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Strategy

Infrared spectroscopy provides unique insights into the chemistry and dynamics of the

atmospheres of Jupiter and Saturn -- and of Titan, the enigmatic satellite of Saturn. The 5

micron spectral region of these objects is transparent to deep levels, and is therefore

particularly useful for the identification of molecules in the deep atmosphere at very low

(parts per billion) concentrations. In Titan, 5 micron observations probe atmospheric layers
at or near the surface. The observations support and complement VOYAGER and CASSINI

measurements. Ground-based spectroscopy is sensitive to lower mixing ratios for selected

molecules, while the spacecraft mass and infrared spectrometers probe molecules that are

inaccessible from the ground. The ground-based observations also provide time-based data

for preparation for the CASSINI mission.

Accomplishments

In 1991 we obtained data at J, H, K, and M and made repeated observations of

Titan's albedo as the satellite orbited Saturn. The J albedo is 12+-3% greater than the

albedo measured in 1979; the H and K albedos are the same. There was no evidence for

variations at any wavelength over the eastern half of Titan's orbit. We also obtained low

resolution (R = 50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain

evidence for CO and CH3D absorptions. Spectra of Caltisto and Ganymede in the 4.5
micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If

Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to
Callisto's. These results were summarized in two papers by Noll and Knacke (1992, 1993;

Appendix).

In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT

CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the

3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu 3) band of

methane indicates temperatures higher than known to be present in Titan's upper stratosphere

and may be caused by unexpected non-LTE emission. An absorption feature near 3.47

microns may be caused by absorption in solid grains or aerosol's in Titan's clouds. The

feature is similar, but not identical to organics in the interstellar matter and in comets.

Anticipated Work Beyond the Termination of the Grant

We are currently preparing the latest Titan results for publication. The new results

will be followed up with further observations at the UKIRT and the IRTF telescopes. During

the course of the present grant we also prepared a plan for new observation of CO and other

rare constituents in Jupiter and Saturn. The work will initially consist of spatially resolved

observations of the disk of Jupiter with the IRTF's CSHELL spectrometer. We expect to get

spectra of at least 50 regions across Jupiter's disk. This unparalled spatial (and frequency)
resolution should allow us to make significant progress in understanding the origins of trace
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compoundsand their chemistryin Jupiter. If theJovianobservationsare successful,weplan
to follow with observationsof Saturn.

At the time that this observingprogramwasdefined,we learnedof the impending
Shoernaker-Levy comet impacton Jupiter. We will participatein the campaignto observe
this event,concentratingon spectroscopyof Jupiterbefore,during andafter the collisions.

Theseplannedobservationsare fundedundera separategrant throughNASA's Solar
SystemExploration Division, Office of SpaceScienceand applications.

Inventions

There were no inventions completed under this grant.

Publications

A NolI, K.S. and Knacke, R.F., 1992, "Titans Mid-IR Albedo: New Observations from 3 to 5
microns," in ProceedingsSymposium on Titan, ESA SP-338.

/_ --- 1993, "Titan: 1-5 micron Photometry and Spectrophotometry and a Search for
Variability," Icarus, 101, 272.
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TITAN'S MID-IR ALBEDO:

NEW OBSERVATIONS FROM 3 TO 5 MICRONS

K. S. NOLL I AND R. F. KNACKE :2

1 University of Maryland; _ State University of New York at Stony Brook

ABSTRACT

New photometric and spectrophotometricobservationsof Titan inthe

wavelength intervalfrom 3 to 5 ,am were made in June 1990 and June

1991. The broad band flux measured at 4.8 _m in both years and on

two differenttelescopesismore than a factorof threelower than mea-

surements made by two independent groups in 1971 and 1973. No other

measurements were made inthe 17 interveningyeats.We conclude that

eitherthe originalmeasurements were contaminated by long wavelength

leaksor that Titan'salbedo at 4.8 tam has decreased.The low resolu-

tion spectrum we obtained near 4.8 _m iscrudelyconsistentwith the

presence ofCO at 60 ppm inthe lowertroposphereand a reflectinglayer

locatedbetween I00 mbar and the surfaceat 15()0mbar. The spectrum

from 3.1 to 4.0 /am isrelativelyfeaturelessat low spectralresolution

but has some hintsof structurethat may yieldinformation at higher

resolution and signal to noise.

Keywords: Titan, infrared photometry, infrared spectroscopy, plane-

tary atmospheres.

1. OBSERVATIONS AND ANALYSIS

1.1 _ackJrround. Relatively little work in the infrared has been com-

pletedsincethe Voyager encounters. Notable are the detectionof CO

and the determination of the CHaD abundance (Lutz e_ al, 1983, Marten

¢t al. 1988, de Bergh e$ aL 1988). The middle infrared part of the spec-

trum between 3 and 5/am was last observed from the ground in 1971 and

1973 (Low and Rieke 1974, Knacke et al. 1975}; it was not observable

at all at these wavelengths with the Voyager spacecraft In this report

we describe a new set of observations from 3 to 5 ,am including both

photometric observations with standard filters and spectrophotometry

carried out with a continuously variable filter (CVF). Because mid-

infrared wavelengths are likely to penetrate the clouds and hazes, this

spectral region may yield information related to Titan's unseen surface.

1.2Photometry. In June 1990 we attempted to obtain a spectrum of

Titan near 4.8 ,am with the cooled-gratingarrayspectrometer (OGAS)

atthe NASA InfraredTelescopeFacility(IRTF) on Mauna Ken. To our

¢arprise,Titan was much fainterthan we had expected based on photo-

metric measurements made in 1971-3 (Low and Rieke 1974, Knacke e_

al.1975).Unable to detectTitan with CGAS we measured the infrared

fluxwith the RC2 photometer usingboth the standard broad band M

filter(4.40- 4.96 ,am) and a continuouslyvariablefilter(CVF) on the

nights of 7 and 8 June 1990 (UT).

In order to obtain an independent confirmation of our results we

requested service oboerving time on the United Kingdom Infrared Tele-

_:ope (UKIRT). T. Geballe ob,erved Titan with the UKIRT UKT9

photometer on 29 August 1990 using the broad band M filter.

For all nights the primary standard star was v _ Sgr. It is bright

enough at 4.8 /_m to allow accurate peaking and was less than 1 hour

West and 2* South of Titan on 7-8 June. Orton and Kaminski (1989)

found an M filter flux of 23.96 Jy (2.08 mag) for v 2 Sgr in good agree-

meat with earlier measurement (Tokunaga 1986). We adopted Orton

and Kaminski's value for ell fiuxes reported in this work.

We repeated and extended these observations on 20-26 June 1991

using RC2 at the IRTF to obtain standard filter measurements from J

(1.25 _m) through M (4.8 pm) as well as expanded CVF observations.

We again used v 2 Sgr as a standard at 4.8 ,am and extended our network

of standards to include several other measured stars. In addition we

used the A3 star FK4 1548 as a nearby standard to avoid the 0ometimes

serious problems associated with pointing.

At wavelengths beyond 3 /_m we were careful to adopt observ-

ing procedures designed to minimize problems from RCJ's degraded

beam profile. This is apparently caused by the inability of the sapphire

fled lens in RC2 to focus 3-5 pm radiation on the detector (Orton and

Kaminski 1989). Likewise problematic is the procedure of peaking at

shorter wavelengths, for example with the K filter (2.2 ,m), and then

switching back to M. The imaging deteriorates in such a way as to cause

the position of the peak at longer wavelengths to be shifted relative to

the center of the shorter wavelength beam. Therefore, it was important

to peak on a bright source or standard that was close to Titan in right

ascension and declination for independently for each filter. The good in-

ternal agreement we acheived, particulary during the 1991 observations,

indicates that we able to overcome the limitations of RCJ.

