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ABSTRACT

The modal element method has been employed to determine the

scattered field from a plane acoustic wave impinging on a two

dimensional body. In the modal element method, the scattering body

is represented by finite elements, which are coupled to an

eigenfunction expansion representing the acoustic pressure in the

infinite computational domain surrounding the body. The present

paper extends the previous work by developing the algorithm

necessary to calculate the acoustic scattering cross section by the

modal element method. The scattering cross section is the acoustical

equivalent to the radar cross section (RCS) in electromagnetic

theory. Since the scattering cross section is evaluated at infinite

distance from the body, an asymptotic approximation is used in

conjunction with the standard modal element method. For valida-

tion, the scattering cross section of the rigid circular cylinder is

computed for the frequency range 0.1 < ka < I00. Results show

excellent agreement with the analytic solution.

electromagnetics, the method has been applied to scattering from

dielectric cylinders (Chang & Mei (1976), Lee & Cendes (1987),

Baumeister & Kreider (1992)) and propagation in ducts (B aumeister

(1991 )). In acoustics, the method has also been applied to scattering

from cylinders (Baumeister & Kreider (1993)) and propagation in

ducts (Astley & Eversman (1981)). In all of these applications, an

eigenfunction expansion is used to represent the acoustic pressure

field in the far field. An asymptotic approximation of this expansion

presents a simple means of determining the scattering cross section.

This paper presents the numerical algorithm for evaluating the

acoustic scattering cross section by the modal element method. The

scattering cross section is the acoustical equivalent to the radar cross

section (RCS) in electromagnetic theory. Since the scattering cross

section is evaluated at infinite distance from the body, asymptotic

approximations are used in conjunction with the standard modal

element method. For validation, the method is applied to scattering

from rigid circular cylinders, for which the analytic solution is

known.

INTRODUCTION

The modal element method, which couples finite element algo-

rithms to eigenfunction expansions, has been employed in calculat-

ing the scattered field from an acoustical plane wave impinging on

a two dimensional body. The primary reasons for employing the

modal element method are (1) to accurately describe the radiation

boundary condition at the computational boundary and (2) to reduce

the size of the numerical grid. In fact, for hard scatterers, the modal

element method can effectively reduce a two dimensional scattering

problem to a one dimensional problem by employing a single line of

elements circumscribing the scattering body.

The modal element method has been given various titles, such as

the unimoment method and the transfinite element method. In

NOMENCLATURE

A* modal amplitude of wave moving radially outwards

a dimensionless circular cylinder radius

H c1_ Hankel function of the first kind

k wave number

m mode number

M f number of modal coefficients used in eigenfunction expansion



p dimensionlessperturbationacoustic pressure

r dimensionless radial coordinate

dimensionless property constant

O angle between radius vector and positive x axis

p. dimensionless property constant

oc acoustic scattering cross section

to dimensionless frequency

Superscript

* complex conjugate

METHOD OF ANALYSIS

The present study is concerned with computing the scattering cross

section of a two dimensional axisymmetrical rigid body due to an

impinging plane wave traveling in the +x direction. In order to

determine the acoustic scattering cross section, the scattered field must

be computed. To accomplish this, the spatial domain is divided into

two subdomains, the homogeneous domain and the finite element

domain, as shown in Fig. 1. The grid system in Fig. 1 is designed to

allow various structures to be imbedded into the grid, as shown by

inserts A and B. For the special case of rigid bodies, the grid system can

be reduced to a single ring of elements, which effectively reduces the

two dimensional problem to a one dimensional problem.

Imbedded structure

(insert B)

Homogeneous .___. _-- Imbedded

domain _ structure

nsert A)

• _-- Polar region
Interracial ..-___p"

boundary S -j" "___

/ t Transition region
/

Rectangular region --J

Figure 1.---Finite element grid system.

In the finite element domain, an approximate solution for the total

(incident + scattered) pressure at the element nodes is calculated by the

Galerkin method. Linear triangular elements are used and the subdomain

interface is approximated by piecewise linear segments. In the homo-

geneous domain, which extends to infinity, the pressure is represented

by an eigenfunction expansion. The modal element method couples

the two solution forms by imposing continuity on the pressure and

velocity at the interface between the two subdomains. This coupling

results in a single matrix equation in which the eigenfunction coeffi-

cients and the pressure at the finite element nodes are calculated

simultaneously, yielding a global representation of the acoustic pres-
sure field.

