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Using BFS, a new semiempirical method for alloys, we study the surface structure of

fee ordered binary alloys. We concentrate on the calculation of surface energies and surface

relaxations for the L10 and L12 ordered structures. Different terminations of the low-index

faces are studied. Also, we present results for the interlayer relaxations for planes close to

the surface, revealing different relaxations for atoms of different species producing a rippled

surfas:e layer.
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I. INTRODUCTION

In the last few years, there has been considerable growth in the subject of modelling

of materials making use of potent semiempirical methods. These techniques vary in com-

plexity, physical foundation, numerical simplicity and range of applications but overall, they

facilitated the development of computational materials science to the level in which it is

found today. However, several limitations still exist, and much of the recent work done in

this field is directed toward overcoming these difficulties. This problem is more noticeable

in the case of alloys: as opposed to the problem of atomic structure of monatomic systems

where many techniques, including first-principles approaches, have reached a noticeable de-

gree of sophistication and accuracy, the problem of alloys is, by its own nature, much harder

to tackle.

The wealth of experimental studies of surface relaxation on pure metallic surfaces is

not matched for alloys [1] However, in spite of the small number of experimental studies

[2-4] there seems to be slow but sure progress in the field, as the available theoretical tools

for modelling become more accurate. Among them, semiempirical techniques have enjoyed

widespread use, helped by the ever-increasing computational capability. In this paper, we

will concentrate on one of these approaches, the BFS method [5], which has shown great

promise in becoming a viable alternative to deal with the various problems associated with

alloys, in that it provides an extremelly simple formalism, a sound physical foundation

based on perturbation theory via equivalent crystal theory [6], and a convenient numerical

efficiency making it a good candidate for computer simulations of materials properties.

Since its inception two years ago, BFS has been applied to a variety of problems, starting

with the basic analysis of bulk properties of solid solutions of fcc [5] and bcc [7] binary alloys

(heat of formation [5], lattice parameter [8], etc.) and more specific applications like the

energetics of bimetallic tip-sample interactions in an atomic force microscope [9] as well

as Monte Carlo simulations of the temperature dependence of surface segregation profiles

in Cu-Ni alloys [10]. Other applications include surface structure [11] and a diagramatic
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analysisof ordered alloy clusters for the determination of the ground state structure of a

given binary alloy [12]. An additional advantage of BFS is that it allows for deriving simple,

approximate expressions which describe the trends in segregation as well as elucidating the

driving mechanisms for these phenomena [13]. Also, as a consequence of the ideas underlying

the foundation of BFS, simple expressions for predicting the composition dependence of bulk

alloy properties based solely on pure component properties have been recently derived ('BF

rule') [14] providing an alternative to the commonly used Vegard's law [15].

In this paper, we concentrate on the application of BFS to the study of surface structure

of metallic alloys. After a detailed description of the method, we present a simple appli-

cation to the calculation of surface energies, followed by an extensive set of results on the

characteristics of surfaces of ordered alloys. These results include an analysis of the surface

energies as a function of crystal face, composition of the surface and type of structure, as

well as the prediction of the rippling of the surface due to the different relaxations for atoms

of different species in mixed-compositlon surfaces.
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II. THE BFS METHOD

A. Basic ideas

We will introduce the BFS formalism [5,7-12,17,13] with reference to the following ex-

ample. Consider two pure single crystals: one of atomic species A (lattice parameter a A)

and one of atomic species B (lattice parameter a_). This will be the initial state. The

.final state will be a certain alloy A - B with lattice parameter ax. The 'ideal' process of

alloy formation is shown in Fig. 1 . Let us focus on one of the atoms in the A crystal.

Fig. 2 represents the transformation undergone by this atom: there is a change in geometry

A to a:) and a change in composition (some of the(the lattice parameter changed from a e

neighbors are now B atoms, denoted by dots). In BFS, we approxintate this 'ideal' process

of alloy formation by a sequence of two independent transformations, as shown in Fig. 3.

In the first transformation, the identity of the atoms is conserved. The atom in question

(denoted in figs. 2 and 3 by ®) sees its environment changed only in terms of the relative

distances of the atoms surrounding it. This is a defect that can be straightforwardly treated

with any method for monatomic crystals. In particular, because of its effectiveness for

dealing with this kind of defects, equivalent crystal theory presents itself as a good candidate

for such calculation. In this transformation, the atom in question suffers a change in energy

zs, which we will call strain energy, because it is related only to lattice deformations.

In the second transformation (fig. 3.b), the geometry of the equilibrium crystal is con-

served. The atom in question sees its environment changed only in terms of the identity of

its neighbors. For evaluating this change in energy, which we will call chemical energy, we

assume that the neighbors are located in equilibrium lattice sites. A change in coordination

in the alloy (for example, atoms close to a vacancy or to a surface) would introduce struc-

tural information in the chemical energy which, as mentioned above, should be accounted

for only by the strain energy term. Therefore, we need to reference the chemical energy so

computed to a similar situation where the neighbors of the atom in question are forced to
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havethe samechemicalidentity. This way, the chemicalenergy will only carry information

on the chemical interaction between atoms of different species, regardless of the geometrical

distribution or coordination.

B. Formalism

Adding the strain and chemical energy contributions for a given atom yields the net

contribution of this atom to the energy necessary to assemble the alloy A - B from its pure

components, which is precisely the heat of formation. Therefore, the contribution of atom i

of atomic species X (X = A, B, ...) to the heat of formation of the alloy is

(1)

where ¢00 denotes the reference to the chemical energy. The total heat of formation, AH,

is just the sum of the individual contributions of each atom in the alloy. In writing eq.(1)

we assume that the two transformations provide a good representation of the process of

alloy formation. However, due to the nature of these transformations (i.e., in the calculation

of the structural energy we 'freeze' the chemical composition and in the calculation of the

chemical energy we 'freeze' the atomic locations), the chemical energy is a constant, solely

dependent on the chemical composition of the alloy, which is clearly unrealistic for some

situations. One would therefore expect eq.(1) to be a good representation of the alloy for

those cases where either there is a small lattice mismatch between the pure components or

when the defect represents a small departure from equilibrium. For those cases where such

conditions are not met, it is necessary to 'recouple' the two independent processes described

above, weighing the chemical contribution to the heat of formation accordingly. In order to

accomplish for this, we then introduce a factor which accounts for the asymptotic behavior

of the enthalpies of formation of alloys. To be defined later, this 'glue' factor, gi, links

the strain and chemical contributions not only providing a better description of the alloy

formation process by recoupling the strain and chemical contributions, but also by giving
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the correct behavior for large interatomic distances. For alloys of elements with small lattice

mismatch, this term is of little relevance in the region of interest, when the typical distances

in the alloy are comparable to the distances in the equilibrium crystals. We then rewrite

eq.(1) as

(2)

The strain energy, being that it arises from a single-component system can be written as

_si = E(_) F*(aSi *) (3)

where, based on the assumption that the universal binding energy relation of Rose et al. [16]

contains all the relevant information concerning a single-component system,

F'(a') = 1- (a+ ¢)e -=',

and where E(_ ) is the cohesive energy of a pure crystal of species i.