Table 1:4.8 ,am Photometry Results

Date A-AA (,am) F, (mJy) Tt (K) albedo

Titan

Jan 712 5.0 - 1.0 1104. 20 165 0.064

8 Dec 73* 4.9 - 0.8 1284. 24 168 0.066

7-8 Jun 90 4.8 - 0.6 29+ 6 160 • 0.023

29 Aug 90 4.8 - 0.6 314- 5 161 0.026

20-6 Jun 91 4.8 - 0.6 24-4-2 158 0.019

I Knacke et al. 1975, observing date from unpublished logs
2 Low and Rieke 1974, oblerving date not given,

mmumed R = 9.4 AU, A = 8.4 AU

Titan's fluxes at 4.8/Jm u measured by us in 1990 and 1991, along

with the earlier work of Low and Rieke (1974) and Knacke et aL (1975)

are listed in Table 1. The large difference between the new and old data

naturally raise,* the queetion of how accurate the earlier observations

might have been. Unfortunately the difficulty of making such an evalu-

ation so long after the observatiorm took place is formidable. One could

take the excellent agreement found by two independent groups working

Proceedings Symposium on Titan, Toulouse, France, 9 - 12 September 1991, ESA SP-338 (April 1992)
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with separate instruments at different facilities as evidence of accuracy.

However, there are potential problems that must be considered.

Low and Rieke made their observations on Mt. Lemmon with the

NASA 61 inch telescope and a bolometer system. Knacke et aL used

the Kilt Peak National Observatory 1.3 and 2.1 m telescopes with the

facility infrared photometer, which was also a bolometer, and a set of

custom filters. Bolometer systems are known to be susceptible to filter

leaks, Le. non-zero transmi=sion, at long wavelengths. Because Titan's

flux density rises rapidly at longer wavelengths this is a particularly

troublesome po=ibility. Fx is 20 to 40 times higher at 10 /am than at

5 ,am as measured by Low and Rieke (1974). A leak as small s 1% in

their M filter over a 1 ,am bandwidth near 10 ,am could then account for

as much as 40% of their measured flux. However, the problem of long

wavelength leaks would certainly have been familiar to these investiga-

tons and it is po=ible that the bolometer would have been used with a

monochromator to check for possible leaks.

Rieke (1991, private communication) believes that such a leak could

not be ruled out at this poinL Joyce (1991, private communication)

has measured a filter that he believes to be the one used in the 1973

observations he made with Knacke et al_ and has found what appears to

be a small, 0.5-1% leak near 20 ,am It is impossible to know if the filter

has retained it= physical integrity over the 18 years since it was used to

measure Titan, but it seems possible that the Knacke ef al. results have

also been contaminated. There is no record of whether a barium fluoride

blocking filter, which has a cutoff at 14 ,am, was used. In what might

be a perverse coincidence it appears that if leaks are responsible for the

difference from 1971-3 to 1990-1 they were very nearly identical in the

amount of long wavelength radiation they allowed to leak through.

It should be noted here that the current observations were made

with an lnSb detector system which is not sensitive to radiation beyond

5.4 ,am Therefore the issue of long wavelength leaks is moot for our

new measurements.

An additional complication exists when attempting to compare cur-

rent results to the older data. The early measurements were made with

filters having effective wavelengths and bandpasses that did not ex-

actly coincide with the IRTF M-band filter (Table 1). The large uncer-

tainty in the spectrophotometry described in the next section precludes

a definitive assessment, but estimates indicate that as much as 25% of

the difference between the 1971-3 and 1990-1 results might be due to

differences in filter properties.

Despite the above caveats, the possibility of a change in Titan itself

cannot be ruled out. Such a change would not be the first, as we discuss

below, and therefore deserves some attention.

One final issue that must be resolved is the physical source of the

radiation we have detected. The raw fluxes have been reduced to both

geometric albedo and brightness temperature in Table 1. A Titan radius

of 2575 km was used for all tabulated values (Hunten et aL 1984). Geo-

metric albedo is the appropriate quantity if the observed flux is reflected

solar radiation. As discussed below we believe that this is the source of

Titan's 5 ,am flux. We also list brightness temperature for comparison,

but for reasons discussed below, we do not think the observed radiation

is thermal emi_ion from an optically thick atmosphere or cloud layer.

1.3 yariabilitv at Visible and Near-lR Wavelengths. Variability in Ti-

tan is not unprecedented. Titan's visble flux changes slowly with an

amplitude of about 10%, and the changes appear to be roughly corre-

lated with a seasonal cycle (Lockwood and Thompson 1979, Lockwood

et el. 1986, Sromoveky et el. 1981). Such a model requires that the

hemispheric asymmetry in cloud albedo observed by Voyager, (North-

ern hemisphere about 80% of Southern, Sromovsky et =1. 1981) vary in

step, although not n_ily in phase, with the seasonal cycle. Re-

cently, Caldwell taal. (1991, private communication) obtained images

of Titan with the Hubble Space Telescope that show evidence of a raver-

za/of the hemispheric aibedo asymmetry (Southern hemisphere darker)

compared to the situation encountered by Voyager 1 in November 1980

(Sromovaky et al. 1981). This behavior agrees qualitatively with pre-

dictions based on a seasonal model.

A po,-ible near infrared variability with a period of approximately

32 days has _ been ob,_ved (Cruikahank and Morgan 1980). The

variability at K (2.2 ,am) was as much as 60% . Unfortunately, no

information is available on possible long term trends in the near-IR An

interesting direction for future work will be to determine if variability

at 2.2 ,am persists and if it is correlated with obselvable changes at 48

,am.

1.4 Qvectronhotometrv. Low resolution (IL=50) spectra of Titan in the

3-5 ,am window were obtained with the IRTF CVF. The spectrum was

sampled at 0.1 ,am intervals, about equal to the FWHM of the CVF

instrument profile• Incomplete sampling was necessary because of the

weak Titan flux and consequent long integration times. From 3.3 to 4 0

#rowe interleaved observations from two nights to create an effectively

fully sampled spectrum. Signal levels were converted to fluxes using

calibrations from Orlon and Kaminski (1989). Combined data from 23,

24, and 26 3use 1991 are plotted in Figure 1. There is good agreement

between the points measured in 1991 and the shorter scan from 4.63-5. t3

,am obtained in June 1990

Titan CVF spectrum
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Figure 1.

Combined CVF observations of Titan from 23, 24, and 26 June

1991.

In Figure 2 we show the spectrophotometric points obtained in

1990 along with two candidate models. The two models are examples

of the two physical mechanisms that are potentially responsible for the

4.8 ,am radiation, namely reflected sunlight or thermal emission It is

not possible to discriminate between the two on the basis of the models

alone.

A strong argument against thermal emission from an optically thick

layer can be raised on theoretical grounds. The pressure of the lowest

level in Titan's stratosphere where the temperature is 160 K or greater

is In= than 5 mbar (Lellouch et aL 1989). It is unlikely that the hazes

present at these low pressures could be optically thick at 4.8 pro. In-

deed, even visible radiation is expeeted to penetrate to at least P _ 100

mbar, T ~ 71 K, where a methane condensation cloud may exist, and

iome fraction of the visible flux may reach the surface (McKay et al.

1989). If the haze particles are organic solids resembling the =tholens"

meMured by Khare et al. (1084) with average particle sizes less than 1

pro, infrared radiation near 5 #m will penetrate much de#per, possibly

down to Titan's surface.

The 'CO' model was computed with a multi-layer radiative trans-

fer program that included opacity from the gam_ CO and CHAD. CO

iJ known to be present in Titan's atmosphere although the altitude dis-

tribution is uncertain (Lut= et 41. 1083). in the model, the CO mole

fraction (qCO -ffi Pco / P=_.*) was fixed so that qCO= 6 xl0 -s for

layers with P >_ 54.5 mbar and qCO= 2 x 10 -s for layers at P < 34•9

mbar. This distribution qualitatively agrees with both the infrared and

B
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the microwave measurements of CO (Lutz ef al. 1983, Marten et al.

1988). CO line parameters were taken from the GEISA compilation

(Chedin et al. 1986). CI]3D is present in Titan with • mole fraction

qCHzD = 1.1 ×10 -s (de Bergh et al. 1988). Line strengths and po-

sitions for the v_ band were •dopted from Chackerian and Guelachvili

(1983) and lower state energy levels were computed from formulae for

symmetric top molecules (Herzberg 1945).

