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Chapter 1 Introduction and Literature Review

1.1. General Background.

The proposed study is an investigation into the nonlinear oscillations of liquid
bridges. The liquid bridge is a finite length fluid column which is held by both
wetting forces (capillarity) and surface tension between two solid end disks which in
this study are taken to be coaxial.

In addition to begin of fundamental interest, the liquid bridge configuration serves
to model floating zones in crystal growth applications. Moreover, recent studies of
Marangoni convection (including numerical studies) have been performed in this con-
figuratfon. Although recent attention has been focused on the fundamental issues
of liquid column formation and the possible paths to breakage (Padday, 1992, Mar-
tinez, 1984), the technical applications also provide impetus for investigation into the

nonlinear dynamics of the liquid bridge.
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The fcgg.t;é'of. thls investigation is on aspects of the nonlinear behavior of the finite
length liquid column. The emphasis is on bridge dynamics. This is in contrast to the
quite interesting studies which look at possible equilibrium shapes and their (static)
stability, as illustrated by the recent work of Langbein (1992) into the static stability
of liquid bridges held between parallel plates. Of course, the initial interface shape of
the liquid bridge in the dynamical studies will have to satisfy the capillary equation
and be statically stable.

The proposed investigation will concentrate on nonlinear fluid dynamics. Thermal
and solutal fields, so necessary to actual crystal growth process (Brown, 1988), will
be absent. However, the floating zone milieu in which crystal growth would occur
does involve fluid dynamics; and results of the proposed investigation should yield

insight into nonlinear effects which would impact crystal growth.

In the microgravity environment provided by space shuttle, residual accelerations
which could affect the stability limits of the liquid bridge configuration exist. In one
space experiment, an amphora type liquid bridge configuration resulted instead of the
c-mode-type that the experiment was designed to excite (Martinez, 1984). The inter-
face response to periodic: residual accelerations oriented parallel to the longitudinal
axis of the bridge has been studied in a series of theoretical investigations (Zhang &

Alexander, 1990, Lyell, 1991, Meseguer & Perals, 1991). Only the work of Zhang and
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Ale)gindér.}r.{cor;-)gyated any nonlinear effects; however, their formation used a sim-
plified one-dimensional slice model for the liquid bridge. With regard to the response
of the liquid column to accelerations in alternate orientations relative to the column,
the work of Lyell (1993) investigates interface stability in the presence of periodic
forcing aligned normal to the longitudinal axis. However, the column was taken to
be infinite in extent.

However, before any detailed investigations into the full nonlinear dynamics of the
liquid bridge (with resonance effects and external forcing) can be undertaken, it is
necessary to investigate the effect of nonlinearity on the oscillation frequencies of the
system.

With regard to liquid bridge dynamics, it is only recently that the natural oscilla-
tion frequencies of the liquid bridge have been calculated in an inviscid linear analysis
(Sanz, 1985 (axisymmetric); Sanz & Lopez-Diez, 1989 (non-axisymmetric)). A pre-
liminary attempt has been performed by Eidel and Bauer (1988) to try to determine
the effect of the nonlinearity upon the natural oscillation frequencies of the liquid
bridge. However, they did not include the anchored triple contact line boundary con-
ditionia their formulation, and so have not modeled the finite liquid bridge correctly.
(in essence, their results have application to an infinite column.)

The task of the proposed investigation is to determine the effect of nonlinearity

upon the natural oscillation frequencies of the liquid bridge; to ascertain whether
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the lidﬁid:gﬁ'dée..gystem exhibits softening (or hardening) oscillations for a range of
bridge slenderness parameters as well as higher order frequencies. Moreover, results
of such an analysis will yield additional information on nonlinear corrections to the
interface shape.

The liquid bridge configuration has both the fluid interface as well as solid bound-
aries provided by the end disks. It can be viewed as a configuration lying between
the containerized fluid for which only the top boundary is that of a free surface (in a

1 gravity environment) and the free liquid drop, which involves no solid boundaries.

1.2. Literature Review.

1.2.1. Fluid Physics Literature.

Early work on the oscillation, dynamics, and breakage of liquid bridges utilized
the one-dimensional inviscid slice model, which is valid in the limit of slender liquid
bridges. Such a model assumes that axial velocity in the bridge is independent of the
radial coordinate. Oscillatory frequencies for the slender limit case were determined in
a linearized analysis by Meseguer (1983), in a study which investigated the dynamics
of slender liquid bridges using the one-dimensional slice model. Additional efforts
which utilized the one-dimensional slice model include that of Rivas and Meseguer
(1984) and Meseguer and Sanz (1985). A report on liquid bridge breakage aboard

Spacelab-D1 was given by Meseguer et al (1986).



It:'i;as been 'ro‘t‘i-g.hly a decade since the oscillation frequencies of the infinite length
cylindrical liquid column were determined (Bauer, 1982). Such calculations were
extended to include the oscillation frequencies of viscoelastic infinite length cylindrical
columns (Bauer, 1986). The determination of the natural oscillation frequencies of

the liquid bridge without the restriction to the slender limit has been performed

more recently. A three dimensional linear model was developed by Sanz (19853):

axisymmetric modes (Sanz 1983) and non-axisymmetric modes (Sanz and Lopez-
Diez, 1989) have been investigated and oscillation frequencies determined.

In addition to fundamental interest, information regarding oscillation models is
important for applications such as crystal growth via float-zone process. Also, recent
experiments and numerical studies have investigated thermocapillary flow in the liquid
bridge configuration. (See, for example, Preisesser et al, 1990, and Velten et al, 1991).

An attempt to evaluate the nonlinear effects on the frequencies of oscillation of
a liquid bridge has been made by Eidel and Bauer (1988). However, their analysis
did not impose the restriction of an anchored triple contact line at end disks, and so
did not characterize correctly the finite length fluid bridge. (In essence, their analysis
refers ta the infinite length cylindrical fluid column).

It is this problem which the proposed effort will solve. Nonlinear corrections to
the oscillation frequencies will be determined over a wide range of slenderness param-

eters (no restriction to the slender limit). Whether the system exhibits hardening or
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softening_characteristics will be ascertained. The nonlinear correction to the interface

shape will be found. The proposed methodology will utilize a Lindstedt-Poincare ex-

pansion of the frequency coupled with domain perturbation techniques.

1.2.2. Mathematical Formulation Literature Review.

The investigation of the nonlinear corrections to the frequencies of oscillation as
well as to the interface shape will proceed via utilization of a Lindstedt-Poincare
expansion for the frequency, and domain perturbation techniques. As the solution
is required to be periodic in time, the Lindstedt-Poincare technique is applicable.
Since the domain in which the solution is to be obtained is pot stationary, domain
perturbation techniques are quite useful.

Domain perturbation techniques were developed in the context of non-linear water
wave theory. Early contributions include the work of Tadjbakhsh and Keller (1960),
and Verma and Keller (1963) in their investigations of standing finite amplitude
surface waves (in two and three dimensions, respectively). A formal discussion of the
methodology awaited the contribution of Joseph (1973). However, it was not until the
1982 article by Lebovitz that a formal equivalence between expansions produced via
domain perturbation techniques and those derived from more classical techniques (see
Wehausen and Laitone, 1960) was exhibited. Recently Gu et al. (1988) used domain

perturbation techniques in their study of the resonant surface waves in a rectangular
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corl:t‘;inefr:‘;;ibje}.:f:to periodic forcing oriented in the vertical direction.

For a further discussion on the genesis and details of the method, see the afore-
mentioned references. Application of the domain perturbation techniques results in
the development of a hierarchy of equations at successive orders in a given expan-
sion parameter. Each of these sets of equations (including governing equations and

boundary/interface conditions) is to be solved on a fixed domain. This fixed domain

is achieved via a transformation of the oscillating interface boundary.

1.3. Objectives.

The primary objectives of this work are:

(1) to determine the nonlinear corrections to the interface shape of a naturally
oscillating finite length liquid column, and

(2) to determine the nonlinear corrections to the oscillation frequencies for various
modes of oscillation. The modes of oscillations themselves may be quickly character-
ized physically by the number of half-waves present upon the free surface.

The work will investigate the nonlinear characteristics of free oscillations only.
This i not only a very demanding task, it is also the first task which must be accom-
plished in any rational plan of investigation into the nonlinear behavior of the liquid
bridge.

In order to accomplish the objective of the proposed investigation, several subtasks



becoine fzrzlrt:tcai to the overall effort. First among these is the selection of a methodol-
ogy whi;h may be applied to the governing equations and allow for the incorporation
of nonlinear efforts. Moreover, the methodology should be such that known linear
results may also be recovered.

It is planned that the approach be theoretical and analytical (as opposed to com-
putational). A methodology capable of achieving the objectives has been selected. It
is discussed in Chapter II.

Application of the methodology (Lindstedt-Poincare expansion in conjunction
with the domain perturbation technique) results in an hierarchical system of equa-
tions. The system discussed in Chapter III represents a recovery of known linear
results.

Nonlinear corrections to the interface shape are achieved by solution of the second
order system given in Chapter IV. Graphical results are presented in Chapter V.

