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ABSTRACT

The Improved Stratospheric and Mesospheric Sounder

(ISAMS) is a multichannel radiometer and forms part of

the science payload of the Upper Atmosphere Research

Satellite (UARS). ISAMS measures infrared emissions from

the Earth's atmosphere in several wavelength bands. Three

such bands include emission from nitric oxide, nitrogen

dioxide and dinitrogen pentoxide. In this paper we briefly

discuss how the ISAMS instrument measures NO, NO2 and

N205, present preliminary data from these channels and

describe preliminary validation work.

1. INTRODUCTION

Catalytic reactions involving NO and NO2 are re-

sponsible for controlling the abundance of Oa throughout

much of the stratosphere. In order to understand the be-

haviour of stratospheric O3, it is essential that the processes

which affect NO and NO2 are understood. A vital contri-

bution to this understanding are global measurements of

the abundance of NO, NO_ and other members of the odd

nitrogen (NO,) family.

Global measurements of stratospheric NO2 at spe-

cific times of day have been made by previous satellite in-

struments, i.e. the Limb Infrared Monitor of the Strato-

sphere on Nimbus 7 (Russell et al., 1984) and the visible

spectrometer on the Solar Mesosphere Explorer (Mount et

al., 1984). SAGE I and II have also accumulated global

NO2 data by near-UV solar occultation measurenmnts from

space (Chu and McCornfick, 1986; Cmmold et al., 1991).

In addition, vertical profih's of NO, NO2 and N20,_ have

been obtained at a restricted set of latitudes from IR solar

occultation measurements by the ATMOS (Russell at. al.,

1988) and Grill_" (Laur¢'nt et al., 1985) spectrometers on

board the space-shuttle . Howew'r, most inforlnation con-

cerning the diurnal variation and vertical profiles of these
inoh,cuh,s has COIII¢"from balloon ir_ situ and remote sans-

ing measurements at northern mid-latitudes (Pommereau,

1982; Roscoe, 1982; Roscoe et al., 1986; Kondo et al., 1988;

Webster et al., 1990 and Abbas et al., 1991).

2. ISAMS MEASUREMENTS

The first height-resolved, global measurements of NO

and N205 in the stratosphere are currently being made

by the Improved Stratospheric and Mesospheric Sounder

(ISAMS), along with the Cryogenic Limb Array Etalon

Spectrometer (CLAES), on the Upper Atmosphere Research

Satellite (UARS). These, together with simultaneous mea-

surements of NO2, HNO3, N20 and other molecules, will

allow the global budget and partitioning of stratospheric

NO_ to be investigated more thoroughly than has been

possible hitherto. The data will also be used to investigate

the effects on the stratosphere of major volcanic eruptions

which occurred during 1991, notably Mt.Pinatubo, specif-

ically by examining the effect of sulphate aerosol upon the

global abundance and partitioning of NO_.

ISAMS measures IR emission from the atmosphere

using ,_ 100cm -1 wide optical filters matched to the funda-

mental vibration-rotation bands of NO, NO2 and N_O5 at

5.3_m, 6.2#m and 8.1#m respectively. Atmospheric emis-

sion from within these filters is modulated at 1 kHz by

100% mechanical chopping and signals synchronously de-

tected at this frequency are referred to as wide-band (WB)

measurements.

For NO and NO2, a gas-correlation technique is used

in addition to the optical filters. Cells containing NO and

NO2 are included in the optical paths of these channels

and their pressures cycled at _35Hz by a piston driven at

resonance. Signals synchronously detected in the 35 Hz

side-babels to chopper frequency are referred to as pres-

sure modulated (PM) measurements. Simultaneous PM
and WB measurements should allow retrievals of NO and

NO2 even in the presence of substantial aerosol and inter-

faring gas emissions (Roscoe et al., 1986).

ISAMS views the atmospheric limb at right angles

to the UARS velocity vector and measurements are made

every two seconds. The tangent-height for each measure-
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mentisdeterminedbythepositionofa scanningmirror
whichisprogrammedto sampletangent-heightsbetween
10kinand80kmin 2.5kinsteps.NOandNOasignalsare
recordedat eachmirrorstep;N205signalsarerecorded
lessfrequentlybecausethisfilterismultiplexedwiththose
atotherwavelengthsbyafour-positionfilterwheel.

