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1. Introduction

The atomization and breakup process of liquid fuel jet is of vital importance to

combustion performance of many practical devices, such as liquid rocket engines, gas-turbine

combustors and diesel engines. In SSME or STME, for example, non uniform mixing of the

liquid oxygen/hydrogen propellants in the atomization processes is responsible for the

injector performance loss and influences the consequent evaporation, gas-gas mixing and

combustion, and combustion instability.

Numerical modeling of liquid-jet atomization requires the resolution of the different

conservation equations that describe the dynamics of the interfaces separating two

immiscible fluids as well as the droplet/spray dynamics due to the breakup of liquid droplets

from the liquid-gas interface. Past atomization models [1,2] have relied highly on the simple

one-dimensional idealized model [3,4] or using empirical formulation based on specific

injectors.

During the last decade, general multiphase computational fluid dynamics

methodologies have matured to the point that several attempts have been made to model the

detailed atomization process. Reitz [5] has developed an "Blob Injection" atomization model

based on wave instability analysis. This model has been casted in the KIVA code for diesel

engine applications[6] and also been used by Kim et al. [7,8,9] to study combustion

instability of a annular liquid combustor model Habiballah et al. [10]. Przekwas and co-

workers [11] have used direct numerical simulation to study the instability and breakup of

laminar jets and have device a "jet embedding" technique to couple with flow solvers for

liquid-engine thrust chamber calculations. Probably the most rigorous numerical modeling of

atomization process are the works done by Liang and co-workers [12,13,14,15].

The ARICC-3D code developed by them combined the volume of fluid (VOF)

methodology with the spray combustion code KIVA II. The VOF method is used for tracking

two immiscible fluids and the resulting spray/droplets and combusting gas are solved by

Lagrangian particle tracking and ALE/ICE (Arbitrary Lagrangian-Eulerian/Implicit

Continuous Eulerian) finite volume differencing of the reacting flow equations. The ARICC-3D

enables the simultaneous treatments of three phases: a compressible gaseous mixture, an

incompressible liquid, and a dispersed droplet spray. Recent applications [15] involve a

single element injector analysis and a multi-element injector analysis to study the combustion



responseto a bomb blast with and without baffles. The multi-element computationswere

found very time-consuming.The authorslists severalareaswhereeffort has to bemade to

enhancethe computationalefficiency. Oneof the improvementwhich they maderecentlyis to
recast the VOF formulation into a pressure-basedflow solver based on the SIMPLE
algorithm [ 16].

In the last few years, we have used the state-of-art pressure based method, the

PISOC algorithm, for calculating chemical reacting flows at all speeds involving spray

combustion [7,8,9,17,18]. Various physical models including the non-isotropic algebraic

stress model (ASM), the multi-scale model, equilibrium and finite rate chemistry, turbulent

modulation due to droplets, group droplet dispersion due to turbulence, droplet coalescence

and breakup have been incorporated into the current MAST code [19,20].

The MAST code uses primitive variables on a non-staggered general curviLinear grid

system and follows the PISOC algorithm on a time-marching scheme. One predictor-

muticorrector sequence was formulated within each time step for time-accurate transient

calculations. The Chakravarthy-Osher's high order scheme [21] was used for the convection

terms in the governing equations and the conjugate-gradient (CGS) matrix solver was used

for solving the descretized algebraic equations sequentially for each variables with the

predictor-corrector sequence. The purpose of this study is to extend this algorithm to involve

volume-displacement effect encountered in very dense region in the primary atomization

regions. The fractional volume of fluid (VOF) method will be coupled with the existing

Eulerian-Lagrangian scheme currently used in the MAST code to resolve three phases: an

incompressible liquid fuel phase, a compressible gas phase, and a dispersed droplet phase,

within the calculation domain. To calculate the surface tension effect, we used the continuum

surface force (CSF) model [22,23]. This model interprets surface tension as a continuous,

three-dimensional effect across an interface, rather than as a boundary condition on the

interface. The continuum method eliminates the need for interface reconstruction, and

simplifies the calculation of surface tension.

In this study, to verify the tracking of free surfaces between liquid and gas phases and

to analyze the interfacial phenomena between liquid and gas phases, we assume the gas and

liquid phases are incompressible. The confined dam broken problem and water sloshing

problem were carried out. Also, to verify the surface tension force effects, the single droplet

problem and the jet breakup problem were solved. Detailed formulation and validation will be

described in the following sections.
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2. Governing Equations and Physical Models

2-1. Governing Equations

The mathematical formulations for the three-phases (liquid, gas, and droplet phase)

flow and combustion processes comprise the Eulerian conservation equations for the liquid

and gas phases and Lagrangian equations for the fuel droplets. The link between three

phases is mathematically expressed in terms of the interaction source terms in the governing

equations [19]. The tracking of the free surface between the liquid and gas phase is

represented by the VOF method.