parameter aS* is given by

af"= q(a/s-a')

(4)

The scaled lattice

(5)

i andwhere a s is the lattice parameter of the equivalent crystal associated with the defect, ac

k are the equilibrium lattice parameter and scaling length [16] of a pure crystal of species i

respectively, and q3 = 3/16_r for fcc crystals. Although e s can be obtained via ECT [6], it

does not have to be necessarily so, and a/s* can be obtained as a solution of eq.(3) if e/s is

computed by any other technique. Either way, a/s" can be readily obtained, with which we

define the coupling term gl as

g_= e-'4" (6)

As in previous efforts, we choose ECT [6] to perform strain energy calculations, the choice

being guided by the simplicity and reliability of this technique. Using ECT for computing

e s introduces the added advantage that a_s (and thus a_s') is directly obtained by solving the



ECT equation for the defect crystal, as shown below. Within the framework of ECT, a s is

interpreted as the lattice parameter of an ideal, perfect crystal (i.e., the equivalent crystal)

where the energy per atom is the same as the energy of atom i in the actual, defect crystal.

In general, the ECT equation for computing the strain energy reads

IVR  - R,+ =
J

(see ref. [6] for details) where the quantities p,a, _ and the screening function S(r) are

defined in ref. [6]. The sum on the r.h.s, of Eq. (7) runs over all neighbors of atom i at a

distance rj. Eq. (7) is then solved for the lattice parameter of the equivalent crystal a s. Rx

and R2 are the corresponding nearest- and next-nearest-neighbor distances in the equivalent

crystal. The strain energy is then computed with Eq.(3).

Rigorously, the computation of the strain energy includes four terms (see ref. [6]). In

this work, we neglect the three- and four-body terms dealing with the bond angle and

face-diagonal anisotropies and retain only the two-body term that accounts for bond-length

anisotropies, which we expect to be relevant for atoms in the top (surface) layers. The higher

order terms would be proportional to the small local fluctuations of the atomic positions

around the equilibrium lattice sites. We expect that the leading term, Eq. (3), will properly

account for these small distortions.

The chemical contribution _/c is obtained by an ECT-like calculation. As opposed to the

strain energy term, the surrounding atoms retain their chemical identity, but are forced to

be in equilibrium lattice sites. If Ni_ (Mik) denotes the number of nearest(next)-neighbors

of species/c of the atom in question (of species i) then the ECT equation to be solved for

the equivalent lattice parameter a c is

NR_'e -°'_ + M_' _-_°'+_ _'' = _ _V,_' e -°'_ + y.,M,_' _-_°'_+_ _'' (8)
k k

where N(M) is the number of nearest(next)-neighbors in the equivalent crystal of species

i and Rx (R_) is the nearest(next)-neighbor distance in the equivalent crystal of lattice pa-

rameter aic. rl and r2, are the equilibrium nearest- and next-nearest-neighbor distances in

an equilibrium crystal of species i, respectively. The chemical energy is then computed with



e/C = "TE_F'(a/C') (9)

and

c = "7oE_F*(a_') (10)

where _/('Y0) = +1 if _v.,_v., > 0 and "y('y0) = -1 otherwise, and aVi* = q(aVi- ai_)/liui I,¢LO_ ) --

(a/c°* = q(aVi ° - ai_)/li). The scaled lattice parameter a/v* is obtained from Eq.(8) with the

parameters cqk listed in ref. [17], and a/c°* is computed by solving Eq.(8) but with alk - al.

C. The BFS parameters A

Using eq.(8) for the calculation of the chemical energy might suggest that this is a

rigorous ECT calculation. It is not. In interpreting the change of composition as a 'defect',

we are just adapting the basic concept underlying equivalent crystal theory to this case.

In the single-crystal ECT, where all the atoms are of the same atomic species, we apply

perturbation theory in order to find the energy of the defect crystal. The perturbation is

basically due to the difference in potentials between the defect solid and the ground-state

crystal. As described in the original formulation of the method [6], it is reasonable to

parameterize the first-order contributions to the perturbation expansion as

AE oc RPe -'n (11)

where p = 2n - 2 (where n is the atom principal quantum number) and a is a parameter

that will primarily reflect the structure of the electron density in the overlap region. In

single-crystal ECT the parameter a is determined for metals so that the energy to form a

rigid (unrelaxed) vacancy is equal to the experimental value.

To a good approximation, these concepts should remain valid in the case of alloys, and

by using eq.(8) we are adopting the same functional form used in ECT to describe the

perturbation due to dissimilar atomic species. In order to deal with arbitrary defects and

structures in future applications, as well as with multicomponent systems, it is convenient
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to 'localize' this effect and assume that the global property parameterized by a (i.e., the

tails of the overlapping electron densities) cart be separated into pairs of interacting atoms.

In this approximation, the electron density in the region between two atoms of the same

species would not be affected by the presence of neighboring atoms of different species. The

perturbation would then be localized in the region between two dissimilar atoms. This

assumption justifies the definition of the parameter aik as

a_k -- ai -F At/ (12)

where a; is the usual value of a for the pure element i and At/is a correction introduced

by the presence of a neighbor of species k. Obviously, At/= 0 if i = k. The 'perturbation'

parameters At/and A_k are the only new parameters introduced in BFS: all other parameters

are those corresponding to the pure components of the alloy. Generally, these two parameters

are determined by requiring BFS to reproduce the experimental values of the heat of solution

in the dilute limit, E BA (the heat of solution of an impurity B in a host A), given by

E BA dAHI (13)
=

where AH is the heat of formation of the compound AI-_B_, x being the concentration of B

atoms. These parameters have been computed for a variety of fcc and bcc metallic alloys (see

ref. [17] for a discussion) and work is under way for hcp-based structures. For completeness,

we include both the ECT and BFS parameters for some fcc and bcc elements. Table 1 lists

the ECT parameters p, l, a, A, the cohesive energy Ec and the lattice parameter, while

Table 2 displays the values of the BFS parameters AAB and ABA for some of the alloys of

these elements, as well as the experimental values of the heat of solution (eq.(13) in the dilute

limit used for fitting the BFS parameters. For the case of AI-Ni, we used the theoretical

values computed by Sanchez and Carlsson [18].
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III. SURFACE ENERGIES OF ORDERED STRUCTURES

A. Ordered structures of fcc-based binary alloys

In this section we wilI apply the BFS formalism to the simple problem of computing

the surface energy of rigid ordered alloy structures. By rigid we mean that, for the sake

of simplicity, we will not allow for individual or collective atomic displacements due to the

presence of the surface. However, later on we will show results involving relaxations and

compare them with available experimental data.

