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Abstract

When using eigenspace assignment to design an aircraft flight control

system, one must first develop a model of the plant. Certain questions
arise when creating this model as to which dynamics of the plant

need to be included in the model and which dynamics can be left

out or approximated. The answers to these questions are important
because a poor choice can lead to closed-loop dynamics that are un-

predicted by the design model. To alleviate this problem, a method

has been developed for predicting the effect of not including certain

dynamics in the design modcl on the final closed-loop eigenspace. This

development provides insight as to which characteristics of unmodeled

dynamics will ultimately affect the closed-loop rigid-body dynamics.
What results from this insight is a guide for eigenstructure control law

designers to aid them in determining which dynamics need or do not

need to be included and a new way to include these dynamics in the

flight control system design model to achieve a required accuracy in the
closed-loop rigid-body dynamics. The method is iUustrated for a lateral-

directional flight control system design using eigenspace assignment for

the NASA High Alpha Research Vehicle (HARV).

Introduction

Fidelity of the design model is a chief concern

in any control law design process. In this con-
text, fidelity of the design model corresponds to

how well a control law, which is designed using this

model, achieves design objectives when applied to

the actual system. A fidelity issue was raised in

the design of a research lateral-directional control

law (ref. 1) for NASA's F/A-18 High Alpha Re-
search Vehicle (HARV). The control law was syn-

thesized with the CRAFT (control power, robust-

ncss, agility, and flying-qualities trade-offs) design

methodology (ref. 2), which is a graphical method
that uses eigenspace placement methods (rcfs. 3

and 4). Only rigid-body dynamics were considered;
other dynamics, such as actuators, were neglected.

It was noted, however, that when the other dynam-

ics were included, the closed-loop rigid-pole locations
varied from those predicted by the low-order design

model. In this report, a method is developed to de-

termine which dynamics need to bc included in a

control law synthesis procedure that uses cigenspace

assignment.

Elements of the aircraft rigid-body eigenspace are

well understood, and much is known about desirable

dynamic characteristics (ref. 5). However, the air-

craft has dynamics besides those of the rigid body

(e.g., actuators, control system filters, and transport

delays). Exactly which dynamics will significantly
affect the design is normally not known at the outset

of the control law design process.

A controller can be synthesized using a system

with dynamics beyond those of the rigid body, but
this occurs at a cost. First, the relationship be-

tween tile desired eigenspaee and the dynamics of the
closed-loop aircraft becomes less obvious. Second,

the speed at which a given set of feedback gains can

be generated for an iteration of the desired eigenspace
is reduced. This reduction results in a trade-off be-

tween the simplicity and speed of a flight control sys-

tem design iteration and the accuracy of the final de-

sign. The fundamental question is: what error will
result if certain dynamics are neglected? The answer

to this question will provide insight into the relation-

ship between given unmodclcd dynamics and their

effect on the rigid-body dynamics of the full-order,
closed-loop system.

To provide a clear exposition of the key results,
the report is organized as follows. The HARV control

law design is presented in detail as the motivator of

this research. The rigid-body system used to synthe-
size the controller and the unmodeled higher order

dynamics are described. Next, a single-input, single-

output (SISO) example of the effect of unmodeled dy-

namics is presented. This example provides the con-
ceptual basis for the multiple-input, multiple-output

(MIMO) work presented.

Symbols

A stability matrix

B control nmtrix
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cigenspacc transformation matrix

number of effectors

feedback gain matrix

gravitational acceleration, g units,

19 = 32.2 ft/sec 2

identity matrix

feed-forward gain matrix

reduction factor

feedback gain

roll moment dimensional stability and
control derivatives

number of measurements

measurement matrix

number of controls

feed-through matrix

yaw moment dimensional stability and
control derivatives

number of states of low-order system

lateral acceleration, g units

roll angular rate, rad/sec

feed-through term effect on augmenta-
tion matrix

real number set

yaw angular rate, rad/sec

Laplace transform variable

time constant matrix

transfer function

transport delay time, sec

control vector

eigenvector matrix

airspeed, ft/see

higher order states

lateral velocity, ft/see

unmodcled filter output

state vector of rigid-body system

side force dimensional stability and
control derivatives

measurement vector used for feedback
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a)

angle of attack, deg

sideslip angle, rad

flight path angle, rad

control effeetor deflection angle, dcg

damping ratio

eigenvalue matrix

eigenvalue or polc

cigenvcctor

time constant

bank angle, dcg

natural frequency, rad/sec

Subscripts:

ail

as

b

c

comp

den

e

F

f
FB

FO

HO

i

l

LO

m

num

pilot

rb

RO

rtv

rud

8

sens

slow

ytv

aileron

asymmetric stabilator

body-axis measurement

commanded

computed

denominator

associated with lag in effcctors

unmodeled filters in parallel

unmodeled filter

feedback

full-order, closed-loop system

unmodeled, higher order dynamics

index

associatcd with lag in measurement

low-order, closed-loop system

associated with lag in control

numerator

pilot commanded

rigid-body pole

rigid-body dynamics of ()

roll-off filter

roll thrust vectoring

rudder

state

sensed value

increased time constant matrix

yaw thrust vcctoring



Superscripts:

T transpose

time derivative

predicted

* conjugate transpose

Abbreviations:

CRAFT control power, robustness, agility, and

flying-qualities trade-offs

DEA direct eigenspace assignment

HARV High Alpha Research Vehicle

HATP High-Angle-of-Attack Technology

Program

MIMO multiple-input/nmltiple-output

SISO single-input/single-output

Background

HARV Description

The analysis presented is motivated by a research
lateral-directional flight control system design for

the High Alpha Research Vehicle (HARV), which is

shown in figure 1. The HARV is part of the NASA

High-Angle-of-Attack Technology Program (HATP),

and it will provide flight validation of HATP re-
search and technology. The HARV is a preproduc-

tion F/A-18 that has been modified with a thrust
vectoring system, as shown in figure 2. The thrust

vectoring is designed to provide additional control

moments for high angle-of-attack flight. The HARV
has a research flight control system designed to sim-

plify the installation and the modification of control

laws. One intent is to provide flight validation of

experimental high angle-of-attack control systems.

Low-Order Aircraft Model

The research lateral-directionM flight control sys-

tem is designed using linear models of the aircraft at
various flight conditions. For these models, the rigid-

body dynamics are fourth order. The states include

lateral velocity, roll rate, yaw rate, and bank angle.
The control effectors are aileron, rudder, asymmet-

ric stabilator, yaw thrust vectoring, and roll thrust

vectoring. The measurements are roll rate, yaw rate,

lateral acceleration, and computed sideslip rate. The
lateral acceleration sensor is located near the pilot

station, thus preventing the similarity with sensed

sideslip rate that would occur if it were at the air-

craft center of gravity.

The low-order, open-loop aircraft model can be
written as

±=Ax+Bu

z = Mx + Nu

The state, measurement, and control effeetor vectors
are

xT = (v8,ps, rs, Cs)

zT ---- (Pb, rb, rtys ...... /)comp)

lit = (_ail, _rud, ¢_as, _ytv, _rtv)

The measurement equation z is defined by M and

N matrices to distinguish it from the traditional

output equation. These measurements are assumed
to have no noise. The elements of stability, control,

measurement, and feed-through matrices, at a single

flight condition, are defined as

A

B
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Nv Np Nr
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N
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o o o
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L "flt%il /_rud _as J_bytv

0

0

ny6rt v
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Flight conditions range from angles of attack of
2.5 ° to 60 ° at a constant altitude of 25000 ft in

unacceleratcd flight.

For this HARV control law design, the states

chosen above lead to classically defined spiral, roll,

and Dutch roll modes (at low angle of attack). The

models used for all examples presented in this work

are listed in appendix A.

Low-Order, Closed-Loop System

The components of the flight control system corre-

sponding to the low-order, closed-loop system, shown

in figure 3, consist of feed-forward and feedback

3
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Figure 1. High Alpha Research Vehicle (HAItV).
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Figure 2. HARV thrust-vectoring system.
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Figure 3. Low-order, closed-loop system.

gains. The feed-forward gain matrix maps two in-
puts into the five aircraft control effectors. These

two inputs are commanded roll and yaw angular ac-
celerations such that

T (Pc,UC z

The feed-forward gain matrix is a Jacobian of a con-

trol mapping algorithm, which is discussed in refer-

ence 6. For the purposes of the research presented, it

is assumed that the feed-forward gain matrix is given.
The feedback gains will be used to place closed-loop

dynamics. Here, the commanded angular accelera-

tion is referred to as the controls, and the five inputs
to the aircraft are called effectors. The controls then

become the sum of pilot input and feedback. The

feedback gain matrix maps the four measurements
into these two controls.