All phases processes are modeled by a system of unsteady, multi-dimensional

equations. The gas and liquid phases are written in Eulerian coordinates whereas the liquid-

droplet phase is presented in Lagr_ngian coordinates. The two-way coupling between the

two phases is described by the interaction source terms which represent the rates of

momentum, mas and heat exchange. The detailed equations can be found in ref. 19. The

current method is intended to predict the motion of the fluid interfaces based on the use of a

conserved scalar variable transport equation. The conserved scalar is the fractional volume of

fluid (VOF) cell partitioning function, and the solution of which provides information on the

position and shape of the interface [24,25]. Through a linear relation, it also determine the

fluid properties. By defining the fractional volume in a typical control volume cell:

F - V1 (2-1)

Vg + V I

where V represents volumes occupied by gas phase (Vg) or liquid phase (V1) within the

control volume considered. In the absence of interfacial heat and mass transfer, the function F

obeys the volume flux conservation equation:

aF a

a--7 + _ ( ui F ) = 0 (2-2)

For this initial study, by assuming both liquid and gas flows are incompressible, all other

conservation equations can be expressed in terms of volume of fraction F. These are



continuity equation,

_+ _
_t _ii (_ ui) = 0

(2-3)

and momentum conservation equation,

_t + • iuj)=" 3x i _x i (32-9_+ _-_xj'qj+ gi + Fsv
(2-4)

where p is the averaged density defined as;

P = 91 F + (1 - F) Pg (2-5)

and, gi is the body force (gravity), Fsv is the volume force for the surface tension effects, and

is the turbulent kinetic energy and the viscous stress tensor is

(2-6)

2-2. Physical Models

To analyze the atomization of liquid rocket engine and spray combustion, it is

necessary to incorporate the knowledge and concepts of liquid-gas, droplet-gas, and liquid-

droplet-gas interfacial phenomena and modeling for resolving the liquid volumes displacement

effects. To resolve the dynamics of the interfaces separating two immisciable fluids, the

tracking of free surfaces has to be considered.

In the present study, the free-surface tracking procedure to analyze the interracial

phenomena between the liquid and gas-phase in atomization and spray combustion is

represented by the volume of fraction (VOF) method. And also, for the calculation of surface

tension force, the continuum surface force (CSF) model [22,23] is used. The various physical

models including the non-isotropic algebra stress model (ASM), the multi-scale model,

4



equilibrium and finite rate chemistry, turbulent modulation due to group droplet dispersion,
dropletcoalescenceand breakupcanbe found in refs. 7,8,9,17for details.

a. VOF Method for Tracking the Free Surface

In fluid dynamics, Lagrangian and Eulerian coordinates have been used to the tracking

of free surfaces. In the fin'st approach using Lagrangian discrete representation of a fluid with

free surface, each zone of grid that subdivides the fluid into elements remains identified with

the same fluid element for all time. In this case, the grid moves with the computed element

velocities. It has the advantage of circumventing the problem of numerical diffusion across the

interface. However, the methods become inapplicab!e whenever the deformation of the

interface is severe, such as in droplet and liquid jet breakup studies.

The second method seeks to retain the numerical versatility of a purely Eulerian

representation. However, the convective flux calculation requires an averaging of the flow

properties of all fluid elements that fluid themselves in a given mesh cell after some period of

time. The convective averaging results in a smoothing of all variations in flow quantities, and

in particular, a smearing of surfaces of discontinuity such as free surfaces. The only way to

overcome this loss in boundary resolution is to introduce some special treatment that

recognizes a discontinuity and avoids averaging across it,

One of the special treatments is the VOF (Volume of Fraction) method. This method

was developed by the Los Alamos Group [24,25]. This method forms the basis of the SOLA-

VOF program [25]. The SOLA-VOF solution algorithm has been designated for a wide range

of applications. It may be applied to problems involving a single fluid having any number of free

surfaces, or to two immiscible fluids separated by any number of free interfaces. In this

technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and

zero elsewhere. In particular, a unity value of F corresponds to a cell full of fluid, whereas a

zero value indicates that the cell contains no fluid cells with F values between zero and unity

contain a free surface.

Let F(x,y,t) stands for a conserved scalar variable of the fluid that define the fractional

volume in a typical control volume cell (Eq.(2-1)). That is, free surface reconstructed by means

of a conserved scalar variable F(x,y,t), where



F(x,y,t) =

1

0< F(x,y,t) < 1

0

: in the Liquid phase

: at the free surface

: in the gas phase

(2-7)

Consider at a fixed point ro in space, we can obtain F as a function of time and can

therefore calculate the rate of change 3F/_t at this point. From this limited knowledge of F we

have no way of knowing, how F changes with time if we stay with a particular particle and

following it along as it passes through the point at ro. To f'md this Lagrangian rate of change

we need to relate the value of F at ro at time to to its value at a neighboring point ro + dr at

time to+dt, where dr= v dt is a small displacement along the flow line passing through the

point at ro. Now F has the value Fo = F(xo, Yo, to) at ro at time to. When a particle at this

point at the time to arrives at the neighboring point at the time to+dt, the function F has the

value

F(xo+d_, yo+drl, t+dt) (2-8)

= Fo + _xx(o_F}o d_ + (O._.yF)odrl + (_--_.-)odt
(2-9)

Where, _ and 11 represent the displacement in the direction of x and y respectively. The total

increment in F is therefore

dF = _xo(3F)d_ . (3FyF)odrl + (3___t)Odt (2-10)

Hence, the time rate of change of F from the Lagrangian viewpoint is

(2-11)