Several alloys form simple ordered structures for low temperatures [19]. Obviously, the

higher the symmetry in the patterns that characterize a given structure, the simpler the

calculation is. Fortunately, many alloys are found to have, for specific concentrations, some

of the simplest possible structures. Therefore, we will concentrate on these structures,

shown in fig. 4, for three concentrations: the LI_ A3B or AB3 structures and the L10 and

Lll structures at 50 % concentration, both being fcc-based. Within the duster expansion

method [21] these structures, together with the pure fcc A and B crystals, form a set of

fundamental structures for fcc alloys as these represent the possible structures that can

be formed assuming nearest-neighbors interactions only, where a tetrahedral duster is the

unit cell [22]. Therefore, the dusters A,,,B4__ (m = 1, ...,4) are the building blocks of the

corresponding fcc alloy structures A1, L12 and L10.

B. A simple example

We will consider a simple example: the calculation of the surface energy of a given termi-

nation of a L12 structure of an fcc binary alloy. There are two possible terminations for the

(100) L12 structure of a certain AsB alloy: a mixed-composition (1:1 A:B) plane alternating

with a pure A (1:0 A:B) plane, giving an overall stoichiometry (3:1 A:B), and a pure A

plane alternating with mixed-composition planes. These two possible bulk truncations are

also possible for the (110) surface, whereas the (111) truncation is always stoichiometric (3:1
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A:B). We will concentrate on the (1:1 A:B) L12 (100) surface and label the planes parallel

to the surface with the index j = 1, ..., b where j - 1 corresponds to the surface plane and b

labels a certain bulk plane, below which no surface effects are to be considered. By forcing

the semi-infinite slab to be rigid and limiting BFS to deal with second-neighbor interactions,

the calculation is greatly simplified, as only two planes (j = 1, 2) contribute to the surface

energy. Because of the high symmetry of this structure, only one atom of each species needs

to be considered for the j = 1 plane, whereas only one A atom contributes from the plane

j -- 2. Atoms in layers j - 3, ..., b are inert, in that they will not contribute to the surface

energy. We will assume that the lattice parameter a is the one previously determined for

a bulk ordered alloy AsB. Let Xj (X = A, B; j = 1, 2 ) denote a non-equivalent atom of

species X in layer j. We need to compute the contributions cx, from A1, B1 and A2 so that

the surface energy will be

¢r = _rAt + ¢rB_ + 2¢rA2 (14)

where

(15)

Using eq.(7), the strain energy contribution is computed from the solution of the following

equations:

12R_e -°Aa' + 6P_Ae-(°A+_ )R2 = 8_e -a_u + 5_Ae-(°_+_ )'* (Xi = At) (16)

12R_e -_'_R' +61ff2Be-('_B+-_)R2 =8_'e-'_'n + 5_e -(°,+_)'2 (Xj -" Bx) (17)

and

where rl - V_a/2 and r2 = a. The equivalent lattice parameters as, are obtained from the

solutions to eqs.(16)-(18) as asj = v_RI(j) = R2(j) and the strain energy contributions

es are computed using eq(4).
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Using eq.(8), the chemical energy contribution ¢_cj

following equations:

is computed from the solution of the

12R_ae -_aR_ + 6//_Ae-(_A+X_A )R2 = 4_Ae-=Aal + 4_Ae-(C_A+as_) _x + 5_e-(°A+_ag'A)d2

(Xj = Ax) (19)

12R_e -°_R1 + 6P_Se-(aB+x-_ )R2 = 4s_e-"S,l + 4s_Be-(aB+a,_s) "_ + 5s_ae-(aB+_ )_

(x_ = B_) (20)

and

12R_Ae-Oant+ 6/i_e-(°A+x_)n2= 8_ae--a,_ + 4_ae-(°A+asa)d:+ 5_Ae--(°A+-2"2)'2

(X_= A_), (2_)

A vf2a_s/2 and s2 a B. The equivalent lattice parameterswhere dl - V_a_ /2, r2 --- a_, sl -

a_c_ are obtained from the solutions to eqs.(19)-(21) as a_c_ - v/2Rx(j) - R2(/). Remem-

bering that 7xi --- +1 whether a_c_ = q(a_c j - aX)/lx is positive or negative, the first term

(22)

Co is computed from the solution of theFinally, the reference to the chemical energy, 6xj

in the chemical contribution, exV¢ is then

following equations:

12R_Ve -°Sax + 6P_Se-(°'+_ )a_ = 8,_se-°vq + 5s_'e-(°s+_t_B)_

and

12R_Ae-Oaa_ + 6P_Ae--(_A+_-_A)Rz = 12_Ae-o_d_ + 5d_e-(O_+_-a2)d_

(X_ = A_) (23)

(x_ = B,) (24)

(Xj - A2), (25)

The equivalent lattice parameters a c°x_ are obtained from the solutions to eqs.(23)-(25) as

a_c° = v/2R_(j) = R2(j) and the reference chemical energy contributions e_o are computed

using eq(10).
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IV. APPLICATION TO SURFACE STRUCTURE

The determination of the surface structure of alloys has recently been the topic of theoret-

ical and experimental work. Much effort has been devoted to the study of surface relaxation

in metals and, to a lesser extent, alloys. Several recent experiments have provided insights in

the phenomena of surfa_ relaxation and composition, in the case of alloys, and correspond-

ingly a number of theoretical studies have shown good general agreement with experimental

results.

However, there is still a great deal of uncertainty in certain areas, due to limitations

inherent in experimental techniques and also to the lack of alternative studies to verify

previous results.

The first experiment, in 1984, that provided detailed information on the atomic positions

of surface atoms in a truncated ordered alloy is the low-energy electron diffraction (LEED)

intensity analysis of Davis and Noonan of a NiAl(110) surface [2]. They found strong

evidence for a rippled surface, where the A1 sites of the top layer (in the mixed-composition

truncation) are displaced above the Ni sites by approximately 0.22 _. This result was quickly

followed by the calculation performed by Chen, Voter and Srolovitz using the embedded atom

method (EAM) [23], which confu'med the main features found in the experiment. EAM

was later used to investigate similar phenomena in other ordered alloys: Foiles and Daw

presented a complete study of Ni3A1 (L12 structure) [24], followed by Foiles work on ordered

surface phases of Au on Cu [25], and Lundberg's extensive study of surface segregation and

relaxation of Pt-Ni alloys [26]. At the same time, new experimental LEED results on Ni3AI

were reported by Sondericker and coworkers [3], finding a similar rippled structure in Ni3AI

(100) faces. Finally, a low-energy ion scattering spectroscopy (LEISS) experiment by Wang

and coworkers provided similar data for the Cu3Au system, a classic ordering alloy [4]. Their

work followed the LEISS results concerning the surface composition of the top atomic layers

[27]. This system was also the subject of a very recent study by Wallace and Ackland using

a molecular statics algorithm with Finnis-Sinclair (FS) many-body potentials [28].
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In this section we will show new results concerningthe above mentioned systems as

well as predictions for other alloys, using BFS. Due to its computational efficiency, this

application of BFS to the surface structure of ordered alloys extends to a number of systems

for which there are no other theoretical or experimental studies to date.

