the training data, the network
achieved very slow convergence, taken for this study as 8
minimum. The resulting weights were tested in the
approach simulation, with the following results, in terms of
how the network error was divided among the 21 training
scenarios, as shown in Table 2.

The term “target switching” indicates that the primary jet
the amay is being feathered for is switching from z-braking
to one of the two out-of-plane jets, or vice-versa. For
some of the training scenarios, particularly those in which
initial conditions had the approach offset out-of-plane, one
would expect a grest deal of switching back and forth
between braking and out-of-plane firings, and the
determination of optimal commanded gimbal angle reflects
this effect. In fact, this is exactly the cffect that the neural
petwork must be designed to achieve: some tradeoff
between feathering for braking firings and out-of-plane
firings. As one might guess, the network performs much
better for training runs in which there is little or no
switching, and not as well when there is a great deal of
switching. The nctwork tries to fair a curve somewhere
between feathering for braking and for out-of-plane firings,
which may be sufficicnt for the problem, since such a
curve would probsbly reduce the angle of attack of a plume
from either jet 1o within one degree.

Perhaps more important is the idea that the optimal beta
gimbal angle for following even & single jet sweeps
through several degrees during the 500 seconds of
approach examined here. That means that the solution
involving locked gimbals is very restrictive, in that the
angle of attack will at some point in the approach exceed
the accuracy afforded by the locking mechanism.

CONCLUSIONS

The gimbal lock solution can achieve as its best accuracy
the angle between adjacent locking points. This accuracy,
however, only represents two locking points — which of
course assumes the optimal locking point is chosen. The
locking mechanism is a much coarser solution otherwise.



F Initial Conditions (in or in/s) H
x dx y dy | dz
dt dt dt
1 0 0 0 .0 3
2 30 -1 0 0 3
3 0 0 30 | -.1 3
4 30 0 0 .0 4
s 0 -1 30 .0 3
6 0 .0 0 -1 4
71 -3 0 -30 .0 3
3 0 1 ] .1 3
9 0 0 -30 .0 2
10 | -30 0 0 .1 3
11 0 .1 0 .0 2
12 30 0 0 .1 3
13 0 -1 0 .0 2
14 | -30 .0 30 .0 3
15 0 .1 0 -1 3
16 0 .0 -30 .0 4
17 { -30 0 0 .0 4
30 .1 0 .0 3
0 -1 -30 .0 3
0 0 30 .1 3
(1] 0 0 -1 2

Table 1. Training data sets.

Run # % Error Comments

1 3.78

2 2.90 Benign case

3 6.34 Target swiching
4 2.98 Benign case

5 6.39 Target switching
6 4.64

7 6.43 Target switching
8 6.53 Target switching
9 3.37

10 6.60 Target switching
11 333

12 354 One target switch
13 3.36

14 1.57 Max. switching
15 593 Target switching
16 5.78 Target switching
17 3.38

18 2.77 Benign case

19 6.17 Target switching
20 4.19 One target switch
21 354 One target switch

Table 2. How error was parceled (o training data.

The accuracy needed in plume angle of attack must be
determined both by proximity operations and loads
specialists, since it involves both geometry and structural
dynamics.

The baseline design falls short in the following areas:

o It depends too heavily on a priori knowledge to
get the right feathering angles.

o R is not simple, as the structural/mechanical
redesign affects too many other components.

o It is not robust with respect to Shuttle motion.

The neural network proposed here could be trained and
retrained as necessary. It can solve the optimization
problem to (for practical purposes) whatever accuracy is
needed. It is simple, in that only the beta gimbals are
involved — just as in the baseline solution, only without a
mechanical redesign. And it is robust, as the neural
network can be trained 10 respond 10 whatever relative
motion combinations are of interest.

Any structural design change in Freedom may add several
million dollars to the Station’s overall price tag. Software
design changes are also expensive, but depend on the order
and sccuracy of the algorithm to be implemented.

Any solution 10 be adopted must minimize engineering
design and manufacture time. A structural redesign may
delay other aspects of the structure, ¢.g. modal testing and
component qualification. A software design solution may
require training of engineering personnel and astronauts.

The network design proposed here was the result of
training essenlially by trial and error. It may be that too
much attention was paid to avoiding local minima, and that
the error surface is in reslity flat (or gently sloped) and
rough (based on target switching). Researchers must
decide whether this caution is critical or not, and if it is,
decide whether to proceed by trial and error or to automate
the process, via simulated annealing or perhaps a "Monte
Cario® approach with a large number of starting points.
The approach taken here led to a design in an acceptably
timely manner, and without using excessive CPU, for
proving the neural network concept.

Backpropagation learning is in this case slow. Again, if
the network design is not time-critical, a designer could
realize several different designs that work. This may not,
however, be acceptable in training a final network design
for software coding at the ground station. Backpropagation
is in wide enough use that variants of the algorithm that
run much faster than the original may be found via
anonymous file transfer protocol at computer sites all over
the world.

Alternatively, an approach such as Clancy’s could be
adopted — a radial basis function neural network. The
problem with the radial basis function approach is that the
complexity of these networks goes up drastically as inputa
are added, or as the ervor surface takes on more features.
This teads 10 be true to some extent even when nodes are
not selected randomly: Clancy estimated over 40 neurons
in the hidden layer, with a design based on fewer training
runs than were employed here.

The existing problem of risk of excessive Shuttle RCS jet
plume loads on Space Station Freedom solar arrays during
approach has been examined. The bascline solution to the
problem, locking the arrays in a feathered position, is
considered here to be neither accurate nor robust, and is
very expensive. A proposal is made to replace the baseline
solution with one in which the arrays are positioned
dynamically during spproach, using the existing beta
gimbals. The gimbal commanded angles would be
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Figure 2—Geometry of plume impingement.
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Figure 4. —Artificial neural network.
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Figure 3.—Block diagram of proposed feathering control.
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Figure 5.—Network error as a function of training run.
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