The control system synthesis technique used to

generate the lateral-directional flight control sys-
tem was the CRAFT approach based on the di-

rect eigenspaee assignment (DEA) of references 2,

3, and 4. The CRAFT process provides a graphical

approach to trade agility, robustness, flying quali-
ties, and control power. This approach utilizes DEA

to achieve the desired dynamics selected using the

CRAFT technique. The DEA generates linear mea-

surement feedback gains as a function of the design
model and a desired closed-loop eigenspace. Here,

the design model contains only the rigid-body air-
craft dynamics. The design model and control law

can be expressed as

= Ax + Bu

z = Mx + Nu

u = Kuc

Uc = HFB -4- Upilo t

UFB = GZ

(System dynamics) (1)

(System measurements) (2)

(Feed-forward control) (a)

(Feed-forward control) (4)

(Feedback control) (5)

with n states, m controls, l measurements, and e ef-
fectors, thus making x C R__n, Uc E R TM, z E _Rl, and

u C R e. To derive an expression for the closed-loop

system, equations (4) and (5) can be substituted into

equation (3) to get

u = KGz + KUpilo t

Equation (2) is then used for z such that

u = KGMx + KGNu + KUpilo t

Solving for u,

u = (I - KGN)-IKGMx + (I - KGN)-lKUpilot

By using this equation for u in equation (1), the
closed-loop system can be stated as

± = [A + B(I- KQN)-IKGM]x

+ B(I - KGN)-lKupilot

or in shorthand as

5c -- ALOX + BLOUpilot

As previously discussed, the feed-forward gains de-
fine the effector blending used, and the feedback

gains are synthesized to achieve a desired closed-loop
eigenspaee. For the system described, the feedback

gain matrix will place l eigenvalues. The DEA will

also exactly place m elements of the l corresponding

eigenvectors, or alternatively, it will achieve a least-

squares fit of i elements of an individual eigenvector,
where m < i _< n.

For the purposes of feedback gain synthesis, there

are four states, four measurements, five effectors, and
two controls. This implies exact placement of the

poles for the low-order, closed-loop system. Also,
two eigenve'ctor elements can be exactly placed for

each mode. The feedback gains are designed to be

scheduled with angle of attack. The feed-forward

gains are scheduled primarily with angle of attack,

dynamic pressure, and thrust. Appendix B contains
baseline feed-forward and feedback gain matrices.

Full-Order, Closed-Loop System

The complete aircraft plus control system has

dynamics beyond that of the system previously de-
scribed. This includes other aircraft dynamics, such

as actuator dynamics, and additional elements of

the control system, such as structural notch filters.

The layout of this control system and plant model is

shown in figure 4.
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Figure ,I. Layout of HARV lateral-directional control system

and plant model which differentiates low-order and higher
order, unmodeled dynamics.

Models of the actuator dynamics are available in

reference 7. These actuator models range from first

order to eighth order for each of the five actuators.
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Figure 5. Low-order system and fllll-order, closed-loop system
roll pole.

Various flight control system filters are also not

included in the design process. These include first-

order, roll-off filters of 25 rad/sec, which are placed

on each of the controls as part of the flight control

system design. A notch filter is also placed on each of
tile controls as well as on each of the measurements.

An exception is the sensed lateral acceleration chan-
nel that has two notch filters in series.

Here, the HARV full-order, closed-loop systcm

will have 25 states. In the following dcvelopment,

however, not all unmodeled dynamics will be initially
considered. The tcrm full-order, closed-loop system

will be used to describe a closed-loop system con-

sisting of the open-loop, rigid-body dynamics, the

feed-forward and feedback gains, and the particular

unmodeled dynamics under consideration.

Spectral Decomposition

To evaluate fill-order, closed-loop system dynam-

ics, consider the portion of the eigenspace that cor-

responds to the rigid-body system. When the um

modeled dynamics are of sufficiently higher frequency

than the low-order, closed-loop systcm, or they arc
outside the bandwidth of the pilot, the dynamics that

are dominant to thc pilot will be determined by the

rigid-body eigenspace. Tile rigid-body eigenspace

is a combination of the rigid-body eigenvalues and
eigenvcctor elements that are associated with the

rigid-body modes. As an example, the rigid-body

roll pole of the low-order, closed-loop system and of

the 25-state system is shown in figure 5 as a function

of anglc of attack.

The full-order, closed-loop system has dynamics
defined by

= AFOX + BFOUpilot

The rigid-body eigenspace is characterized here by a
spectral decomposition of AFO such that

AFoV = VA

The eigenvaluc and eigenvector matriccs are then
partitioned to separate the eigenspace of interest so
that

V= [ vll V12][V21 V22

0 A2

where A1 is a square matrix containing achieved

rigid-body eigenvalues on its diagonal and Vll is a
square matrix containing achieved rigid-body eigen-

vector elements associated with rigid-body states.

Ideally, one would like to compare the eigenspace of

the low-order, closed-loop system with the eigenspace
of

(AFO)r b =-- VllAIVll 1

(i.e., the rigid-body eigenspace of the full-order,

closed-loop system). This matrix has the same di-

mensions as the low-order, closed-loop system matrix

ALO.



Althoughthisreduced-ordersystemis notasub-
stitute for a look at frequencyresponseand time
historiesof the full-ordersystem,it doesallowthe
controllawdesignerto comparethedynamicsof the
full-order,closed-loopsystemwith well-understood
aircraftrigid-bodydynamics.Also,knowledgeof the
achievedrigid-bodyeigenspaceis importantbecause
its relationshipwith thedesireddynamicsfundamen-
tallydetermineswhetherornotcertaindynamicscan
beomittedfromthedesignmodel.

EigenspaceTransformation Matrix

A conceptthat will appearrepeatedlyin thiswork
is that of a singlematrix transformationin theform

ALO= E(AFo)r b

where ALO is the low-order, closed-loop system ma-
trix and (AFo)r b is composed of the rigid-body por-

tion of the full-order, closed-loop system eigenspace,

as described in the section entitled "Spectral De-
composition." The term E will be referred to

as an eigenspace transformation matrix. Although
ALO and (AFO)r b are not actually the eigenspaces,

their cigenvalues and eigenvectors are the rigid-body

eigenspace of the low- and full-order closed-loop

systems, respectively. All three of these matrices
are square, and they have dimensions equal to the

number of states in the rigid-body system. As

tile unmodeled dynamics become less significant to

the achieved rigid-body eigenspace, the eigenspace

transformation matrix should approach the identity
matrix.

A look at the most significant contributors to

the eigenspace transformation matrix may provide
insight into what causes the rigid-body dynamics to

differ from those of the lbw-order, closed-loop system.

If the effect on the rigid-body eigenspaee can be
easily calculated, such a calculation could bc useful

in determining whether certain dynamics can be left

out of the design model.

SISO Example

To facilitate the discussion of the multiple-input/
multiple-output (MIMe) results in this report, a

single-input/single-output (SISO) example is now

presented. The SISO system (fig. 6) presented is a
first-order roll mode approximation of the HARV at

an angle of attack of 5 °. Aileron deflection is the

plant input, and roll rate is the plant output. The
first-order lag aileron actuator model is the unmod-

eled dynamics in this example.

Actuator
model

1

tai I s + 1

Low-order
plant

LSai Is-Lp

Feedback

gains

P

Figure 6. SISO example with first-order roll mode approxi-

mation at angle of attack of 5°.

For the purposes of control law design, the first-

order lag aileron actuator is not included in the

design model. This SISO low-order, closed-loop

design model can be written as

p(s) L_.i,
- (6)

Upilot(S ) S -- Lp -- L6ailkFB

With the actuator model, this full-order, closed-loop

system has two states, and it can be written as

p(s) _ 1
Upilot ( 8 ) (Tails -1- 1)(S -- Lp) - L6aukFB

(7)

In state space, this full-order, closed-loop system is

expressed as

{_ai] } =- L6ail { (_ail} -{-{ TaO-7111} upilOt
Tail1 kFB -- Tail 1

The low-order, closed-loop system has one state, with

the cigenvalue

)_LO = Lp + L6aitkFU (8)

which is the desired roll mode pole. The full-order,

closed-loop stability matrix is

Lp L6.i_ ]AFO= T_dlkv B --TaSI1

Of interest are the eigenvalues and eigenvectors of
this closcd-loop system corresponding to the rigid-
body dynamics, or roll mode. The cigcnvaluc is

AFOrb and the eigenvector is vii when this full-order,
closed-loop system matrix is written as the spectral
decomposition

T._illkFB --T -I L_l v22J L_'m L'22J u rbail )_HO

7



Note that _FOrb and /-Ill are scalars and that, in the
absence of v21, b'll is arbitrary. In this development,

only the upper left and lower left partitions of the
above matrix equation are needed such that

Lpv11 + L6aiIu21 = vilAFO_b (9)

_llkF_U11 -- r_llu21 = v21_rO,.b (10)

Now, the goal is to eliminate v21 and solve for

ALO in terms of AFO_b. The method that proves
successful when working with the MIMO system is

the following. Equations (9) and (10) are rewritten

as

Lp I"11 -- b_l 1AFOrb = -- L6ail _'21 (11)

kFBPll = /]21 + TailV21/_FOrb (12)

Equation (11) is expanded into an infinite series
such that each term contains the right-hand side of

equation (12). To start this expansion into an infinite

series, add and subtract --LpTaill]21/_FOrb and group
terms to give

LpVll - Ull )_FOrb = -- L6ail(_21 + Tail_'21AFOrb )

-t- L6ailTailZ"21 )_FOrb

Continuing in a similar

subtracting

(- 1)' L6ail Ta_il/]21)_FOrb

manner by adding and

(i = 2,3,...,cc)

and grouping terms to get the right-hand side of
equation (12) in each term yields the infinite series

LptZl 1 - _11)_FOrb =- -L_ai I (_'21 + TaiW21 "_FOrb)

+ L6ailTail(tS21 + Tailb'21)tFOrb)/\FOrb

2 )_2
-- L6ailTail(I_'2l A- Tailb'21)_FOrb ) FOrb

3 3
+ L6ai I Tai I(t'21 + 7aiW21)_FOrb)/_FOrb ,..

Then eliminate u2t by using equation (12) so that.