The conserved scalar variable F(x,y,t) is governed by the following transport equation

_F _)F
_+Ui_

Ot _x i
= 0 (2-12)

where F(x,y,t) at time t=0 has to be given. Although the Eq.(2-12) is obtained by the

particular point and at a particular time, both position and time and arbitrarily chosen; this

6



Eq.(2-12)constitutesa generalkinematical relation that alwaysholds for a fluid. However, in
this study,by assumingboth liquid and gasflows are incompressible.Eq.(2-12)canbewritten

in theform of F_4.(2-2)

When the VOF equationis solvedover a computationalcell, the changesin F in a cell

reduce to fluxes of F acrossthe cell faces.As previously noted, to calculateVOF value, we

needa special numerical techniquein computing theseflux to reservethe sharpdef'mitionof

free boundaries.Several researchershave previously used variations of this approachfor
tracking material interfaces.In SOLA-VOF [25], donor-acceptorflux approximationwasused.

The basic ideaof this methodis to useinformation about F downstreamaswell as upstream

of the flux boundary to establish a crude interface shape,and then to use this shapein

computing the flux. In ref. [26], the Van-Leer method was used to reduce the numerical

diffusion and to calculate the flux accurately. In this present studies, the higher order
Chakravarthy-Osherscheme[21] is usedto solve the VOF equation.

b. CSF Model for Surface Tension Force.

Liquid surfaces are in a state of tension, as though they possessed an elastic skin,

because fluid molecules at or near the surface experience uneven molecular forces of

attraction. Since abrupt changes in molecular forces occur when fluid properties change

discontinuously, surface tension is an inherent characteristic of material interfaces. Surface

tension results in microscopic, localized "surface force" that exerts itself on fluid elements at

interfaces in both the normal and tangential directions. Fluid interfacial motion induced by

surface tension plays a fundamental role in many natural and industrial phenomena [23].

The free boundary between the liquid and gas is known as the interracial region or,

simply the interface. The interface region is that thin layer surrounding a geometric surface of

separation, within which the physical properties differ noticeably from those in either of the

bulk phases. The thickness of this layer is ill-defined because the variation of physical

properties across it is continuous. To calculate the surface effects at the interfaces between

two immiscible fluids, previous researcher adopt an approximation in which the interface is

infinitely thin; that is, they regard the phase boundary as a geometry surface, and assume

that the properties right up to the interface are unchanged from those of the respective bulk

phase. An alternative description from an energetic point of view follows from the fact that

because a liquid molecule at a liquid-gas interface must be attracted to less neighboring

molecules than one in the interior of the fluid, the attractive energy per molecule at the surface



must then be some fraction of that in the interior. The energy of a surface molecule is

thereforehigher than that of one in the bulk liquid, so energymust beexpendedto move a

molecule from the interior to the surface.However, since the free energyof the systemwill

tendtoward a tWmimum, the surfaces of the liquid phase tend to contact. With o the force per

unit length tending to contract the surface, we may therefore write that, at constant

temperature and volume for a given number of moles of system,

0G

- 0A (2-13)

where, G represents the free energy and A represents surface area. The quantity _ is called

the surface tension and is usually given in units of force per unit length. For a liquid-gas

interface problem, there is an imbalance of intermolecular forces, although smaller, the

magnitude of the interracial tension usually lies between the surface tensions of each liquid.

And, there will be a tendency to curve the interface, as a consequence of which there must be

a pressure difference across the surface with the highest pressure on the concave side. The

expression relating this pressure difference to the curvature of the surface is usually referred

to as the Young-Laplace Equation. From a calculation of the P-V work required to expand the

curved surface and so change its surface area, it is relatively straightforward to show that

this equation may be written as

=o (1+1__)
RI R2

(2-14)

where R1 and R2 are the radii of curvature of the surface along any two orthogonal tangents (

principal radii of curvature), and AP is the difference in fluid pressure across the curved

surface. Note that the individual contribution of either R1 or R2 to the pressure difference is

negative when moving radially outward from the corresponding center of curvature. As Eq.(2-

14) is written, it is applicable to arbitrarily shaped surfaces where the radii of curvature may

change spatially.

However, Eq.(2-14) has suffered from difficulties in modeling topological complex

interface having surface tension. In this study, surface tension at free surface is modeled with

a localized volume force prescribed by the recent CSF (continuum surface force) model. In

CSF model, instead of a surface tensile force or a surface pressure boundary condition applied

at a discontinuity, a volume force due to surface tension acts on fluid elements lying within



finite thicknesstransition regions replacingthediscontinuities.CSF formulation makesuseof

thefact that numerical modelsof discontinuitiesin finite volume and finite differencescheme

arereally continuoustransitionswithin which thefluid propertiesvary smoothlyfrom onefluid
to another.Tlaevolume force in CSF model is easily calculated by taking first and second

order spatial derivatives of the characteristicdata. In the caseof theVOF method,it is the

VOF function F. At eachpoint within the free surfacetransitionregion, a cell-centeredvalue
Fsv is defined which is proportional to the curvatureK of the constantVOF surfaceat that

point.

Surfacetensionmodeledwith the continuummethodeliminates the needfor interface

reconstruction,so restriction on the number,complexity, or dynamic evolution of interfaces
having surfacetensionarenot imposed.