Before proceeding to the calculation of multilayer relaxation in alloys, we will discuss

some features of theoretical calculations of these quantities. Ref. [1] provides a reasonably

large sample of both experimental and theoretical results for changes in interlayer spacing

in pure crystals. In all cases, the theoretical techniques used rely either on the use of

input data (generally experimentally determined) or on certain approximations for some of

the variables of relevance. Necessarily, the results will depend on such choices. Multilayer

relaxations involve at best very small changes in position, and correspondingly, comparable

changes in surface energy, whose minimization is the criterion used to determine the final

interlayer spacings. Thus, the search for a minimum of the surface energy, as accurate as the

minimization technique might be, will be strongly influenced by the two factors indicated

above: the approximations used and the shallowness of the minimum in the surface energy

surface resulting from small changes in the input parameters. As a consequence, to quote

just one value for each of the changes in interlayer spacings as is ordinarily done, might

not reflect the ambiguities in these calculations. In this paper we adopt a different path:

to each theoretical prediction, we will attach an estimate of the possible errors due to

any of the reasons mentioned above. Although there is no certain way to determine such

errors (after all, the predictions are, within their own framework, exact), we will see that

changes on the order of 1% in the surface energy can generate quite interesting variations

in the relaxation schemes predicted. In particular, within the framework of ECT, such small

changes in the surface energy can be easily obtained by changing any of the input parameters

(lattice constant, cohesive energy, bulk modulus) by a similar amount, well below the usual

experimental errors in the determination of such quantities.

To illustrate this issue, we will focus our attention on the surfar_e structure of some

fcc pure metals (A1, Au, Cu and Ni). As can be seen in Tables 2-11 of ref. [1], previous
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theoretical and experimental studies show a wide spread in the predictions of the changes

in interlayer spacings for the (100) and (110) surfaces. Even results obtained within the

same theoretical technique (EAM, ECT) do not agree with each other (due to different

fitting procedures of the embedding function in the case of EAM and different input data

in both cases). Although there is general qualitative agreement, regarding the contraction

or expansion pattern found for successive layers, in some cases the theoretical values show

poor agreement with experimental results (see, for example, A1 (100)). The ECT results

(from refs. [1] and [6]) also highlight this inconsistency. The difference between the values

obtained in this work and those from previous applications of ECT is easily traceable to

slightly different values of some of the input parameters.

As mentioned above, in order to account for these and other ambiguities in the calcula-

tion, we investigated the change in predicted relaxations due to small changes in the rigid

surface energy. We thus defined 'error bars' in such way that all the intermediate values so

obtained predict variations in surface energies within that tolerance. Needless to say, this

range of values does not include all the possible sets (Ad12, Ad_z) that correspond to surface

energies within the allowed values. It is interesting to note, however, that in most cases, all

the experimental as well as theoretical predictions fall within the range of values obtained

in this fashion.

It should be noted that when comparing our theoretical predictions with available experi-

mental results, the error bars quoted in each case are not rigourously comparable. However,

we choose to do so with the only purpose of giving a complete description of the results

obtainable with ECT and BFS, once uncertainties in the input parameters are taken into

"account. To illustrate this point, we first discuss the surface energies and multilayer re-

laxations of the unreconstructed low-index surfaces of pure AI, Ni, Cu and Au crystals. In

Table 1 we display the ECT predictions for the surface energies and compare the results with

typical experimental values for polycrystalline samples [29-31]. The agreement is excellent

in all cases, with the exception of Cu, that shows a somewhat larger deviation than the other

elements. We note that experimental values for the surface energies are for polycrystalline
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surfaces,thus could be strongly dominated by the predominant surface plane.

In table 2 we compare results for the multilayer relaxations of the first two interlayer

spacings for those cases for which recent experimental data is available [32--41]. Once again

the agreement is excellent, as it was shown in previous ECT studies of surface structure [1].

The inclusion of the theoretical 'error bar', as mentioned above, allows for a better compar-

ison with experiment as it shows that for most cases, small changes in the input parameters

of the method suffice to account for the whole range of possible experimental results. The

exceptions are AI(100) and A1(111), where the outward relaxation of the surface layer has

been attributed to an electron promotion effect [41]. Semiempirical methods (ECT, EAM.

etc.), unless specifically designed to do so, do not generally allow for such fine electronic

structure effects, thus it is not surprising that our results for Adl2 in these cases predict

surface layer contractions, even when the 'error bar' is taken into account. For completeness

we also include results for the surface relaxation when only that plane is allowed to relax,

in order to single out the influence of subsequent interlayer spacing changes on the surface

plane. Again, the agreement with available experimental data is very good in all cases.

As mentioned above, there are few theoretical or experimental studies of ordered alloy

surfac_ [2-4,23-28]. First, we discuss two cases (Ni3A1 and Cu3Au, in the L12 structure)

which have been the subject of recent studies [3,4,23,24]. We follow this discussion with a

complete presentation of the corresponding results for a larger number of ordered structures

as well as different binary alloys of fcc elements, for which no theoretical or experimental

data exists.

a. CusAu: Table 5 displays the results for the unrelaxed and relaxed surface energies

(in ergs/cm 2) as obtained with BFS and with FS many-body potentials [28]. Both meth-

ods predict, as expected, lower surface energies for the mixed-composition (100) and (110)

truncations. This feature has been experimentally proven via a low-energy ion seattering

study which detected equal parts of Cu and Au in the top layer [27]. ECT and FS results

also agree on the relative change in surface energy once the top-most layers are allowed to

relax, in spite of the fact that the FS values axe 50 % smaller than the BFS ones. As is
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also to be expected, the surface energies of (100)1:0 and (110)1:0 faces are comparable to

the corresponding values for single Cu crystals. The corresponding relaxations are quoted

in table 4. In order to avoid ambiguities in determining the exact atomic positions from the

entries in table 4, we present the relaxations as the percentage change in interlayer spacing

from the unrelaxed case to the one measured from the relaxed position to the unrelaxed

location of the plane immediately below. We also include the BFS predictions for the pure

Cu truncations of the (100) and (110) planes. Although it is to be expected that the top

layer relaxation will change as deeper layers are allowed to relax, any ensuing changes would

be small, not affecting the conclusions drawn from our results.

For the Cu3Au (100) 1:1 Cu:Au case, the results in table 6 imply a rippling of 0.148-1-0.025

,_, which amounts to 3.97 % of the lattice parameter determined for this alloy (3.73 _).