In order to ascertain the nonlinear correction to the natural frequencies of os-
cillation and thereby satisfy the final objective of this proposed investigation, it is
necessary to develop a solvability condition at third order in the hierarchical sets of

equatigns. Theoretical results are presented in Chapter VI. Preliminary numerical

results are given in Chapter VII.
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Chapter 2 Governing Equations and

Formulations

2.1. Governing Equations.
The time-periodic, irrotational and incompressible motion of an inviscid fluid col-

umn of finite length is considered. The following nondimensionalized quantities are

used:
o o i
R£=X) P=Pa (—) Q—Q»
pR
3\ 3 H
P ~1; _ § g -
( a) w t=t, (pR3) w=w,
where

T X — spatial coordinates
U - : velocity field
P — pressure

t — time
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.w — angular frequency

R - radius of the column
o — interface tension
p — density of the fluid comprising column

and where the tildes indicate corresponding dimensional quantities.

The volume of the undisturbed column is V = n R?L, where L is the length of the
column. The surface of the column during axisymmetric oscillations is described by
RF(z,t), where F(z,t) is the dimensionless shape function of the column.

The nondimensional slenderness of the column is defined as

L
A—ﬁ‘

Using the nondimensionalizations, the equations governing the inviscid time peri-

odic motion are listed below, where ®(r, z,t) denotes the velocity potential function.
V3®(r,z,t) =0, (0 < r < F(z,t), —A <z <A), (2.1)

which results from using the potential form of the velocity field in the conservation

of mass equation.

The conservation of rmomentum equation is given by

a0 1(ad\’ 1 [ae\’

10
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The boundary/interface conditions are

0o
- = = -A <z <))
P 0, (r=0, -A<z<))

OF(z,t) 0% O8bIF _

- —

ot 9r 9z 9z
Ll (2EY] @F
F Jz 0dz?
SF 3
[l+(—)]
0z

V&(r,z,t +2x) = V(r,z,t).

AP =

L
dz

z=%A

A
/ F*(z,t)dz = 2A.

-A

F(£A,1) = 1.

(2.3a)

(2.3b)

(2.3¢)

(2.3d)

(2.3¢)

(2.3f)

(2.39)

Equation (2.1) is the Laplace equation governing the flow; (2.2) is the Euler equa-

tion; (2.3a) is the condition for a zero radial velocity at the center of the column,

required for the restriction to axisymmetry; (2.3b) and (2.3c) are the kinematic con-

dition and the normal force equation, respectively, at the interface; (2.3d) is the

11
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condition for pérzxédicity in time of the velocity field; (2.3e) is the condition for zero
normal velocity at the end disks; (2.3f) is the conservation of the volume condition

and (2.3g) is the anchored triple contact line condition.

2.2. Linstedt-Poincare Expansion with Domain Perturbation Method.

The unknowns of the equations (2.1) - (2.3) are the shape function F(z,t), the
velocity potential function ®(r,z,t), and the frequency w. These variables will be
calculated as the terms in expansion of the amplitude of the motion by the Linstedt-
Poincare method (see Nayfeh & Mook 1979). The dependence of the velocity potential
®(r,z,t) on the shape of the mathematical domain which is given by the moving
boundary r = F(z,t) is very complicated. The domain perturbation technique as
detailed by Joseph (1973) will be applied.

To immobilize the boundary shape, introduce the change of variables r = uF(z,t).
Let ¢ denote a small positive real number. The expansions of the dependent variables

can be written in terms of ¢ as follows:

- -

12
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) ( F(z,t;€) ) ( F¥)(z,¢) )
O(r,z,t:¢) o k| ®F(u, zt)
= % , (24)
P(r,z,t;¢) k=0 PH(u, 2, t)
\ @) L)

where
' F®(z,t) = iﬁ%;ﬂl’
oMy, z,t) = .‘{kq’(’;_’;’t;o_),
<
p[k](#,z,t) = d"I’#d;:,_t_;P_),

The static cylindrical column is recovered as the zeroth order solution of the equation,
with:

FO(z,t) =1, 8O (u,z,t) =0, PO(u,z,t) =0. (2.5)

Using the chain rule for differentiation, each term ®*I(y, z,t) and P¥(p, z,t) in the

expansion for the potential and the pressure can be written as a sum of contributions
oF

evaluate on the cylindrical domain (0 < 4 < 1), and (=A < z < A). Let B =

F(z,t). Then the first few relationships are:

Oy, 2,1;0) = ¥y, z,1)

13
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dl(y, 2,¢;0)

(s, 2,¢;0)

¢Bl(4, z,¢;0)

0

oW (p, z,0) + FO(z,t)—
7]

(2) (1)
OO (u, z,t) + 3IFV (2, t)-ai)— +3F3 (2, t)?-?;
Op Op

92 820
(1) 2 (1) (2)
3Pz, ) = + 3P0z, )z, =5

3o
(FO)(z, t))3a—p3

Similarly, the following results are obtained.

POy, z,t;0)

Py, 2,0

PR (g, 2,t;0)

POy, z,t)

apP®
PO (u, 2 t) + FO (2, t)——
(By2,t) (z,t) 9

(1)
PP (u,z,t) + 2FY(z, t)‘”;

PO

0)
(2) bl (1)
F@)(z,1) + (F(z,1)) i

aP® dPM
(3) (1) bl (2) —
P p,2,t) + 3F(2,1) o +3F%(z,t) o

a* PO
ou?

2 p(1)
3(F(‘)(z,t))zaa% + 3FW(z,t)F?)(2,t)

14
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o PO

) (0)
- S (F“’(z,t))373—+F(3)(z,t)2{D_

i H Op
k
o
where @ (4, z,t) = %—67‘—, PO (u,zt) = % are always defined in the cylindrical
€
coordinates system (0 < u <1, —A <z <A)

2.3. Hierarchical Systems of Equations.

In this section, the complete system of equations occurring at each order in € are

displayed.

Linear System.

For O(e), which represents the linear order, we obtain the following governing
system of equations:

The Laplace equation:
V’@m(p,z,t) =0,(0<u<l, -ALz<A)
Condition on radial velocity required for axisymmetry:
o W:O,(y:O,-ASzSA).

Kinematic condition:.-

_J© aF®M + oo
ot du

=0, (p=1).
15
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Narnﬁrférée' balance:

et A
SO _p _ o = BN (4 =1).

Periodicity in time:
VO (y,z,t +27) = VOV (4, 2, t).

Zero normal velocity required at end disks:

oo
0z

z=%A

Conservation of volume:

A
/ FO(z,0)dz = 0.

Triple contact line condition:

FO(£A,t) = 0.

System at Nonlinear Order ¢?.

For-O(e?), which involves the first nonlinear contributions, the following governing

system of equations has been obtained:

The Laplace equation:

VoD (u,2,t) =0, (0< p<1, —A<z<A).

16
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"Condition on radial velocity required for axisymmetry:

&2
58# =0, (=0, —A<z<A).

Kinematic condition:

@ 9o
_ @37 00

ot ou
oF) a2 o) o) g
w7 o r _
2w 5 2F B +2 3 8s " (p=1).
Normal force balance:
ae® 0*F®
0 2
WO __ _ p@) _ o
2 2
9,3 o 0 pm@e (90T (501
ot dudt op 0z

)\ ?
—2(FWy? 4 (—a—F—) + BN® (u=1).
0z
Periodicity in time:
VO (4,2, t + 27) = VO (y, 2,1).

Zero normal velocity required at end disks:

99

Conservation of volume:

/_ AA [F(” + (F“))’] dz = 0.

17
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Triple contact line condition:

FO(£A,t) = 0.

Nonlinear System at Order €.

For O(€?), we obtain the following governing system of equations:

The Laplace equation:
Ve (4, 2,t) =0, (0<u<1, ~A<2<A).

Condition on radial velocity required for axisymmetry:

96®

=0, (=0, ~A<z<A).
5 (n=0 z<A)

Kinematic condition:

_0OFD 080
at ou

gF® 9F®) P
= ¥ ) Bl (M2 _aqp())
.- W= + 3= - 30—

. 82¢d() o) 3d® g
3 _ (1)y2
IF £ 3(F) EPE +3 P

map(l) 82 o) + 331:'(2) 9oV
0z Oud:z 9z 9z’

+6F p=1).

18
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’\Iorma.l force balance

@38 p _ PFY

ot 0:z?
9oV 9@ g2
= 3,09 P e
“ Tt 3w at 6 duadt
9*elY o*ol
3O MLl s op@Z®
WO F gy ~3TE a,lat

- 3“,(0)(1:(1))2

_,00090@ 900 52000 300 9o

Op Ou ou Op? Y 0z

_erm VY iy pa 4 g(p) — 3F0) (35(”)
z

0z Opo:z

+ BN©),

dFM gF®@ aFm\? g2 pa)
332 9z (az) 0z2

Periodicity in time:
Vo) (4, 2,t +27) = VOO (4, 2, ).

Zero normal velocity required at end disks:

)

0z =0.

1=%A

Conservation of volume:

- ! [lF‘:") + F(‘)F(”] dz = 0.
- J-a 3
Triple contact line condition:

F®(£A,t) = 0.

19



Chapter 3 Solutions for the Linear Order

In this chapter, the linearized problem is solved. Functional results from the linear
order will appear as nonlinear forcing terms in the higher order systems. The major
results were first proved by Sanz (1985). In this chapter, Sanz’s results are recovered
in the notation of the present effort.