Lp 1]11 - Vl I ,'_FOrb = -- L6ai 1kF B/il 1 -b L6ai 1Tail kFB l_FOrb til 1

-- LiS a, T:ilkFBi\2FOrbl"ll

3 3 c"
+ LiSailTai kbB)_FOrb 11 ,-,

Dividing out the now arbitrary Ull , the above
becomes

Lp -- )_FOrb = -L6ai t kFB + Lbai I Tail kFB)_FOrb

One can now relate the low-order (eq. (8)) and full-

order, closed-loop rigid-body pole as

ALO = AFOrb nt- L6ailTailkFBAFOrb

r 2 k A2-- _6ailTail "FB FOrb Jr- LS,i, r2ilkFBA3FO_b ...

This is an infinite series that converges as long as

]TailAFOrb [ < 1

In the case where the actuator has a much

lower time constant than the rigid-body mode

lrailAFO_bl << 1, the first two terms constitute a good
approximation to the infinite series such that

ALO _ (1 + L6ailTaill_FB))_FOrb

or

)_FOrb "_fOrb (1-_- L,SailTailkFB) -1_, -- ALO

A

where AFOrb denotes an approximation of AFOrb. A
plot of this approximation is shown in figure 7. Note

that AFO_b approximates AFO_b up to an actuator
time constant of approximately 0.06 see, which is
three times slower than the actual actuator time

constant.

.5

.4
_9

_.3

O

_.2
_9

.E
[-

.l

_ Complex

.- • " pair formed

_ _ _ _ _ actuator pole
•r',, I,,, 1 _ ,, I , , , I , , • ]

.04 .08 .12 .16 .20

Open-loop actuator time constant, sec

Figure 7. Effect of first-order actuator model on SISO system

and approximation.

Because of the divergence of AL_) and A-_FOrb , a

point will exist where the open-loop actuator time

constant is high enough that it becomes necessary
to include this actuator model in the design process.

This point will be determined by the required level

of accuracy in the final design. A point will also

exist where the rigid-body roll mode and the actuator



modecoupletogetherto form a singleoscillatory
mode.

This full-order,closed-loopsystemnow hasn + e
states with dynamics expressed as

Approximating the Transformation

First-Order Actuators

In this section, an approximation of the eigen-

space transformation is derived and tested for un-
modeled dynamics placed at the input of the rigid-

body aircraft. The eigenspace transformation relates

the rigid-body eigenspace of the low-order, closed-

loop system used for the design with the full-order,

closed-loop system. Here, the SISO results shown in
the scction cntitlcd "SISO Example" are generalized

for first-order lag actuator dynamics applied to the

MIMO design.

Without feed-through term. Consider the

following system, shown in figure 8, which represents

the HARV rigid-body system and the first-order lag
actuator models:

5c = Ax + Bv

z=Mx

Tcv = -v + u

u = KGz q- KUpilo t

(System dynamics)

(System measurements)

(Actuator dynamics)

(Control law)

(13)

Low-order
Feed-forward

Actuators system

_1 1. gains----_ A,MB,_-

A B

(_} = [TclK(_M -T_-I]{;} -1- [T;K] upilOt

z=[M 0]{ x}v

The closcd-loop stability matrix for the low-order

system is
ALo = A + BKGM

and the closed-loop stability matrix for this full-order

system is

[ . B]AFO= TelKGM -Te 1

Of interest are the cigenvectors and cigenvalues of

this closed-loop system corresponding to the rigid-

body dynamics. These correspond to Vii and A1

when this full-order system matrix is rewritten as

the spectral decomposition,

A B 0

(14)

Here, we need only the upper left and lower left

partitions of the above matrix equation, or

AVll + BV21 = VllA1

TelKGMV11 - T/iv21 = V21AI

or equivalently,

VllAI - AVu = BV21

(15)

(16)

(17)

Figure 8. Systmn block diagram with first-order lag actuators

as unmodeled dynamics.

The measurement feed-through term is omitted from

this derivation for clarity. The actuator matrix is

diagonal and contains the time constant associated
with each actuator:

0]T c _ '.

%

This formulation corresponds to actuator dynamics
with the transfer fimctions

vi(s) 1

ui(s) ris + 1
(i= 1,2,...,e)

KGMVll = V21 + TcV21A1 (18)

As an intermediate step to obtain the eigenspace

transformation approximation, equation (17) is ex-

panded as an infinite series. To generate this series,

add and subtract BT,.V21A1 and group terms cor-

responding to the right-hand side of equation (18).
This becomes

VllA1 - AVll = B(V21 + TeV21A1) - BTcV21A1

Then add and subtract BTe2V21 A2 and group as
before such that

VllA1 - AVll = B(V21 + TcV21A1) - BTe(V21

2 2
+ TeV21A1)A1 + BTeV21A1



whereA2 - AA, A3 - AAA,... Continuing to
add and subtract i iBTeV21A 1 (i = 3,4,...,oc) and
following the same grouping strategy yields the fol-

lowing infinite series:

VllA1 - AVu = B(V2I + TcV21A1)

- BTc(V21 + TeV21A1)A1

2 TcV2tA1)A 2+ BTe(V21 +

3 T_V21A1)A 3 ...- BTe(V21 + +

Equation (18) can now be substituted into each term

on the right to get

VllA1 - AVll = BKGMV11 - BTeKGMVllA1

2 2
+ BTeKGMVuA t - ... (19)

Postmultiply equation (19) by VII 1. The infinite

series that results relates the rigid-body eigenspacc
of the low-order, closcd-Ioop system with that of the

full-order, closed-loop system in which

ALO = (AFO)rb + BTeKGM(AFO)rb

2 2
- BTeKGM(AFO)r b

3 3
+ BTeKGM(AFO)rb - .,. (20)

where

(AFO)rb = Vii A1Vl-11

as defined in the section entitled "Spectral
Decomposition."

As the amount of augmentation increases (K

and G), the effect of the unmodeled dynamics on the
rigid-body dynamics is increased. As the actuators

get faster (i.e., as the elements of T_ approach 0) the

effect on the closed-loop cigenspace is decreased. The
eigenspace of the low-order, closed-loop system and

the rigid-body eigenspace of the full-order, closed-

loop system become equal.

The convergence of equation (19) is equivalent to

the convergence of

OG

E(-1)iT_KGMVllA_
i=0

This series can be bounded using the matrix 2-norm

and the Schwarz inequality (ref. 8) such that

[]T_KGMVuA_I I < IIT_[[i[[KGMV1111 IIA_II_

(i = 0, 1,...,_)

10

The matrix 2-norm of A equals max A(AA*) 1/2. By

virtue of being eigenvectors, Vll can be multiplied

by an arbitrary scalar. This factor is chosen such

that the matrix norm of KGMVll is unity, so that

lIT_KGMV11A{ [[ < (I[T_II [[A1 ][)i

Convergence of equation (19) is therefore guaranteed
when

tlT_I] II&ll < 1

Feed-through term. For many systems, the low-

order model of interest may have a feed-through or
N matrix term. This is the case for the HARV control

law design. Here, the previous analysis and the
development arc cxtcndcd to obtain the eigenspacc

transformation matrix for this type system. To

begin, consider the system that represents an aircraft

with first-order lag actuator models in which

± = Ax + Bv (System dynamics)

z = Mx + Nv (System measurements)

Te9 = -v + u (Actuator dynamics)

u = KOz + KUpilo t (Control law)

The system has n + e states, with the closed-loop

dynamics

{:}[T_qKGM

B

TelK(_N-T_-I] {:}

[0j+ Te 1K Upil°t

z=[M N]{ x}v

The spectral decomposition of the system matrix is

A [V,IT/1KGM T_qKGN-Te [V21

IV21 V22

where A1 and Vn correspond to the rigid-body

eigenspace. As before, only the upper left and lower
left partitions of this equation are used, or

VllA1 -- AVll = BY21 (21)

where

KGMV11 = QeV21 + .TeV21A1

Qe =- I - KGN

(22)



This is a useful definition for the development to

follow, since from the section entitled "Low-Order,

Closed-Loop System"

ALO = A + BQelKGM

As in the previous section, equation (21) is ex-

panded as an infinite series with terms grouped to

match the right-hand side of equation (22). The

series is generated as before: add and subtract

BQclTeV21A1 to equation (21), so that

VllA1 - AVll -- BQ[l(QeV21 + TeV21A1)

- BQ_-ITeV21A1

Then continue in a similar manner as before and

apply equation (22) as follows:

VllA1 - AVll = BKGMVll - BQ_IT_,Q_-IKGMVuAx

B -1T -1T -1 2 ...+ Qc _Q_ ,_Q_, KGMVuA1-

Convergence is guaranteed when UQ/1Te H ][A1 I[ < 1.

To obtain the final form, postmultiply by V_-I1, so
that

ALO = (AFo)r& + BQ_IT,Q_IKGM(AFO)r6

- Bc_-IT._ _..._n-IT_._a-IKGM(AFo)_b + ... (23)

An important simplification of equation (23) is

suggested by multiplying through by (AFO)rb I, so
that

ALo(AFo)rb 1 I + BQ_-'TeQ_-IKGM

- BQ[.1T,Q_'T,,Q[1KGM(AFO)rb +...

The 2-norm of each successive term on the right-hand

side, except the identity term, is shown in figure 9.

Clearly, the first two terms constitute a reasonable

approximation to the infinite series for this example.

