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ABSTRACT

Accurate, detailed maps of total ozone were not avail-

able until the launch of the Total Ozone Mapping SpectTome-

ter (TOMS) in late 1978. However, the Scanning Radiometer

(SR), an instrument on board the NOAA series satellites dur-

ing the 1970s, had a visible channel that overlapped closely

with the Chappuis absorption band of ozone. We are investi-
gating whether data from the SR can be used to map Antarctic

ozone prior to 1978.
The method is being developed with 1980s data from

the Advanced Very High Resolution Radiometer (AVHRR),

which succeeded the SR on the NOAA polar-orbiting satel-

lites. Visible-derived total ozone maps can then be compared

against maps from TOMS. Only one visible channel is avail-
able on the NOAA satellites, which precludes the use of a dif-

ferential absorption technique to measure ozone.

Consequently, our method works exclusively over scenes

whose albedos are large and unvarying, i.e. scenes that con-

tain ice sheets and/or uniform cloud-cover.

Initial comparisons of time series for October-December

1987 at locations in East Antarctica show that the visible

absorption by ozone is measurable and that the technique may
be usable for the 1970s, but with much less accuracy than

TOMS. This initial test assumes that clouds, snow, and ice all

reflect the same percentage of visible light towards the satel-

lite, regardless of satellite position or environmental condi-

tions. This assumption is our greatest source of error. To

improve the accuracy of ozone retrievals, realistic anisotropic
reflectance factors are needed, which are strongly influenced

by cloud and snow surface features.

1. INTRODUCTION

The Antarctic ozone hole appears to have developed

rapidly beginning about the same time that the Total Ozone

Mapping Spectrometer (TOMS) was launched in late 1978.

Evidence for ozone changes prior to that time is limited to

ground-based measurements from a few Antarctic stations

and unreliable satellite data, which suggest a slow decrease

during the 1970s. The ozone amounts mapped by TOMS

show large spatial and temporal variation on scales of a few
hundred kilometers and a few days (Yung et al., 1990). A few

isolated stations therefore cannot adequately represent the
entire continent, so it wotfld be useful to find a method to map

the spatial variation of total ozone over Antarctica prior to
1978.

Radiometer data from NOAA polar-orbiting satellites

may contain information about the early evolution of the
ozone hole above Antarctica. These instruments have a visi-

ble channel that is centered on a weak absorption band of

ozone at 600-nm wavelength (figure 1), where the other con-

stituents in the Antarctic atmosphere and surface, including

clouds and snow, are non-absorptive. The visible-channel
data have been gridded and archived by NOAA beginning

1974, and the early measurements do show decreasing

absorption as solar elevation increases (figure 2). This depen-

dence is apparently due to the shorter slant path through the

ozone layer with increasing solar elevation, indicating that
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Figure 1. The Chappuis absorption band of ozone and the spectral

response of the AVHRR visible channel on the NOAA-9 spacecraft.
Maximum overlap occurs near 600 nm. The absorption coefficients
for the Chappuis band are taken from Vigroux (1953) and the chan-
nel response values are from Rossow el al. (1985).
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Figure 2. Daily values of "albedo" (assuming isotropic reflectance)
from September 1974 to February 1975 at South Pole. The albedo

rises from 0.78 in October to 0.88 in December, just what one

would expect for a normal unchanging column ozone amount of
300 DU (figure 2 of Wiscombe and Warren, 1980). The lower

albedo in October is due to the longer slant path through the ozone

at low solar elevation angles. The data were taken by the Scanning

Radiometer (SR), the predecessor to the Advanced Very High Reso-
lution Radiometer (AVHRR).

visible absorption by ozone is indeed significant so that varia-

tions in ozone amount should be detectable.

In this initial evaluation of the method's feasibility, we

apply a simple analysis to satellite data taken during October-

December 1987 by the NOAA-9 AVHRR. The calculation

incorporates only absorption by ozone and reflection by the

clouds and snow below, ignoring Rayleigh scattering. Use of

the 1980s data allows a comparison between our retrieved
ozone amounts with those from TOMS.

The AVHRR has a spatial resolution of 1.1 km and an

intensity count resolution or 0.1% (ten bits). However, in

order to obtain large spatial and temporal coverage, it is con-
venient in this initial test to use the "level B3" data of the

International Satellite Cloud Climatology Project (ISCCP;

Rossow et al., 1987). For the B3 archive, the original 1.l-km
data are sampled to 30-km resolution, and the 10-bit counts

are truncated to 8 bits.