Titan 3.1 - 5.1 _m June 1991
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Figure 2.
Comparison of CVF observations from 7 and 8 ,June 1990 with two

representative models. The curve labelled 'blackbody' represents

emission from • 160 K blackbody of radius 2575 km at Titan's

distance from the Earth The 'CO' model is a simple reflecting layer

model including absorption from CO and CH3D and a reflecting

layer with a normal relfectivity of 0.055 at 100 mbar.

The model intensity was computed every 0.1 cm -_ and was con-

volved with a triangular function with a FWHM equal to the instru-

ment•l resolution. The calculations show that CO dominates the ab-

sorptions • t 4.67/_m while CHzD plays only • minor role in this part

of the infrared spectrum of Titan. A simple reflecting layer model was

used to get an approximate ide• of the depth to which the radiation

penetrates. The model shown has a reflecting layer with a normal re-

flectivity of 0.055 loc•ted at 100 mbar. Loc•ting the reflecting l•yer at

pressures much less than 100 mbar results in a mismatch to the depth

of the apparent CO absorption band at 4.67/_m in the spectrum. Bow-

ever, penetration to gre•ter depths cannot be ruled out with the present

data. Because the band becomes saturated, the absorption feature at

low resolution broadens relatively slowly. At 4.9-5.1 /Jm the opacity is

from line wings and the optical depth remains less than one even when

the reflecting layer is placed at the surface pressure of 1500 mbar.

More realistic models that account for scattering will eventually be

required to define the depth to which the radi•tion reaches. Detailed

models at shorter infrared wavelengths suggest that a significant fraction

of the reflected light at 2.04 pm is reflected from the surface (Griltlth

e_ al. 1991). As mentioned above, optical depth due to organic haze

particles is expected to be even lower st 4.8 t_m than in the visible or at

2 pm Because •bsorption crou-sectioas for small particles scale as 1/,_

we can expect an even greater proportion of 4.8 ,m radiation reaches

the surface. In that case, the geometric albedo we derive is, at ieazt in

part, • property of Titan's surface. Should future work confirm this, a

means of directly studying the surface of Titan would be open.

2. DISCUSSION

The possibility of probing Titan's surface through a new spectral

window is tantalizing Titan's albedo as measured with the CVF ranges

from 0.02 to 0.0g, uncorrected for the unknown effects of gaseous ab-

sorption This can be compared with the albedos of other icy bodies

such as Gemymede and Callisto which were also measured by us in 1991.

Their albedos at 4.8 #mwere determined to be approximately 0"03 and

0.08 respectively. Superficially, the rough agreement between Titan and

the Galilean satellites leaves open the possibility that these bodies may

have similar surfaces as has already been suggested by Griffith et al

(1991) However, it would be prudent to suspend any judgement until

• full analysis of 5/Jm models has been completed.

The possibility of real variation in Titan's 4.8 t_m albedo should

not be ruled out either mad speculation about what might drive changes

on Titan may be • useful exercise. Possible physical drivers of periodic

change include seasonal changes (14.8 yr), solar cycle (ll yr), changes

related to permanent surface or near-surface properties (29.5 yr), and

the periodic change in solar flux from Titan/Saturn's orbital eccentricity

(29.5 yr) It is also possible that change could be initiated by a random,

non-periodic event. Of these, • seasonal effect seems to be ruled out

because Titan was •t nearly the same seasonal phase, near solstice, in

both sets of observations.

An atmospheric change forced by the sun's 11 year cycle would

fit the observations if •lbedo were anticorrel•ted with solar UV output

(as indicated by solar flux •t 2800 MHz). Observed solar 2800 MRz

flux at Earth in the last 6 months of 1973 averaged 877 kJy while for

the first 6 months of 1990 the average was 1856 kJy, more than twice

as high (National Research Council Canada 1991). UV is known to

initiate CFI4-N_ based chemistry in the atmosphere that result in the

formation of hydrocarbon and nitrile polymers that might make up Ti-

tan's aerosols (Hunten et al. 1984). However, one would expect that

any atmospheric changes induced by UV (such as enhanced production

of hazes) would also have • strong signal in the visible. In fact, the

observations made by Lockwood ¢t al. (1986) from 1072 through 1984

do not show a correlation between visible albedo and solar activity.

Changes synchronous with the Titan/Saturn's 29.5 year orbital pe-

riod could explain the observations. For example, it is possible that

the production of reflective hazes responds to the 20% variation in solar

energy caused by the eccentricity of Saturn's orbit (Fig. 2) Again, one

would expect to see this response in the visible albedo as well. Instead,

the visible albedo varies with a 12-13 year period not in agreement with

our observations.

Instrinsic differences between Titan's Northern and Southern hemi-

spheres might account for the change in flux a_ad would vary with •

period equal to Titan/Saturn's 29.5 year orbit Between the two ob-

servations, Titan went from Southern Itemisphere summer (1971-3) to

Northern Hemisphere summer (1990). If deposits of absorbing organic

material were greater in one hemisphere than the other, perhaps similar

to the apparent current state of Neptune's large satellite, Triton (Smith

et al. 1989), one might observe a regular variation in Titan's infrared

albedo. Polar deposits might occur because temperatures at the poles

near the surface were estimated to be 3 K colder than at the equator as

determined from Voyager measurements of 530 cm -] radiation (Flasar

et al. 1981). If Titan's surface is covered by a global ethane ocean, then

polar winter build-ups of N2 and CB4 -rich surface layers (Stevenson

and Potter 1986) may be more pronounced in one hemisphere

Yet another pouibility is that the postulated liquid ethane oceans

or lakes may not be global, but may be more widespread in one hemi-

sphere than another. Initial Earth-ba_ed radar studies are inconsistent

with an ethane ocean covering the entire Titan surface (Muelhmann et

al. 1990). Indeed the variation by about a factor of three in the radar

croe_sections on three different nights appear to favor a real vasi•tion

in surface properties, although Muhleman ¢t =1. caution that more ob-

servations are required. If we ere seeing Titan's surface •t 4.8 _m it

would be useful to search for • correlation between IR and microwave

observations.

Finally, we cannot rule out some kind of dramatic surface event,

such az an eruption, that could alter the infraced refleetivity of the at-
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mosphere. Currently the source of atmospheric gases N_ ud CO are

unknown. The clathrate hydrate model allows for scenarios where gases

in a waa'm interior are constantly evolved and released at the surface

(Morrison e¢al. 1986). Some of this material could be released inter-

mittently in large events. The smooth variation of visible albedo over

many years would seem to make this unlikely, but, unlike the visible,

the infrared may be sampling well below the tropopause where surface-

mediated changes of the atmosphere would be the strongest.

Progress on the issues raised by these observations and their possi-

ble explanations can be made by further ground-based observations and

eventually - and more definitively - by the Cassini Huygens probe• We

plan to continue ground-baaed infrared photonletric and spectroscopic

observations.

A cknowledgement.s

We thank T. Geballe for providing a photometric measurement of

Titan We also thank J. Caldwell, C. Cunningham, and H. Weaver for

sharing results of their work prior to publication. This research was

funded through NASA grant NAGW 2194 administered by the Plane-

tary Astronomy program• KSN was also supported by the National Re-

search Council as a Resident Research Associate at the Marshall Space

Flight Center.

_eferen c_

Brown, R B., D. P. Cruikshank, and A. T Tokunaga, 1981. The
rotation period of Neptune's upper atmosphere. Icarus 47,159-
165

de Bergh, C., B. L. Lutz, T. Owen, J. Chauville, 1988. Monodeuterated

methane in the outer solar system IH It's abundance on Titan.

Astrvphys. J. 329,951-955.

Caldwel], J. J., C. C. Cunningham, 14. Weaver, 1991. private commu-
nication

Chackerian, C., G. Guelachvili, 1083. Direct retrieval of lineshape
parameters: absolute line intensities for the v_ band of CHAD.