This result compares very well with the 3.77 % rippling (A1 out, Ni in) obtained using FS

potentials. A similar situation is found for the (110) 1:1 Cu:Au surface, where we find the

rippling to be 4.24-1.1% of the lattice parameter, whereas FS potentials predict a rather

smaller change of 1.9 %. For the mixed-composition (111) 3:1 Cu:Au surface, BFS predicts

a rippling of 4.6-}-0.4 % thus agreeing with FS results and experimental evidence that the

Au atoms axe farther out than the neighboring Cu atoms in mixed-composition surfaces.

b. Ni3Al. The surface energies of relaxed (100), (110) and (111) surfaces are shown in

Table 7, where we compare our results with the EAM study of Foiles and Daw [24]. As

found for the CuzAu case, the mixed-composition truncations always have a lower surface

energy. The differences between the EAM and BFS predictions are consistent with previous

calculations for pure metals, where the EAM results are typically 50 % lower than the

experimental ones. Surface relaxations are indicated in Table 8, using the same format and

notation of table 4. From these results we extract the following values for the gap between

Ni and A1 atoms in the mixed-composition (100), (110) and (111) surfaces: 0.12_0.04 A,

0.094-0.05 A and 0.16-1-0.03 _, respectively. A similar trend, but with somewhat smaller

values for the rippling are obtained from EAM [23]: 0.09 _, 0.06/_ and 0.07 _. A different

EAM calculation [25] predicts a 0.06 /_separation between Ni and A[ atoms in all three
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surfaces. Recent LEED data [3] show Ad12(Ni) - -2.73% and Ad_2(Al) ,._ 0 (i.e., A1 is

displaced outward with respect to Ni) and a rippling of 0.02=t:0.03/_for the (100) surface

c.Other fcc binary alloys Table 9-11 display results similar to the ones described previ-

ously for Ni-A1 and Cu-Au alloys, indicating, when appropriate, the distance between the

atoms of different species in the top layer of each surface. Table 9 includes the results for the

three possible terminations of the L10 structure (1:1, 0:1 and 1:0) whereas Table 10 shows

the results for the (100)1:1 surface of the Lll ordered structure. Finally, Table 11 shows an

extensive set of results of A3B and AB3 alloys in the L12 structure, as shown in fig. 4.

In general, surface energies vary widely for each system, depending on the type of struc-

ture and crystal face considered. There is no apparent pattern that describes trends among

all the different systems discussed in this work. For example, although there is some corre-

lation between the lattice mismatch and the ripple between the surface atoms in the mixed

termination surfaces of the L10 alloys, in that the vertical separation between atoms of dif-

ferent species on the surface increases with the lattice mismatch, there is also an exceptional

case, like Cu-Pd, with a very large rippling effect. The ordering of the surface energies varies

from alloy to alloy covering a wide range of values. With very few exceptions, the planar

relaxations are small, with even smaller uncertainty factors which in turn translates into

small uncertainties in the rippling of the mixed-termination surfaces.

Obviously, not all the listed structures exist in nature. We are presenting this survey

with the only purpose of highlighting the simplicity of alloy surface energy calculation with

BFS and the predictive power of the method. In this sense, the results presented in this

work will hopefully motivate the development of new experiments in the determination of

surface structure.
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V. CONCLUSIONS

In this paper we presented an extended discussion on BFS, a semiempirical method

for alloys, concentrating in aspects of surface structure. The application of BFS to the

calculation of the surface energy of an ordered alloy highlights the computational simplicity

of this method, which is an essential ingredient of any algorithm used for the determination

and simulation of materials properties. The results on multilayer relaxation of ordered

structures, and their comparison with available experimental values, provide a good example

of the quality of the results that can be obtained with this method. This, together with the

numerical efficiency of this technique, makes BFS an appropriate tool for dealing with more

complex situations, like those found in realistic problems in alloy structure.
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Element Cohesive Lattice

Energy Constant
Al

Cu

Ag

Au

Ni

Ir

Pd

Pt

Fe

W

Ta

Mo

Nb

V

Cr

Fe

Li

Na

K

Rb

Cs

3.34

3.50

2.96

3.78

4.435

6.94

3.94

5.85

4.27

8.66

8.10

6.82

7.57

5.31

4.10

4.29

1.63

1.113

0.934

0.852

0.804

4.05

3.615

4.086

4.078

3.524

3.84

3.89

3.92

3.57

3.16

3.30

3.15
3.30

3.03
2.88
2.86

3.491

4.225

5.225

5.585

6.045

Table i: Experimental input: Cohesive energy

paraaneters: p, l (in J[), a (in ._-1) mad A (in _)

p l c_ A

4 0.336 2.105 0.944

6 0.272 2.935 0.765

8 0.269 3.337 0.756

I0 0.236 4.339 0.663

6 0.270 3.015 0.759

I0 0.235 4.408 0.661

8 0.237 3.612 0.666

10 0.237 4.535 0.666

6 0.279 2.963 0.784

10 0.274 4.232 0.770

10 0.325 3.905 0.914

8 0.262 3.420 0.736

8 0.341 3.243 0.958

6 0.305 2.726 0.857

6 0.254 2.889 0.714

6 0.277 3.124 0.770

2 0.589 1.049 1.66

4 0.578 1.359 1.62

6 0.694 1.528 1.95

8 0.651 1.937 1.83

10 0.757 2.115 2.13

(in eV), latticeparameter (in _). ECT

forseveralfccelements.
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A-B AAB AaA

Ag-Al

Ag-Au

Ag-Cu

Ag-Pd

Ai-Au

AI-Cu

AI-Ni

Au-Cu

Au-Ni

Au-Pd

Cu-Fe

Cu-Ni

Cu-Pd

Cu-Pt

Fe-Ni

Fe-Pd

Ni-Pd

Ni-Pt

Cr-Fe

Cr-Mo

Cr-V

Fe-V

0.0475

-0.0333

-0.0391

-0.0451

-0.0501

-0.0526

-0.0657

-0.0513

-0.0506

-0.0460
0.0495

-0.0163

-0.0431

-0.0585

-0.0106

-0.0229

-0.0396

-0.0609

0.0465

-0.02447

-0.0246
0.0998

so/ 8o/
EAB F-,BA

-0.0499 0.141 -0.166
-0.0227 -0.161 -0.186
-0.0308 0.392 0.250

-0.0178 -0.108 -0.288

-0.0853 -1.26 -0.80

-0.0626 -0.35 -0.20

-0.0861 -1.715 -0.494

-0.0604 -0.191 -0.126

-0.0622 0.280 0.218

-0.0345 -0.195 -0.356

0.0638 0.412 0.349

0.0309 0.100 0.032

-0.0495 -0.392 -0.436

-0.O441 -0.299 -0.532

-0.0320 -0.218 -0.079

-0.0584 -0.656 0.177

-0.0478 -0.088 0.057

-0.0537 -0.330 -0.282

0.0285 0.218 0.218

-0.0090 -0.102 0.807

-0.0232 -0.088 -0.189

-0.07168 0.215 0.323

Table 2: Parameters AAB and ABA (in _-1) and heats of Solution in the dilute limit E_

and _,oz (in eV/atom) for several fcc binary alloys. The values for AI-Ni were obtained"-'BA
from a theoretical calculation by Sanchez and Carlsson [18] .
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Technique

Exp. [29]
Exp. [30]
Exp. [30]
Exp. [31]
ECT(100)

ECT(ll0)

ECT(111)

A1 Cu Ni

1200 1790 2270

1140 1780 2380

1180 1770 2240

1169 2016 2664

1203 2309 2982

1284 2373 3073

856 1767 2274

Table 3: Surfaceenergies(inergs/cm2)of fccA.l,Cu and Ni

Element Face

A1

Ni

Cu

Experiment

Ad12 Ad23 Ref.