Surface Tension Force

The surface stress boundary condition at an interface between two fluid is

(P1- P2 +0 1()ni=('l;Iik - "l;2ik)llk +Ot:r
3Xi

(2-15)

where _ is the fluid surface tension coefficient. P1 and P2 are the pressure in fluid(1 and 2). "_

is the viscous stress term. _: is the free surface mean curvature. In this study, for the accurate

modeling of the normal boundary condition for interface, we assumed that the viscosity at the

interface is neglected and the surface tension coefficient is constant. Therefore, the fluid

pressure jump across an interface under surface tension is

Ps = P2- P1 = (__(x) (2-16)

where Ps is the surface pressure. Surface pressure is therefore proportional to the curvature

of the interface. Surface tension contributes a surface pressure that is the normal force per

unit interfacial area. Therefore, the surface force per unit interfacial area can be written as

Fsa(X) = o _:(x)n (2-17)

where n is the normal vector at the free surface. In the CSF model, the surface tension is

reformulated as a volume force Fsv satisfying

9



fvFsv x d3xfsFsa X dS (2-18)

and h is a length comparable to the resolution afforded by a computational mesh with spacing

dx.(Fig.1) The area integral is over the portion AS of the surface lying within the small

volume of integration AV. The finite difference approximation in MAST-VOF replace free

surface discontinuities with finite thickness transition regions within which the fluid

properties vary smoothly from fluid to gas over a distance of O(h).

Fsv(X) = _ _:(x)
VF

IF]
(2-19)

where F is the fluid characteristics, equal with the VOF value in MAST-VOF. When F= F,

the volume force is computed accurately for any two fluids meeting at the interface. In

particular, the two fluids could have equal densities. The mean free surface curvature K ,

given by [22,23]

(V _ ] (2-20)

where the unit vector

n̂=
(2-21)

is derived from a normal vector n

n= VF (2-22)

that is the gradient of VOF data. The volume force, Fsv(X) has the following prope_es;

(1). The volume force in the transition region in Fig.l, where there characteristic

varies smoothly form fluid 1 to fluid 2, is designated to simulate the surface

pressure on the interface between the fluids. Thus, the line integral of Fsv(X)

10



across the transition region is approximately equal to the conventional surface

pressure:

I IFsv(X) d(nox) = _ 1<(x)n(x )

l I

(2-23)

_=o (x) for h> 0

(2). In the limit that the width of the transition region in a direction normal to

the interface goes to zero, the volume force becomes the conventional surface

pressure.

Modeling surface tension requires some special consideration, since the effects of

surface tension should be confined to the neighborhood of the interface. To simplify the

application of boundary conditions and to localize the domain of dependence of the volume

force, an approximation with compact support is sought. To maintain the integrity of the

transition region, the volume force should not change sign along the radius of curvature.

Because the contribution to the surface tension force come from the small portion of

the computation mesh in the neighborhood of the interface, difficulty in formulating sufficiently

accurate finite difference expression might be expected. It turns out that low-order

approximations may be used, provided one begins with a form of the volume force that

emphasizes the region of maximum gradient. This allows one to apply boundary conditions

with no more difficulty than with other terms, such as pressure. In the CSF model for surface

tension, a surface force is formulated to model numerically surface tension effects at fluid

interface having finite thickness. The method is basically suited for Eulerian interfaces that

are in general aligned with the computational grid. It can alleviate previous topological

constraints on modeling interfaces having surface tension without sacrificing accuracy.

The CSF model has been validated on the single droplet problem at the equilibrium

state. This problem will be described in the next section.
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3. Finite Difference Equation

3-1. Finite Difference Equation for Transport Equations

The control volume method was used to derive the difference equations with all

variables located at each cross point of a grid mesh. The grid system is shown in the Fig. 2,

where the dash lines are the boundaries of control volume with east, west, north and south

faces and P, E, W, N, S are grid main points. The transport equations are discretized by the

Euler implicit difference scheme. The governing equations can be expressed in difference form

for each grid point as

Continuity equation:

i_!_[p.+__p.] + _Xi(pU)"+_= 0
At

(3-1)

Momentum equation:

1 [ (p u)n+l. (p u)n ]
At

= H'(U n+l) - Ai pn+l + Su + Sst + Sbf (3-2)

VOF equation

[ F n+l- F n ] + Ai (Ui F}n+l = 0
At

(3-3)

In the above equations, the operators H' denotes the finite difference representation of the

spatial convective and diffusive fluxes of velocity Ui, F stands for VOF value. The operator

A i represents the first order Euler finite difference of 3/Oxi. The source terms, Su, contains all

other terms except the convective and diffusive term for each variables. Sst stands for the

surface force due to surface tension. Sbf represents body force due to gravity.

In order for the solution procedure of the finite difference equations to be stable, the

simplest way without losing accuracy is to separate the diagonal elements of the operators H'

and to shift them to the left-hand side of the equations. The concentration is focused on the

momentum equation:

13
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where,

H

Ap

H' (Ui) = H (Ui)- .49 Ui

operator of convection and diffusion term at neighbor points

surrounding the main point p

coefficient of the diagonal element of the operator H.