GOVERNING EQUATION AND BOUNDARY CONDITIONS

The scalar form of the acoustic wave equation can be written as

(Baumeister & Kreider (1993))

0x_.e 0x) 3y_.e 8y.J O02p'P = 0
(1)

The harmonic time dependence e-_ has been factored out. e and LEtare

material property constants and to is the dimensionless frequency. The
wave number is

k = _-kte (2)

In the homogeneous region surrounding the body, e= 1 and it= 1, while

inside the body, e and t.tmay assume other appropriate values depend-

ing on the material. Baumeister and Dahl (1989) present explicit

expressions for e and I.t as a function of medium density, porosity,

viscous loss coefficient and a heat transfer parameter.

At the interface between the finite element region and the analytic

region, continuity is imposed on the pressure and velocity. The

radiation boundary condition at infinity is automatically satisfied by

the eigenfunction expansion introduced in the next section.

ANALYTIC SOLUTION

In the homogeneous domain, an exact expansion for the pressure can

be derived (Morse and Ingard, 1968, p. 401) from eq. (1) by separation
of variables:

Mcoef -1

p=pi +pS =eikX + Eg+mn(ml)(kr)cos(m0). (3)

rn=0

p_ is the incident plane wave; p_ is the scattered wave. This expansion

is valid for symmetric bodies. The modal coefficients A ÷ are un-to
knowns to be determined. Formulas to estimate the number Mr of

modes needed for convergence can be found in Baumeister & Kreider

(1993).
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FINITE ELEMENT SOLUTION

The solution to eq. (1) will be obtained by linear finite element

theory. In Fig. 1, the finite element region is divided into triangular

elements defined by corner nodal points. It is assumed that all material

properties are constant in each element. In the conventional weighted

residual approach, the unknown pressure field is described in terms of

all the unknown nodal values of the pressure.

The finite element aspects of converting eq. (1) and (3) and bound-

ary conditions into an appropriate set of global difference equations

can be found in Baumeister & Kreider (1993). The resulting set of

global difference equations is solved for the pressure at the nodes and

the modal coefficients A= +. With the modal coefficients determined, a

relatively simple algorithm has been developed to determine the

scattered cross section and is described in the next section.

BISTATIC ACOUSTIC SCATTERING CROSS SECTION

The bistatic acoustic scattering cross section per unit length for a two

dimensional body can be defined as

ipsl2 2=r{pi-pS*)
Oc(0)= lim 2xr_= lim .pi*)

r_o, pl r-_*_ /p I

(4)

The standard superscript c implies a two dimensional problem, where

the cross section is often called the "echoing width" (Ruck, vol. 1,

pp. 23). In three dimensions, the scattered field decays as I/r: while in

two dimensions, considered herein, the scattered field decays as l/r.

Thus, the 2nr is employed in eq. (4) to negate the 2D scattered field

decay and to yield a finite measure of the reflected power at infinitey.

The cross section defined in eq. (4) could be used in range equations

specifically defined for 2D bodies.

For a unit incident plane wave, eq. (4) simplifies to

_c(o)= lim 2rcr(p s .pS*) (5)
r--)oo

Using conventional numerical grids, it is often necessary to extrapo-

late the nodal values of the field on the outer boundary to infinity. For

example, Noack and Anderson (1992) include a boundary element

approximation to determine the scattering cross section at infinity.

Fortunately, no such additional work is required with the modal

element method. Since the scattering cross section is evaluated at

infinity, the asymptotic expansion forthe Hankel functions (Abramowitz

& Stegun, 9.2.3)

i(z-l_) _iron

H(mi)(z)_ 3_._zze L 4 ;e 2
(6)

can be inserted into eq. (3), which is then substituted into eq. (4)

to yield

/ _V"_"" i(kr-/Tt'_ Mc°ef-I -im -_ 1Gc(0) = lim2m" _xkr/z eL 4 J m'_--0_;'A+em 2c°s(m0)

l _f-'ff'-- -i(kr-lrt) Mc_"_'I-I im--n 1
.I _..._._e \ 4 J ___A+e 2cos(toO )

_kl" m=O

M -I . 7t M e -1 . 7t
4 ( _ -,m-- "_( :oef , ,m- "]

=--} _)'A+m e 2cos(m0)|| ____A_e 2cos(m0)| (7)

k t m'_--0 )t m=0 )

Once the A= ÷have been calculated, the scattering cross section and the

pressure field can be easily determined.