In the previous chapter, the governing equations for the linear order O(e) were
listed. They are repeated here:

The Laplace equation:

VoW (4, 2,8) =0, (0< <1, =A<z <A). (3.1)

--

Condition on radial velocity required for axisymmetry:

2o
Op

=0, (p=0, -A< z2<A). (3.2a)

20



Kinem3tic condition:

0 @F gt
— TH + 0—“- =0, (u=1). (3.26)

Normal force balance:

0090y 9FW

= (1) - 3.2
5 £ BNY (u=1). (3.2¢)
Periodicity in time:
VoM (u,z,t +27) = VoM (y,z,¢). (3.2d)
Zero normal velocity at end disks:
(1)
9% =0. (3.2¢)
0z |, _sa
Conservation of volume:
A
/ FO(z,t)dz = 0. (3.2)
-A
Triple contact line condition:
FO(£A,t) =0. (3.29)

-~

For “axisymmetric problems, 586 = 0, and using cylindrical coordinates, Laplace

equation becomes

V?Q(l) = iga_ ( aa ) Q(U + ;Q(‘) (33)
21
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Write ¢DJ T{t (#)Z(z) and substitute it into the Laplace equation to obtain

-

1 d ( OR
2"+ 1272 =0 (3.5)

where A is a constant.
Using the change of variables @ = VA and § = ay in (3.4). one obtains the
modified Begsel’s equation:

323 JR

Thus for A > 0, the general solution for (3.6) is
R = Alo(§) + BKo(£),

where I, and K| are the modified Bessel’s functions of the zeroth order (indicated by
the subscript) of the first kind. Since the z-axis (r = 0) is part of the domain, B = 0,

in order to preserve finiteness, and so

R = ALy(€) = Aly(ap). (3.7)
Fronl ’(3.5), it is clear that
- Z = Ecos(VAz + A) = E cos(az + A). (3.8)
Thus the solution of ®() s
M) = Aly(ap)cos(az + A)T(t). (3.9)
22
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By the cb;l.(‘fltioﬁ'of zero normal velocity at the end disks,

Ao
9z

= Aly(ap)(—a)T(t)sin(az + A) =0,
:=%A A

C - . m .
which implies that A = %, for some integer n.

nw

Let a, =, = ET% It follows
M = Y A, Io(lap) cos Iz + A)T(2).
n=0

Note that Ij(€) = I,(&). Therefore,

n ol
A =Y AulnLi(lap) cosln(z + A)T(t).
a# n=0
As 11(0) = 0)
8]
9T o,
6;1 u=0

(3.10)

and so the radial velocity condition is satisfied. Since sin(2l,A) = sin(nx) = 0,

the condition of normal velocity on the end disks is also satisfied. Therefore, the

spatial form of the solution of (') has been obtained without knowing the specific

t-dependence.

The initial potential is assumed to be zero. Using the periodicity in time condition,

one can define the time dependence of o) as sint. Hence

W (u,z,t) =sint Y AuIo(lap) cosla(z + A).

n=0

By the kinematic condition and normal force balance equations,

gF)  goe)
Y +'—a#——0, (u=1),

—w®

23
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(0)3‘1’( ' _ OFY

5 FERE BN =0 (u=1).

Assume that the solution of FV is in the form of
F( = Q,.(z)cost.
Substituting (3.14) in the kinematic condition (3.12) yields

wQn(2) + > Anlg(la)lacosly(z + A) = 0.
n=0
Substituting (3.14) in the normal force balance equation (3.13), we have

Qh(2) + Qn(z) = w© E AS“)IO(I,,) cosl,(z+A) - BN,

n=0

Solving (3.16) yields

Q. =aVcosz+ fMsinz — l

n—O

To study the two expressions of Q,(z) in (3.15) and in (3.17), expand

cosz =Y Crcosln(z+A)

n=0
to obtam
had 2sin A sin A
cos z = 2 AQ-2 )COSlgk(Z-i'A) + i
Similarly,
had 2cos A
sinz =) ———————cosly_1(z+ A).
1,Z=:1 A(l - 2k-l) 2=t

24

ado(ln) cosla(z + A).

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Therefore (3 17) becomes

sin A 2sin A\ & 1
Q, = ot A +alV X Z 7 cos lyp(z + A)
2k

2 o ]
+ BW cos A Z L cosly_1(z + A) — BN

A k=1 12/: 1
o 0)
+ gl_lZAnlo(zn)cosln(HA). (3.20)

For n = 0, (z-independent terms), that I;(0) = 0 and /o(0) =1 give

0= a(x)fi_’/l\ﬁ +w®4, - BNW,

Physically, BN® adjusts the pressure. No adjustment at this linear order is needed

for physical consistency. Therefore, the value of BN(!) is selected to be zero, and so

0= a“)i'i‘A—A + W@ A, (3.21)

Similarly, for n = 2k > 0,

sin A

Aze = —2aMO T (@O ho(l) + b1 - BT (322)

and forn=2k-1>0,

A , -
Agey = =200 co; (@O To(lzk-1) + k-1 (1 = Be_ D ()™ (3.23)

--

This gives the solution of F(!)(z,t) = cost Qn(z) as follows:

L nA
(5 ¢) = t{_ (1) S8
FY')(z,t) = cos a—

w0

+aMcosz + gV sinz + Z A Iy(la) cosln(z + A)} . (3.24)

25



t QO
FO(2 C°(f,) ZA LI (L) cos Iz + A). (3.25)

Substitute (3.24) into the condition of conservation of volume (3.2f) to obtain

A
/ FO)(z,t)dz
-A

2sin A &3 1 A
= cost {a“) Z 3 sinl(z + A)
o (1= G)lae A
2cosA 1 A
+ pWw sinlg_1(z+ A
g 2; 1- lzk lak-1 -l ) A
0 (0) A
T Sy A1} )1 sinln(z + A)
n=1 1- l -A
=0

and so (3.24) satisfies the conservation of mass for an incompressible fluid column.
Substituting (3.24) into the triple contact line condition (3.2g), for z = A, the

anchored triple contact line requirement yields

FO)(A,t) = cost Qa(A) = cost {—a(l) Sl?\A
@
+aMcos A + BV sin A + Z " —— A, Io(l,) cos In(ZA)} = 0; (3.26)
n—l
and for z = —A,
(1) sin A

FM(=A,t) = cost Qu(—A) = cost {—a x
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+ af') cosA — ﬂ(')sm A+ Z — —— A (I, )cos(O)} =0. (3.27)

Add (3.26) and (3.27), and use the fact that cos(nr) = (-1)" to obtain

sin A ©
—afV \1 +aMcosA + Z 1w_ IzkA“‘]O(l?*) =0 (3.28)
i k= 2

Substitute (3.22) into (3.28) to obtain

A-tanA & (w(®)2 L
2 ] o0
* To(lax)

Similarly, by subtracting (3.27) from (3.26), and by using (3.23),

=0 (3.30)

lAtanA + z (w(O))2 AT ]
T(1-13y) [ O 4 lea(1 = 5 1)(+::1)‘]

Equations (3.29) and (3.30) represent the dispersion relations.

Conclusions for the Solutions of the Order O(e). For the order O(e),

®W(p,z,t) =sint Y Anlo(lnp) cosin(z + A)

n=0
and
FO(z,1)
(I)SinA (1) uJ(o
= costy—a n +a Yeosz + 4 smz+Z AIo(l)cosl,,(z+A) .
or
FO(z, 1) = °°(f,)t 3 AulnI(In) cosln(z + A).

n=1

27



- -

where

Sin “'\

0=l + w4,

{

Ay = _20(1)w(0)5in A
A

(W) To(lai) + Lo (1 = B I (i)]™

)cosA

A = —2B(1)w(0 [(W(o))zlo(lzk-l)

+ (1 - lgk-l)lc’)(lu-l)]—l;

and, setting w(©® = w® to emphasize the existence of multiple modes,

1
)

0,

A—tanA i (w{?)? 3
2tand S (- ) |9 + (1 - &)M]
Io(lye)
00 (0)y2
%A tan A + E (wp7)

a1y

Numerical solutions for given A can be obtained from these dispersion (eigenvalue)

equations. The p = 2 mode can be obtained from (3.30) and the p = 3 mode can be
obtained from (3.29), where pis the number of half-waves in the interface deformation.
The modes with an odd (even) number of surface deformations are obtained by using

equations (3.29) ((3.30), respectively). A root finding technique was used in order

28
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to determine the w}(f’) values for each A. The program is listed in the Appendix.

Graphical results are presented in Figure 3.1 and the numerical results are listed in
Table 3.1.

The linear solutions of this order (O(¢)) recovers A. Sanz’s solutions (1985).
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ROOT DETERMINATION BY BISECTION

1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000

1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000

OMEGA (P=2 MODE)

3.264606138984453400
2.290288785914530890
1.670226411974154330
1.251121188390937440
0.953872402882467108
0.734523546383059167
0.566652921197410286
0.433454446539947594
0.323269135939490443
0.226462506734397689
0.129816430336827382

OMEGA (P=4 MODE)

12.797858131049062900
9.527490411879419700
7.383664680146235560
5.889552334017784220
4.799506245931250750

223.976672194738063660

3.338290221303994660
2.831998994119034000
2.423088801453758820
2.087696090144671060
1.808906068875178570
1.574420289854091330
1.375094424256466660
1.204001042690194370
1.055797902929259900
0.926300795696662571

METHOD TO FIND OMEGA.

