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Abstract

We consider the effectsof viscosityon the inviscidstabilityof the Batchelor (1964) vortex

in a compressible flow. The problem istackled asymptotically,in the limit of large (stream-

wise and azimuthal) wavenumbers, together with large Mach numbers. This problem, with

viscous effectsneglected, was discussed in Stott _ Duck (1994). The authors found that

the nature of the solution passes through differentregimes as the Mach number increases,

relativeto the wavenumber. This structure persistswhen viscous effectsare included in

the analysis. In the present study, as in that mentioned above, the mode present in the

incompressible case ceases to be unstable at high Mach numbers and a centre mode forms,

whose stabilitycharacteristicsare cletcrmined primarily by conditions close to the vortex

axis.

We find generally that viscosityhas a stabilisinginfluenceon the flow, whilst in the

case of centre modes, viscous effectsbecome importmlt at much larger Reynolds numbers

than for the firstclassof disturbance.

* This work was partially supported by the National Aeronautics and Space Adminis-
tration under NASA Contract No. NAS1-19480 while the author was in residence at the

Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA, 23681-0001.
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1. Introduction and formulation

The work presented in this paper is a follow on study to that of Stott _z Duck (1994), where

the inviscid stability of the Batchelor (1964) trailing-line vortex in a compressible flow was

considered. The motivation for this research is due to relevance to tornadoes, combustion

optimisation and also the breakdown of such vortices behind aircraft.

The first authors to investigate viscous effects in the study of the stability of the

Batchelor (1964) vortex were Lessen &: Paillet (1974). A numerical approach was adopted

and it was shown the n = -1 mode (where n is the azimuthal wavenumber) was the

most unstable mode. This finding was contrary to previous inviscid studies i.e. Lessen,

Singh _z Paillet (1974), which had indicated that disturbances with -n _ 1 were the most

dangerous. However the work of Lessen, Singh _z Paillet (1974) considered only relatively

low Reynolds numbers (i.e. Re ,,_ 100), which is unrealistic for comparison with experimental

flow situations and with inviscid studies. This apparent anomaly remained unresolved until

the study by Stewartson (1982), in which the problem was approached asymptotically (based

on the inviscid work of Leibovich &: Stewartson 1983) which considered the dual limits of

large Reynolds numbers and wavenumbers. The results obtained show that the effects of

viscosity are stabilising and also the increase in the growth rates as -n increases is not

sufficient to counter the stabilising effects of viscosity which may be quite significant at low

Reynolds numbers.

In the past few years it has also been established that additional unstable ,nodes exist

in which viscosity exerts a destabilising influence. These viscous modes were first discussed

by Khorrami (1991) and later analysed by Duck &: Khorrami (1992). Also Khorrami (1992)

looked at the full viscous incompressible equations by numerical techniques and found that

at large Reynolds numbers, with n = -1, near the upper neutral point, the first and second

modes cross and switch. In addition a second peak in the growth rate curves appears due
to viscous effects.

In this paper, we take cylindrical polar coordinates, (L÷, 8, Lx), with the x-axis lying

along the axis of the vortex (which is taken to be axisymmetric), and L is some streamwise

scale. We also take the flow far from the vortex centre to be directed along the x-direction.

The velocity field is written as U*u = U*(u, v, w), the fluid density is p'p, temperature

T'T, first and second coefficients of viscosity #_/_, #*A respectively, and pressure p*U*2p.

Here superscript asterisk and subscript o0 respectively denote dimensional and freestream

variables. U_ is a velocity scale, defined by

CoV_ log(xneo_) + LU£2
U: = 8xv_2Re_ 8z,_2Reo , (1)

where U* is the freestream velocity, L,_ = #_/p* is the kinematic viscosity, Co is a constant

and Re_ is the freestream Reynolds number defined by

Reo,, = p*U* L (2)
$

We have a flow Mach number given by

M- U; , , (3)
('yR*T* )"



where 3' is the ratio of specific heats and R* the gas constant. The freestream Mach number

is given by

Mo_ - U______M, (4)
u:

where we expect M¢¢ >> M. Also we define the Prandtl number to be

where to* is the thermal conductivity of the fluid and % is the specific heat at constant

pressure. We further assume a perfect fluid.