RESULTS AND COMPARISONS

Consider the following scattering problem: a unit plane wave,

incident from the left, strikes a rigid circular cylinder of dimensionless

radius a = l oriented with its axis normal to the propagation direction.

The rigid body is simulated numerically through an impedance mis-

match induced by setting e = 1- 10 '9 i and I1 = 1 for each internal finite

element and E = 1 and _t = 1 in the homogeneous domain surrounding

the body. This feature allows flexibility in the numerical implementa-

tion of the method. Rigid bodies with absorber coatings may be studied

with only slight modification to the computer code by adding several

finite element rings with the appropriate values of e and It.

This problem is solved for frequencies ranging from ka = 0.1 to

ka = 100 in order to validate the method. This problem was chosen

because it has an exact solution, given by eq. (3) with modal coeffi-

cients (Bowman et al., eq. (2.38))

-(2 - _Sm0)imJ'm(ka) (8)

A+ = H(m1)' (ka)

and because it has been examined using other methods (Ling, 1986,

Fig. 15).

In Fig. 2, the computed cross sections (square symbols) are com-

pared to the corresponding exact solutions (solid line). The results

agree very well with the exact solutions over a wide frequency range.
Results for ka = 50 and ka = I00 show similar agreement but are

omitted for brevity. In addition, the results agree well with the low

frequency calculations (k = 3.2) of Ling (1986, Fig. 15).

Additional validation of the algorithm is obtained by examining

high frequency (ka > 20) asymptotic approximations. In the

backscattered direction (0 = 180), the optical approximation is valid

(Ruck, et al. (1970), eq. (4.1) to (38)) and the backscattering cross

section becomes

o c = xa = _ (a = 1) (9)
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Figure 2._Bistatic scattering cross section.
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In the forward scattered direction (O = 0), commonly referred to as the

diffracted field, the optical approximation yields (Ruck, et al. (1970),

eq. (4.1) to (41)) the forward cross section

(_c = 4ka 2 = 4k (a = 1) (10)

Figure 3 shows that the asymptotic limits are attained as frequency

increases in both the forward and backscattered directions. Table I

contains the numerical values obtained for various frequencies in these

directions. Even at ka = 100, the relative error in the forward direction

is only about 3 percent.

Some error at high frequencies can be attributed to the approxima-

tion involved with the asymptotic expansion given by eq. (7). How-

ever, the major source of error is in the calculated values of the mode

coefficients Am*in eq. (3). For example, in the k = 100 calculation, over

130 modal coefficients need to be determined. Consequently, some

significant errors are involved in the calculation of the higher order

modes.
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Figure 3.---Scattering cross section as a function of ka.
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TABLE I.---COMPARISON OF EXACT AND

0.1

1.0

3.2

5.0

25

50

100

MODAL ELEMENT (ME) BISTATIC

CROSS SECTIONS

Forward (0 = 0)

Exact ME

0.00261 0.00263

1.643 1.659

8.459 8.470

14.77 15.22

90.31 91.00

187.6 189.3

378.7 369.7

Backward (0 = 180)

Exact ME

0.0022 0.00219

3.427 3.437

3.412 3.413

2.795 2.778

3.151 3.153

3.140 3.140

3.106 2.957

CONCLUDING REMARKS

In the modal element method, the scattering body is imbedded in a

finite element grid to calculate the acoustic pressure field. In the far

field, the pressure is represented analytically by a Hankel function

expansion. The asymptotic approximation of the Hankel functions are

used to calculate the scattering cross section. The method is applicable

to problems involving very high or low frequency scattering from

bodies. In the validation examples, the numerical results are in good

agreement with the corresponding exact solutions and asymptotic

analytical limits.
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