OMEGA (P=3 MODE )

7.523140628393082400
5.517359210610919050
4.203184144471603600
3.290224461262170050
2.628156961557847950
2.131828795651618870
1.749636681888166120
1.448627121229342450
1.206860255054819530
1.009208756750524130
0.844915285737982580
0.706097678690390085
0.586748700766904663
0.482135179607233483
0.388141417997999019
0.300614117118225790

OMEGA (P=5 MODE )

18.777629760152812800
14.084428617905016900
11.005851738380386000
8.858385874800074330
7.290301709168400810
6.104153871476119210
5.181477567644345860
4.447332002919017310
3.852210648810926230
3.362202349416284710
2.953358820877600270
2.608325526860350460
2.314158395188188780
2.061181711922818180
1.841870305525759920
1.650362380063753460
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LAMBDA

2.
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000

1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000

|

- -

- -

OMEGA (P=6 MODE)

25.467738030123200600
19.168957516886681700
15.039590677929982800
12.161136645430588000
10.059471455407461300
8.470268297490264330
7.233823344526586930
6.249413915126632580
5.450582931543062730
4.791893868648658740
4.241331957985241540
3.775746660722400170
3.378012864456509720
3.035212736699548720
2.737425280715521710
2.476916703999844090

OMEGA (P=8 MODE)

40.629465277129657600
30.697886249731954700
24.185997431375284300
19.646925116789443400
16.333418982145715900
13.828645817765947300
11.880501548046547500
10.329839411058587800
9.071571819568198690
8.033823073607900160
7.165957682358648610
6.431391677787967830
5.803106046519861620
5.260761645784036710
4.788783435320783880
4.375064459219278220

OMEGA (P=7 MODE )

32.754142031693433500
24.712642351512379000
19.439369813704285400
15.762671957877159900
13.079191696480551200
11.049919726683331300
9.471294339905082180
8.214513832394541030
7.194550792016014110
6.353266606388104480
5.649717318975978400
5.054338388853206740
4.545165435275326570
4.105857244407967070
3.723756342366369540
3.389043470572185690
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Chapter 4 Solutions for the Order of O(e?)

In this chapter, we shall discuss the solution to the system at the order O(e?).

Recall that in a previous chapter, the governing equations for the order O(€?) were

listed, and they are now repeated here:

The Laplace equation:
V3B (4, 2,8) =0, (0<u<], —A<z<A). (4.1)

Condition on radial velocity required for axisymmetry:

5@
= = A< z<A) .
an 0, (p=0, A< z<A) (4.2a)
Kimematic condition:
GF® o AF®) Pa0) _9am F)
—w©® 9% % _opm =1). (4
W + an W = 2F a7 +2 % 97 (p=1). (4.2b)

Normal force balance:

oo™ g*F®
oI _ e _
YT F 0z?
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_ g0

Oudt Ou 0z

(1)
—~2(F)? 4 (ag

2
. ) +BN@ (n=1).

Periodicity in time:
VO, z,t +21) = VOB (u, 2, 1).

Zero normal velocity at end disks:

o6
0z

z=%xA

Conservation of mass condition:
A 2
[ [F®+ (F0)] a2 =o0.
-A
Triple contact line condition:

FA(£A,t) =0.

0,0 p I8 (a«pm)’ ~ (aqﬂ'))’

(4.2¢)

(4.2d)

(4.2¢)

(4.2f)

(4.29)

In general, a solution of ®(®(u,z,t) would be solved by using equations (4.1),

(4.2a) and (4.2e). Consider the Laplace equation (4.1). In this order O(e?), there are

nonlinear forcing terms involved. In the process of solving ®)(y, z, t), it is recognized

that an additional potential term without z-dependence, denoted by ¢$3,’(p, t), should

be added to balance the .system. Specifically, the form of the nonlinear forcing terms

in the kinematic condition together with the requirements of the conservation of mass

condition requires an additional contribution to the function ®®(y, z,t).
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Therefore we ﬁ;ay assume that ®(? (g, z,t) to have the following form.
O (., z,1) = 6P (s, 2,t) + O3 (p, ).

It is remarked that éf&)(y,t) (as well as ¢!?) must satisfy any conditions required
on ®?(u,z,t).

Thus (4.1) becomes

V2P (u,2,t) =0 (4.3)
V24 (u,t) = 0 (4.4)

Equation (4.3) can be solved, in a similar way to the case of O(e), with the frequency

of t-dependence being “2”.

6D (p,z,t) =sin(2t) 3 Amlo(lmp) cosln(z +A), (0 u <1, ~A <2< A). (45)
m=0
To solve (4.4), we let ¢53,)(p,t) = T(t)q-SS&)(p). Then (4.4) yields

091 | 104
o p Op (46)

Integrate both sides of (4.6) to obtain

s 7(2)
ln (6¢M ) = —Iny + Const.,
. O
which implies that
7(2)
¢ = —Const.
op p
32
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By-i;iteg:r;t}ngt both sides of the equality above, we obtain the solution of (4.6):
éu = Eilnp, (4.7)
where Ey is a constant. Set T(t) = sin2t. Then the solution of (4.4) is
S&) =sin(2t)E, In y, (4.8)

Physically. this is a source term correction to ®(?(y, z,t). Therefore, the solution

form for ®® is;

¥ (y, 2,t) = sin(2t) { i Ymlo(lmp) coslm(z + A) + Ey In p} . (4.9)

m=0

Considering the form of the nonlinear terms of O(€?), in the kinematic and normal
force conditions, it may be assumed that the appropriate form of the solution for F(3)
has a time-dependent term and a steady state (time-independent) term. The time-
independent term will balance certain the nonlinear terms in the normal force balance
at this order. Thus, by using similar techniques in solving this problem as were used

in the linear order, the appropriate solution form for F® is assumed as follows:

T2 FO(z,8) = co8(2t) 3 Smcosln(z + A) + Y b cosln(z + A). (4.10)
m=0 m=0
Let
F®(z,t) = cost FM(z) and &M (u, z,t) = sintdV (4, 2). (4.11)
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Substituté these-expressions in (4.11) into the kinematic condition (4.2b) to get

- e e -y 000 M gFM
259 5in 2t F® 4 sin 2t 3 = =2.Wsint £V — sin 2t FM 5. + sin 2¢ 3 =

Ir
(4.12)

Substitute these expressions in (4.11) into the normal force equation (4.2¢) and

then partially differentiate both sides with respect to t to get

2 fo(2)

0z2

—4w@ sin 2t®® + sin AFP 4 25in2t

- T StV odm\?
= 200 sin t®M + 2 sin 2tFm-ai— —sin2t | —
du dp

(4.13)

aﬁ'm)’

1A )
—sin2t (-a—q,——) + sin 2¢(FM)? — sin 2t ( %

0z

Combine (4.12) and (4.13) to get

. 5(2) 2 5(2)
—4w(°>sin2t<b(’)—sin2t6° —sin2t£—- (34’ )

Ou 02% \ Ou
- - F 1)) oM M
— ouMgintdM 4 gin 2t FW s
2w sint®'Y) 4 sin 2t F W sin 57 32

o FW - ? [ =) 02 0W
W g - og( FDY? _ sin 2t )
. 42wV sint 357 +sin 2t(F*)* —sin2 57 F o

+sin 2t

9 (9dM gFM
az’( 0z 0z )

. T 1) dm\?
+2w<1’sint<1>(”+2u(°’sin2tF(‘>a° — sin 2t A i
ou Op
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. m . S 2
—sin 2¢ (agz ) +sin2t(F(”)2—sin2t(agz ) . (4.14)

Rewriting (4.14) gives

2 (1)
0 = sintwm[ Q(1)+266F ]

e 5 (66(2))

: 0 §(2)
-+-sm2t{4u o'+ o +5? P

8*e) e gF)

)
Fo ou? dz 0z
- 8 [ ..,,0290
(1)y2 _ (1)
+(F'Y) 357 (F o )

& (0dM gFM) - 1) 0P
(R0 il
+323( 9z 0z )*2“’ e

adM\?  radm\* o (9FW 2
(%) - () reer-(a) s e

By (4.15), in order to vanish the secular term, the coeficient of sin¢ has to be zero.

Since

(1)
461 4 2926—F— #0, (4.16)

we must have

w® =0. (4.17)

Applying the triple contact line condition (4.2g) for the order of O(€?), and by
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(4.10), one obtains, when z = A

FA (A, t) = cos(2t) z dm cosmm + Z b cosmm =0,

m=0 m=0

and when z = —A

FO(—A 1) =cos(2t) Y bm + 3 6m = 0.
=0

m=0

Combine (4.18) and (4.19) to get

COS(2t) Z 62]‘ + Z SQI: = 0.
k=0

k=0

Subtract (4.19) from (4.18) to get

cos(2t) Z O2k—1 + Z 321:-1 = 0.

k=1 k=1

(4.18)

(4.19)

(4.20)

(4.21)

Since (4.20) and (4.21) are valid for all t, we must have the following systems.