ValidationofdatafromtheISAMSNOxchannelsis
still atanearlystage,soaccuracieshaveyettobedeter-
mined,however,theprecisionisveryhigh.Forexample,
thesignaltonoiseratioin theNO_PMchannelissufficient
forinversionofindividuallimbscans.Theinstantaneous
fieldofviewofISAMSis2.Skm high by 8km wide at the

limb, and vertical profiles of NO2 mixing ratio are gener-

ated every 32 seconds, or approximately 200kin along the

sub-tangent point track. The intrinsic vertical resolution

of the measurements can be assessed by the sharpness of

the averaging kernels associated with radiance inversion.

Averaging kernels for the NO_ PM channel shown in fig-

ure 1 indicate that good height resolution can be achieved

throughout the stratosphere.
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Figure 1 Averaging kernels for the NO2 PM channel

3. DATA VALIDATION

A programme to validate ISAMS measurements of

NO, NO2 and N2Os is in progress. This includes critical

examination of the radiometric calibration and the resul-

tant calibrated radiances as well as in-depth examination

of instrumental parameters concerning the gas-correlation

cells.

Calibration includes characterising scan-dependent

stray radiation and the radiometric "zero". Accurate de-

termination of radiometric zero in the NO PM channel is

particularly important because radiances from the strato-

sphere are small, and small changes are important scientif-

icaUy. Obtaining a good zero is, however, complicated by

emission from NO in the thermosphere (see Ballard et al.,

this symposium).

For gas-correlation measurements, detailed knowl-

edge of gas cell conditions is also essential, and these are

partially controlled by a silicalite molecular sieve to which

the cell is connected. The mean pressure in each cell is

a few millibars, and can be changed by varying the tem-

perature of the sieve by ground command. The gas cells

were filled some 2 years before UARS was launched and, at

that time, mean gas pressure, piston oscillation frequency

and sieve temperature were carefully characterised. In or-

bit, the mean pressure in a given modulator cell can be

derived from the resonant frequency of the piston and also

from the sieve temperature, by reference to the pre-launch

characterisation.

The composition of the NO and NO_ cells is believed

to have changed somewhat since filling due to chemical re-

actions occurring on the sieves. In the NO cell, total pres-

sure at nominal sieve temperature has fallen since launch

by _10%, which is believed to be due to interconversion of

NO into N20 and N_O3. In the NO_ cell, it is estimated

that _>75% of gas is now NO.
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Figure 2 Ratio of PM/WB signals in the NO2 channel

when viewing the internal calibration black-body.

More accurate estimates of gas partial pressures in

the two cells will be obtained from (i) measurements of

resonant frequency (ie total pressure) vs sieve temperature

performed recently in orbit and (ii) analysis of signals from

the calibration black-body. The first exploits the unique

relationship bet wean equilibrium pressure of each molecule
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_-d sieve temperature, which is deter_ned by "binding en-

ergy" and othe_ physical properties. The second exploits
the unique relationship between the partial pressure of ab-

sorbing gas and the ratio of black-body signals in the WB

and PM channels. Comparison of measured and calculated

ratios is currently limited by knowledge of both NO2 spec-

troscopy, particularly self- and NO-broadened linewidths,

and the detailed pressure and temperature cycles. How-

ever, the measured ratio itself serves as an indicator of how

cell composition has changed with time and figure 2 shows

that only small changes have occurred since activation of
ISAMS in orbit.

Day-Night Difference in Zonal Mean Radiance for
NOx Channels
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Figure 3 Day-night difference in zonal mean radiance

from the NO, NO2 and N2Os channels and the N20 WB

channel for latitudes between 10°S and 50°S on 4th
November 1991.