An advantage of using the first two terms as an

approximation to the series is the following predic-

tion of the rigid-body eigenspace of the full-order,
closed-loop system expressed in terms of the low-

order, closed-loop system:

(AFO)r b ._ (I + BQelTeQeaKGM)-IALo

1.0

"1=:
09

"_' .8

e-

.6
._=

.2
O

Cq

Second term

-_- - Third term

....... Fourth term

_.,_,.7...'l.y;_-..,.-.I..___.T,- -I..... L .... I .... ]

10 20 30 40 50 60

(X,deg

Fignlre 9. 2-norm of terms in infinite series.

This expression leads to the concept of a single

matrix (an eigenspace transformation matrix) which
transforms the low-order, closed-loop stability matrix

to approximate the rigid-body eigenspace of the full-

order, closed-loop system such that

(AFO)r b "_ E-1ALo (24)

For this full-order, closed-loop system, the eigenspace

transformation matrix is simply

E = I + BQ[1TcQ_-IKGM

Application

The results of the previous development are ap-

plied to the HARV lateral-directional flight control

system design. The validity of the previous analysis
in predicting the effect of first-order actuator models

on the rigid-body dynamics is shown. The low-order

system was" used to generate the feedback gains. Be-
cause there are four measurements, the rigid-body

poles are exactly placed. Moreover, the low-order,
closed-loop eigcnspace is the desired eigenspace.

In this example, the actuators are modeled as the

following transfer functions:

1 1

TFail(S)- _1 s +1 TFrud(S)- _s+l

1 1

TFas(s) -- _s + 1 TFytv(S) -- _gs + 1

1
TFrtv(S)

_gs + 1

11



The approximateeigenspacctransformationmatrix
is then

1 I]Q tKGM1

1

E = I + BQ_ -1 _ 1

0

(25)

The expression E-tALo is postulated to be an ap-

proxinmtion to the rigid-body eigenspace of the full-

order, closed-loop system (i.e., V11A1Vll 1).

The first check on the validity of the approxima-

tion will be on the convergence of the infinite series

used to derive the eigenspace transformation matrix.
The test

[[QClWcII [[A1 < 1

is applied using the 2-norm. At an angle of attack of

20 °, the left side of the equation is equal to 0.0737.
This value indicates convergence of the series.

To examine the range in which the cigcnspace

transfornmtion matrix is valid, the poles of the ac-

tuators are gradually slowed down. This procedure

is done by multiplying the actuator poles by a reduc-
tion factor k which is varied from 1 to 0 such that

w-t -- kWe -1stow

where

Tslow _" = -v + u

The error associated with using this eigcnspacc trans-
formation matrix in predicting the roll mode pole

and Dutch roll natural frequency for a flight condi-

tion with an angle of attack of 20 ° is showm in fig-

ure I0. The actuators have been slowed by a factor
of 5 when the aileron actuator and the roll mode poles

form an oscillatory pair. The unmodelcd dynamics

will need to bc much closer in frequency to the low-
order, closed-loop system for there to bca problem

with ttle a_ssumptions made.

Figure 11 shows how well E -1ALO predicts the

rigid-body roll mode pole. The low-order characteris-
tics arc those of the design model, and they represent

placed dynamics. Tile full-order characteristics are

those of the low-order plant plus the actuator dy-

namics. The predicted characteristics arc obtained

from equation (24), and they arc expected to predict
the full-order characteristics. The Dutch roll mode

pole is shown in figure 12. Note that the variation of
tile roll mode and Dutch roll frequencies are captured

along with the variation in Dutch roll damping. The
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models.

negligible variation of the spiral mode pole, which
is not shown, is also captured by the approximation.

For all eases, the approximate eigenspace transforma-

tion matrix accurately predicts the rigid-body poles

of the full-order, closed-loop system.

The predicted effect of actuators on the desired

eigenvector elements is shown in figure 13. The first
of these elements is the ¢-to-fl ratio in the Dutch roll

mode. The second element is the/3-to-p ratio in the

roll mode. The magnitude of the ratio of each of these

two eigenvector elements is shown. These ratios give
an indication of how much the roll and Dutch roll

modes are coupled. The low-order fl-to-p ratio in the

roll mode is 0 for all cases. The low-order _-to-¢/ratio
in the Dutch roll mode coincides with that of the

full-order, closed-loop system. The/3-to-p ratio is in
seconds, and the _-to-/3 ratio is nondimensional. The

eigenvectors appear to be affected considerably less

5

4
_'_ 3

Low order

.... With actuators
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.... i .... i,,,_l .... i .... i .... l
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.016
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Figure 13. Eigenvector prediction with actuator models.

than the eigenvalues by unmodeled dynamics. This
result will show up repeatedly in the examples that

are presented. Again, the approximate eigenspace
transformation matrix accurately predicts the full-

order, closed-loop rigid-body eigenspace.

Dynamics in Other Locations

General Form of Eigenspaee
Transformation Matrix

One would like a general expression for the

eigenspace transformation matrix for dynamics at

other points, including the input to the plant, in the
control system structure. It is possible to construct

the system with a first-order lag at three locations

within this system. The eigenspace transformation

matrix for a first-order lag in any or all of these loca-
tions will then be readily available from the general
form.

13



Low-orderFeed-forward
gains system

Figure14.Systemblockdiagramwithfirst-ordertagsill three
locations.

Considerthesystemshownin figure14,in which

= Ax + Bye

u = gym

UFB = Gvl

z = Mx + Nve

Tciec = -ve + u

Tm%_ = -Vm + Uc

Tlie I = -v l + z

Uc = UFB + Upilot

where x E R n, ve E R e , vm E R m, and v I E

R I. When the equations governing this system are

combined, the full-order, closed-loop system becomesB00
/ / [00% = -T[ 1 T/_K 0

_',,_ 0 -Tin 1 T,n IG

_'l T_-lM T/iN 0 Tt -1
/x)Ve

Vm

{o}0

+ T_nt Upil°t

0

with n + e + m + l states. The spectral decomposition
of the system matrix becomes

i B 0 0

-Te 1 T_IK 0

0 -T_n 1 T_nlG

TI1M TllN 0 -Wl 1

i v1 1[ ]= V21 V22[ A] 0

V31 V32 [ 0 A2
kV41 V42J

Vll V12]

V21 V22 [

V31 V32 [
V41 V42 ]

(26)

where VII and A1 are the eigenvector elements and

eigenvalues associated with the rigid-body eigenspace
of the full-order, closed-loop system, respectively.
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The eigenvector matrix has been partitioned such

that the first-column partition contains n columns,

and the second contains c+rn+/columns. The first-,

second-, third-, and fourth-row partitions contain n,

e, rn, and l rows, respectively. Equations in the first-

column partition of the matrix equation (26) are

VHAt - AV11 = BV21 (27)

KV31 = Vzt + TpV2tA_ (28)

GV41 = V31 + TmV31A1 (29)

MVIx -- -NV21 + V41 + T1V41A1 (30)

To get. the feed-through term in a useful form, a

second version of equations (28), (29), and (30) is

needed, so that

KV31 = Q¢V21 + TeV21A1 + KGNV21 (31)

GV41 = QmV31 + TmV31A1 + GNKV31 (32)

MV11 = Q/V41 + TlVa1A1 + NKGV41 - NV21
(33)

where
Qe = I - KGN

Qm = I - GNK

Q/=_ I - NKG

As in the previous development, expansion ob-

tained via adding and subtracting needed terms will

turn equations (27) through (30) into an infinite se-

ries. It is again assumed that the speed of the un-
modeled dynamics is faster than that of the low-

order, closed-loop system. Hence, each new term of

the series will bc smaller than its predecessor. To

form an analogous approximation to the series, all

terms containing two or more time constant matrices
and two or more eigenvalue matrices will bc dropped.

Expand equation (27) so that equation (31) can be

used; thus,

VIlA1 - AVll = BQ[l(Q,V21 + T_V21At)

BQ_ -1T,Q_ -I (Q_V21 + T_V21AI)A1

+ BQelTcQclTcQ[ l (Q,_V21

+ TeV._IAI)A_ -...

Then apply equation (31) and drop the terms with

higher powers of Te and A1, so that

V|IA1 - AV11 ,_ BQ[ l (KV31 - KGNV21)

- BQ_ITcQ[ t (KV31 - KGNV21)A1

For the remainder of the development, this equation
will be stated as an approximation; all terms with



more than a single appearance of T and A1 will be

dropped as they occur.