J. Molec. Spectr_sc. 97,316-332.

Chedin, A., N. Husson, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, The
"GEISA" Data Bank J984 version, revised 1986. Laboratoire

de Mdt_orologie Dynamique du C.N.R.S. Internal Note LMD
No. 127

Cruikshank, D. P. and J. S Morgan, 1980. Titan: Suspected near-

infrared variability. Astroph_s. J. 235, L53-L54.

Flasar, F., M., R E. Samuelson, B. J. Conrath, 1981. Titan's atmo-

sphere: temperature and dynamics. Natwre 292,693-698.

Gillett, F. C., and G. 14. Rieke, 1977. 5-20 micron observations of

Uranus and Neptune. Astropkys. J. 218, L141-LI44.

Grifflth, C. A., T. Owen, R. Wagener, 1901. Titan's surface and tro-

posphere, investigated with ground-based, near-infrared obser-
vations. Icarus, in press.

14erzberg, G. 1045 Molecular Sparta and Molecular Structure II. In-

frared and Ra_an Spectra of Polyatomic Molecules (Van No_
trand Reinhold: New York).

Bunten, D. M., M G. Tomasko, F. M. Flasar, R. E, Samuelson,
D. F. Strobel, D. J. Stevenson, 1984 Titan. in Saturn eds.

T. Gehrels, M. S. Matthews (University of Arizona Press: Tuc-
son) pp.671-759.

Khare, B. N., C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, and

M. W. Williams, 1084. Optical constants of organic tholens

produced in a simulated titanian atmosphere: from soft x-ray
to microwave frequencies. Icarus 60, 127-137.

Knacks, R. F., T. Owen, and R R. Joyce, 1075. Infrared observations

of the surface and Atmcarphere of Titan. Icarus 24,460-464.

Lellouch, E., A. Coustenis, D. Gautier, F. Raulin, N. Dubouloz, and

C. Fr_re, 1980. Titan's atmosphere and hypothesized ocean: a

reanaiysis of the Voyager J radio-occultation and IRIS 7.7 pm
data. Icarus -/9,328-349.

Lockwood, G. W., D. T. Thompson, 1979. A relationship between solar

activity and planetary Mbedos. Nst,,re 280 43-45.

Lockwood, G. W., B. L. Lutz, D. T. Thompson, and E S. Bus, 1986
The albedo of Titan. Asfrophlts. £ 303,511-520.

Low, F. J. and G. H. B.ieke, 1974. Infrared photometry of Titan.

Astraphys. J. 190, L143-L145.

Lunine, J., D. Stevenson, Y. Yung, 1983. Ethane ocean on Titan.
Science 222, 1229-1230_

Lutz, B. L., C. de Bergh, T. Owen, 1983. Titan: discovery of carbon

monoxide in its atmosphere. Science 220, 1374-1378.

Macy, W. W., Jr., W. M. Sinton, C. A. Beichman, 1980. Five-micro-
meter measurements of Uranus and Neptune. Icarus 42, 68-70.

Marten, A. d al. 1988. Abundance of carbon monoxide in the strato-

sphere of Titan from millimeter heterodyne observations, lcarus

76, 558-562.

McKay, C. P., J. B. Pollack, R. Courtin, 1989. The thermal structure

of Titan's atmosphere. Icarus 80, 23-53.

Morrison, D., T. Owen, L. A. Soderblom, 1986. The Satellites of Sat-
urn. in Satellites eds. J. A. Burns and M. S. Matthews, (Uni-

versity of Arizona Press: Tucson) pp. 764-801.

Muelhmann, D. 0., A. W. Groesman, B. J. Butler, M. A Slade, 1990

Radar reflectivity of Titan Science 248,975-980.

National Research Council Canada, 1991. Daily values of solar flux
at 2800 MBz recorded at National Research Council Canada

Institute for Science and Technical Information NRC Canada;

Montreal Road; Ottawa, Ontario, Canada K14 OS2

Orton, G. S. and C. D. Kaminski, 1989. An exploratory 5-#m spectrum

of Uranus. Icarus "/7, 109-117.

Samuelson, R. E., R. A. Band, V. G. Kunde, W. C. Maguire, 1981
Mean molecular weight and hydrogen abundance of Titan's at-

mosphere. Nature 292, 688-693.

Smith, B. A. etal. , 1989. Voyager 2 at Neptune: imaging science
results. Science 246, 1422-1449.

Sromovsky, L A., V. E. Suomi, J. B. Pollack, R. J. Kranss, S. S Limaye,
T. Owen, H, E. Revercomb, and C. Sagan, 1981, Implications

of Titan's north-south brightness asymmetry. Nature 292,698-
702.

Stevenson, D. J., B E. Potter, 1986. Titan's latitudinM temperature

distribution and seasonal cycle. Gcophys. Res. I, etters 13, 93-
96.

Tokunaga, A. T. 1986. The NASA Infrared Telescope Facility Photom-

etry Manual, (Institute for Astronomy: hIonolulu).

)

r



minus 101, 272-281 (1993)

Titan: 1-5/ m Photometry and Spectrophotometry
and a Search for Variability

KEITH S. NOLLt

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MaD, land 21218

AND

ROGER F. KNACKE1

Division of Science, The Behrend College, Penn State Erie, Erie, Pennsylvania 16563-0203

Received May 14, 1992; revised November 17, 1992

We report photometric and spectroscopic observations of Titan
made between 1 and 5 tan in 1990 and 1991. The 4.8-pro albedo
we measured is more than a factor of three lower than those found
in observations in the early 19"/0s. Long wavelength filter leaks
could have contaminated earlier measurements of Titan's 4.8-pro
albedo, although we cannot rule out a change in Titanitself. Titan's
1.25-pan albedo that we measured in 1991 is 14 ± 3%greater than
that measured in 1979; the 1.65- and 2.20-pro albedos are the
same. There was no evidence for variations with orbital phase at
any wavelength over the eastern half of Titan's orbit in 1990 and
1991. We also made new measurements of Uranus and Neptune
at 4.8 tan that agree with previous observations.

We acquired low-resolution (R = 50) spectra of Titan between
3.1 and 5.1 pan. The spectra contain evidence for CO and CHaD
absorptions. The measured band depths require a reflecting layer
located in the troposphere (near 200 mbar) or below. Spectra of
Callisto's, Ganymede's and Europa's leading hemispheres in the
4.5-5.1 pan spectral region are featureless and have albedos of
0.094 :t: 0.004, 0.044 ± 0.006, and 0.020 :t: 0.002, respectively. If
Titan's atmosphere is transparent near 5.0 pan, its surfacealbedo
there is similar to Callisto's. ©I_3 A_ _,_, I_.

The cloud-covered surface of Titan is one of the last

unexplored places in the Solar System. Little is known
about its topography, chemical composition, or even its

physical state. The only avenue open so far has been
indirect inference based on the observed molecular com-

position of the atmosphere. The Voyager spacecraft and
groundbased observations have identified nitrogen, a rich

' Visiting astronomer, Infrared Telescope Facility, operated by the
University of Hawaii under contract from NASA.

0019-1035/93 $5.00
Copyright ¢ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

variety of hydrocarbons, nitriles, CO, and CO2, many of
which are predicted to condense and ultimately end up on
the surface (cf. Morrison et al. 1986). Although the topic
has received much attention, the existence and extent of

liquids on the surface remain speculative subjects (Lunine
et al. 1983, Lellouch et al. 1989).

Recently, Griffith et al. (1991) have suggested that small
spectral windows of low opacity in the midinfrared range
might allow a direct determination of the surface albedo
which in turn would provide information on the physical
and chemical state of the surface material. Taking this

approach one step further, an observed change in IR al-
bedo in a band containing one or more of these windows

might signify some change in Titan's surface or near-
surface atmosphere.

One final handle on the nature of Titan's stirface is

spectroscopic measurement extended to intervals con-
taining bands of molecules that may interact with Titan's
surface. The rarely observed spectral interval from 3 to 5
v.m could provide an independent measurement of the
tropospheric CO abundance. Atmospheric CO might re-
flect the composition of Titan's near-surface ices.