Another important aspect of the validation activity

is examination of the flight data for expected atmospheric

signatures. Three such signatures are reported here: (i) the

day-night difference in zonally-averaged radiance; (it) the

step-wise change in NO2 on crossing the terminator at high

latitude and (iii) the steep latitudinal gradient in NO2 at

northern mid-latitude, known as the "Noxon cliff _ (Noxon,
1979).
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Figure 4 Zonal mean radiance profiles in the 7.8/_m (N_O)

and 8.1pm (N2Os) channels and corresponding day-night

difference profiles referenced to that in the 7.4pm (CH4)
channel.

Signals from the NO_ channels are all expected to

show substantial diurnal variation induced by photochem-

istry, and this is evident in figure 3 where day-night differ-

ences in radiance for all NO_ channels, and also the 7.Spm

(N20) WB channel, are plotted vs tangent-height. The

data are zonal mean averages for latitudes between 10°S

and 50°S for 4th November 1991. The plot indicates that

ISAMS measurements are in qualitative agreement with

theory: NO_ and N_Os nighttime radiances are larger than

daytime values and NO daytime radiances are larger than

nighttime values. Any such differences in the 7.Spm (N20)
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or7.4#m(CH4)WB channels must be indicative of tem-

perature and/or sampling effects because neither CH4 nor

N20 exhibit any diurnal variation due to photochemistry.

Effects due to temperature and sampling should be very

similar in the 8.1#m (N20_) channel because emissitm is

predominantly from the same constituents and is very close

in wavelength.

The significantly larger day-night difference at 8.1#m

therefore gives confidence that ISAMS is detocting the di-

urnal signature of N_Os in the upper stratosphere.

This conclusion is further supported by figure 4 which

shows, in the left upper and left lower panels respectively,

zonal mean radiance profiles from the 7.8#m (N_O) and

8.1#m (N20_) WB channels. Day-night difference profiles

were generated from these data and then subtracted from

a day-night difference profile from the 7.4#m (CH4) WB
channel. The subtracted profiles are shown in the right

hand panels of figure 4. In the case of (day-night)r_om -
(day-night)r.4om, most values are close to zero, as would be

expected, indicating that temperature and sampling effects

have been largely removed. In the case of (day-night)sa,,,

- (day-night)r.4_,_, values around 40km differ significantly

from zero, indicating a diurnal signature which is unlikely

to be due to temperature or sampling effects.
Radiance profiles from the NO2 PM channel have also

been examined as the tangent-point crosses the terminator

at high, northern latitudes. Figure 5 shows the signal from

NO_ as a function of height, which is seen to increase as

the tangent-point moves from daylight into darkness, in

qualitative accord with theory.
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Figure 5 Terminator crossing observed in the NO2 PM
channel

The geographical distribution of retrieved NO_ has

also been examined. Figure 6 shows the distribution of NO2

(relative amounts) for 9/I/92 at 30km altitude. The steep

reduction in NO2 at northern mid-latitudes and longitudes

between 9" and 90*W is strongly suggestive of the so-cMled
"Noxon cliff".
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Figure 6 Retrieved NO2 (relative amounts) at 30km on

9th January 1992

4. FUTURE WORK

A substantial amount of work still remains before val-

idated nitrogen oxides data will be available from ISAMS.

For NO, this includes provision of a source function for 1--*0

emission throughout the stratosphere, mesosphere and lower

thermosphere and accurate determination of cell composi-

tion. Refinement of the way in which the PM space-view

signal is derived may also be necessary. For NO2, a lot

more work is needed to obtain the best estimate of gas

composition in the modulator cell, including high resolu-

tion spectroscopy of NO2 and measurements of pressure

and temperature cycles in a flight-spare modulator. For

N2Os, despite careful choice of optical filter, other atmo-

spheric constituents, notably CH4, N20 and aerosol, con-

tribute substantial radiance. Reliable N205 retrievals must

therefore await accurate, validated retrievals of these con-

stituents from other ISAMS channels (eg. Lambert et al.,

this symposium).

Once this work has been accomplished, a detailed

intercomparison of retrieved profiles will be undertaken as

part of the UA.RS validation campaign. This will include

measurements by other UARS sensors, the ATLAS mission

and ground-based, aircraft and balloon instruments.
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