Expand the above equation again so that the

right-hand side of equation (29) appears as

VllAt - AVll _- BQ_-IK(V31 + TmV31Al - GNV21)

- BQ[I KTmV31AI

- BQ_-1TcQ_-lK(V31 + T._ValAl

- GNVm)A1

Then by equation (29),

VIIA1 AVll _ BQclK(GV41 - GNV21)

- BQ_-1KTmV31A1

- BQ_1T,Q[1K(GV41 GNV21)A1

Equation (32) will now bc used to eliminate the last

V31 term, so that

VllAI - AVI1 _ BQ[_KG(V41 - NV21)

- BQ_-_KT,,,Q.,, 1(Q,,,V31 + TmV31AI)A_

- BQ[ _TeQ_-_KG(V41 - NV21)AI

and then

V11AI - AVll ,_ BQ_TtKG(V41 - NV21)

- BQ/I KT,nQ_ _G(V41 - NKV31)A1

- BQ_ IT,,Q[_KG(V41 - NV21)AI

Equation (28) is then used; thus,

VllAI - AVu _ BQ_-IKG(V41 - NV21)

- BQ_XKT,,,Q_IG(V41 - NV2_)A1

- BQelTcQ_-IKG(V41 - NV21)A1

Expand the above equation again so that the

right-hand side. of equation (30) will allow V41 to

bc eliminated:

VuA1 -AVll _ BQ_1KG(V41 + T/V41A1

-- NV21) - BQelKGT/V41A1

- BQ_-IKT,,,Q_IG(V4t + T_V41AI

- NV21)A1 - BQ[ITeQ_?IKG(V41

+ T/V41AI - NV2t)A1

Then apply equation (30), so that

VllA1 - AV11 _ BQe-IKGMVll

- BQelKGTIV,ilA1

- BQ_- 1KTm Q_rt 1 GMV11 A 1

_ BQ_-ITeQ_-I KGMV11A_

Next expand the above expression so that equa-

tion (33) is used and

VllA1 - AVll _ BQ_-IKGMVu

- BQ[1KGTIQt1(V41 + T/V41A1)At

- BQ[1KT.,Q_,1GMVI | A1

- BQ_-ITcQcl KGMVllAI

or

VllAt - AVll _ BQe-IKGMVI_

- BQ_-_KGTtQ_ -_ (MVu - NKGV4_

+ NV2t)A_ - BQ_KTmQm_GMVt_A1

- BQ[1T, Q_7_KGMVuAi

Equations (29) and (28) are subsequently applied to

eliminate the last Y41 term; thus,

VitAl - AVll _ BQ_-_KGMVil

- BQ_IKGT/Q[ l (MV_I - NV21

• + NV21)A1 BQelKTmQ_I GMVll At

- BQ_YlT,,Q_-IKGMVt IA_

All unwanted terms are eliminated, so that

VllA1 AV_I _ BQ_-IKGMVtl

- BQ/_KGTIQ/IMV_IAI

- BQ_ q KT,.Q_ _GMVII A_

- BQ[_ T¢,Q[_KGMVIIAt

Finally, note that

Qe_KG = (I - KGN)-_KG = KG(I NKG) -1 - KGQI l

QfflK=(I-KGN)-IK=K(I GNK) -_ =KQm _

15



by the matrix inversion lemma. The approximation
is then converted to the familiar form:

VllA1 - AV11 _ BQ_71KGMV11

- BKGQtlTlQ_-lMV11A1

- B KQ_I T,n Q_,I G MV11A l

- BQ_- IT_Q/1KGMVllA1

Postmultiplying the result by V{-t 1 yields

ALO _ (AFO)rb + BKGQilTIQ_IM(AFo),.b

-1 -l
+ BKQ, n T,,_Q,_ GM(AFO)r b

+ BQ[1T_Q_-IKGM(AFO)rb

where

ALO ----A + BQ[1KGM

(Ayo),,b = VllA1Vn 1

The eigenspace transformation matrix is now

E = I + BK(3Q_-ITIQ_-IM + BKQ_tlT,nQ,,-_I GM

+ BQ[IT_Q_-IKGM (34)

Note that the previous derivation for first-order

lag actuator models is a subset of this result. If

the first-order lag at any one of these points is not

present, then the associated time constant is 0. In
addition, within each matrix of time constants, any

of the elements can be 0 when that particular signal

does not have a lag to be modeled.

Two or more first-order lags in series at a partic-

ular location in the system are handled in a simple

way. The time constants associated with each chan-

nel only need to bc summed before applying equa-

tion (34). For example, the approximate cigenspace
transformation matrix of two first-order lags in series
with time constants of 0.01 scc and 0.02 sec

('1)( 1 )_ 1().01s + 1 0.02s + 1 0.002s 2 + 0.03s + 1

1

0.03s + 1

will be the same as that of a single first-order tag
with a time constant of 0.03 scc. Note that this

substitution will be good over the frequency range

of the rigid-body dynamics.
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Application

By using the subset of equation (34) that corre-

sponds to a system with first-order lag in controls,
one obtains

E = I + BKQ_zlT,_Q_IGM (35)

where
Qrn - I - GNK

ALO = A + BQ_-;KGM

These results will bc used to predict the effect of the

roll-off filters shown in figure 4. The roll-off filter
transfer function is

1

Tr o( ) - + 1

in each channel. Therefore, for this example, the

eigenspace transformation matrix is

E=I+BKQ_nl [ _ 0]Q_IGM (36)0

The purpose of the roll-off filter is to attenuate
high-frequency commands. This attenuation should

reduce potential problems caused by structural dy-
namics or noise. Results similar to those of the actu-

ators are expected, since both the actuators and the
roll-off filters are first-order lags. Figure 15 shows

the predicted effect of the filters on the roll mode

pole. The predicted effect of the filters on the Dutch

roll mode pole is shown in figure 16. Figure 17
shows the predicted effect of the filters on modal

coupling. The effect of these unmodeled dynamics

is more pronounced because the roll-off filters are

slower than the actuators. Again, the approximate

eigcnspace transformation matrix accurately predicts
the rigid-body eigenspacc of this full-order, closed-

loop system.

Higher-Order Filters

Equivalent First-Order Lag

Now that the eigenspacc transformation is avail-

able to predict the effects that first-order lags have

on the rigid-body cigenspace of the full-order, closed-

loop system, it is useful to generalize the transfor-

nmtion to higher order filters. More specifically, one
would like to handle dynamics such as lead or lag

compensators, transport delays, and notch filters.

Handling these dynamics is essential when faced with

the second-order filters found in the HARV flight con-
trol system. A system with unmodelcd higher order

filters on the controls is shown in figure 18. The feed-

through term has been removed for this analysis.
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Thesystemcanbewrittenasfollows:

= Ax + BKw

z= Mx

UFB = GZ

U c = UFB + Upilot

¢- = AFV + Bvuc

w----MFv+NFUc

(System dynamics/

feed-forward gains)

(System measurements)

(Feedback control)

(Feed-forward control)

(Filter system dynamics)

(Filter measurements)

where the filters in parallel channels are realized as

0]AF = "..

Af,,_

0]B F = ...

B/,,,

0]MF = "-.

Mfm

0]NF= "..

NL,_

thus giving each higher order filter a transfer function
of the form

M A (sI- Af,)-I BL + Nf_ (i = 1,2,...,m)

The closed-loop system matrix spectral decompo-

sition for this system is

[A + BKNFGM BKMF ] [Vll V12 ]
[ BFGM AF J LV21 V22J

0v,21[ ,A21[g2t V22J

where again AI and Vii correspond to the rigid-

body eigenspace. When multiplied out, this equation

yields four matrix equations. Two of these equations,
which correspond to the upper left and lower left

partitions, can be written as

VI1AI-(A+BKNFGM)Vll = BKMFV21 (37)

-AF1BFGMVll = V21 -- AFIV21A1 (38)

where it is assumed that the higher order filters have

no poles at the origin. Equation (37) is expanded by

methods used in previous sections to yield the infinite
series

VI 1AI - AVI t - BKNFGMVI1

= BKMF(V21 - A_. IV21A1) + BKMFAFI (V21

- A_,IV21A1)At + BKMFAF2(V21 - A_,IV21At)A12 + ...

Substituting equation (38) yields

VIIAI AVll - BKNFGMV u

= -BKNIFAF1 BFGMVI 1

- BKMFA_.2BFGMVuA1 - BKMFA_,3GMVuA_ - ...

Postmultiplying by Vn 1, we get

(AFo),, b = A + BKNFGM BKMFA;)BFGM

- BKMFAFZBFGM(AFO)Tb

- BKMFAF3BFGM(AI:O)2rb -... (39)

The type of higher order filters considered is
restricted to those with a steady-state gain of 1

through all channels. Tile steady-state gain is the

limit of the filter transfer function as s goes to 0.

This gain of 1 yields the relations

-MLAfilB A + Nfi = 1

or

-MFAF1BF + N F = I

Using this result to combine tile first three terms on

the right-hand side of equation (39), we get

ALO = (AFO)rb + BKMFAF2BFGM(AFO)rb

+ BKMFAF3BFGM(AFo)2rb +... (40)

Tile approximate eigenspace transformation matrix

of any higher order filter with a steady-state gain of

1 is the same as that of a first-order lag with an equiv-

alent time constant matrix equal to MFA_2BF.

Second-order filter. A second-order filter mod-
eled as the transfer function

Wi(8) _ a)2den/ (s2 _+_2_numi_numi.. s _+ LO2umi )
Ui(S) _ _ 82 + 2¢deniWdeniS + W2en i
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hasthefollowingsystemmatrices

[: +' ]deni

Afi = _2_deniCOden i
(i = 1,2,...,m)

+,[ , , ]den/ ¢Onumi -- 00deni

BI/ -- 002
numi 2 (<numi00numi -- <deni00deni)

Mr, = [0 1]

002
den/

Nk - 002
nllm a

The equivalent time constant is MAAfi2Bfi or

7-/=2( _deni ffnumi ) (41)
\ 00deni 00numi

As an example, consider a notch filter with a de-

nominator damping ratio of 0.7, a numerator damp-
ing ratio of 0.1, and equal natural frequencies in

the numerator and the denominator. From equa-

tion (41), we see that the effect of the filter on the

rigid-body eigenspace will be virtually the same as

that of a first-order lag with a break frequency of
83 percent of the natural frequency of the notch filter.