(100) -I-1.8 [32]

(110) -8.5+1.0 45.5-1-1.1 [33]

(111) 41.7-1-0.3 40.5-1-0.7 [34]

(100) -3.2-I-0.5 [35]

(110) -9.0-I-1.0 43.5+1.5 [36]

(111) -1.2-I-1.2 [37]

(100) -2.1 40.45 [381

(110) -7.5-I-1.5 -I-2.54-1.5 [39]

(111) -0.74-0.5 [40]

-4.684-1.62

-8.294-2.35

-3.674-1.21

-3.534-1.68

-6.324-2.44

-2.894-1.29

-3.524-1.74

-6.314-2.46

-2.884-1.30

ECT (two-layers)

Ad12 Ad_

-5.054-1.58 43.354-0.80
-9.534-3.58 41.904-2.24

-3.944-1.19 42.754-0.61

-3.824-1.68 +2.484-0.85

-6.55+3.63 +0.344.2.24

-3.104-1.25 +2.12+0.63

-3.814.1.70 +2.474.0.86

-6.514-3.83 40.294-2.44
-3.104-1.25 42.124-0.63

Table4: SurfacerelaxationsofAl, Cu and Ni aspercentagesofthe rigidinterp!anarspacings.
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Face Finnis-Sindair [28] BFS

Unrelaxed IRe 1axed Unrelaxed I Relaxed

(100)1:1

(lOO)1:o
(110)1:1

(11o)1:o
(111)3:1

896

1192

1051

1240

882

865
1171

1024
1173

863

2119

2478
2397
2873

1626

1810

2247

2337

2699

1577

Table 5: Unrelaxed and relaxedsurfaceener_es (inergs/crn_) of Cu3Au.

Layer Atom (I00)i:I

1 Cu -2.12+0.41

Au +5.82+0.81

2 Cu

Au

(100)1:0

+5.38q-0.47
(110)1:1

-2.45::i:1.14

+7.80-1-1.80

(110)1:0
-3.70-1-1.02

(111)3:1
+14.35+0.26

+22.29"4-0.53

-I-5.61+0.37 -I-12.874-0.50 -I-10.14-1-1.37 +12.14::1:1.37 +21.20::t::0.24
-I-3.23+1.23 - -0.70-1-1.30 %2.23-1-1.92

Table 6: Surface relaxations of CusAu L12 surfaces. See text for definition of the percentage
change.
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Face EAM [24]

(100)1:1

(100)1:0
(110)1:1

(110)1:0

(111)3:1

1620

1885

1730

1920

1645

BFS

2852

3168

3117

3964

2411

Table7 : Surface energies of Ni3AI (in ergs/cm2).

Layer Atom
1 Ni

A1

2 Ni

A1

(100)1:1 (100)1:0

-1.33-t-0.70 +3.414-1-0.72

-t-5.254-1.60

+4.594-0.63 +8.824-I-0.81

- -}-3.39-I-1.46

(110)1:1 (110)1:0
-4.63::I:I.65-5.034-1.31

+0.804-2.85

+3.554-2.19 +5.194-2.40

- +0.924-2.74

(111)3:1

+8.564-0.55
+16.28-1-1.40
+13.694-0.53

+4.04:1:I.53

Table 8 : Surface relaxations of NI3A1 L12 surfaces. See text for delln]tion of the percentage

change.
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Face

(100)1:1

(100)1:0

(100)0:1

(110)1:0
(110)0:1

(7

2028.52

788.52

3987.35

2074.33

3296.91

+3.92+0.82

-3.73+0.28

-2.80+2.02

AI-Ni

A&
-3.18+0.24

-3.72:1:0.92

-11.14+0.54

+0.94+0.64

+0.98=[=0.96

-1.54:1:1.39

+6.56=[:0.25

+2.594-0.29

-10.46:!:0.67

Ripple

0.13165±0.01972

Face

(100)1:1
(100)1:0

(100)0:1

(110)1:0

(110)0:1

(7

1451.49

2572.39

1344.69

1999.26

2033.18

-1.83:1:0.18

-0.75:1:0.93

-I1.63:1:0.42

Cu-Au

a&
+6.07:1:0.50

-2.86:1:0.37

-1.66+1.25

+8.87d:0.18

+0.204-0.36

-8.79:1:0.96

+1.00±0.46

+0.18+0.97

-2.99-I-0.61

Ripple

0.15423i0.01314

Fa_

(100)1:1

(lOO)1:o
(100)0:1

(110)1:0
(110)0:1

O"

2021.80

2504.42

1768.69

2179.96

2384.95

-2.18-1-0.40

-12.81:t:0.56

- 11.35-t-0.52

Cu-Pd

-13.01+0.63

-4.98:!:0.31

-19.80:1:1.34

-5.02+0.97

+2.94+0.32

-6.39+1.85

+8.28+0.41

-6.13=[:0.51

-3.20il.90

Ripple

0.2040010.01932

Face

(100)1:1

(100)1:0
(100)0:1

(110)1:0
(110)0:1

_r

2146.96

2585.38

2323.20

2388.02

2935.28

-2.74:1:0.29

-0.69+0.82

-10.07-1-0.66

Cu-Pt

a6
+3.27-1-0.46

-2.66-1-0.42

-1.99-1-0.92

+6.86+0.28

+0.32-I-0.41

+2.37:[:1.62

+0.61:1:0.47

+0.34-I-0.85

-2.47:1:0.71

Ripple
0.114824-0.0143

Fa_De

(100)1:1

(100)1:0

(100)0:1
(110)1:0

(110)0:1

(7

1543.26

1598.66

1561.59

1600.28

1675.03

-5.69-1-0.55

-3.62+0.44

-9.96+1.10

Ag-Au

-3.81-1-0.36

-6.34-1-0.38

-5.44:!:0.55

+0.79-I-0.48

-2.61:I:0.35

-0.33:1:I.35

-1.78_-0.46

-0.22+0.48

-3.13+1.12

Ripple

0.03856"-t'-0.01856

Tabh9: Surface energies (in ergs/cm2), planar relaxations (as percentages of the rigid

interplanar spacing, see text) of the top two layers of several low-index faces of the Llo

ordered structure. A X indicates the relaxation between layers i and j for an atom of

species X in layer i. The last column indicates the difference (in _) between the position

of an atom A and an atom B in the top layer.
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Face

(100)1:1

(100)1:0

(lOO)O:1
(110)1:0

(110)0:1

6r

1953.39

1404.01

2668.31

1976.47

2364.57

-0.374-0.57

-2.84+0.44

-2.96+0.95

Au-Pd

-4.06+0.60

-1.42:1:0.80

-7.794-1.24

-0.25+0.50

+0.32+0.79

-1.38+1.11

+2.764-0.71

-0.09+0.41

+0.39+1.63

Ripple

0.07415.4-0.02355

FaAT_

(i00)I:I

(100)1:0

(100)0:1
(110)1:0

(110)0:1

O"