Relatively little work in the infrared has been completed
since the Voyager encounters. Notable spectroscopic ad-
vances are the detection of CO and the determination of

the CH3D abundance (Lutz et al. 1983, Marten et al. 1988,
de Bergh et al. 1988). The middle infrared part of the
spectrum between 3 and 5/_m was last observed from the
ground in 1973-1974 (Low and Rieke 1974, Knacke et al.
1975); Titan was not observable at all at these wavelengths
with the Voyager spacecraft. Cruikshank and Morgan
(1980) completed the most recent photometry known to
us at J, H, and K (1.25, 1.65, and 2.20/_m) in 1979.

In this paper, we report the first photometric measure-
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TABLE I
Titan 4.8-/zrn Photometry

object/date(UT) A (Ore)] F_ (mJy) albedo × 103

Titan

8 Dec 732 4.g 128i 24 70± 13

< Mar 74 ] 5.0 110+ 20 74± 14

7 Jun 90 4.8 264:t 3.0 225± 26

53un 90 " 26,4_ 3.6 224± 31

29 Aug 90 " 31.5± 4,3 27.2± 3.7

20 Jun 91 " 220± 10.3 18.3± 83

22Jun 91 207± 60 172± 5,0

23 Jun gl 177± 24 146:20

24 Jun 91 268± 5_7 221i 47

26 ,]un 91 " 27,5± 3,6 22.6:_ 30

23 Aug 91 334:t 58 27.2± 47

1 The 48 ._m IRTF filter is described by Tokunaga (1986).
Knacke et aL (1075), observing date from unpublished logs

3 Low and Rieke (1974), observing date not given,
assumed R = 9.4AU, A = 8.4 AU

ments of Titan in the mid-IR free of possible contamina-

tion from long-wavelength filter leaks. We show a low-
resolution spectrum covering the last unobserved gap in
Titan's near-IR spectrum from 3.1 to 5.1 /.Lm, and we

report a series of photometric measurements that we hope
will lay the foundation for long-term searches for varia-
tions in the albedos.

Secondary results of this investigation include low-res-
olution spectra of Ganymede, Callisto, and Europa, mar-
ginal detections of Neptune at 4.8 /.tin on two of five
nights, and two 4.8-/.,tin observations of Uranus.

PHOTOMETRY

M band observations qf Titan. In June 1990 we at-

tempted to obtain a spectrum ofT±tan near 4.8 p.m with the
cooled-grating array spectrometer (CGAS) at the NASA
Infrared Telescope Facility (IRTF) on Mauna Kea. To
our surprise, Titan was much fainter than we had expected
based on photometric measurements made in 1973-1974
(Low and Rieke 1974, Knacke eta/. 1975). Unable to
detect Titan with CGAS, we measured the infrared flux

with the RC2 photometer with the IRTF M filter (X,:t_=
4.80 #m) and a continuously variable filter (CVF) on the
nights of 7 and 8 June 1990 (UT). To confirm our results, T.
Gebaile observed Titan with the United Kingdom Infrared

Telescope (UKIRT) U KT9 photometer on 29 August 1990
using the UKIRT M filter. The average M band flux from
all three nights was 27.6 --- 2.0 mJy (Table I).

The primary standard star was v'- Sgr for all 1990 obser-
vations. It is bright enough at 4.8 _m to allow accurate

peaking and was less than 1 hr west and 2° south of Titan
on 7-8 June. We have adopted the Orlon and Kaminiski

(1989) M filter flux of 23.96 Jy (2.08 mag) for z,2Sgr which is
0.06 magnitudes fainter than the IRTF photometry manual
value (Tokunaga 1986).

HDI61903 is an A star on the IRTF Photometry Manu-
al's Faint Standard Stars list (Elias et al. 1982, Tokunaga

1986) that we used as a secondary faint standard. Based
on the J-L colors compiled by Tokunaga, we estimate the
M filter flux of HD 161903 to be 0.263 ± 0.007 Jy (6.98 ±
0.03 mags). The measured values were 0.21 ± 0.01 on 7
June and 0.28 ± 0.01 on 29 August. We attribute the
lower value obtained on 7 June to probable pointing errors

caused by the inability to peak up on this star and the poor
beam profile we were able to obtain with RC2. We find

good internal agreement in the data obtained with UKT9
at UKIRT on 29 August. UKT9 uses ZnSe lenses rather
than sapphire (AI_,O 3) and does not suffer from the known
defocusing problems of RC2.

We repeated the observations at M on 20, 22, 23, 24,
and 26 June and 23 August 1991, again using the IRTF.
The 5-night average of the June observations was 22.9 -+
1.9 mJy, in marginal agreement with the 1990 data. The
23 August measurement is the least reliable because the

high airmass and large separation of the standard star
from Titan on that night exacerbate the known systematic

problems of differential refraction and camera misalign-
ment when the telescope is pointed far from the zenith.

For the 1991 observations we used the star BS 8018 as

the primary standard for Titan. Since BS 8018 is not an
IRTF standard star, we measured several other standards

to determine the spectrum of BS 8018. At J through L' we
used GL 811, HD 161903, and GL 748 from the IRTF
standard star list and the solar analog star HD 159222

(Campins et al. 1985). At M we used v-"Sgr, a Leo, cr Cyg,
HD 161903, and HD 159222. Derived BS 8018 fluxes are

listed in Table I1.
For most observations we observed the standard star,

the source, and then the standard star again. We were

careful to peak up in each filter. For the M band observa-
tions, both the target and the standard were too faint for

peak up, so we centered first on a late-type star near to
Titan and the standard. We repeaked periodically during

long integrations.

TABLE II

BS 8018 Flux

3 1.25 5.5194-0.018 9920-I-164

H 1.65 5.5134.0.021 63594. 123

K 2.20 5.4954-0.026 4165± 100

L 3.50 5.482::i: 0.014 1860± 24

L' 3.80 5.494± 0,034 16144.51

M 4.80 5.4984- 0.030 1030± 29

Filter ,X(pro) Flux (mago) F,, (mJy)
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The photometric data from both years are summarized

in Table I. In Table I we also include the photometric

measurements of 1973-1974 reported by Low and Rieke

(1974) and by Knacke et al. (1975) recalculated to a com-

mon Titan radius (r T) of 2575 kin. Geometric albedos,

g = F/So(RT/RE) 2 (AT/r-r)-', were calculated using the solar

flux (So) from Labs and Neckel (1968) with the distance

of Titan from the Sun (RT)and the Earth (AT) for the date
of observation. We did not correct for the small phase

angle (-<4.2 °) in our calculation.

All other observations used standard nodding and chop-

ping techniques. Errors for individual integrations are
computed from the standard deviation in millivolts/sec-
ond recorded for each A-B pair. Typically, we recorded

10 to 20 A-B pairs per integration. The coadded integra-
tions of a single night were the unweighted means of the

individual integrations taken during the night. An un-
weighted mean is appropriate when the signal to noise

ratio in individual scans is low to prevent the heavy

weighting that might be placed on integrations with acci-

dentally low errors. Means of observations obtained on

separate nights were weighted by the errors (I/o'-_). When-

ever weighted or unweighted means were computed, the

error of the result was the larger of the calculated error of
the mean ( 1X_7-E I/or:) or the standard deviation (ox__) of

the coadded points. In the majority of the cases we found

the former to be larger, indicating that our estimates of

the errors are adequate. Standard error propagation was
used for all calculations.

Has Titan's 4.8-p.m flux varied between 1973-1974 and

1990-1991? The great discrepancies at 4.8 p.m evident

in Table I naturally raise the question of how accurate the
earlier observations of Low and Rieke (1974) and Knacke

et al. (1975) were. Unfortunately making such an evalua-

tion so long after the observations took place is very
difficult. The best indication of a_curacy would normally

be that two independent groups with separate instruments
at different facilities obtained concordant results. Low

and Rieke made their observations on Mr. Lemmon with

the NASA 61-in, telescope and their own spectrometer.
Knacke et al. used the Kitt Peak National Observatory

1.3- and 2.l-m telescopes with the facility infrared pho-

tometer and a set of custom filters.