Time delay. The first-order Pad6 approxima-

tion to a transport delay is written as

wi(s) _ 1 - (tdi/2) s

ui(s ) 1 + (td,/2) s

The system matrices can be written as

-2 4

A k = td7 B f, = tdi

M k = 1 Nfi = -1

The appropriate first-order lag for this transfer func-

tion is found to have a time constant equal to the

transport delay magnitude such that

Ti = tdi

Lead/lag compensator. Another type of filter

that has been considered is a lead/lag compensator
of the form

W i (8) Tnumi S + 1

ui (s) rdeni s + 1

or in state-space form

- 1 Tdeni -- "mum/
Afi -- B k =

Tdeni T 2
deni

Mfi = 1 Nfi -- rnumi
"/'den/

The rigid-body eigenspace of the full-order, closed-

loop system that includes this filter can be accurately

predicted using the eigenspace transformation ma-
trix corresponding to a first-order lag with a time
constant of

T i = g(ten i -- Tnumi

This result implies that such a compensator could be

designed to cancel much of the effect of unmodeled

dynamics on the rigid-body eigenspace.

Application

The HARV lateral-directional second-order filters

have the transfer function

TF(s)- 00del, 2 '2
2 _ S2 + 2;den00,tenS + CO_en ,j00nllm

with characteristics shown in table 1. The first two

characteristics listed are the command filters; the re-

maining five are measurement notch filters. The two
lateral acceleration filters are configured in series.
Each of these two filter sets will now be considered.

Table 1. HARV Second-Order Filters

Filtered 0aden,

signals rad/sec

:b_ 40

G 40

P6 80

rb 150

nysens 58

80

/}_ons 80

_den

0.6
.6

.7

.7

.7

.7

.7

_num )

rad/sec (mira

140 0.74

140 .74
80 .08

150 .08

58 .08
80 .08

80 .10

For the command filters, equations (34) and (41)

imply that the eigenspace transformation matrix
should be

E=I+BKQ_ 1 [0.0_940.01940 ]QmlGM (42)

Although a feed-through term was not included when

deriving the equivalent time constants for higher
order filters, it has been postulated that the feed-

through term should be handled in the same way as

suggested in previous sections.
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Figure 20. Dutch roll mode pole prediction with command
second-order filters.
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Figure 21. Eigenvector prediction with command second-
order filters.

Prom the previous discussion, these second-order
command filters, having zeros with frequencies of

140 rad/sec and poles with frequencies of 40 rad/sec,
will affect the rigid-body eigenspace of the full-order,

closed-loop system in the same manner as a roll-
off filter with a time constant of 0.0194 sec. The

eigenspace results are shown in figures 19, 20, and 21.

Again, the approximate eigenspace transformation
matrix accurately predicts the resulting rigid-body

eigenspace.

The second-order filters in the measurement loop

are notch filters designed to cancel resonant peaks
in the structural model. There are two second-

order filters in series for the ny_¢_ channel, so the
approximate time constant associated with each will

be summed to approximate the effect of both. The

eigenspace transformation matrix associated with the
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filters.

measurement notch filters is, from equations (34)

and (41),

0.0155 0
E I+BKGQ[ 1 0.0083 O/-_M0.0369

0.0150

(43)

The effects of these notch filters are shown in fig-

ures 22, 23, and 24. The eigenvalues and eigenvectors
of E- 1AL 0 predict very well the resulting rigid-body

eigenspace. Only a slight degradation in the predic-
tion of the small fl-to-p ratio in the roll mode effect

is observed. Hence, the approximatc first-order lags
are a suitable substitute for thc higher order filters

in this example.

This section has shown how the effects of higher

order filters on the closed-loop rigid-body eigenspace

can be evaluated using first-order lags placed at the

same loop location. This result is expected as long as
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thesteady-stategainsoftheunmodeledhigherorder
filtersareunity.

HARV Full-Order, Closed-Loop System
An approachis nowproposedto predictthe si-

multaneouseffectof all unmodeleddynamics(which
is introducedin the sectionentitled "Full-Order,
Closed-LoopSystem")ontheHARVcontrollawde-
sign. The strategyis straightforward:approximate
theHARVfull-order,closed-loopsystemof figure4
usingthe closed-loopsystemin figure14by replac-
ing all nnmodeled dynamics with equivalent first-

order lag components. Equation (34), which defines

the eigenspace transformation matrix in this simpler

case, is then directly applied.

The full-order, closed-loop system is placed in tile

simpler form as follows. Note that the actuators are

already modeled by first-order lags; therefore, noth-
ing needs to be done. Turning to the other un-

modeled dynamics, tile second-order command and

measurement notch filters are replaced by approxi-
mate first-order lags derived in the section entitled

"Higher Order Filters." Here, it is postulated that

the results of that section, which were only consid-
ered filters at a single-loop location, extend to filters

at multiple-loop locations. Next, the filters in series

(i.e., the first-order roll-off and approximate com-

mand filters) arc replaced by single first-order lags.
The time constant of tim approximate lag equals the

sum of the time constants of the replaced lags; this

leads to a system of the form shown in figure 14

with first-order lag elements at three separate loop
locations. Equation (34) can then be used to obtain

tile eigcnspace transformation matrix, where (from

eq. (25)),

W e =

-0.0208 0
0.0250

0.0333
0.0208

0 0.0208

From equations (36) and (42),

[0._4 0 I [ 0.0_94 0 1 [ 0.059,1 0 ]
Tm = + =

0.04 0.0194 0 0.059,'1

From equation (43),

W l =

0.0155
0.0083

0.0369 oI
0.0150

Figure 25 shows the prediction of the roll mode

pole. Figure 26 shows the Dutch roll mode pole.
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Figure 27 contains the eigenvector element ratio pre-

diction. As before, the eigenvalues and the eigen-

vectors of E- ] ALO predict the rigid-body eigenspace
of the 25th-order, closed-loop system.

Conclusions and Recommendations

The approach presented in this report allows the

control law designer to predict to what extent un-

modeled dynamics affect the closed-loop, rigid-body
eigenspace. Such insight is important when decid-

ing which dynamics will be included in the model

used to design the controller. A single-input, single-
output example was used to illustrate and predict the

effect of unmodcled dynamics on a closed-loop, rigid-

body pole. This result was extended to multiple-

input, multiple-output dynamics, thus leading to
the concept of an cigenspace transformation ma-

trix that rclates the desired closed-loop rigid-body

eigenspace to that obtained in the presence of un-

modeled dynamics.

The approach was first developed for unmodeled

first-order lag elements at one specific loop location

and then extended to multiple-loop locations. The
eigenspace transformation matrix was shown to ac-

curately predict the achieved rigid-body cigenspace

for this type of unmodeled dynamics. For higher

order unmodeled filters with a steady-state gain of
unity, derived approximate first-order lag compo-

nents were shown to be a suitable replacement in

predicting the achieved rigid-body eigenspace. The
approximate components were easily found from the

state-space expressions of the unmodeled higher or-

der filters. Also, the aggregate effect of many types

of unmodelcd dynamics on the achieved rigid-body
eigenspace was shown to bc well predicted.

In conclusion, note that thcrc will always be

some errors in the achieved rigid-body eigenspace,
whether they are caused by poor mathematical mod-

els, off-design flight conditions, or unmodeled dynam-
ics. The goal is to find what these errors are and

determine if they will be acceptable. A method for

predicting how some unmodeled dynamics affect the

rigid-body eigenspaee is now available.

Some important areas of future work suggested

by this research include the following:

1. Developing a method to predict the achieved

rigid-body dynamics when a significant frequency

separation does not exist between the rigid-body
and unmodeled dynamics (i.e., when the convergence

criteria would be violated)

2. Formulating sensitivity relationships that de-

termine changes in the achieved rigid-body dynamics
caused by incremental changes in unmodeled equiv-

alent first-order lag time constants

3. Developing a desired eigenspaee adjustment

procedure to account for the effect of unmodeled dy-

namics on the final full-order, closed-loop eigenspace

using the eigenspace transformation matrix concept

4. Developing methods to change the design
model, instead of the desired eigenspace, to account

for the effect of unmodeled dynamics in the control
system design process

NASA Langley Research Center

Hampton, VA 23681-0001
January 31, 1994
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Appendix A

HARV Lateral-Directional Aircraft

Model

This appendix contains the linear models repre-
senting the High Alpha Research Vehicle (HARV)
lateral-directional rigid-body aircraft dynamics at
the 13 flight conditions used in this study. A full
nonlinear model (ref. 7), written in the Advanced
Control Simulation Language (ACSL), was used to

generate these Jacobians. The form of the linear sys-
tem is

± = Ax + Bu

z = Mx + Nu

(Low-order dynamics)

(System measurements)

with four states, four measurements, and five effec-
tors. The states are lateral velocity, stability-axis roll
rate, stability-axis yaw rate, and bank angle (given in
units of feet per second, radians per second, radians
per second, and radians, respectively). The measure-
ments are body-axis roll rate, body-axis yaw rate, lat-
eral acceleration, and sideslip rate (given in units of
radians per second, radians per second, g units, and
radians per second, respectively). The effectors are
aileron, rudder, asymmetric stabilator, yaw thrust
vectoring, and roll thrust vectoring (all given in units
of degrees).

Finite differencing was used to generate the
Jacobians. Table A1 contains the perturbation step
size on states and effectors used to generate the
Jaeobians. These Jaeobians are listed in table A2.
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Figure A1. Roll and spiral mode poles of open-loop aircraft.
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Figure A2. Dutch roll mode pole of open-loop aircraft.

Table A1. Finite Differencing Perturbation Sizes

Perturbation Perturbation

State size Effector size, deg

2
12 8

Ps

rs

vr/t0 ft/sec
.08 rad/sec

.08 rad/sec

.04 rad

_ail

_rud

¢Sytv

_rtv

The open-loop roll and spiral mode poles for each
flight condition are shown in figure A1. Figure A2
shows the open-loop Dutch roll frequency and damp-
ing. Fignlre A3 contains plots of the two open-loop
eigenvector characteristics used in the numerical ex-
amples to quantify modal coupling. Note that the
¢4o-/3 ratio is nondimensional.