2 b =0
k=
{
Z 62k-l - Ov
\ k=1
and -- '
3 b =0
k=0
A
Z by =0
k=1
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B;' th}:ﬂc.dnSe'r\r;tion of mass condition (4.2f), and by (4.10)

A > >, - 2 ;-
/ [cos(?t) Z Sdmcosln(z+ A)+ Z Smcoslm(z+ M) + coz-t (F(l))2

-A m=0 m=0 ~

(F)’

5 dz =0,

+

which is valid for all ¢. It follows that both

/ {26 coslna(z+A)+ (1:"(”)2](12=0,

m=0

and

/A [25 coslm(z+A) + = (Fm)]dz=0.

m=0

Hence, we have the following conclusion.

R 1 rA -
So=bo=—— [ (FM)d:. (4.23)
Apply the kinematic condition to obtain

2w 3" b cosln(z+ A) + Y YmlmIg(lm) cosln(z + A) + Ey

m=0 m=0

F) o) 50 gEMW)
e __ _ )
" F Oou? t 3z 9z’

(4.24)

where w(!) = 0.

Using the orthogonal properties to eliminate the z-dependence, one obtains

Ey = -20®¢8, — —

2A

. 920 o) gEQ)
FQO) -
[ o i ] dz, (4.25)
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and for m”:* 1, ‘2

Al (1) vm + 21906,

I

A L G2 A 9pt) gEW
(1) “ .
—-/_AF EW) coslm(z-+-A)¢L+/_A 57 -—a?coslm(:+.\)d:. (4.26)

It is noted that the use of the orthogonal properties involves multiplication through
by cos{;(z+A) and integration over the range (—.\,.\), with the appropriate (integer)
q value.

By the normal force balance condition, we have

022w _FFD w8 g @ (3“’“’)2

97 at Judt A

(m\? n?
_(a%_) -2[F‘"]’+(a—;:l—) +BN®. (4.27)

For the normal force condition without t-dependence, the orthogonal properties

are used to obtain

BN® = - _/ (O)F(I)ad’( ) (aq;(l))
Op Ou

- -

)

and form=1,2,--,

\ 1 A .80 1 (3dm)?
- @pmo%® " 1[0
bm A(l—l,’,.)./-/\[w i +2(3}1)
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(U (1)
(622 ) + (FM)? - 5 (ag_' ) } cosln(z + A)dz. (14.29)

For the normal force condition with t-dependence, the orthogonal properties are

used to obtain

_ 10 (1)‘9‘1’”+l aeM\*
o= 4w(°)A ou 2\ Ou

1 /adm\?
+§(a—z) -

and form=1,2,---,

dz (4.30)

o)W
e
-
N
[
N | —
AN
QD
"
-
N~————
~

2800 (1) ¥m — A(1 = 12)6,n

e apw
!
5 <8 ,,.(z+Adz+2/ ( ) 08 ln(z + A)dz

= —o© / PO

/ ( @fi)) €08 I (2 + A)dz

OFM

/ (FM) cosl(z + A) dz+2/ ( ) coslm(2 + A)dz. (4.31)

By the Lanzcos Tau method and using (4.31), (4.26) and (4.21a), a set of linear
algebraic nonhomogeneous equations in §,, and 4,, are developed. Using techniques
of numerical linear a.lgebra, the truncated system can be solved for v,, and §, for
each m € {1,2,---,M}. ﬁsing (4.29) and (4.21b), bm can be solved also.

Knowing of the v,, and §,, can then be used to construct ®()(y, z,t) and F?(2,1t).
It is the shape function F® which is of most interest at second order, for it represents
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the first nonkinear correction to the deformed interface shape of the finite length liquid
column in natural harmonic oscillation. Also, the steady state correction to F?

indicates a modification of the mean form.
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Chapter 5 Results at Second Order of O(e?):
The Shape Function and Velocity Potential

Corrections

In this chapter, some numerical results at the second order of O(€?) are displayed.
Results for the first six modes (p = 2,3,4,5,6,7) are presented. For each of these
modes, the shape function F® in O(¢€?) is computed The initial parameters a(*) and
BN are so chosen that either o/ = 1 and 8 = 0, or a¥) = 0 and g = 1.
The value of € is set to be 0.4. With these values of the parameters, the corrected
deformation up to O(e€?) is plotted.

Note that

2
F(z,t,;6) = FO:,8) + eFV(z,1) + SFO(z, 1)

-

2
= 1+eFM(z,t) + %Fm(z,t) (5.1)

The perturbation contribution to F from both order O(e) and O(€?) is graphed

for various modes and A values.
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Chapter 6 Derivation of the Solvability

Condition at Order of O(€®)

The nonlinear correction to the interface shape has been determined at order €2,
and the forms of the theoretical solutions have been presented.

However, it remains to investigate the nonlinear corrections to the interface for
various families of parameters.

Of interest is how the shape is modified by nonlinear corrections for various values
of the slenderness parameter, for an even or odd number of half-wave deformations
(at the_ Einear order), for higher order modes in general, and for various forms of the
initial ;i-i-sturbance (aV and B values).

The third order (in ¢) :system has been listed in Chapter 2. It is repeated below.
In this order, the corrections to the time frequency, w® will be solved.

The system equations are:
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_w(o)aF(” + 9o 3wmap(1) . 3W(l)apm _ 3F(l)az¢(:) 3 p 5 o)

L@ ey OFO)

- - -

The Léaﬁcé eﬁgation:
Vo (u,z,t) =0, (0<pu<1, -A<z<A). (6.1)

Radial velocity condition:

Kinematic condition:

ot o ot ot Ou ou?

Fo) 59 g
+3

- (1)y2
3(F) O3 Jdz 0z

F1) 52401) 9 gF®)

0
(l) —— .
+6F 52 Opdz +3 Yy (p=1). (6.2b)

Normal force equation:

5o 9612 P
= 2,7  _q MZXZT _ _ e (1) (1)
97 Wi W g T

%92 o)
2,0 M % 9 (O)p(2)Z_ T
3JEF Bt 3w F bt

PN 5p) 5o
- —3.,(0) ¢ p(1)y2 -
-- W) du3dt Op Op

(1) ad §24(1) o) 59 2)

—6F dp ur T 8z 0z
aeM g2¢)
—6fF0) — gF(1) (3
6F 97 Ond: 6F\VF
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o . 6( F3 — 3 M)
+O(FT) - 38 (02 dz 0Oz

gFW\? g2 F0)
-9 N3 =1). b
( 3 ) 522 +BNY) (p=1) (6.2¢)
Periodicity in time:
VO (4, z,t + 27) = VO(p, 2, t). (6.2d)
Normal velocity:
(3)
9% =0 (6.2¢)
0z z=%A
Conservation of mass:
Ar]
[ [5 FO 4 F“’F"’] dz = 0. (6.2)
Triple contact line condition:
FO(£A,t) = 0. (6.29)

Assume the appropriate solution forms of #® and F® as

. 8O (p,z,8) = 3 1% () o(lmps) cosm(z + A), (6.3)
- m=0
f'(a)(z,t) =) 5O () cos lm(z + A). (6.4)
m=0

This is consisted with all boundary conditions.
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Let 7= o
®M(p,z,1)
(4, z,1)
F(z,¢)

F3(z,t)

sint @ (y, z),
sin 2¢ [&)(2)(#, z)+ E;ln y] ,
cost FO(z),

- < (2)
cos2t F(z)+ F (2).

Then substitute (6.3) and (6.4) into the Kinematic condition (6.2b) to get

dé! )(t

W@ Z

cosln(z + A) + Z YW T4 (1) cos In(z + A)

m=0

= sint[KH,] + sin 3t{K H3), (6.5)
where
. 3. 8*d® 3.. 3¢
= —3,3p0) _ - (2
(K H,y] WHF 2F P E1] 2F 7
GO0 3 1280 300 260
ou? o 2 3z 0z
- - . - 2{2) .
. (1) (1 (2 g6(1) o)
gFm aFM 3*d _39r% 0% + oF 0% , (6.6)
] 2 0z Oudz 2 0z Oz 0z Oz
and vw;lx'.ere
3 - é’é(’) 3...9M 3 _ 30
- 3rm _3:@9°% " 3 ppd ¥
[KH] 2F [ au? ] 2F Ou? 4 F aud
(1) g(2) . (1) 5241 (2) 5$(1)
39F 5% ?-F(‘) oFtt) 3o + 39F% 99 . (6.7)
2 0z Oz 0z Oudz 2 0z Oz
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Substltute (6 3) and (6.4) into the normal force balance equation (6.2c) to get

20 3 o0
Z j; m) €08 (2 + A) = 3 (1= 12)85(t) cos In(z + A)
m=0 m=0
= cost[NH,] + cos3t{K Hy] + BN (6.8)
where
[NHl] = —3‘_”(2)6(1)__3“)(0)13’(‘) ?‘_b__+E' 3 (O)F(2)6® N
Ou 2 op
= (2) 9 9 9PN 3980 [9d™
@p 22 _ Z 0 f0)y2 _9
~3uOF oyl 38 |2+ B
3580 R 396 08® 3,080 2
2 Ou Ou? 2 0z Oz 2 dz Ouo:
P f3) _ g ) e _ 9 g (OFVY
—3FOF 6FF+(F) ZF (?)
+§aﬁ’(l) GF® + F 61'3.(2) —_2_7 oFM 2 ) (69)
2 0z 02 dz O0:z 0z 922 '
and where
[NHi] = =3wO@F" s + E —gw(o)ﬁ'(z)a&() 3 WO (F (1))2 d’()
i ! 2 a4
) Ea&(l) 9% LB+ EF(I)aéu) 5o N gaé(l) LT
- 2 Ou | Op 72 Op Ou? 2 9z O
3 .y 08N 52611 -1y = 3 - SFW
) (1) (@) 4 2(p() 2 p
+3F O S Tpar ~3FVFY AP - i ( 5z )
39FMW 9F® 9 (9FMN\? g2 f0)
+§ P ——( 32 ) 5.7 (6.10)
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Takmg denvatwe with respect to t in the normal force balance equation, we obtain

= 2 (3) o0 d (3
w(® Z d ) ) cos I ( Z b (t)coslm(z+A)
m=0 m=0 dt
dBN®)

= —sint[VH,] - 3sin3t[KHs] + (6.11)

ot
Apply the orthogonal properties to the kinematic condition and to the normal
force balance equation to eliminate the =-dependence.