(3-4)

3-2. Finite Difference Equation for VOF Equation

In Eulerian representation, the convective flux calculation usually requires an

averaging of the flow properties of all fluid elements in given mesh cells. This convective

averaging results in a smoothing of all variations in flow quantities, and in particular, a

smearing of surfaces of discontinuity such as free surfaces. To calculate the interface fluxes

for the advection term, the upwind scheme is too dissipative, while the central and Lax-

Wendroff schemes are too dispersive in the vicinity of discontinuities. To overcome this loss

of accuracy in boundary resolution and to handle sharp interfaces between liquid and gas

phases, a high accuracy scheme is implemented. This high accuracy scheme must have the

ability to generate numerical algorithm which allow a high resolution of discontinuities, such

as shock waves and contact discontinuities, without oscillation. In this study, to prevent the

generation of numerical oscillations and to calculate the interface flues exactly at the

interfaces between the liquid and gas, the Chakravarthy-Osher scheme [21] is used. This

scheme is a kind of TVD (Total Variation Diminishing) scheme, whereby the variation of the

numerical solution is controlled in a non-linear way, such that it forbids the appearance of any

new extremum.. This scheme can be defined essentially in terms of one parameter. By

various choices of this parameter, one can obtain schemes with a wide range of accuracy

including high accuracy (low truncation error) second-order schemes, the conventional

second-order accurate upwind TVD scheme and even a third-order accurate TVD scheme.

This scheme can easily apply to scalar equations, to systems of equations, to arbitrary

curvilinear coordinate systems, and to general control volumes.

The transport equation for the conserved scalar variable F can be transformed to a

general curvilinear coordinate system. From Eq. (2-2), this equation can be written;

+ UF) + VF) = o (3-5)

15



Where, U and V are the contra-variant velocity in the transformed coordinates.

Integrate with respect to the control volume in the grid system Fig.(1).

J Fn+l - Fn + Ul_e- Ul_w+ Vl_]n - Vies = 0 (3-6)
At

In the above equation, the interface fluxes are calculated by using the Chakravarthy-Osher

scheme. The F flux term in the direction of { is obtained as follow;

c_ _ fi+l/2d- fi-1/2j(uF - - (3-7)

then the control-volume interface flux is computed according to;

fi+l/2d = hi+l/2j + (1 + ¢) dl_i+l/2,j _ (1 + q>)4 4 d_+l/2d (3-8)

+ (1- _) df_i-l/2d (1- _)4 4 d_+3/2j

In the above, h represents a first-order numerical flux, and can be expressed

+
hi+l/2j = Ui÷l/2j Fij + Ui'-l/2jFi+ld (3-9)

where

U_+1/23 = 0.5 ( Ui+ 1/2d -I- ]Ui+ 1/2_ ) (3-10)

The flux-limited values of df are computed as follows:

df_'+l/2,j = Ui++l/2,j ( FP+,d - FPd ) (3-11)

(3-12)

dfi+l/20 = Ui+1/20 ( I:_i+i0 - _ ) (3-13)

d_+3/2d = Vl+lt2d ( lZ_+2d l_t+ld) (3-14)

16



Also, the west, north, andsouthfacefluxescanbeobtainedby a similar way.

The spatial accuracyof the schemeis controlled by the parameter• , which may take the

following values:

el) = -1/3
=0

= 1/3

= 1/2

=1

Fully upwind scheme

No name scheme

Fromm scheme

Third order upwind scheme

Low truncation error second order scheme

Central difference scheme

3-3. Finite Difference Equation for Surface Tension Force

The CSF model for surface tension is implemented by placing the normal at grid main

point and the curvature 1,¢ at cell centers as shown Fig.1. The shading part is the control

volume for the computational domain.

From Eq.(2-19) and Eq.(2-20), the vector and the mean curvature also can be

expressed

_F aF

-3x ei +-_-YYej (3-15)

/nxi2[0nx/ +/nx ny/[anx any / [0nyt]_¢(x)= _ I_] I-_-1 l'-_J lay +ax, + {_')21ay1_

(3-16)

And the derivatives in above equations are transformed to a general form based on a non-

orthogonal coordinate system (_, 1"1). The first derivatives are as follows;

aF OF _)F

+ nxN (3-17)
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OF OF 8F

0y - _y-_- + rly_- (3-18)

The second derivatives are as follows;

O-_x-_x0F ] = _x _-_-_nx)+ fix _-_nx)_xxJ (3-19)

0-_y-_y0F/= _y O-_-{_ny)+ tie _-_ny) (3-20)ay)

The cross derivatives are as follows;

_y]={x ny) + rlx -{ny) (3-21)

_-_-(y0FI= _ fly _-_nx) (3-22)0xJ _y nx)+

And the second derivative for the cylindrical coordinate is as follow;

1 0
r ot De ( ra_F/=0y] 1 ( {Y _-_ {ra{Y _-_) + {Y _-_{rarlY _-_)

+ rly_(ra_y _) + rly_{raXly _}) (3-23)

OF

nx - 0x (3-24)

Where,

and,

and 0 in the Cartesian coordinate.