The IRTF and UKIRT M band filters are identical [see

/he IRTF photometry manual (Tokunaga 1986) for a de-

tailed description of the filters], but do not exactly coin-
cide with the filters used by Knacke et al. and Low and

Rieke. Using the near-infrared filter transmission curve
for the filter used by Knacke et al., an atmospheric trans-
mission function and filter transmission curves from the

IRTF photometry manual, and the spectrum of Titan dis-
cussed below, we estimate that the Knacke et al. filter

recorded a flux as much as 1.18 times higher than the IRTF

M filter. Sensitivity tests with model spectra indicate that

this factor is very sensitive to the actual flux in the mo_t

poorly measured portion of the spectrum from 4.55 to 4.85

p.m. The most extreme model we tested, reflection from

the surface with no scattering from higher levels, differed

by a factor of 2.5. However, the spectrophotometry that
we discuss later indicates that there must be some scatter-

ing (albeit with large uncertainties) even at wavelength_
where the flux is lowest and even this small amount of

flux is sufficient to bring the ratio down to 1.2 or less. We

conclude that it is unlikely that the differences in the filters
can account for the factor of four discrepancy in fluxes
measured in 1973-1974 and 1990-1991.

The most worrisome problem for a cool object like

Titan, when observed with a bolometer, is the possibility

of long wavelength leaks. The Titan fluxes at 10 and 20

p.m are at least 40-400 times greater than that at 5 p.m
(Low and Rieke 1974), so a leak as small as a fraction of

!% could contribute substantially. Our measurements in
1990 and 1991 were made with an lnSb detector which is

insensitive to photons with wavelengths longer than 5.4

p.m, so the problem of filter leaks does not affect our
new data. Unfortunately, this is not true for the older

observations.

Knacke et al. used a gallium-doped germanium bolome-

ter which is sensitive to long-wavelength infrared radia-

tion. If a blocking filter was used it would have been

barium fluoride which cuts off at i4 ttm, but there is no

record of this. R. Joyce (private communication 1991)

recently measured the long-wavelength transmission of
a filter that he believes to be the one used in the 1973

observations and found a 1.5c_ leak between 17.8 and 20.8

p.m. It is not possible to determine if this same leak was

present 17.5 years earlier when the observations were
made. If it was, and if a barium fluoride filter was not in

place, a leak of this size could have contributed 60_ of

the flux attributed to Titan at 4.9 p.m.
Low and Rieke also used a bolometer. We have not

been able to obtain information about their filters. Rieke

(private communication 1991) believes that a small leak

cannot be ruled out, although the problem of long-wave-

length leaks was not ignored and it is possible that the
bolometer would have been used with a monochromator

to check for possible leaks.

We are left in a difficult position regarding the historical
data. An unfortunate coincidence of errors could have

caused the results of two independent groups to agree

spuriously. On the other hand, we do not want to dismiss

summarily the possibility of an interesting and significant
change in Titan over this period. Therefore, it is unfortu-

nately impossible to make definitive conclusions based on

these data, although they do supply motivation enough to

remeasure Titan over a number of years.

J through L' band observations of Titan. In June and

August of 1991 we also observed Titan with broadband

)

)
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TABLE III

Titan J through L' Photometry

date (UT) A (Urn) 1 F. (rnjy) albedo ×I03

20 3un 1.25 789 ± 8 04.9 ± 1.0

22 Jun 837 ± 14 100.2± 1,7

233un • 819 ± 27 07.0 ± 3.2

24 Jun 872 ± 15 104.0± 1,8

26 Jun 828 + 15 98.3 ± 1.8

23 Aug 879 ± 15 103,4 :t: 18

22 Jun 1.65 398.7 ± 7.8 53.8 -i- I I
23 Jun 410,7 ± 12.2 55.3 ± 1.6

24 Jun 412.]i 8.1 55.4± 1,1

26 Jun 399.6 ± 8.5 53,5 :t I.I

23 Aug 404.5± 7,8 530 ± 10

20 Jun 2.20 175.4± 1.2 37,0± 0.3

22 Jun 175.6± 4.5 369 ± 0.9

23 Jun 187.6 ± 4.7 393 ± 1.0

24 Jun 181.9 :t 44 38.0 -i- 0.9

23 Aug 173.6 ± 4.2 35,8 ± 0.9

24 3un 3.45 155 ± 0.8 7.0 ± 0.4

22 Jun 380 9.4± 1.0 5.1 ± 0.5

23 Jun 12.4 ± 0.9 67 ± 0.5
24 Jun 131 ± 1.0 7.0± 0.5
26 3un 11.7 ± 1.8 6.3 ± 1.0

Filter data are given in Tokunaga (1986)

filters centered at 1.25, 1.65, 2.20, 3.50, and 3.80 p.m [J,

H, K, L, and L', respectively, as described by Tokunaga

(1986)]. The results are summarized in Table lit.

The aperture was set at 8 or l0 arcsec diameter for all
observations. At J, H, and K we found the centered im-

ages to be in the same location for all three filters. With
the L and L' filters we observed degraded beam profiles

with peaks not centered relative to one another nor to the

J, H, and K filters. We took extreme care to peak the

signal for each measurement.
One question that we hoped to address with these obser-

vations is whether Titan is variable at infrared wave-

lengths both over a time span of years and/or in the course

of its 16-day orbit around Saturn. An extensive set of

observations of Titan at J, H, and K was carried out by

Cruikshank and Morgan (1980, hereafter CM) in 1979. We
have calculated albedos from their flux measurements

using the same radius and solar flux. At several orbital

phases we averaged multiple measurements that were

within 3.7 ° of one another in orbital longitude.
We assume that Titan rotates synchronously with its

orbital period around Saturn and plot both our data and
the data of CM as a function of orbital position in Fig. I.

We find no evidence for any variation with orbital position

over the eastern half of Titan's orbit in our new 1991 data

as we might expect from CM's data. Unfortunately, we

did not obtain any data from the western half of Titan's
orbit which could have tested the apparent tendency to

lower albedo near western elongation.

There is one difference in our data compared to those

of CM evident in Fig. !. The albedo we measure at J is

consistently' higher than that of the 1979 measurements.
At Hand K there is no significant difference. We compare

the average value of the 1991 albedos to the averages of
all CM albedos and to averages of CM aJbedos corre-

sponding to the same orbital phase in Table IV. The 1991

J band average is 1.14 +- 0.03 times greater than the 1979
values at the same phase. The K filter average in 1991

shows a very marginal enhancement over 1979 measure-

ments at the same phases, !.08 --- 0.06, but we judge this
to be insufficient evidence for variation. The ratios at both

J and K are larger when all 1979 data are included in the

average, but this is due to the lower albedos that appear

in the western half of Titan's orbit, a property that may

be intrinsic to Titan. Finally, the H filter ratio of the 1991

data to the few points from 1979 that were observed at

the same orbital phases is 0.95 +- 0.04, again a result that

we find consistent with no change.

Uranus and Neptune. We also observed Uranus and

Neptune on several nights. The observations are summa-

rized in Table V and Table VI and compared to previous

observations. The Uranus flux we measured agrees with

earlier measurements within our fairly large uncertainty.

Observations of Neptune at this wavelength have often

determined only, upper limits. There is no evidence for

variability, however, because of the large uncertainties in
the detections.

SPECTROPHOTOM ETRY

Titan. A low resolution (R = 50) spectrum of Titan in

the 3.1-5. l-p.m windows was obtained with the IRTF

CVF. We show these data converted to albedo in Fig. 2

where we compare them to albedos at shorter wavelengths

measured by Fink and Larson (1979) and references
therein as well as to our broadband measurements.

The spectrum was sampled at 0. I-p.m intervals, about

equal to the FWHM of the CVF instrument profile. Incom-

plete sampling was necessary because of the weak Titan
flux and consequent long integration times. However, the

two observations of the 3-4 p.m spectrum were offset by

0.05 p.m in order to completely sample that interval. Data
acquired on 7 and 8 June 1990 were averaged.