1717.93

2176.18

1255.65

1980.87

1902.53

-8.55+0.26

-15.984-0.29

-12.614-0.31

Ni-Pd

-13.06-1-0.68

-9.01-1-0.19

-19.894-1.16

-7.92.4--0.30

-0.71.4,0.21

-10.474-0.49

+2.44:1:0.28

-7.9410.23

-5.144-1.51

Ripple
0.08520.4-0.01768

F_e

(100)1:1

Ooo)1:o
(100)0:1
(11o)1:o
(110)0:1

O"

2153.11

3248.61

2228.15

2519.11

3057.54

-4.634-0.18

-3.75+0.68

-11.94_-0.39

Ni-Pt

+2.08.4-0.44

-5.60-1-0.35

-2.664-1.13

+5.87.4,0.19

-1.94+0.33

-9.56+0.83

-0.874-0.41

-1.604-0.73

-3.384-0.61

Ripple

0.12808.4-0.01181

Table 9: (Cont'd)
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Alloy

AI-Ni

Cu-Au

Cu-Pd

Cu-Pt

Ag-Au

Au-Pd

Ni-Pd

Ni-Pt

(7

1442.33

1205.58

1816.93

1964.02

1526.48

1885.63

1549.94

1856.99

+1.97+0.67

-2.61+0.15

-2.30-I-0.39

-3.31+0.24

-5.91+0.54

-0.47+0.55

-8.06:1:0.23

-5.02:[:0.16

-5.14-I-0.16

+5.25:1:0.44

-13.64+0.67

+2.81::!:0.44

-4.00+0.35

-4.40:l:0.58

-13.20:1:0.62

+1.64+0.39

-0.89±0.54

+8.26-t-0.15
-6.08-1-0.75

+6.59:1:0.24
+0.69i0.47
-0.41-1-0.49
-8.03-1-0.27

-5.61-1-0.16

+5.18:[:0.17

+0.44:[:0.41

+8.38:1:0.41

+0.25±0.45

-1.96:l:0.46

+2.89±0.68

+3.64-1-0.25

-1.18-I-0.38

Ripple

0.13379-I-0.01566

0.16463-I-0.01155

0.21487+0.02022

0.11756+0.07319

0.03921-I-0.01829

0.07898±0.02290

0.09749-I-0.01626

0.12788::[:0.01051

TablelQ:Surfsce energies _ (in ergs/cra2), planar relaxations (as percentages of the rigid

interplaaar spacing, see text) of the top two layers of the (100)1:1 surface of the Lll ordered

structure. AX represents the relaxation between planes i and j for an atom of species X

in layer i. The last column indicates the difference in position (in _) between an atom A

and an atom B in the top layer.
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Face

(100)1:1

(100)1:0

(110)1:1

(110)1:0
(111)3:1

6r

1922.98

2205.44

2453.12

2649.79

1309.49

-6.51+0.30

+2.364-0.33

-3.634-0.85

-8.074-0.61

+8.604-0.22

Cu3Au

+1.424-0.66

+6.584-1.48

-{-16.684-0.52

+1.67+0.28

÷10.474-0.35

+10.004-0.85

+7.564-1.17

+ 15.93-i-0.20

+1.334-0.85

-2.654-0.86

+2.484-0.87

Ripple

0.149414-0.01823

0.175834-0.01601

Fa_:e

(I00)I:I

(100)1:0
(II0)I:I

(II0)I:0

(111)3:1

(7

2050.03

1285.48

1869.36

1905.90

1286.93

-{-1.474-0.83

-0.124-0.26

-4.024-0.93

-1.664-0.63

-2.234-0.15

Au3Cu

-3.89+0.41

-6.924-0.64

-7.73+0.17

+I.184-0.37

+0.91+0.48

-{-0.444-0.92

-I.094-1.57

-1.884-0.16

+5.034-0.31

+8.664-1.06

+3.834-0.17

Ripple
0.107334-0.02479

0.040964-0.02221

0.127224-0.00743

Fa_e

(100)1:1

(100)1:0

(110)1:1

(110)1:0

(111)3:1

a

2341.92

2259.46

2520.31

2517.05

1793.00

-5.58:1:0.51

-7.174-0.51

-8.214-i.01

-9.824-0.70

+3.904-0.33

CusPd

-6.83+0.62

-12.024-0.84

-0.834-0.41

-{-0.434-0.36

-5.894-0.75

+2.304-1.38

+1.344-2.28

+7.384-0.28

+ 1.324-0.62

-8.394-2.10

+11.274-0.54

Ripple

0.023284-0.02082

0.049854-0.02419

0.101044-0.01576

Pd_Cu

Fare

(100)1:1
(100)1:0

(110)1:1

(II0)I:0

(111)3:1

a

2438.15

1444.49

2103.89

2279.19

1562.29

-13.864-3.92

-II.474-0.33

-13.574-0.51

-21.514-0.97

-9.954-0.27

+0.484-0.41

-9.444-0.65

-13.014-0.22

+8.504-0.41

+21.294-1.90

+3.95+1.29

+12.284-5.58

-6.374-0.19

-4.064-0.45

-5.054-1.29

-4.324-0.41

Ripple

0.274524-0.08301

0.219464-0.00637

0.055834-0.01565

0.067754-0.01091

Fa_

(i00)I:I

(I00)I:0

(110)1:1

(110)1:0
(111)3:1

_r

2517.04

2279.98

2935.31

2780.12

1928.91

-6.334-0.40

+1.294-0.38

-3.744-i.13

-7.294-0.73

+4.054-0.29

CusPt

+0.204-0.63

+0.174-1.28

+10.564-0.47

+1.284-0.34

+8.874-0.41

+4.374-1.50

+6.974-1.46

+I0.824-0.26

+0.884-0.77

-2.314-0.92

+1.684-0.72

Ripple

0.121794-0.01928

0.051544-0.03176

0.140404-0.01644

Table ll: Surface energies (in e_s/cm2), planar relaxations (as percentages d the rigid

interplanar spacing, see text) of the top two layers of several low-index faces of the L12

ordered structure. A x represents the relaxation between planes i and j of an atom of

species X in layer i. The last column indicates the difference in position (in A) of an atom

A and an atom B in the top layer.
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Face 6r

(100)1:1 2002.83

(100)1:0 1924.84

(II0)I:I 2101.70

(110)1:0 2583.47

(111)3:1 1146.30

-6.12+0.35

-7.43+0.17

-7.85-I-0.44

-4.63+0.10

Pt3Cu

-7.70+0.31

-7.63..1-0.52

-8.61..1,0.15

-3.00"!-0.25

-3.97-1-0.26
-5.04"1-0.65

-3.27..1,0.15

-2.26±0.31

+1.51±0.12

Ripple
0.03136..1,0.01323

0.00320..1.0.01364

0.09149±0.00587

Face

(100)1:1

(100)1:0

(110)1:1
(110)1:0

(111)3:1

Face

(100)1:1
(100)1:0

(110)1:1

(110)1:0
(111)3:1

O"