(3-25)

the superscript O_ on the radius r is a constant equal to 1 in the cylindrical coordinate

The finite difference equations for above derivatives are

18



based on the control volume in the grid system (Fig.2). The finite difference equations are as

follows;

= Fi+ 1,j Fi,j (3-26)
c

-_ = Fij - Fi._j (3-27)
w

= Fi,j+l - Fi,i (3-28)

--_ = Fid - Fij-1 (3-29)
s

therefore, the first derivatives can be expressed

[nx]p=[_b__{xt =1 (_x,eI__ 1 +_x,w[__ 1
p e w

0F

(3-30)

[ny]p OF =l(_y,e OF + + qy,n +qy,s )e Y'W[_--_w s

(3-31)

and, the second order derivatives are;

= [nx_E-[nx]p
e

-_ = [nx]p - [nx]w
w

_ = [nx]N - [nx]p

(3-32)

(3-33)

(3-34)
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_ =[nx]p - [nx]s
8

ax_ jp =½ <_,eLa{Je+ +

Similarly, the second order derivative in the direction of y can be obtained;

ay _--y-yJp =2L (_Y,e[--_]e+ _Y,_--_]w+ rly,n[-_-L]n

Also, the second order cross derivatives are obtained;

axay ]p=l (_x,e[_L]e + _x,_0__]w + rlx,n[___7_y]n

[&%] ranxl
ay _-x ]p = _-( _Y'eLa_ Je

(3-35)

(3-36)

+ rly,s )
S

(3-37)

r_nx]
+ 71y'sL/bl Js

>

(3-38)

)

(3-39)

These discretized equations are then substituted into Eq. (3-2) for calculating body
forces based on the CSF model.
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4. Numerical procedure

In this study, the basic algorithm for flow solver is the PISOC algorithm [20], which is

based on the operator-splitting technique originally proposed by Issa [28], that is, the

pressure implicit with splitting of operators (PISO) algorithm. PISO algorithm is a non-

iterative method for handling the coupling of the implicitly discretized time-dependent single

phase fluid flow and heat transfer. The PISO algorithm has been extended to include a

stochastic Lagrangian particle tracking scheme for computing time-dependent gas-droplet

flows [28]. Since for this study both gas and liquid phase are assumed incompressible, the

variation of density is solely accounted for by the VOF information. By substituting the

volume flux conservation equation (2-2) into the continuity equation (2-3). It can be shown

the continuity equation retains the original incompressible form. Thus the same procedure

described in [28] can be used here with an addition of a F-equation corrector step at the end

of the last momentum corrector step. Special attention was paid to the solution of the F-

equation.

4-1. PISO-VOF Algorithm

PISO algorithm is a non-iterative method for handing the coupling of the implicitly

time dependent fluid flow equations. This algorithm is based on the use of pressure and

velocity as dependent variables and is hence applicable to both the compressible and

incompressible versions of the transport equations. The main feature of the technique of the

splitting of the solution process into a series of steps whereby operations on pressure are

decoupled from those velocity at each step, with the split sets of equations being amenable to

solution by standard techniques. At each time-step, the procedure yields solutions which

approximate the exact solution of the difference equations. The accuracy of this splitting

procedure is assessed for a linearised form of the discretized equations, and the analysis

indicates that the solution yielded by it differs from the exact solution of the difference

equations by terms proportional to the powers of the time-step size. Detailed PISO algorithm

and the PISOC algorithm can be found in Ref. [20,28] for dispersed multiphase reacting flows.

The implementation of the VOF is summarized in the following;

Predictor Step
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The equationof momentumis solved in this step implicitly, using old time pressure

and density, as

(A_tt +Ap) U_i=H(U_i)-P 2-Aipn+-'_At +Sui (4-t)

The solution in this step yields U_. velocity field. But, in this step, U_ velocity field will not in

general satisfy the zero-divergence condition.

The equation of VOF is solved in this step also implicitly, using U_i and old time VOF

value F n, as

(I__L+ Ap) F* =G(F')+ Fn (4-2)
At At

where, G term is convective term for VOF.

First Corrector Step

In this step, the momentum equation can be written in the explicit corrector form

(Atl----+AP) _" =H(UI'i)-_-Aip*+-_ +S. i (4-3)

which, by subtracting predictor equation from it, and then combining the continuity equation

and equation of state, the pressure increment equation can be obtained;

U,*= U_' - 1 Ai ( p*. pn ) (4-4)
P

[ &(pLD. ai)l(p*-p")= aiU[ (4-5)

This equation yields P" field. Form Eq.(4-3), U[ ° can be obtained. The equation of VOF is

solved in this step also explicitly, using U_ ° , F*, and old time VOF value F n, as follows;

( 1__!_+ Ap) F** = Off') + P (4-6)
At At

Second Correetor Step
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For this step,the momentumcorrectorequationis

H.***- H(U_'*) _Ai(._L+ Ap) ,.,, - - p**+ U--_-n+ S u .
At- P At

(4-7)

Also, in this step, the increment equation for momentum can be obtained as like the first

corrector step;

(At1-!--+Ap)(U_i**-U_i*)

= H(U_i*)-H( U_)-iz_(p**-p*) (4-8)

Denote

Thus,

Du = ( 1_1_+ Ap )-1 (4-9)
At

U_'**= U_'" +Du[ (H( U_i*)- H(U_))- piAi(p**-p*)] (4-10)

Substitute U i into the continuity equation, we obtain

z_ (_Du &) ] (p** - p')

= Du&[ H(U_*) -H(U_')] (4-11)

The above equation yields P", and then the other variable, U'*', p'" can be obtained. And,

also the VOF value is obtained as follows;

(_k+ Ap) F*"= G(F**)+ Fn
At At

(4-12)
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4-2. The Construction of Free Surface

In this study, it is assumed that the boundary can be constructed by a straight line

cutting through the cell By determining the slope of this line, it can then be moved across the

cell to a position that intersects the known amount of F volume in the cell and neighborhood

ceils.