-- _-to-_ ratio in Dutch roll
- - - [3-to-p ratio in roll mode, sec

3.5 ................... : .........................................

050
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: _ . k_ _:_ _ _ _:

0 l 0 20 30 40 50 60
co,deg

Figure A3. ¢-to-fl in Dutch roll and fl-to-p roll mode eigen-

vector element ratios of open-loop aircraft.
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= 2.5 °

A

Table A2. HARV Jacobians

VT = 837 R/sec

-0.1855 0.0072 -836.1471 32.1675

-0.0271 -2.7580 0.6086 0.0000

0.0058 0.1084 -0,1614 0.0000

0.0000 1.0000 0.0000 0.0000

n z

-0.0946 0.5304 -0,2000 0.2628 0.0056

0.4398 0.0578 0.4538 -0.0048 0.0181

-0,0209 -0.0419 -0.0171 -0.0317 -0.0015

0,0000 0.0000 0.0000 0.0000 0.0000

M z

0.0000 0.9990 -0.0436 0.0000

0.0000 0.0436 0.9990 0.0000

-0.0030 0.0964 -0.0560 0.0000

-0.0002 0.0000 -0.9993 0.038,1

N

0.0000 0,0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0197 -0.0009 -0.0218 0.0041 -0.0008

-0.0001 0.0006 -0.0002 0.0003 0.0000

_z5 °

A -

Vr = 598 R/see

-0.1305 0.1512 -597.5921 32.1675

-0.0187 -1.5272 0.6757 0.0000

0.0050 0.1152 -0.1529 0.0000

0.0000 1.0000 0.0000 0.0000

B -

-0.0551 0.2975 -0.1025 0.2461 0.0024

0.27,I6 0.0314 0.2224 -0.0059 0.0176

-0.0283 .-0.0242 -0.0161 -0.0294 -0.0019

0.0000 0.0000 0,0000 0.0000 0.0000

M z

0.0000 0.9962 -0.0872 0.0000

0.0000 0.0872 0.9962 0.0000

-0.0021 0.0535 -0.0462 0.0000

-0.0002 0.0003 -0.9992 0.0538
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N

0.0000

0.0000

-0.0134

-0.0001

c_ = 10 °

n

-0.0955

-0.0194

0.0062

0.0000

B

0.0286

0.1350

-0.0261

0.0000

M z

0.0000

0.0000

-0.0012

-0.0002

N

0.0000

0.0000

-0.0068

-0.0001

a = 15 °

A z

-0.O7O2

-0.0185

0.0069

0.0000

B

0.0198

0.0817

-0.0236

0.0000

0.0000

0.0000

0.0002

0.0005

VT = 421 ft/sec

0.1610

-0.8687

0.1333

1.0000

0.1409

0.0146

-0.0130

0.0000

0.9848

0.1736

0.0295

0.000,1

0.0000

0.0000

-0.0002

0.0003

VT = 361 ft/sec

0.1331

-0.5227

0.1218

1.0000

0.0873

0.0078

-0.0089

0.0000

Table A2. Continued

0.0000

0.0000

-0.0100

-0.0002

-420.2861

0.6852

-0.1871

0.0000

0.0358

0.1010

-0.0161

0.0000

-0.1736

0.9848

-0.0392

-0.9991

0.0000

0.0000

0.0042

-0.0001

-360.9948

0.6580

-0.2358

0.0000

-0.0149

0.0618

-0.0160

0.0000

0.0000

0.0000

-0.0038

O.O0O4

32.1674

0.0000

0.0000

0.0000

0.2500

-0.0085

-0.0291

0.0000

0.0000

0.0000

0.0000

0.0765

0.0000

0.0000

-0.0038

0.0006

32.1679

0.0000

0.0000

0.0000

0.2497

-0.0105

0.0282

0.0000

0.0000

0.0000

-0.0OO7

0.0000

0.0006

0.0177

-0.0032

0.0000

0.0000

0.0000

-0.0007

0.0000

-0.0013

0.0174

-0.0045

0.0000
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M _

0.0000

0.0000

-0.0007

-0.0002

N

0.0000

0.0000

-0.0044

-0.0001

a = 20 °

A

-0.0558

0.0236

0.0095

0.0000

B

-0.0076

0.0463

-0.0183

0.0000

M

0.0000

0.0000

-0.0005

-0.0002

N

0.0000

0.0000

-0.0026

0.0000

a = 25 °

A

-0.0472

-0.0191

0.0103

0.0000

0.9659

0.2588

0.0169

0.0004

0.0000

0.0000

-0.0002

0.0002

VT=334 ff/sec

0.0399

-0.299,1

0.0932

1.0000

0.0559

0.0037

-0.0061

0.0000

0.9397

0.3420

0.0069

0.0001

0.0000

0.0000

-0.0002

0.0OO2

VT=307 ft/sec

--0.0569

--0.2336

0.0901

1.0000

Table A2. Continued

-0.2588

0.9659

-0.0407

-0.9994

0.0000

0.0000

-0.0026

0.0000

-333.9384

0.6024

-0.2796

0.0000

-0.0079

0.0451

-0.0168

0.0000

-0.3420

0.9397

-0.0477

-1.0002

0.0000

0.0000

-0.0021

0.0000

-308.1857

0.5856

-0.3405

0.0000

0.0000

0.0000

0.0000

0.0891

0.0000

0.0000

-0.0037

0.0007

32.1655

0.0000

0.0000

0.0000

0.2406

-0.0121

-0.0262

0.0000

0.0000

0.0000

0.0000

0.0963

0.0000

0.0000

-0.0036

0.0007

32.1649

0.0000

0.0000

0.0000

0.0000

0.0000

-0.0006

0.0000

0.0038

0.0160

-0.0063

0.0000

0.0000

0.0000

-0.0007

0.0000
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U -

0.0108

0.0315

-0.0162

0.0000

M

0.0000

0.0000

-0.0002

-0.0002

N m

0.0000

0.0000

-0.0015

0,0000

= 30 °

n

-0,0403

-0.0099

0.0060

0.0000

U -

0.0195

0.0211

-0.0137

0.0000

M z

0.0000

0.0000

-0.0007

-0.0001

N--

0.0000

0.0000

-0.0008

0.0001

0.0375

0.0005

-0.0035

0.0000

0.9063

0.4226

0.0007

0.0002

0.0000

0.0000

-0.0001

0.0001

_=282 _/sec

-0.1336

-0.3858

0.2001

1.0000

0.0270

-0.0006

-0.0022

0.0000

0.8660

0.5000

0.0041

-0.0005

0.0000

0.0000

0.0000

0.0001

Table A2. Continued

0.0061

0.0355

-0.0180

0.0000

-0.4226

0.9063

-0.05,'14

-1.0006

0.0000

0.0000

0.0018

0.0000

-282.2590

0.7811

-0.5262

-0.0280

0.0183

0.0288

-0.0185

0.0000

-0.5000

0.8660

-0.0675

-1.0009

0.0000

0.0000

-0.0013

0.0001

0.2548

-0.0158

-0.0260

0.0000

0.0000

0.0000

0.0000

0.1044

0.0000

0.0000

-0.0037

0.0008

32.15,I9

0.0000

0.0000

0.0000

0.2471

-0.0167

0.0243

0.0000

0.0000

0.0000

0.0000

0.11,10

0.0000

0.0000

0.0036

0.0009

0.0027

0.0169

-0.0084

0.0000

0.0000

0.0000

-0.0008

0.0000

0.0007

0.0166

-0.0099

0.0000

0.0000

0.0000

-0.0008

0.0000
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a = 35°

a

Table A2. Continued

VT = 268 h/see

-0.0423 -0.2074 -267.5458 31.9377

-0.0027 -0.3022 0.8106 0.0000

0.0019 0.1766 0.6487 0.0000

0.0000 1.0000 0.1202 0.0000

B z

0.0246 0.0214 0.0250 0.2432 0.0007

0.0155 -0.0011 0.0246 -0.0183 0.0155

-0.0124 -0.0015 -0.0196 -0.0226 -0.0112

0.0000 0.0000 0.0000 0.0000 0.0000

M

0.0000 0.8192 -0.5736 0.0000

0.0000 0.5736 0.8192 0.0000

-0.0012 -0.0048 -0.0715 0.0000

-0.0002 -0.0008 -1.0010 0.1195

N _-

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0005 -0.0001 0.0011 -0.0036 -0.0008

0.0001 0.0001 0.0001 0.0009 0.0000

c_ = 40 °

a

VT = 261 ft/sec

-0.0435 -0.2705 -261.6818 31.4210

0.0003 -0.3069 0.6522 0.0000

-0.0018 0.2127 -0.6251 0.0000

0.0000 1.0000 -0.2193 0.0000

B

0.0257 0.0181 0.0277 0.2401 0.0007

0.0125 -0.0018 0.0210 0.0198 0.0143

-0.0123 -0.0008 -0.0208 -0.0208 -0.0124

0.0000 0.0000 0.0000 0.0000 0.0000

M

0.0000 0.7660 -0.6428 0.0000

0.0000 0.6428 0.7660 0.0000

-0.0018 -0.0081 -0.0628 0.0000

-0.0002 -0.0010 -1.0008 0.1202
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N z