3435.00

393.62

2755.35

2260.07

2410.59

2887.57

3156.69

3169.63

3885.99

2575.54

+5.31..1,2.02

-0.39±0.14

-11.72..1,0.82

-1.42+0.86

-8.04..1,0.19

-5.46+0.48

-0.54±0.49

-7.17+1.24

-7.984-0.79

+5.08..1,0.39

AI3Ni

-6.174-0.44

-11.154-0.67

-12.994-0.19

Ni:

+1.12-1-1.29

-3.00+2.26

+13.05::1:1.18

+1.574-0.43

+1.71±0.39

-1.654-1.33

-10.55±1.07

-6.14..1,0.16

+1.30-1-0.45

+5.94-1-0.56
+0.29..1,2.34

+3.08-1-1.92
-Fl1.07+0.38

+7.64±0.15

+15.64..1,0.94

-1.34..1,0.23

Ripple
0.21925..1,0.04706

0.00765±0.01948

0.10936..1,0.00853

Ripple
0.118194-0.03170

0.05310..1,0.04449

0.16545..1,0.03266

Ag3Au

Face

(100)1:1
(100)1:0

(110)1:1

(110)1:0

(111)3:1

1537.59

1488.54

1661.68

1620.23

1214.65

-20.70+3.46

-5.354-0.49

-6.71+0.75

-11.38--[-1.04

-4.29..1,0.35

-6.074-0.43

-5.164-0.72

-4.84+0.28

-2.21..1,0.41

+13.85..1,2.92

+0.81..1,1.37

+2.68+5.09

-1.74-F0.27

-2.034-0.58

-3.43..1,1.15

-1.894-0.43

Ripple
0.30075:1:0.07993

0.02262-1-0.02136

0.01303..1,0.01484

Face o"

(100)1:1 1578.82

(100)1:0 1513.15

(llO)l:l 1618.62

(110)1:0 1657.45

(111)3:1 1204.88

-4.29..1,0.40

-5.144-0.27

-5.904-0.68

-5.61+0.42

-3.85+0.25

Au3Ag

-4.274-0.58

-6.504-0.78

-5.14+0.43

-1.044-0.34

-2.19+0.44

-1.29..1,1.39

-0.67+1.47

-1.504-0.27

-1.21+0.48

-0.94..1,1.80

-0.42+0.52

Ripple

0.00036_0.02005

0.10575..1,0.00563

0.00869..1,0.02118

0.03046..1,0.01622

Tablel} (Cont'd)
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Face (7

(100)1:1 2301.77

(100)1:0 1458.72

(110)1:1 2138.84

(110)1:0 1987.39

(111)3:1 1838.26

-1.574-0.71

-2.884-0.34

-4.374-0.97

-3.854-0.66

-3.484-0.36

Au3Pd

/'5
-3.064-0.72

-5.384-1.07

-5.26±0.50

+0.064-0.50

-0.52+0.46

-0.1;'4-1.25

-0.56+1.65

-1.66-1-0.31

+0.294-0.53

-I-1.014-1.85
-0.73-I-0.69

Ripple

0.030194-0.02910

0.014374-0.02922

0.04182-1-0.02015

Pd3Au

(I00)I:I

(i00)i:0

(110)1:1
(110)1:0

(111)3:1

1584.61

2304.90

2104.72

2318.14

1357.94

-26.594-2.83

-3.22+0.72

-4.794-1.16

-10.224-1.26

-0.604-0.56

-1.024-0.60

-2.884-I.17

-I-7.464-0.44

+1.264-0.57

+14.534-3.37

+0.93±1.67

+7.92+5.15

+8.774-0.44

-1.12+0.71

-2.94-I-1.10

-0.194-0.52

0.507704-0.06809

0.063924-0.01425

0.026814-0.03276

0.184824-0.02292

Ni Pd

(100)1:1

(100)1:0
(110)1:1
(110)1:0

(111)3:1

2024.79

2513.61

2477.88

2590.59

1409.58

-I0.924-0.33

-9.244-0.36

-9.204-0.68

-10.894-0.45

-I-1.724-0.20

-10.024-0.55

-13.054-0.56

-!-1.38-I-0.38

-3.984-0.31
-7.634-0.42

-I-3.194-0.98
+2.924-1.48

+8.36+0.15

+0.404-0.44

-11.72-1-0.89
-9.49::1:0.26

0.016574-0.01635

0.049944-0.01607

0.007144-0.01237

Face G

(100)1:1 1966.28

(100)1:0 1240.30
(110)1:1 1882.18

(110)1:0 1809.03

(111)3:1 617.93

-19.694-3.37
-12.43+0.23
-13.904-0.31
-22.774-0.67

-10.77-t-0.13

PdaNi

-16.82-1-0.26

-11.39-1-0.36

-14.224-0.09

-8.304-0.21

+18.094-1.83
+0.89-1-0.98
-13.57-1-0.38
-7.07-1-0.07

-4.90+0.35

-6.294-1.06

-4.994-0.24

Ripple
0.05543-1-0.06985

0.034184-0.00922

0.076784-0.00483

Fa£,e o

(100)1:1 2577.37

(100)1:0 2759.94

(110)1:1 3355.64

(110)1:0 3234.27

(111)3:1 2042.79

-9.034-0.29

-0.464-0.29

-4.794-0.77

-9.834-0.48

+3.674-0.20

Ni3Pt

-1.814-0.62

+3.494-1.32

+11.184-0.49

-0.664-0.26

+7.994-0.30

+8.724-1.08

+5.244-1.25

-1-11.224-0.19

-0.304-0.71

-3.53-1-0.79

+1.364-0.68

Ripple

0.133634-0.01679

0.108354-0.02736

0.160404-0.01477

TableI_ (Cont'd)
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Pt3Ni
Face

(100)1:1

(lOO)1:o
(11o)1:1
(110)1:0

(111)3:1

O"

2885.91

2100.63

2701.88

2955.02

1823.75

- 1.61::1:0.69
-3.55_-0.23
-5.55:1:0.73

-3.42-1-0.60
-3.18-1-0.15

A_
-5.80-1-0.38

-7.38+0.60

-8.05+0.18

A_
-0.70-I-0.34

-1.47:1:0.41

-0.44+0.98

-2.93+1.42

-2.37+0.16

A_

+1.63-1-0.32

+6.98-4-1.14

+2.84±0.17

Ripple
0.08166+0.02087

0.02527:[:0.01832

0.10961+0.00736

Table ll(Cont'd)
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Fig. 1 : Ideal process of alloy formation.
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x(_)x
X X
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Fig. 2 : Transformation seen by an atom (_) during the ideal process of alloy formation
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Fig. 3: Breakup of tra._asformation shown in fig. 2 into two independent processes: (a) strain

energy _nd (b) chemical energy. The dots indicate atoms of species B while X indicates

atoms of species A. _ indicates the reference atom.
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Fig. 4: Ordered structures of fcc based alloys.
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