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Introduction

The SBUV instrument, on Nimbus-7, measures
the backscattered ultra-violet radiance at 12

wavelengths. The radiance data from these
wavelengths was used to deduce the ozone

profile and the total column ozone. In February
1987, there was an instrument malfunction. The

purpose of this paper is to describe the
malfunction, to determine the effect of the

malfunction on the data quality and if possible,
to correct for the effects of the malfunction on

the data from the SBUV instrument.

Instrument Description

The SBUV instrument consists of both a

monochromator for dispersing the light into the

ozone wavelengths and a single wavelength
photometer for monitoring the reflectivity of the
Earth. The two parts share a common chopper
wheel and counting electronics. The SBUV
photometer measures the radiance at 343 nm,

using a filter/photodiode combination. The
photometer data are coincident with the data
from each monochromator channel. The

absolute reflectivity is derived from the 339.8nm

monochromator channel and the photometer
data to monitor the changes in the earth

reflectivity as the instrument collects data at each
wavelength channel. Additional instrumental
details can be found in Appendix 1.

The SBUV chopper wheel chops the

optical signal just prior to the entrance slit. This

chopping enables the instrument to compensate
for the background signal induced by the

energetic particle radiation in the space

environment. The background signal gets

significantly higher as the spacecraft passes
through high radiation environments, e.g., the
South Atlantic Anomaly. The lack of a chopped
signal affected the data quality from the earlier
Nimbus-4 BUV instrument.

The chopper wheel was synchronized to
the counting electronics. The counter would
count up with the slit open and count down with

the slit closed. Beginning February 13, 1987, the
chopper wheel and the counting electronics

started to become non-synchronized. By mid-
summer 1987, the non-synchronization was
complete and all the scans were taken with the
chopper and the counter out of synchronization.
Assessing the Instrument in the Non-Sync Period

The SBUV instrument makes weekly solar

flux measurements using the 12 ozone
wavelengths. The photometer data are also
collected during this set of measurements. The

photometer solar flux at 343 nm should be
constant during the measurement cycle (10 scans
of 32 seconds each). The distribution or the
variation of the solar flux data from the

photometer should give us an idea of how "out of
sync" the chopper wheel and the counting
electronics really are. A time series of the

discrete mode solar photometer measurements is
shown in fig 1. The start of the non-sync period

is easily observed in fig 1, in early 1987.
Diffuser plate calibration errors will cause a small
variation in the photometer measurements. Note
that after the start of non-sync, the distribution
of the solar 'photometer data increases. The

standard deviation of the monthly average solar
photometer will give us a qualitative measure of
the nonsync condition. The standard deviation
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Figure h Solar photometer data at 343 nm for
each wavelength for each scan for the months
January to June, for the years 1983 to 1991.

deviation prior to February 1987, an increase in
the standard deviation in 1987 as the out of sync
rate approached 100%, then a plateau through

the spring of i990.
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resumed, the SBUV instrument was in a different

state, as shown by the increase in the standard
deviation of the solar photometer data.

The solar data indicate that the instrumeat

had gone out of sync in Feb 1987 and reached a
stable state where it remained until the summer

of 1990. Since the out of sync condition
appeared to be stable we believe that the earth

radiance data can be corrected for the nonsyne
condition and more accurate ozone values can be
retrieved from the SBUV instrument.

Correction of the Non-Sync Data
As the photometer and the monochromator

view the same area, at the same time, at two

different wavelengths, we can use these
simultaneous measurements to compensate for
the non-synchronous chopper wheel.

The photometer responds to changes in the
earths reflectivity at 343 nm. The reflectivity that
the photometer measures should not change very
much over a single SBUV scan, 1.5 sec between
each of 12 wavelengths. Five consecutive

photometer scans before the non-sync period are
shown in fig 3, note the smooth, monotonic
photometer signal within a single scan. A larger
deviation will occur between consecutive scans

due to the 12 second gap between them.

Five consecutive scans from the non-sync
period are shown in fig 4, note random scatter
within a single scan. The scatter observed in the
photometer data is caused by the

nonsynchronous chopper wheel and not by
changes in the earth's albedo.

Figure 2:The standard deviation of the monthly

mean solar photometer flux for the months
January to June, for the years 1983 to 1991.