To determine the free surface position in the cell, first calculate the gradient of volume

of fraction in the cell which has the value of volume of fraction greater than 0.5, that is, VF

VF- OF OFei + -- ej (4-13)
0X id 0Yi,j

and then, calculate the resultant of VF;

IVF1 4 OF + ( f)2= (_-)id by i,j
(4-14)

The x-position and y-position of the free surface can approximately obtained from Eq.(4-13)

and Eq.(4-14) ;

3F/3x,_..

Xsf = xij + ( 0.5 - Fij ) ( _ jt,j
(4-15)

3F/_..
Ysf = Yi,j+ ( 0.5 - Fij ) (-_m

(4-16)

By the similar way, the x and y positions of the neighborhood cells (i-ld),(i,j-1) and (i+l,j)

are obtained. And then, if Fid is greater than 0.5, Fi+ld is also greater than 0.5, and Fid+l is

less than 0.5, connect the point (Xsf, Ysf) of the left-side cell (i-l,j) and the point (Xsf, Ysf)

of the left-side cell (i,j). In this case, The free surface is consmacted horizontally, if Fi,j is

greater than 0.5, Fi+l,j is also less than 0.5, and Fi,j+l is greater than 0.5, connect the point

(Xsf, Ysf ) of the top-side cell (i,j) and the point (Xsf, Ysf ) of the bottom-side cell (i,j-1). In

this case, The free surface is constructed vertically.
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5. Validation

To validate the MAST-VOF, we solved dam broken problem, water sloshing problem,

single droplet, and liquid column breakup problem. All problems were solved simultaneously

liquid and gas phase.

5-1. Dam Broken Problem

In this calculation, a rectangular column of water in hydrostatic equilibrium is confined

the wall as shown Fig. 3. At the beginning of the process the right wall is suddenly removed,

the water column therefore starts to collapse, under the influence of gravity and to form an

advancing water wave.

0.02 /////////////////////////////////////////
/
/
/
/
/

0.02 /
/
/
/
/

¢
/
/
/Y(m) /

/
/
/
/
/
/

t/

Water

Gas

"////////////,'//////////////////////////,

,0 1 04

.-- X(m)

Fig.3 Schematic Diagram for Dam Broken Problem

This is a good test problem for tracking the free surface because it has simple

boundary conditions and a simple initial configuration. The appearance of both a vertical and

horizontal free surface, however, provides a check on the capability of MAST-VOF to treat

free surface that are not single valued with respect to X-Y coordinate. The physical

properties are listed in Table 1.
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Table 1. Physical properties for dam broken problem

o Liquid physical properties

density : 1000.0 Kg/m 3

viscosity : 1.0 E-3 Kg m/see

o Gas physical properties

density :1.0 Kg/m 3

viscosity : 1.8 E-5 Kg m/sec

o Gravity : 0.01 m/see 2

At the start of the calculation, VOF value F has the unit in the region occupied by the

water, and zero in the gas phase. Also, the velocity components u and v are zero at the flow

domain boundary. For the calculation, a grid consisting of 41x41 uniformly spaced cells has

been chosen. The numerical results are shown in Fig. 4. At the initial state, there is no gas

flow. When the dam collapse, the gas velocity was induced due to the momentum transfer

from the liquid phase (water). Gas started to move from left to right wall. As the water front

moves from left to fight, the gas velocity increased and the recirculating flow also induced.

Numerical results from the present method in terms of VOF values are in good agreement

with those in ref. [26]. Also, the computed results of water column height H and wave front

length Z are compared with the experimental data of Martin & Moyce [29] as shown in Table

2. From this comparison, it is seen that the present mathematical model is capable of

tracking the free surface between the liquid and gas phase.

Table 2 Comparison of numerical results to experimental data

MAST-VOF Experimental DataZ(cm) H(cm) Z(cm) H(cm)

0.0 1.0 2.0 1.0 2.0

0.9 1.514 1.68 1.5 1.7

1.4 2.17 2.17

2.0 3.28

1.37

1.062 3.1

1.37

1.1
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Fig. 4 Computational results for dam broken problem
at time = 0.0 sec
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5-2. Water Sloshing Problem

The second test calculation is that of liquid water sloshing in two-dimensional

rectangular tank as shown Fig. 5. The tank is left-half filled with liquid water and right-half

filled with gas. At the initial state, the pressure is uniform at the value Po and the velocity is

zero. And also, VOF value at the left-half side is equal to unity and the right-half side is zero.

And the physical properties is listed in Table 3.