The flow of a swirling wake in the far downstream limit was first discussed by Batchelor

(1964) where the flow was taken to be incompressible and a similarity solution was sought.

This work was extended into the compressible regime by Stott & Duck (1994) who showed

the following non-dimensional profile was appropriate to leading order

v£
V = 0,

U = e -_ po - U_

To = 1, W = q(1- e-r2), Po = 1, (6)
r

where q is a measure of swirl, and

1

_Re_
,. _ _ (7)

rs 4x

It is (6) that we shall be adopting as the basic flow profile for the stability study considered

in the main part of this paper. We also note that the flow Reynolds number is defined by

Re- P*°°U'_r" (8)
_t

Consider now the stability equations of the general basic state; taking small perturba-

tions, we write

(u, v, w, p, T, p) = (U(r),0, W(r), po , To )

+6[F(r),iG(r),H(r), P(r____))n' r(r),P(r)] d + 0(52), (9)

where 6 << 1 and c = cr + ci is the complex wavespeed. We assume that #*, the first

coefficient of viscosity, is solely a function of the temperature T*. In addition we also take
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the bulk viscosity to be zero. If wenow substitute equations(9) and the aboveassumptions
into the full Navier-Stokes equations,and consideronly terms of 0(6), we obtain

aP 1 [! n 2 1, d#..,,,]_F + U'G + n -iRe (rF')'-(a2+_-)F+aF_+rtrr-_oU)j, (10a)

2WH FW 2
_G+ --+

r r

-- - + (rG')' n2 + 1n _ - a2+ j G

-(P_)' r2 + nr'_o ° + ar-_oU , (10b)

+W+G+ P

r i[! o2 ii.
(10c)

nH G
r_ + aF + - G' - --,

P r
(10d)

_0T--

(lOe)

7M2P - F + r, (10f)
n

where

nW
_ = a(U-c)+ -- (11)

r

Also note that for this study we choose the Prandtl number to be unity and for the purposes

of the results presented later the ratio of specific heats is taken to be 1.4, although of course

there is no conceptual difficulty in choosing other values.

The boundary conditions are given by

F'(0) = G(0) = H(0) = P'(0) = F'(0) = v'(0) = 0 for

F(0) = G(0) + H(0) = P(0) = F(0) = r(0) = 0 for

F(0) = G(0) = H(0) = P(0) = F(0) = r(0) = 0 for

r/--_0,

I'_1= 1,

I'_1> 1,
(12)
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F,G,H,P,F,r _ 0 as r _ oo. (13)

Unlike the inviscid analysis of Stott & Duck (1994), we are unable to reduce the equations

further, and thus (in the temporal problem), (10) defines the eigenvalue problem for c.

In section 2 we develop an asymptotic theory for large wavenumbers when viscous

effects are included in the analysis. In section 3 it is shown that for sufficiently large Mach

numbers centre modes are found and consideration is made of the effect of viscosity on these

modes; indeed, the authors are unaware of previous analysis of the effects of viscosity on

any kind of centre modes. In section 4 we present and discuss results obtained from the

analysis of sections 2 and 3.