Thus the kinematic condition becames the following: for m =0,

(3) A A
—2Aw®@% @ Lo Gins / (K H,)dz + sin 3¢ / (K Hy)dz,  (6.12)
dt -A -A

and for m > 1,

@)
BWLL. sUNYR (VIO

A A
= sint / (K Hi]cos Ln(z + A)dz + sin3t / [ Ha cos In(z + A)dz. (6.13)

And the normal force balance equation becomes the following: for m =0,

oAw (o,d%"’(t) 27 955 (1)
dt
N(a)
= —smt/ [NHl]dz—3sm3t/ (N Ha]dz+/ dz, (6.14)

and form 2 1,

Aw® Ly(lp)—22= .

A A
= - sint/ [NHy) cosln(z + A)dz — 3sin 3t / A[NH;,] cos ln(z + A)dz.  (6.15)
-A -
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Note tha.t equatlon (6.15) can be rewritten as

3)(¢ (VN
d5 = smt/A Al l—lll cosln(z + A)d:
x’VHg] (0) ]0( ) J27(3)( )
+3sm3t/A AI=1) cosln(z+ A)dz + -1 dp (6.16)

Substituting normal force banlance equation into kinematic condition, we obtain

the following: for m = 0,

d’-y ( ) 1 . A
- O o_50° 7 d
2Aw [ 72 + 71 smt/_‘\[NHI] z

A (3)
dBN dz]

3
sin 3¢ / [V Haldz - > A -

oA

A A
= sint/A[KHl]dz +sin3t/A[KH3]dz.

This can be rewritten as

#48(t)
2A(w(0))2_d—t7_—

= sint /_ AA {IKHy) + w©[NH,]} dz + sin 3¢ /_ AA {[KHs) + 30O (N H,]} dz. (6.17)

Form2> 1,

- -

o ] (l )d 7(3)( ) l]
—Aw@ |, @20
Aw [ 1 12 T + sin t/ 12 ) cos Im(z + A)dz

+3sin 3t/ A _3] )cos In(z + A)dz] + Al (L)Y (2)

A A
= sint / (K Hi] cos n(z + A)dz + sin 3t / (K Ha) cos In(z + A)dz.
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This can be rewritten as

QN Io(lm )d27(3)( ) ' (3)
. A - “’,(0)[‘/\'1{1]
= smt/_A [[1\ H| + TTJ cosln(z+ A)dz
A QN
+ sin 3t//\ [[A’Hg] + 3‘”1—_[1\;2@1} cos (2 + A)dz. (6.18)

Equation (6.18) is an ordinary differential equation for 7).

In order to get the solvability condition, set the coefficients of sint to be zero.

Therefore, for m = 0,
A
[_A {[KHI] + u(o)[NHl]} cos(0)dz = 0, (6.19)
and form > 1,

[

Note that lp =0 and [, = mr, Hence

[

-

By 26.6) and (6.9), the definitions of [K H,} and [N H,}, the solvability condition

}cosl (z4A)dz=0, m=1,2,3,:-- (6.20)

}cosl (z+A)dz=0, m=1,2,3,- (6.21)

(6.21) can be rewritten as:

oy 3 = 020D .y OPEW
Z =3, (1) _ 2 p(1) (2)
/ {[ Fi=af (3# ) 2F s

m=0
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L5260 . B(1) A1) 5 (3)
. F( 2*d g(F(,,),a% + 30F 0%
ou? 4 ou> 2 0z 0=

3 5O B0 30F® 93 a1
5f a7 opdr 2 0z 9: 2 e: o:

+ O [—3u(2)&><” — 3@ f(1) (ag’(z) + Ex)

1-10 p
3 adt) - (2) 9H(1) 9 R I
3 wp@9? g @p 0% 7 o fy
“wOF T F % (FO) =
3080 (90™ -\ 3 F(l,a&m)a?ém 399 9
T2 oy ( A ‘) T2 Top op* 2 9z 0
... 000 g2 - = .2 9 .
) () g2 _ g0 Z( (N3
2F 97 Ondz -3FYE 6F N F +2(F )
9 0 oFm 39FW) gF®)
—3f ( ) 2 9z 0z
aFW 9F" 21 (aFW\? gFW
+3—5Z—-—E— e ( P ) 577 cosln(z + A)dz. (6.22)
It follows that
1 2 A 3 -y (3P
WD = Z/ {[__pm<
= © M) = J- 2 ou?
E/ (3 (,)+3w i )coslm(z+l\)dz m=0 -4 #
m=0 P
_E, F(z)azQ(l)_:”-:_'(z)a?q;(l) 3(Fm)233<p(1) éap(l)aqm)
Ou? dou? 4 ous 2 0z 0z

- - . - = (2)

. (1) (1) (2) 9p(1) (1)

+§F(‘)3F Fel)  39FY a% + 381'7' o®
2 0z Oudz 2 0z Oz 9z 0z
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I . (9D
. _a 0 ) [ 2=
-+1 STy [ JF ( o + El)

3 . 9dMm) (299 9 . 52V
SO p@92 g @p P9 o pmed P

G FO= s~ 3 s~ 1 F

3990 (a«i»('-’) £ _ 3 p0n020 et 3900 5o
"2 O Ou l) T2 u 0?2 0z 0

3..,,000a5200) . . .20 9 .
_YpmZ= - (1) ~(2) _ (1) ZE(1))3

P ~ SFVED - 6T 4 S(FY)

o 2 o~ -

_Spq (BFMY, 30FW 9F®

4 0z 2 9z Oz

oFW oF" a1 (aFW\? rF0]| ;

3z "5;“’7( 9z ) gz | [ CosIm(z + A)dz. (6.23)

Therefore, w(?) can be determined numerically.

4
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Chapter 7 Results of Third Order of €, O(¢%):

Corrections to the Frequency, w

Preliminary calculations have yielded the corrections to w. Note that
e2
w = w(o) + -2—w(2). (71)

0 _
w w ..
versus the slenderness parameter A. This is done

w()

Results are plotted for

for modes p = 2,3 and 6.
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Code for Linear Root Finding
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c * * * * * * * * * * * *
C
C FROM THE FIRST ORDER OF EPSILON WE HAVE TWO EQUATIONS WHICH
C GIVE THE- RELATIONSHIP BETWEEN THE SLENDERNESS LAMBDA AND THE
C ANGULAR FREQUENCY "OMEGA (0) AT THE ZERO ORDER OF EPSILON.
c ONE OF THE EQUATION IS FOR EVEN MODE. THE OTHER ONE IS FOR
C ODD MODE.
C HERE WE CALCULATE THE ODD MODE EQAUTION.
o * * * * * * * * * * * *
o
DIMENSION BL(80),B1(80),B0(80)
REAL*8 BL,B1,B0,A,PI,LAMBDA,S,S1,SAVG,
* X,XMAX,DELTX,FMAX,XAVG,FAVG,Xl,FXl,FX
INTEGER N,I,K
c
Cc INITIAL THE VALUE OF LAMBDA
Cc

LAMBDA=1.80D0
WRITE(6,1) LAMBDA
1 FORMAT(' ', 'LAMBDA=',F7.4)
PI=3.1415926D0
A=(0.5D0) * ( (LAMBDA-DTAN (LAMBDA) ) /DTAN (LAMBDA) )

C
c * * * * * * * * * * * *
C
C CALCULATE THE WAVELENGTH BL(N), THE MODIFIED BESSEL FUNCTIONS
C OF ZERO AND FIRST ORDER OF FIRST KIND I0(X) AND I1(X).
c * * * * * * * * * * * *
C
DO 20 K=1,80
BL(K)=(K*PI)/(2.DO*LAMBDA)
BO (K)=BESSIO(BL(K))
B1(K)=BESSI1(BL(K))
20 CONTINUE
C
c * * * * * * * * * * % *
C
C USE BISECTION METHOD TO SOLVE THE ODD MODES EQUATION,
C DEFINE FX TO BE THE LEFT-HAND SIDE OF THE EQUATION.
C OMEGA IS DENOTIED BY X WHICH WILL BE THE ROOTS OF THE EQUATION.
C
C THE INITIAL INTERVAL WILL BE CHOSEN AS (X, XMAX].
C DELTX IS €HOSEN AS 0.005.
C LET N=80 BE THE NUMBER OF BISECTIONS DESIRED.
C CONSIDERING THE FX GOES TO INFINIT WHEN FX > FMAX (=10000) .
p !
Cc * * * * * * K * * * * *
READ(5,200) X,XMAX
DELTX=0.005
FMAX=10000
N=80