0.0000

0.0000

-0.0004

0.0001

a -- 45 °

t z

-0.0383

-0.0105

0.0088

0.0000

n

0.0079

0.0109

-0.0129

0.0000

g

0.0000

0.0000

-0.0012

-0.0001

N z

0.0000

0.0000

-0.0009

0.0000

a = 50 °

n

-0.0333

-0.0077

0.0084

0.0000

B

-0.0118

0.0087

-0.0129

0.0000

0.0000

0.0000

-0.0001

0.0001

Vr = 262 ft/sec

-0.206I

0.1843

-0.2481

1.0000

0.0162

-0.0030

0.0004

0.0000

0.7071

0.7071

0.0350

-0.0008

0.0000

0.0000

-0.0001

0.0001

liT = 262 ft/sec

0.0412

-0.0330

-0.0162

1.0000

0.0147

-0.0035

0.0014

0.0000

Table A2. Continued

0.0000

0.0000

-0.0011

0.0001

-261.3775

0.0830

-0.1543

-0.3264

0.0265

0.0247

-0.0269

0.0000

-0.7071

0.7071

-0.0210

-0.9994

0.0000

0.0000

-0.0011

0.0001

-261.3253

0.2272

-0.3423

-0.4366

0.0367

0.0240

-0.0290

0.0000

0.0000

0.0000

-0.0036

0.0009

30.5801

0.0000

0.0000

0.0000

0.2349

-0.0211

-0.0189

0.0000

0.0000

0.0000

0.0000

0.1169

0.0000

0.0000

-0.0036

0.0009

29.4804

0.0000

0.0000

0.0000

0.2294

-0.0222

-0.0170

0.0000

0.0000

0.0000

-0.0008

0.0000

0.0007

0.0131

0.0135

0.0000

0.0000

0.0000

-0.0008

0.0000

0.0007

0.0117

-0.0144

0.0000
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M=

0.0000

0.0000

-0.0008

-0.0001

N =

0.0000

0.0000

-0.0016

0.0000

a = 55 °

t =

-0.0380

-0.0065

0.0087

0.0000

B =

-0.0145

0.0064

-0.0124

0.0000

M =

0.0000

0.0000

-0.0009

-0.0001

N=

0.0000

0.0000

-0.0017

-0.0001

a = 60 °

t =

-0.0472

-0.0058

0.0089

0.0000

0.6428

0.7660

-0.0122

0.0002

0.0000

0.0000

-0.0001

0.0001

1@ = 266 ft/sec

0.1644

-0.0508

0.0197

1.0000

0.0143

-0.0030

0.0011

0.0000

0.5736

0.8192

-0.0050

0.0006

0,0000

0.0000

0.0002

0.0001

VT=276 ft/sec

0.1523

-0.0638

0.0320

1.0000

Table A2. Continued

-0.7660

0.6428

-0.0208

-0.9985

0.0000

0.0000

-0.0003

0.0001

-265.4073

0.2138

-0.3784

-0.5303

0.0719

0.0309

-0.0380

0.0000

-0.8192

0.5736

-0.0240

-0.9990

0.0000

0.0000

0.0018

0.0003

-275.5784

0.2364

-0.3957

-0.6794

0.0000

0.0000

0.0000

0.1126

0.0000

0.0000

-0.0036

0.0009

28.4186

0.0000

0.0000

0.0000

0.2260

-0.0229

-0.0150

0.0000

0.0000

0.0000

0.0000

0.1070

0.0000

0.0000

-0.0036

0.0009

26.6075

0.0000

0.0000

0.0000

0.0000

0.0000

-0.0008

0.0000

0.0007

0.0103

--0.0152

0.0000

0.0000

0.0000

-0.0008

0.0000
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B

-0.0156

0.0051

-0.0131

0.0000

M

0.0000

0.0000

-0.0013

-0.0002

N

0.0000

0.0000

-0.0018

-0.0001

0.0144

-0.0022

-0,0001

0.0000

0.5000

0.8660

-0.0083

0.0006

0.0000

0.0000

0.0003

0.0001

Table A2. Concluded

0.1012

0.0227

-0.0296

0.0000

-0.8660

0.5000

-0.0097

-0.9995

0.0000

0.0000

0.0037

0.0004

0.2251

0.0236

-0.0128

0.0000

0.0000

0.0000

0.0000

0.0965

0.0000

0.0000

-0.0034

0.0008

-0.0071

0.0107

-0.0144

0.0000

0.0000

0.0000

-0.0001

0.0000
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Appendix B

Baseline HARV Flight Control System

Gains

This appendix contains the linear feed-forward

and measurement feedback gains for the 13 flight
conditions considered. There are two controls and

five effectors. As previously stated, the effectors are

aileron, rudder, asymmetric stabilator, yaw thrust

vectoring, and roll thrust vectoring (which are all
measured in degrees). Tile measurements are body-

axis roll and yaw rate (which are measured in radians

per second), sensed lateral acceleration (which is

measured in g units), and sensed sideslip rate (which
is measured in radians per second). The controls

are commanded roll and yaw acceleration (which are

measured in radians per second squared). The feed-

forward and measurement feedback gain matrices are
listed in table B1.

The feed-forward gains are designed such that tile

two controls are mapped into the five effectors. The

two controls are commanded roll and yaw angular

acceleration. The feed-forward gain matrix is a

Jacobian of a control mapping algorithm (discussed
in ref. 6), which is evaluated at the various trimmed

flight conditions. For the purposes of this research,

the set of feed-forward gain matrices is assumed to

be given. The controls are a sum of pilot input and

feedback (fig. 3),

U = K(UFB + Upilot)

The measurement feedback gain matrices map the
four measurements into the two controls such that

UFB -- Gz

The baseline gains listed wcrc designed using the
CRAFT (control power, robustness, agility, and

flying-qualities tradc-offs) procedure of reference 2.

These gains are designed to bc scheduled with angle
of attack.
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Table B1. Feed-Forward and Feedback Gain Matrices

= 2.5 °

K=

2.4595 1.6767

-1.5926 -34.1549

0.3513 2.5021

0.0000 0.0000

0.0000 0.0000

G=

-0.1062 -0.6541

-0.0642 0.1223

K=

4.0206 2.4478

-5.6765 -62.0159

0.8725 4.9350

0.0000 0.0000

0.0000 02000

G=

-0.5442 -0.7925

-0.0625 0.1133

= 10 °

N=

6.9486 2.5159

-21.1127 -116.4603

2.3793 8.9879

0.0000 0.0000

0.0000 0.0000

G=

-1.1081 -1.2024

-0.0437 0.1778

= 15 °

N=

10.1457 -0.9134

-27.6594 -103.2218

3.4755 7.2567

-6.1403 -21.9256

0.0000 0.0000

0.0441

0.0460

-0.2824

2.1799

-0.0019

0.0524

-0.3825

1.7372

-0.1014

0.0607

-0.1852

1.7539
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TableB1.Continued

G_

-1.2663 -1.1728 -0.0005 -0.6436

0.0228 0.2459 0.0600 1.5931

a = 20 °

K--

14.2474 --5.3125

-33.5753 -90.8832

5.0302 3.8308

11.3867 -30.2217

02000 0.0000

G=

-1.4859 -2.0383 -0.6063 -1.2320

0.0681 0.3996 0.200,1 1.9451

= 25 °

K-

14.1097 -14.4480

-41.1839 -84.1229

4.7607 -1.7777

-13.5142 -28.1494

0.0000 0.0000

G=

-1.5959 -1.9635 0.3622 -1.1257

0.0885 0.4970 0.0183 2.1152

= 30 °

K=

13.2511 -23.2949

-47.7514 -75.2633

3.9250 -7.5768

-15.1551 -25.5799

0.0000 0.0000

G=

0.4186 -2.2548 0.1121 -1.2376

-0.2107 0.7058 -0.0254 1.6765
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= 35°
K=

11.7391
-58.3414

1.8687
-17.7790

0.0000

G=

0.1880
-0.3412

= 40°
K=

13.9902
-70.6014

0.3247
-19.3750

0.0000

G--

0.1116
-0.3338

a = 45 °

K-

10.6672

-83.7570

-6.8896

-20.8578

7.3404

G=

-0.4819

0.1811

= 50 °

K=

-11.8843

-92.7368

11.4007

-22.4435

10.6763

Table B1. Continued

-33.3489

-70.4668

-14.,1658

-24.7922

0.0000

-2.2674

0.7287

-46.6544

-56.1793

-18.6618

-22.5693

0.0000

-1.7216

0.3032

-61.5933

-38.0300

-16.0345

-20.3934

-8.0219

-0.8720

0.3329

-76.7698

-22.1658

-12.8837

-18.4057

-13.8889

0.2291

-1.3296

0.0175

-2.8258

-0.6353

-0.2938

-0.9062

1.3411

-0.4289

1.2669

-1.0400

1.5237
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G --

-0.1495

-0.0301

= 55 °

K=

-29.1475

-89.7036

-2.1824

-25.2961

11.6376

G=

-0.1753

-0.0716

= 60 °

K=

-37.1976

66.6277

0.0000

-27.7290

13.9318

G=

0.4204

0.0113

Table B1.

-1.0156

0.4716

-83.0683

-0.6993

-1.6032

-17.2914

-18.5082

-0.8326

0.4357

-83.9399

0.3374

0.0000

-15.5958

-27.0141

-0.5479

0.3407

Concluded

-0.2759

0.2016

-0.0765

0.1557

-0.3657

0.2077

-0.9231

1.3646

-0.7941

1.5059

-0.1400

1.3010
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