2. Analysis for large azimuthal wavenumbers. M=O(Inl½)

It was shown in the inviscid work of Stott & Duck (1994) that the crucial regime of Mach

number is when M = O(In 1½). In this case there is an important change in the character of

the inviscid instability. The same is expected to be true in the viscous case, if conditions are

appropriately chosen. The M = O(In ]½) regime results also encompass, to a large extent,
| A A

many of the results of smaller orders of M. We then write M -- Inl_M, M = O(1),

together with a = n_, and the wavespeed is then expected to develop in the form

c = co + -- + _ + O . (14)

It is found that the crucial order of the Reynolds number (defined in (8)) is given by

Re -- -J--_ where f_ -- O(1) is the (imaginary) viscosity parameter. Although viscosity is a

function of temperature, since the temperature is (approximately) constant, then so too is

P.
Following the inviscid analysis of Stott & Duck (1994), we fully expect the eigenso-

t

lutions to be concentrated close to the point where _0(r0) = 0, together with _0(r0) -- 0,

where

W
 o(r) (15)

r

The relevant radial scale is then

R = (r -  0)lnl

On the R = O(1) scale, _ develops in the form

=_,+ _2 +0([__[) "
We then expect F, G, H, P, r, r to take the form

1
(F, G,H,P, v,F) = (Fo, Go,Ho,Po, r0, F0) ÷ 7---_,_ (F1, G1,H1,P1, r1,F1 )

Inl 4

(16)

(17)

+I-_-_-I (F2, G2,H2,P2, r2,F2) +...
(18)



Taking the 0(1) terms in the governing equations (10) leads to

7,(1 + _2r_)F,
Go = ----_ o,

U_ - _ro Wo

Ho = -6roFo,

2W° 71_,_+Fo,
Po = U_ - 6roWo

(19a)

(19b)

(19c)

(21b)

(21c)

(21d)

(21e)

On account of (20), a solution only exists if the

_"_o7, dFo
Fl =sign(n)(u6_6roW+oo ) + A, Fo-j-ff

a, = A171(1+ _o)
U_ - (_ r oW_o Fo ,

ro71 dFo

- -
-r272 \ dFo[

A,_or_ +__) 2_Wo)Fo,r, = -_7 _v; _ _ro_0° +

where A1 is an undetermined constant.

following equation is satisfied

(21a)

= _°(_'_ +_°_) 2_Wo)Fo,r0 Wo_"u_-_ow-_0 + (100)

where 71 = _1 + _(1 +62r02), and then 71 is given by the solution of the following quadratic

equation

73(1 + _2ro2 ) 2sign(n)M'2 W2 ..- _Ol
to

- (2sign(n)W: "_2 (7 - 1)#(1 + 6_2r_) _ 26_Wo(U; - 6r0W_0 )) = O, (20)rg

and hence from this we may deduce Cl (since _ol = -_cl). Continuing, by equating terms
__3.

of O([n I g), we have that



FoRR -- (ilR 2 + i0c )F0 = 0, (22)

where

_0 = 6(2sign(n)M'2W°3_l_-_ + 2_12(1 + 62r°2)r°) , (23a)

sign(n)2W_,TM2fL _ 2_2(1 + _2r_)_ _ _o,r0^3 2

_, = -_°_(r°) (23b)
2_

Equation (22) is of the form of Weber's equation (after the application of the transformation
1 ^ 1

= 2_ A_ R). Therefore, in order to satisfy the boundary conditions we must have solutions
of the form

^ 1

+ aT.)
m=0,1,2... (24)

C2 m_ -- i0

We note that setting fi, the viscosity parameter, to zero reduces the problem to its inviscid

counterpart as considered by Stott & Duck (1994). Also we see that when Ifil becomes

sufficiently large, all disturbances become neutrally stable.

As in the case of inviscid flow, this regime of M indicates a watershed in our analysis.

When M is not large, both roots of cl (obtained from equation (20)) are complex and

hence the flow is unstable. However, increasing M eventually causes cl to become purely

real, which implies .c2 also becomes real. Consequently to this order of approximation, for

sufficiently large M, all disturbances become neutrally stable. The effects of viscosity on

this phenomenon and other results obtained from this section will be discussed again in

section 4.

We expect, as in the inviscid case, the emergence of centre modes as M becomes large,

and it is this class of modes that comes under consideration in the next section.