In Fig. 3 the 4.5-5.1 p.m portion of the spectrum is

expanded and compared with two model spectra. The

solid line represents a simple reflecting layer model con-

taining gas absorption from CO and CH3D that we discuss

in greater detail below. The dashed curve is a I70 K

blackbody with an optical depth of_" = 0.6. Given the large
uncertainties in the data, both curves could be considered

possible fits to the data.

However, we argue against thermal emission from an

optically thick layer. The pressure of the lowest level in
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FIG. 1. (a-d) Plots of Titan's geometric albedo as a function of orbital position for the broad band filters J, H, K, and M. Data measured b_

us are shown by the open boxes, data from Cruikshank and Morgan (1980) rescaled to a Titan radius of 2575 km are shown by the filled symbols.

Error bars are lo- the error bars for the 1991 data are often comparable to the size of the symbol. Several of the 1979 points represent averages

of albedos measured on different nights, but within no more than 3,7 ° of one another.

Titan's stratosphere where the temperature is 170 K or

greater is less than 2 mbar (Lellouch et al. 1989). It is

unlikely that the hazes present at these low pressures
would reach optical depth 0.6 at 4.8 tzm. Haze models
consistent with longer wavelength data have optical

depths more than an order of magnitude lower than this.
Some visible radiation is expected to penetrate to at least

P - 100 mbar, T- 71 K, where a methane condensation

cloud may exist, and some fraction of the visible flux may
even reach the surface (McKay et a/. 1989). If the haze

particles are organic solids resembling the "tholins" mea-

sured by Khare et al. (1984) with average particle sizes
less than ! /,tin, infrared radiation in windows of low gas

)

opacity will penetrate much deeper, probably down to
Titan's surface. '"

Of possible gaseous absorbers, only CO, CH3D, and

possibly C.,H4 of the molecules listed in Table VII are

potentially observable in the 4.5-5.3 /zm spectrum and "

then only at pressures of 100 mbar or higher. Based on this
we conclude that the spectrum is unlikely to be thermal

emission either from hazes or from molecular gas, but

rather, is a reflected solar spectrum with gaseous absorp-
tion. We consider the location of the absorption in Titan's

atmosphere at a position coincident with the CO 1-0 band

to be strong evidence that CO is the principal absorber in

this spectral window. The low point in the spectrum at )
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TABLE IV

Comparison of 1979 and 1991 Titan Mean Albedos

TABLE VI

Neptune 4.8-#m Photometry

data set _ (,am) mean albedo x 103 date (UT) ,_(,am) F_ (mJy) T_ (K) alUedo × 103

199f 1.25 98.5 + 1.4

1979 all 86.2 ± 1.8

19711 Mine pha_es 86.5 4- 2.0

1991 1.65 54.2 ± 0.6

1979 all 52.8 + 2.7

1979 s_e pha_es 56.8 ± 2.4

1991 2.20 37.1 ± 0.6

1979 all 330 ± 1.2

1979 same phases 34.5 ± 1,8

4.55 #m is evidence that CH3D is also optically thick
at this wavelength and implies that the location of the
reflecting layer must be at a pressure of 500 mbar or
greater, well within the troposphere.

Galilean satellites. There is limited published spectral
information on the Galilean satellites from 4.5 to 5.2 _m.
Roush et al. (1990) present four points forCallisto's trail-
ing hemisphere and two points for the leading hemisphere.
Because of their similar size and density, one can infer
that in bulk composition Ganymede and Callisto must
resemble Titan. If that resemblance extends to the sur-

face, the albedos of the Galilean salellites would be rea-
sonable comparisons for the albedo of Titan's surface, if
that surface is in fact probed at any wavelength. Griffith
et al. (1991) have found that in the near IR (I.3-2.0 gm)
the albedos of Ganymede and Callisto do indeed provide a
good match to the albedo of Titan in the windows between
strong methane bands. Therefore, in order to provide a
basis for comparison, we obtained CVF spectra of Cal-
listo, Ganymede, and Europa from 4.6 to 5.2 gm which
we display in Fig. 4.

TABLE V

Uranus 4.8-,urn Photometry

date (UT) )_(#m) F_ (mJy) Tb (K) albedo xlOa

May 76 z 5.0 38± 26 133± 4 4.1± 2.8

,lun 79= 4.8 14¢ 8 132± 3 1.5± 0.8

8 Aug g0 a 4.8 16± 4 133.2± 1.5 1.9± 0.4

9-12 ,lun 874 4.8 24.6± 3.8 135.8± 0.9 3.0± 0.5

7 Jun 90 4.8 15± 8 133± 3 1.9± 0.9

Gillett and Rieke 1977, observing date not given
= Macy et al. 1980,observing date not given
3 Brown e_ al. 1981
s Orton and Kaminski 1999

Apr 761 5.0 < 28_ < 138 < 26

Jun 797 4.8 < 13 < 138 < 11

8 Aug 803 4.8 14.4± 3.3 138,6± 1.5 12± 3

9 Aug 80 a 4.8 <7.1 <134.2 <6.1

19 Aug 803 4.8 I15± 2.6 137.2± [i_ I0.0± 2.3

21 Jun 91 4.8 <13.5 <138 <11.2

23 aun 91 4 8 5.3± 33 132.3± _i9 4.4-_ 2.7

24 Jun 91 4.8 9.6± 5.9 135.8± _i° 8.0_ 4.9

26 Jun 91 4.8 <214 <140.9 <17.8

lGillett and Rieke 1977, observing date not given,
ZMacy et al, 1980, precise dates not given.
3Brown et al 1981,

All upper limits are 2-o"

The spectra we obtained show no evidence for spectral
structure that is meaningful given the relatively low signal-
to-noise of the observations. The average albedo over the
entire band is 0.094 -- 0.004 for Callisto, 0.044 ± 0.006 for

Ganymede, and 0.020 ± 0.002 for Europa. It is interesting
to note that this trend is opposite to the trend in visible
albedo because the mineral component of these icy sur-

015

0, !isi !!i

u

i ::i!!i ii

I 2 3 4 5

wlvelength (_Jm)

FIG, 2. The new spectrophotometric data obtained by us are reduced

1o geometric albedo and plotted by open symbols in this figure. Our

broad band-filler data are plotted by filled symbols, The data from 4.5

to 5.1 #m are an average of 1990 and 1991 points where they overlapped.

For illustration, we compare our new albedos to albedos from 1.0 to 2.5

#m taken from Fig. 2b of Fink and Larson (1979) shown by the dashed
line. We note that the rink and Larson data were not flux calibrated

AIbedos were derived by normalizing their data to calibrated observa-

lions at k < I #m.
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FIG. 3. Titan flux from 4.55 to 5.10/.tm compared to two models of

very different physical characteristics. The dashed curve is the flux

expected from Titan if the source were emission from a high-altitude

haze at 170 K with an optical depth of 0.6. The solid line is a model

of solar radiation reflected from two layers at different depths in the

atmosphere, the deepest being at the surface.

faces is dark in the visible but accounts for most of the
reflected light beyond 3/am (Roush eta/. 1990).

Titan's two highest albedo points at 4.95 and 5.05/.tm
from 1991 have a mean albedo of 0.085 - 0.014. If this

average is characteristic of Titan's surface, then one pos-

TABLE VII

Candidate Absorbers at 4.5-5.3 p.m

molecule band center (tam) detectable ol_erv_1
at 5 pm

Cti, no bands

CH3D 4.55 I0 -6 1 xl0 -5

C=H2 no bands

CaR, 4.8,5.2 10-e 0.1 - 3x 10-6

C=H6 no I_nds

CHaCH 4.7 10-s 0.4- 6 xlO -e

CsH+ 5.1 5x10 -s < 5 x 10-9

C3Hs no bands

C3H6 4.8,5,3 I0 -6

C3Hs no bands

ECN 4.8 10 -s 0.16-2.3 xl0 -s

C2N= 4.7 5 x I0 -v -

CR3NH= 4.8 10-e -

CH=tI= 4.8 10-s -

CH3Nz 4.6,4,8 I0-" -

CO 4.7 10-5 6x10-n

CO= 4.3 10 -? 0.7-1.4x 10-s

0.02

0

4.4

i

* Callist o
m Ganymede
o Europa I
+ +t+ +

+
+ +

4.6 4.8 5 52 54

wavelength (pro)

FIG. 4. CVF spectra of Callisto, Ganymede, and Europa are plotted

here. We observed the leading hemispheres of all three satellites.

sible analog for the surface of Titan is a mineral-ice mix-
ture similar to Callisto's.