200 FORMAT(4F10.4,12)

* * ® * * * * * * * * *
FROM THE LEFT END VALUE OF THE INITIAL INTERVAL, X, WE ARE

GOING TO HAVE THE FUNCTION FX.
THE LOOP IS TO ADD 40 TERMS FOR THE SUMATION WHICH IS

DEFINED AS S.
* * * * * * * * * * * *

NOAOO0OO0O0

58



O0000000

AONOOOQNO0OO0O00O00O0O00

201
300

400

401

500
600

700

800

801

900

S=0.DO0

DO 201 K=1,20

S=S+(1.D0/ (1.D0-BL(2*K) **2) ) * (1.D0/ (X**2+BL(2*K) *
* (1.DO-BL(2%K)**2)*(B1(2*K) /B0 (2*K))))

CONTINUE - :

FX=A-S* (X**2)

* * * * * * * * * * *

NOW WE DEFINE A NEW VALUE AS X1=X+DELTX.
REPLACE X BY X1 FOR FX. THEN WE HAVE FXl1.
THE LOOP IS TO ADD 40 TERMS OF THE SUMATION, WHICH IS

REDEFINED AS S1.
* * * * * * * * * * *

X1=X+DELTX

S1=0.DO

DO 401 K=1,20

S1=S1+(1.D0/ (1.D0-BL(2%K) **2) ) *(1.D0/ (X1#*2+BL(2*K) *
* (1.DO-BL(2*K)#*#*2)*(B1(2*K)/B0(2*K))))

CONTINUE

FX1=A-S1# (X1**2)

* * * %* * * * * % * *
NOW WE NEED TO CONSIDER THE TWO RESULTS FX AND FX1.
IF FX*FX1 IS LESS THAN ZERO, THE ROOT MUST BE IN THE INTERVAL
[X, X1]. (WHICH MEANS FX AND FX1 HAVE DIFFERENT SIGNS.)
IF FX*FX1=0, THEN X1 IS THE ROOT OF THE FUNCTION.
IF FX*FX1 IS GREATER THAN AERO, THE ROOT MUST BE IN THE
INTERVAL (X1, XMAX].

FURTHER, IF FX#*FX1<0, LET XAVG=(X+X1)/2.
IF FX*FX1>0, LET XAVG=(X1+XMAX)/2.
BY SUBSTITUTING XAVG WE WILL GET FAVG. (DEFINE AS SAVG
FOR THE SUM OF THE FIRST 40 TERMS OF THE SUMATION.)
CONTINUE THE SAME PROCEDURE UNTIL THE 'REAL ROOT', X,

IS OBTAINED WHICH MAKES THE FUNCTION FX ZERO.
* * * * * * * * * * *

IF (FX*FX1) 800,500,700

WRITE(6,600) X1

FORMAT(' ','X=',F24.18,' IS A REAL ROOT')
X=X1+DELTX

GO TO 300~

IF(X1.GE.XMAX) STOP

X=X1

FX=FX1

GO TO 400

DO 1100 I=1,N

XAVG=(X+X1)/(2.D0)

SAVG=0.D0

DO 801 K=1,20
SAVG=SAVG+(1.D0/ (1.D0-BL(2*K) **2) ) *(1.D0/ (XAVG*#*2+
# BL(2*K)#*(1.DO-BL(2%K)*#*2)*(B1(2*K)/B0(2%K))))
CONTINUE

FAVG=A-SAVG* (XAVG#**2)

IF (ABS (FAVG) .GT.FMAX) GO TO 1400

IF (FX*FAVG) 1000,1200,900

X=XAVG

FX=FAVG

GO TO 1100
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1000

1100
1200
1300

1400
1500

X1=XAVG

FX1=FAVG

CONTINUE- -« - ..

WRITE (6,5600) XAVG

FX=FX1 z :
X=X1

GO TO 400

WRITE (6,1500) XAVG

FORMAT (' ', 'FUNCTION APPROACHING INFINITY FOR X=',F7.4)

GO TO 1300
END

FUNCTION BESSIO(X)
RETRURNS THE MODIFIED BESSEL IO FOR ANY REAL X.

REAL*8 Y, P1, P2, P3, P4, P5, P6, P7
REAL*8 AX,X,BESSIO

ACCUMULATE POLYNOMIALS IN DOULBLE PRECISION
REAL*8 Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q°
P1=1.0D0

pP2=3.5156229D0

P3=3.0899424D0

P4=1.2067492D0

P5=0.2659732D0

P6=0.360768D-1

P7=0.45813D-2

Q1=0.39894228D0
Q2=0.1328592D-1
Q3=0.225319D-2
Q4=-0.157565D-2
Q5=0.916281D-2
Q6=-0.2057706D-1
Q7=0.2635537D-1
Q8=-0.1647633D-1
Q9=0.392377D-2

POLYNOMIAL FIT

IF (DABS(X).LT.3.75D0) THEN

Y=(X/3.75D0) **2
BESSIO=P1+Y*(P2+Y*(P3+Y*(P4+Y*(P5+Y*(P6+Y*P7)))))
ELSE

AX=DABS (X)

y=3.75D0/AX
BESSIO=(DEXP(AX)/DSQRT(AX))*(Ql+Y*(Q2+Y*(Q3+Y*(Q4
*+Y*(05+Y*(06+Y*(Q7+Y*¢08+Y*Q9))))))))

ENDIF

RETURN

END

FUNCTION BESSI1(X)
RETURNS THE MODIFIED BESSEL I1 FOR ANY REAL X.

REAL*8 Y, P1, P2, P3, P4, Ps, P6, P7
REAL*8 AX,X,BESSIl

ACCUMULATE POLYNOMIALS IN DOUBLE PRECISION
REAL#*8 Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9

P1=0.5D0

P2=0.87890594D0

P3=0.51498869D0
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P4=0.15084934D0
P5=0.2658733D-1
P6=0.301532D*2

P7=0.32411D-3"

Q1=0.39894228D0
Q2=-0.3988024D-1
Q3=-0.362018D-2
Q4=0.163801D-2
Q5=-0.1031555D-1
Q6=0.2282967D-1
Q7=-0.2895312D~1
Q8=0.1787654D~1
Q9=-0.420059D-2

POLYNOMIAL FIT
IF (DABS(X).LT.3.75D0) THEN

Y=(X/3.75D0) **2

BESSI1=P1+Y* (P2+Y* (P3+Y* (P4+Y* (PS+Y* (P6+Y*P7)))))
BESSI1=X*BESSI1

ELSE

AX=DABS (X)

Y=3.75D0/AX

BESSI1=(DEXP (AX)/DSQRT (AX) ) * (Q1+Y* (Q2+Y*(Q3+Y#*(Q4
*+Y* (Q5+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9))))))))

ENDIF

RETURN

END
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C

* * * * * * * * * * *

FROM THE FIRST ORDER OF EPSILON WE HAVE TWO EQUATIONS WHICH
GIVE THE RELATIONSHIP BETWEEN THE SLENDERNESS LAMBDA AND THE
ANGULAR FREQUENCY OMEGA(0) AT THE ZERO ORDER OF EPSILON.

ONE OF THE EQUATION IS FOR EVEN MODE. ANOTHER ONE IS FOR ODD
MODE.

HERE WE CALCULATE THE EVEN MODE EQAUTION.
* * * * * * * * * * *

DIMENSION BL(80),B1(80),B0(80)

REAL*8 BL,B1,B0,A,PI,LAMBDA,S,S1,SAVG,
* X,XMAX,DELTX, FMAX, XAVG, FAVG, X1, FX1, FX
INTEGER N,I,K

C *** INITIAL THE VALUE OF LAMBDA

C

s ReNeNe Ko K¢

20

200

201

300

400

401

500
600

700

LAMBDA=1.80D0

WRITE (6, 1) LAMBDA

FORMAT(' ', 'LAMBDA=',F7.4)
PI=3.1415926D0
A=(0.5D0) * (LAMBDA) * (DTAN (LAMBDA) )

* * * * * * * * * * *

CALCULATE THE WAVELENGTH BL(N), THE MODIFIED BESSEL FUNCTIONS

OF ZERO AND FIRTS ORDER OF FIRST KIND IO(X) AND Il(X).
* * * * * * * * * * *

DO 20 K=1,80

BL(K) = (K*PI)/ (2.DO*LAMBDA)
BO (K) =BESSIO (BL(K))
B1(K)=BESSI1(BL(K))
CONTINUE

READ(5,200) X,XMAX

DELTX=0.005

FMAX=10000

N=80

FORMAT (4F10.4,12)

S=0.DO

DO 201 K=1,20

S=S+(1.DQZ (1.DO-BL(2%K-1) ##2)) *(1.D0/ (X**2+BL(2*K-1) *
* (1.DO-BL(2%K-1)##*2)#(B1(2*K-1)/B0(2*K-1))))
CONTINUE

FX=A+S* (X#*#*2)

X1=X+DELTX

$1=0.DO

DO 401 K=1,20

S1=S1+(1.D0/ (1.DO=BL(2*K-1) #*2)) *(1.D0/ (X1**2+BL(2*K-1)*
 (1.DO-BL(2*K-1)#**2)*(B1(2*K-1)/B0(2*K-1))))
CONTINUE

FX1=A+S1% (X1#**2)

IF (FX*FX1) 800,500,700

WRITE(6,600) X1

FORMAT(' ','X=',6F24.18,' IS A REAL ROOT')
X=X1+DELTX

GO TO 300

IF(X1.GE.XMAX) STOP

X=X1
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FX=FX1

GO TO 400
800 DO 1100 I=1,N.. . .