2. METHOD

The simplest possible method for deriving total ozone

amount from a visible-channel measurement uses a calcula-

tion of two-way transmittance:

QoA,Z
I - cOs0oeX p {-0.0796u [x (0o) + sece] }. (1)

Qo is a fraction of the solar constant: the integral of the inci-

dent solar spectral irradiance at the top of the atmosphere nor-

mal to the solar beam, weighted by the channel sensitivity

function (figure 1). Radiation from the sun passes through the

ozone layer of thickness u (cm-STP) through pathlength x, a
function of solar zenith angle 0 o. Large solar zenith angles

are typical in Antarctic latitudes, so the effect of Earth's cur-

vature must be taken into account when calculating path-

length. The function X(0o) is given by Rozenberg (1966):

1

x = cOS0o+0.025exp(_llcos0o) . (2)

Note that when 0o < 70°, x = sec0 o.

Once the solar beam has passed through the ozone layer,

it encounters everything beneath the layer, including clouds,

snow and ice. The sub-ozone layer has albedo A s and aniso-

tropic reflectance factor Z: a function of 0o, 0, and g}, where

0 is the satellite zenith angle and #p is the relative azimuth

angle between sun and satellite. Z is defined such that its

average value over the upward hemisphere is 1.0. The

reflected radiation passes through the ozone layer again at
angle 0 to reach the satellite. Given a measurement of inten-

sity I by the radiometer, equation (1) is solved for u. The units

are W m -2 sr "1 for intensity I, W m 2 for irradiance Qo, and sr
for _.

The ozone absorption coefficient in (1) is 0.0796 (cm-

STP) -1, which is an average of the Chappuis band (figure 1),

weighted by the NOAA-9 AVHRR visible channel-function

(also shown in figure 1). This absorption coefficient will dif-

fer somewhat for different satellites, because of differences in
their channel-functions.

Over dark surfaces, variations in u or 0 o have little

effect on the planetary albedo at 600 nm because most of the

radiation not absorbed by ozone is absorbed by the underlying

surface. Uniform snow surfaces, however, have very high

albedo at 600 nm, about 0.97 (Warren et al., 1986), which is

the value we use for A s. The near-infrared albedo is much

lower, giving the familiar value for spectrally-averaged solar

albedo of 80-85% for Antarctic snow. Because the visible

surface ',dbedo is already so high, clouds do not significantly

change the albedo at the top of the atmosphere.

Equation (1) neglects scattering by the atmosphere

above the ozone layer. Polar stratospheric clouds can exist

within and partially above the ozone layer, but their typical

optical depth is about 0.01 (Kinne and Toon, 1990). The opti-

cal depth is somewhat greater over mountainous areas, but our

method has other difficulties in those regions as well. Ray-

leigh scattering is weak at 600 rm% and only a few percent of

the atmospheric mass is above the ozone, so it is ignored as

well. The effect of Rayleigh scattering below the ozone layer

will most likely cause the anisotropic reflectance factor Z for

the sub-ozone scene to be slightly more isotropic than that of
the snow or cloud surface. These are effects that can be incor-

porated in a remote-sensing method for ozone retrieval, but

we think they are all fax less important than the inclusion of a

realistic Z for clouds and snow, discussed below.

Due to the limited spatial and intensity resolution in the

ISCCP-B3 data used for this initial test, the uncertainty in 0o,
0 and I result in an inherent uncertainty of 60 Dobson units

(DU) for each derived u value. However, the satellite passes

above the polar regions several times per day and the pixel

size is on the order of tens of kilometers while ozone varies

over a few hundred kilometers. Approximately 100 derived u

values can, therefore, be binned and averaged into a single

value on any given day without loss of map resolution. Ran-
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dom error due to finite data resolution is then reduced to 6 DU

per mapped u value.

3. REFLEC['ION FROM CLOUDS AND SNOW

The anisotropic reflectance factor X of the sub-ozone

layer is by far the most uncertain quantity in (1). The

retrieved ozone amount is sensitive to Z because the visible

absorption by ozone is so weak. Typically, the derived total

colunm ozone increases by 50-100 DU with a few-percent

decrease in the assumed value of Z in the satellite's direction.

(The direction of the satellite with respect to the pixel being

scanned is defined by 0 and 0.) To evaluate the importance

of knowing Z, we are as a first step seeing how well (or how

poorly) ozone amounts can be calculated by assigning Z = 0.9

in the satellite's direction, independent of angle, location or

season. This is a good approximation given typical values of

0o, 0 and 0 encountered in the data used for this analysis.

However, because u is highly sensitive to Z, in future analy-

ses we will require a detailed knowledge of the anisotropic

reflectance of the sub-ozone scene.

Small longitudinal dunes called sastrugi cover nearly the

entire Antarctic ice sheet. They cause X to depend not only

on 0 o, 0, and ¢p, but also on the azimuth of the sun relative to

the prevailing wind direction. Because the dunes align them-

selves parallel to the wind, the prevailing wind direction is

called the sastrugi axis. A flat snow surface has a forward-

peaked X like most natural surfaces. This normal forward-

scattering pattern also results from a sastrugi field when the

solar beam is parallel to the sastrugi axis, but a backward peak

in X can result when the solar beam is perpendicular to the

sastrugi axis. If the sun is low enough, the sastrugi will even

cast shadows, further enhancing the backward peak. The sas-

trugi vary in orientation and height across Antarctica. Their

predominant orientations are fairly well established and have

been mapped by Parish and Bromwich 0987).