Synthetic spectrum. The comparison spectrum in Fig.
3 was calculated with a multilayer radiative transfer pro-

gram. Two opacity sources, the gases CO and CH3D,
were included in the model. The altitude distribution of
CO is uncertain (Lutz et al. 1983, Marten eta/. 1988).

Three different CO-altitude distributions were tested.

In a "microwave" distribution designed to match the re-
sults of Marten eta/., the CO mole fraction (qCO ----Pco/

Ptotat) was fixed at qCO = 2 x 10 -6 at all altitudes. In an
"'IR" distribution consistent with the results of Lutz et
al., CO was set at qCO = 6 x 10--_ at all altitudes. A

modeled spectrum using a compromise distribution con-
sistent with both radio and IR results is shown in Fig. 3.
In this distribution qCO = 6 × 10--_for layers with P ->

54.5 mbar and qCO = 2 x 10 -6 for layers at P -< 34.9
mbar. CO line parameters were taken from the GEISA

compilation (Chedin eta/. 1986).
CH3D is present in Titan with a mole fraction qCH_D

= 1.1 × 10--_(de Bergh etal. 1988). Line strengths and

positions for the v., band at 4.54/am were adopted from
Chackerian and Guelachvili (1983) and lower state energy
levels were computed from formulae for symmetric top
molecules (Herzberg 1945). Molecular data for the 2v+
band were extracted from the GE1SA list.

Individual model spectra were computed using a step
size of 0.05 cm -_ and then convolved to the instrumental
resolution with a triangular function having a FWHM of

40 cm -_. The three models shown in Fig. 5 demonstrate

J

tOb6erved abundances at 8-50 tam (Coulteni=etal.1989a, 1989b,1991)
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FIG. 5. The effect or moving a single reflecting layer deeper in the
almosphere is shown with lhree different model curves. The CO I-0
fundamental is Ihe strongesl feature al 4.65 #m. AI longer wavelengths
the increase in absorption with increasing depth is from isotopic bands
of CO. AI shorter wavelengths the increase is due to two bands of CH3D.

More realistic models that account for scattering might

belier define the depth to which the radiation reaches.

The model shown in Fig. 3 attempts to take this into

account by including equal contributions from a reflecting

layer at the surface and a second component at 100 mbar.

We are able to improve the fit in hybrid models of this

kind better than any single reflecting layer model. How-

ever, given the limited quality of the data we feel it would

be a mistake to continue beyond a demonstration of feasi-

bility at this time. What is significant is thai like models

at shorter infrared wavelengths (Griffith e¢ al. 1991), our

results suggest thai a significant fraction of the reflected

light at 4.95 p.m may be reflected from the surface. This

certainly seems plausible since the optical depth due to

organic haze particles should be significantly lower at 4.8

p.m than in the visible or at 2 p.m because absorption

cross-sections for small particles scale as 1/,x.. Therefore,

we expecl that an even greater proportion of 4.8-p.m radia-

tion reaches the surface, implying thai the geometric al-

bedo we derive is, al least in part, a property of Titan's
surface. Should future work confirm this, a means of di-

rectly studying the surface of Titan would be open.

I

the effect of moving the reflecting layer to greater pressure

levels deeper in the atmosphere. The 1500-mbar model

corresponds to Titan's surface. The lower J lines of the

CO I-0 band at 4.7 p.m are saturated even at relatively

low pressures. The additional absorption seen at higher
pressures on the long-wavelength wing is due to high J

lines of the !-0 band and to lines from the isotopic bands
of ]3CO, C_80, and C_70. We have assumed terrestrial

isotope ratios in all cases. On the short wavelength side

of the band the increase in absorption comes mainly from

the CH._D _,, band.

Only models produced with the compromise distribu-

tion are shown in Figs. 3 and 5, but there is little difference

in the models produced by the compromise CO distribu-
tion and the IR distribution. This is because the models

are insensitive to the CO abundance at pressures less than
50 mbar where the two distributions differ. The "micro-

wave" distribution produces a weaker CO band as would

be expected. Models with the microwave distribution and
the reflection layer at the surface have a CO band compa-

rable in strength to the compromise or IR models with

the reflecting layer at 500 mbar. Considering the overall

marginal fits of the models, the most that we can conclude

from this exercise is that if the spectrum is reflected radia-

lion, then the depth of the CO band requires that a sub-

stantial fraction of the radiation penetrate well into the

troposphere, quite possibly to the surface. Both current

CO abundances can reproduce a band of sufficient depth

as can a compromise distribution.

DISCUSSION AND CONCLUSIONS

Both the photometric and speclroscopic results in this

paper constitute a reconnaissance of Titan's midinfrared

properties. In our observations, infrared photometric evi-
dence for variability is rather limited. Whether the inten-

sity at 4.8 p.m decreased by a large factor between

1973-1974 and 1990-1991 appears to be impossible to

corroborate from the old data. Only future observations

seem likely to show whether Titan varies at 4.8 p.m. The

purpose of communicating the results so far is to point

out the possibility of a problem with the old data and to

report the new.

The albedos at J and possibly K may have increased

modestly between 1979 and 1991, while the H albedo is

the same in the 2 years. We did not find albedo variations
over the eastern half of Titan's orbit in June 1991. The

large variations (up to 60% at K) with a possible 32-day

period observed by Cruikshank and Morgan (1980) are
neither confirmed nor refuted by our observations. We
still need to measure the albedo in the western half of the

orbit and over several complete revolutions.

Titan's visible flux does change slowly, and the changes

appear to be correlated with seasonal cycle (Lockwood

and Thompson 1979, Lockwood et al. 1986, Sromovsky

et al. 1981). These variations reflect changes in Titan's

clouds and aerosols. The seasonal phase in 1979 was simi-

lar to thai in 1991 so the explanation that seems to work

well for changes in visible albedo would seem not to fit the
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change in albedo we observed at J (unless the amplitude of

the seasonal change at J were very large). A fixed-contrast

variation (29.5-year period, see Fig. 4 of Sromovsky et al.

1981) could account for the observed variation, but it is

difficult to explain the absence of variation at H and K

and at the same time explain the observed changes at J.

Depending on what the cloud thicknesses turn out to

be, infrared variations could reveal either cloud or surface

properties. Indeed, variability itself may, in the future,

prove to be an indicator of whether midinfrared observa-

tions penetrate to the surface. A clear-cut indication of

this exciting possibility has so far eluded us. As we have

come to appreciate in this work, observations of Titan

infrared variability will be difficult and require consider-

able effort.

A salient result of the spectroscopy in this program has

been the probable detection of the CO fundamental band

at 4.6 /,tin in Titan's spectrum. With the present low-

resolution data, we cannot resolve the discrepancies be-

tween abundance determinations based on the CO 3-0

overtone at 1.6 p.m (Lutz et al. 1983) and the radio CO

measurements (Marten et al. 1988). It should be possible

to do this with higher resolution spectroscopy using the

new array spectrometers that are just becoming opera-

tional. We plan such spectroscopic observations, as well

as a long-term program to monitor possible infrared vari-

ability of Titan.
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Note added in proqf. Lemmon el al. (1992, Bull. Am. Astron. Soc.

24, 949.1 report the detection of variation in near-iR continuumtCH4

band-center ratios with orbital phase which they interpret as a variation

in Titan's surface albedo. They find the maximum ratio near Titan's

eastern elongation.
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