The consistency of the photometer solar
flux standard deviations indicates that the

instrument was fairly stable and that the amount
of non-synchronization was not changing. In the
summer of 1990, the TOMS instrument, which is
attached to and shares common electronics with

the SBUV, began to have non-sync problems.
The occurrence of the TOMS non-sync was

thought to be temperature related and SBUV

was put in a different mode to add heat to the
spacecraft, in an attempt to correct the TOMS

problems. After normal SBUV operations were
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Figure 3: The equatorial photometer values from
5 scans before the start of the chopper wheel
non-sync problem. The line is a quadratic fit
through the 12 points of each of the scans.
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Since the photometer and the
monochromatorviewthesamesceneat thesame
time, the deviation in a single photometer
readingwill beproportional to thedeviationin
the simultaneouslymeasuredmonochromator
ozonewavelength.Bysmoothingthephotometer
data within a singlescan,we can removethe
variationcausedbythenonsynchronouschopper
wheel.
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Figure 4: The equatorial photometer values from
5 scans after the start of the chopper wheel non-

sync problem. The line is a quadratic fit through

the 12 points of each of the scans.

The ratio of the smoothed to unsmoothed

photometer data, from a single scan, can be used
to correct the monochromator data from that

scan.

Our correction technique consists of fitting

a quadratic expression to each photometer scan.
Any outlier, a point which is greater than 2
standard deviation from the fitted point, is

replaced with the fitted value and the scan is
quadratically fit again. The ratio between the
fitted and the unfitted photometer data is used
to correct the monochromator data for that scan.
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Figure 5: An example of a single scan showing

the corrected and uncorrected photometer data
with the corresponding monochromator data.

Ozone Results using the Corrected Data
The corrected data had a dramatic effect

on individual ozone profiles. The magnitude of
the albedo corrections can be relatively small,
and still have a significant impact on the

retrieved ozone profile. In fig 5, the original and
the corrected data are shown, and the

corresponding ozone profiles are shown in fig 6.
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Ratio = 1 - (Photometers, - Photometerunn,)/photometeru._,
For each scan, the photometer ratio is calculated

at every wavelength, ratio at each wavelength is
multiplied by the monochromator albedo from
that wavelength. The corrected monochromator
albedos are used in the inversion algorithm to

calculate ozone profile and total column ozone.

Figure 6: A single ozone profile retrieved from
using the data in figure 5.

The zonal mean profile data also showed a

significant improvement. The standard deviation

of the monthly zonal means improved
significantly. The results for May, 15S -15N, for
Umkehr layers 4 to 9 are shown in figs 7 and 8.
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Figure 7:This shows the standard deviation in %
of monthly zonal mean, for the month of May for

layers 4,5, and 6. The standard deviation
calculated using the uncorrected data is shown by
symbols without the line drawn through them.

Layer Ozone Std Dev
May 15N - 15S

79 80 81 82 83 84 85 86 87 88 89 90

Ylor

nt Lyr 7 _ fil Lyt 8 _ F;t Lyr 9

Figure 8: The same as above for layers 7,8, and
9.

There was a smaller improvement in the
total ozone data. Since the total ozone is

calculated using wavelength pairs, this partially
compensated for the non-sync in the chopper
wheel. The standard deviations in the zonal

means improved slightly after using the corrected
albedo data. Comparison of the SBUV data with
the TOMS data, fig 9 and 10, does not show any
bias introduced by using the corrected albedos in
the non-sync period.

Conclusions

Using the smoothed photometer data to
compensate for the non-synchronization between

the chopper wheel and the counting electronics
has improved the ozone data derived from the
SBUV measurements.
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Figure 9: The weekly zonal average tot t ulvia
and SBUV total ozone for the latitude band 20S
to 10S. The TOMS is the dashed line and the

SBUV is the solid line. The offset between the

data sets is caused by initial calibration
differences.
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A time series of the difference

between the SBUV and TOMS total ozone.

Using the corrected albedos does not appear to
have introduced a bias in the total ozone data.

Appendix I

Instrument characteristics

Double Ebert-Fastie monochromator, 1 nm bandwidth

12 Wavelengths (nm): 339.8, 331.2, 317.5, 312.5, _)5.8, 301.9.
297.5, 292.2, 287.6, 283.0, 273.5, 255.5

Photometer Channel 343 nm, 3 nm bandwidth

32 second measurement sequence

12 channels (339.8 to 255.5) measured in 18 seconds

Orbital Characteristics

Sun-synchronous Polar orbit 13-14 orbits/day

11.3 ° x 11,3 ° (200 km x 200 km) ficld of vicw

each orbit scparatcd by 26 °

footprint spccd 6 km/scc
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