XAVG= (X+X1)/ (2. D0)

SAVG=0.DO0 . h

DO 801 K=1,20

SAVG=SAVG+(1.D0/ (1.DO-BL(2#*K=1)*#*2))*(1.D0/ (XAVG**2+

% BL(2*K-1)*(1.D0-BL(2*K-1)*#2)*(B1(2*K-1)/B0(2*K-1))))
801 CONTINUE

FAVG=A+SAVG* (XAVG**2)

IF (ABS (FAVG) .GT.FMAX) GO TO 1400

IF (FX*FAVG) 1000,1200,900
900 X=XAVG

FX=FAVG

GO TO 1100
1000 X1=XAVG

FX1=FAVG
1100 CONTINUE
1200 WRITE(6,600) XAVG
1300 FX=FX1

X=X1

GO TO 400
1400 WRITE(6,1500) XAVG
1500 FORMAT(' ','FUNCTION APPROACHING INFINITY FOR X=',F7.4)

GO TO 1300

END

FUNCTION BESSIO(X)
RETRURNS THE MODIFIED BESSEL I0 FOR ANY REAL X.

REAL*8 Y, P1, P2, P3, P4, P5, P6, P7
REAL*8 AX,X,BESSIO

ACCUMULATE POLYNOMIALS IN DOULBLE PRECISION
REAL*8 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9
P1=1.0D0

P2=3.5156229D0

P3=3.0899424D0

P4=1.2067492D0

P5=0.2659732D0

P6=0.360768D-1

P7=0.45813D-2

Q1=0.39894228D0
Q2=0.1328592D-1
Q3=0.225319D-2
Q4=-0.157565D-2
Q5=0.916281D-2
Q6=-0.2057706D-1
Q7=0.2635537D-1
Q8=-0.1647633D-1
Q9=0.392377D-2

c POLYNOMIAL FIT

IF (DABS(X).LT.3.75D0) THEN

Y=(X/3.75D0) **2

BESSIO=P1+Y#* (P2+Y* (P3+Y* (P4+Y* (PS+Y* (P6+Y*P7)))))
ELSE

AX=DABS (X)

Y=3.75D0/AX

BESSI0=(DEXP (AX) /DSQRT (AX) ) * (Q1+Y* (Q2+Y* (Q3+Y* (Q4
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*+Y* (QS+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9))))))))

ENDIF

RETURN -~ =7

END .

FUNCTION BESSI1(X)

RETURNS THE MODIFIED BESSEL Il FOR ANY REAL X.

REAL*8 Y, P1, P2, P3, P4, P5, P6, P7
REAL*8 AX,X,BESSIl

ACCUMULATE POLYNOMIALS IN DOUBLE PRECISION
REAL*8 Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9

P1=0.5D0

P2=0.87890594D0

P3=0.51498869D0

P4=0.15084934D0

P5=0.2658733D-1

P6=0.301532D-2

P7=0.32411D-3

Q1=0.39894228D0
Q2=-0.3988024D-1
Q3=-0.362018D-2
Q4=0.163801D-2
Q5=-0.1031555D-1
Q6=0.2282967D~-1
Q7=-0.2895312D-1
Q8=0.1787654D~-1
Q9=-0.420059D-2

POLYNOMIAL FIT
IF (DABS(X).LT.3.75D0) THEN

Y=(X/3.75D0) *#2

BESSI1=P1l+Y* (P2+Y#* (P3+Y#* (P4+Y* (PS5+Y* (P6+Y*P7)))))
BESSI1=X*BESSI1

ELSE

AX=DABS (X)

Y=3.75D0/AX

BESSI1=(DEXP (AX)/DSQRT (AX))* (QLl+Y* (Q2+Y* (Q3+Y*(Q4
*+Y* (QS+Y* (Q6+Y* (Q7+Y*(Q8+Y*Q9))))))))

ENDIF

RETURN ..

END --
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Appendix B

Solvability Condition:

Alternative Formulation
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Determining the Solvability Condition Formally

Start with the basic governing equation at O(e®) which is
VP =0, on0<pu<1,0<0<2r and —A<z<A.
Multiply by &) to integrate over the volume
[ eWvie@ay =o.
volume

Use cylindrical coordinates to write dV = du(pdf)dz, and integrate in u

P00 1900 1 260 5230
[]] “’(”{ o T wow T T an }d"(“d(’)dzzo

Since
1 8¢

u? 063

the basic governing equation can be rewritten as follows.

- / / / m(l)%ii)dpdodz + / / / ‘I’“’%’;d#“d”

+ / / / p@(l)azafia)dpdedzzﬂ.

=0,

Use integration by parts to get the adjoint system.

Denote
;10180

pd®M =y, and V = .
Op
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doV) M 3?9
dV = .
i and dV EW

It follows from integration by parts that

/A /27/1P¢(1)a2q>(3)
-AJo Jo ou?
11

A ponf A 27 1
/_ ) /0 u®V8O | dodz - /_ ) /0 /0 308 4 udM)dudddz

40

du = oW +

71

/_1 /02’r -ué“’*bff” dodz —/_AA/OZ" [)1 3OV dydpdz

40

-/ AA / " / ' 4806 dydod.
/ / 2'[@“’¢“”] dodz

=1

A x| 1! A 2r 1
- [ [T |ewe®)| dsaz+ [ [T [ 0®eWdudsdz
-ado | -aJo Jo

4o

A x [ ) A 2r 1
/_A/o 2.0 dfdz + /_ R /0 fo (@ + 403)6Pdudod:.

4 u=1

For the second integral, we have

/ /2" / (1)a<1> 92 dudod:
/ j"[ <1>(1)<1>(3)] dfdz — / /" / <3)6° 9% dudodz

For the third integral, we have

i 1 A 9263
HZ_—_
/(; -/(; /-A#Q 022 dyudbd:
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- o ™A I 1 A
D ) _ 1)
- /0 /0 WV duds /0 /0 /_ HO00 dzdudo

-A

2r op@® 1A
mo2
./c; / p@ 0z dud?

d-A

AL A e e O dudss

Let d®*r = du(udé)dz. Then by

and by setting

one obtains

0

L) .
9z z=%A ’
oo 0
0z z=%A ,
[[].  evvieds:
volume
2 aq;() F;T18)) A por
mZr _ _ = 0 dbdz — oM HB3N 404
/./ [ qu’ ]“zl dz /-A/o[ 2 ]odbd:
2x A 2n
@ (1) MGG
+/ / / [,; + 260 ]dpd0dz+/_A/0 CRFICHPTEE

390
- / / /¢(3>¢(1)dpdodz+ / / [ oW ]Ad#de

_/0”’/0‘[ (3)3‘1”‘ dpd0+/ // (3);1 dzdpdo
/ /2'[ ()Q‘Iﬁ -6%%“”]#:1 dodz
+ / / " JES Ip—-— +200) — oV +pa%l)] dudfdz

[ [ ® G + 200280
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3
+/ / ()8<I>U 28 40| avd:
6“ u=1

By Laplace equation on O(e) and on O(e®),
V291 =0 and V29 = 0.

Thus the solvability on 4 = 1 becomes

A ror 3) ()"
/ / 5092 _ 2@020] o
L Ou Op |

or

i
e

AT 3(1)() 9PV
9 / o2 _ @22 |,
TJa i Op op | ‘

Solvability on free surface is then

/ (1)34’( ! o) —— il dz = 0.
Op

Kinematic

@ 50
_ @O 00

5 P =sint [K H,] + sin 3t [K Hj]

Normal force

3) @A)
w(o)%— - F® _ % = cost [NH;] + cos 3t [NH3] + BN®.

- @ = E Y3 () Io(Imp) cos(lm(z + A)) + G(u, ).

-

m=0

:F(a) = i 63 (t) cos(lm(z + A)).

m=0

Solvability condition

A
[, [29e® - 2e®] dz = 0.
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oM = i sin t A (8) Io(Imp) cos(lm(z + A)).

m=0

89 = 3 4O o(lnis) cos(ln(z + A)) (©)

m=0

oo

FO = 3 69(t)Io(Imp) cos(lm(z + A)). (A)

m=0

=~} A
S ApJo(lnt) =1 /_  cos(ln(z + A))@(dz

m=0

o0 A
= S b A Dl /_  cos{i(z + 4))#dz = 0

m=0

o A (3)
3" Amlo(lm) / \ cos(lm(z + A)) [—w(o) agt + sint [K Hy} + sin 3t K Hs)

m=0

00 A
S U AnT)(lm) /  cos(lm(z + 4))#dz = 0

m=0

f: Anlo(lm) /I; cos(lm(z + A)) [sint [K Hy] + sin 3t [K H3]] dz
m=0 -
5 O Antol) [ 2B con(in(z + A
- m=ow mlo(lm) | —57 coslim(z z

) ) A
= Y lmAnllinm) / Acos(lm(.z +A))9%dz =0

m=0

Apply normal force equation to get

(3) 2 (3)
w(o)igt_ _FO _ %— = cos t{N Hy) + cos 3¢{N Ha].
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