Although clouds do not change the top-of-atmosphere

albedo much, they can change X dramatically. Clouds tend to

scatter radiation in the forward direction. Putting a cloud over

a flat snow surface would change X very little since flat snow

tends to be forward-scattering also. However, as discussed

above, sastrugi can strongly scatter radiation backwards.

Thus cloud cover is expected to alter X more in October

(when the sastmgi are well-developed) than in January (when

the surface is relatively flat). It will therefore be important in

future work to find a way either to detect clouds or to remove

their influence. This may possibly be done by making use of

the fact that cloud cover has a higher frequency of variability

in time than total ozone.

4. AVHRR-DERIVED OZONE AMOUNTS,

COMPARED TO TOMS

Figure 3 shows time series of total ozone derived from

AVHRR and TOMS at three locations over East Antarctica.

At site 3a, there is more noise in the AVHRR-derived time

series than in the TOMS-derived series, and the values in

October are too low while those in late December are too
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Figure 3. "rime series from 1 October to 31 December 1987 of total
ozone derived from the visible channel of AVHRR and from TOMS

at (a) 75.5 S, 20 E, Co) 77.5 S, 130 E, and (c) South Pole.
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high. However, the two series follow a similar pattem: col-

umn ozone stays relatively constant until November and then

begins a gradual ascent (when the ozone hole begins to disap-
pear). The daily values are best correlated in late November

and early December. The correlation coefficient between the

two 3-month series is 0.90.

Site 3b is located approximately 2400 km from site 3a

on the other side of East Antarctica. Here again, October and

December values differ and the visible-derived series is nois-

ier; however, the two series follow a similar trend. They show

an initial rise in column ozone in early October, a small

decline later in the month and then a strong rise through
November. The correlation coefficient between the two series

in this case is 0.88. Similar to the events at site 3a, the series

at 3b are best correlated in late November and early Decem-
ber.

The AVHRR-derived time series are noisier than the

TOMS-derived series partially because of cloud interference

in October when sastrugi are higher and of decreased sensitiv-

ity to ozone in December when the path length of the solar

beam through the layer is shortest. The separation of the

series in October and December at the two sites illustrates the

failure of our initial assumption that the sub-ozone anisotropic

reflectance is constant. In October, there is preferential scat-

tering by sastrugi towards the satellite, which forces equation

(1) to calculate a thinner layer of ozone to account for the

extra radiation the instrument is seeing. Conversely, in

December, there is preferential scattering away from the satel-

lite by the fiat snow surface which causes equation (1) to infer

a thick ozone layer. The anisotropic reflectance factor X will

also depend on the solar zenith angle 0 o which is highest in
October and lowest in December.

Finally, site 3c is South Pole. There is considerable spa-

tial variance in u near the pole which has been averaged out in
Figure 3c: all 30-km pixds from the zone 85 S to 90 S were

averaged together for this figure. This zone has 16 times the

area used at the two other sites to calculate each data point in

the time series. Once again, the AVHRR derived series is

noisier and there is systematic downward offset, even exhibit-

ing negative values of total ozone in October and November.

A negative value implies that so much more radiation is

reaching the satellite than would be expected under the con-

stant- x assumption, that the exponent in equation (1)
becomes positive to explain it. However, the two series are

similar in that they show the jump in total ozone around 30

November, marking the recovery from the 1987 ozone hole at
South Pole. The correlation coefficient in this case is 0.79.

5. CONCLUSION

By modeling the transfer of visible radiation through the

Antarctic atmosphere, we have attempted to obtain column
ozone from the visible channel of the AVHRR. Results of the

initial investigation show promise in this technique, especially

considering the simplicity of the analysis method and the

coarse resolution of the data. The fact that the visible-derived

time series of total ozone correlate with the UV-derived values

in figure 3 suggest that it would be worthwhile to continue

investigation of the visible data by improving the method of

analysis.

In future work the description of surface-atmosphere

reflectance can be improved by employing cloud observa-

tions, sastrugi models and statistical analysis. Rayleigh scat-

tering by the sub-ozone atmosphere can be readily

incorporated. Estimates of anisotropic reflectance factors will

be obtained from both satellite data and surface data: (a) We

will determine the values of X that give us the correct

(TOMS) values of total ozone for October-December 1987

when put into equation 1. (b) We are now measuring X for

natural sastrugi surfaces from a tower at the South Pole Sta-

tion at all values of solar azimuth angle relative to the sastnlgi
axis.

If the method appears useful after these improvements

have been made, the technique can be applied to Scanning
Radiometer data from the 1970s.
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