The numerical results are shown in Fig. 6. In this case, no analytic solution is

available. However, the numerical results clearly show the qualitative sloshing behavior

Y(m)

°O,m

0

_///////////////////////////////////////

Water Gas

"///////////////////////////////////////

0 I
--_ X(m)

Fig. 5 Schematic diagram for water sloshing problem

which would be expected intuitively. At the beginning state, the water front starts to collapse

due to the gravity force. As the water front starts to move from left to right, the gas velocity

was induced due to the momentum transfer from the liquid phase (water). And also the
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Table 3. The physical properties for the water sloshing problem

o Liquid physical properties

density

viscosity :

o Gas physical properties

960.0 Kg/m 3

1.0 E-3 Kg rrgsec

density • 0.585 Kg/m 3

viscosity : 1.8 E-5 Kg rrgsec

o Gravity : 9.8 m/sec 2

o Inidal Pressure : 1.0 bar

recirculating flow was induced. The numerical results are compared with ref. [30] with close

agreement qualitatively.
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5-3. Equilibrium Droplet Problem

To test the surface tension force, the equilibrium droplet problem was chosen. In this

problem, the viscous, gravitational, or other external forces were not considered. Only the

surface tension effect is considered. Therefore, this surface tension causes a static liquid drop

to become spherical.

For numerical solution, the Cartesian geometry using a two-dimensional 0.06 x 0.06

(m) computational domain is chosen as shown in Fig. 7. Also, a regular, orthogonal grid with

uniform mesh is used The physical properties are listed in Table 4 and the radius of droplet is

0.02 m. This droplet is located at the center on computational domain (0.03m x 0.03m).

0.06

0.03 _

Y(m)

0.0
I

0.0 0.03 0.06
.._ X(m)

Fig. 7 Schematic diagram for equilibrium droplet problem
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Table 4. The physical properties for the equilibrium droplet problem

o Liquid physical properties

density : 1000.0 Kg/m 3

surface tension coefficient : 0.02361 N/m

initial radius : 0.02 m

o Gas physical properties

density : 1.0 Kg/m 3

o Gravity : 0.0 m/sec 2

Fig. 8 shows the numerical results, the gradient of F has its greatest magnitude in

the transition region and fails to zero outside the transition region. It means that the value of

mean curvature are local to the interfaces between two fluids. To calculate the surface

tension, the effects of surface tension should be confined to the neighborhood of the interface.

Because the surface tension is the boundary phenomena. In Fig. 8, it is seen that the velocity

vectors inside the droplet are in equilibrium. Therefore, the static liquid droplet keeps

spherical. Also, the surface force vector and the contour of the density are shown in Fig. 8.

The results were obtained without any smoothing treatment as described in ref. [23].
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5-4. Liquid Column Instability_ Problem

This problem concerns the instability of a cylindrical column of fluid and a perturbation

by radial displacements. A cylindrical liquid column 1.4 cm long by 0.1 cm radius was covered

by a 1.4 cm long and 0.3 cm calculation domain with a 232 x 101 grid. Liquid to background

fluid density ratio is approximately 2 and surface tension coefficient 59.0 dynes/cm is

modeled.

The interfaces between two immiscible is initially perturbed by a cosine function with

an amplitude of 0.01 Ro (liquid column radius). For large amplitude displacements, the non-

linearity takes effect and the liquid column deforms and pinch-off occurs to form small satellite

drops between the large drops. Details of the satellite drop formations are very sensitive to

the grid system and topological reconstructions of VOF data into the breaking up of liquid

bulges. A series of computational resialts of the free surface and velocity filed are shown Fig.

9 depicting the deformation of the liquid column into droplets. This computational results are

compared to experimental results of [31] shown in Fig.10.

Next, a cylindrical liquid column 1 cm long by 0.05 cm radius was covered by a 1 cm

long and 0.15 cm calculation domain with a 81 x 31 grid. Liquid to gas density ratio is

approximately 1000 and surface tension coefficient 72.8 dynes/cm is modeled. The gas-liquid

interface is initially perturbed by a cosine function with an amplitude of 0.001 a (liquid column

radius). The r_rmalized perturbation growth plotted in Fig. 11 vs. non-dimensional time is

compared with the linear theory of Rayleigh. The current resutts compared favorably with the

linear theory as well as with other results by SOLA-VOF [25] and ARICC-ST code [13].
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6. Conclusion and Recommendation

The development of a combined Eulerian-VOF-Lagrangian method has been initiated

based on a pressure-based transient gas-droplet solution procedure [28]. This study

concentrated on implementing the VOF method and CSF model into the solver for sharp

interface tracking and efficient handling of the surface tension force. Validation studies

indicated that the current methodology can readily be extended to incorporate other physical

submodel such as compressibility effects in the gas phase, spray tracking and turbulence for

atomization process simulation.

The future work for the next phase studies should include:

1. Determine the onset of primary breakup using the VOF data and develop an

criterion coupling with Lagrangian droplet tracking.

2. Interracial transport phenomena including heat effects.

3. Interfacial transport due to turbulence effects.

4. Extension to three-dimensional multi-jet simulations. This will involve

extending the VOF method to couple with multi-zone unstructure grid

methods.
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