3. Centre Modes. M=O(Inl)

We anticipate in this regime, as in the inviscid case, that centre modes (i.e. modes whose

disturbances are primarily dictated by conditions close to the axis of the flow) will exist. We

set M = InlM, M = O(1) and assume that disturbances will develop in a similar way to

those found by Stott & Duck (1994). Thus we expect the flow to be divided into five regions,

two regions within r = O(1) (one above, the other below a critical layer), r = O(Inl-½ ) and

finally r -- O(Inl-1). Also, as in the purely inviscid case, we expect the complex wavespeed

to develop as

Cl

c = co + + ... (25)
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and therefore

= n_o + q°--!+ ...
n

n ll{r_ 2aCln+ _0_u_ } + .... (26)

For self-consistency, it turns out that we must have _po(r = 0) = 0, i.e.

co = 1 + q. (27)
&

We first consider the inner lengthscale, R = rln I = O(1). The other regimes, mentioned

earlier, will be discussed briefly later, since details are identical to the inviscid case.

The solution is somewhat complicated by the fact that (as seen in the inviscid solution

of Stott & Duck 1994) the solution may be regarded as of WKB/multiple scales type. In the

case of the inviscid solution, it is clear that R derivatives of physical quantities are generally

O(n). This will then certainly also be the case here. We write

1 1
(P,F, G, n, r, r) = (1po,F°'n G0, Ho, Fo, r0) + n(nP1, F1, G1,H1,1_1, T1 ) "Jr... (28)

The leading order terms in the momentum and continuity equations then give

_sign(n)
Go = 2qR Po Ho - s_gn(n)2qnPoR. (29)

At the next order in n, the following results are obtained:

_F + _lFo = -Po(a + _), (30a)

1
2qH1 - _1 Po - Foq2sign(n)R + -sign(n)PiR-_a , (30b)

2qR n

2qG1 + sign(n) P1
R

__ _1 sign(n)Po R _ ¢_H , (30c)
2qn

H1 1
- G1R- sign(n)6_Fo , (30d)

R n

7M2p0 = F0 + To, (30e)



(7 - I)M2_Po = _ro + _. (30f)

Here

tf .

(31)

i_H in 5 1 d 2 1 Ho

_f -- _ ,_-_2 R 2 Fo "

_Or ro

(32)

We have implicitly assumed Re = O(n 5); it is this scaling that leads to the key regime

where viscosity substantially influences the stability of these flows. We therefore write
n 5

#1 = _-g. However the problem for #1 = O(1) leads to an eighth-order system, almost of

comparable computational difficulty to that of the full system as represented by (10). In

order to make further progress without substantial computational effort, instead, we now

assume the limit of diminishing viscosity, i.e. #1 --+ 0, (but with I#11 >> I_])- This enables
us to write

(Po, P1, Go, G1, H0, H1, Fo, r0, P0, Cl) = (P00, Plo, Goo,G10,Ho0, Hlo, Foo,too, roo, c10)

+#1 (P01, Pll, Go1, Gll, Hol, Hll, F01, r01, Fol, c11) + .... (33)

It turns out, predictably, that P0o is then the leading order inviscid solution, as found

by Stott & Duck (1994), and is described by

 :{Poo}= PooR.+ 4Oq

_o
+ 2qaM 2 1

_1o R2]P00 =0 . (34)

After some algebra, the next order equation (in #I ) is given by

•_ { Pol } ---- - 2qn2 sign(n)_a

R_o l o

2qnsign(n)(_H)n

_o10

where

_n =
_r

-n2poo[2(4q25_ 2 + 4(_q)Aolo + 2qa-M2]&cllAO_o ,

 [hp0o.R- )

isign(n) f 1 Pd P.,_ 1
2q-'_---_ [n-'f OORRR -- R--'_]

ir 1 F, Fn. 1t_ oonn - n-_l
i 1 r
7 [_ r°° nn - _n-_]

4q2n2&_F

(35)

(36)



Foo - 1 Poo( 1
_PlO q+a)' (37)

Too -- (7 - l)M2poo , (38)

I t! " " 2

_,o= _o(0)R - 6C,o . (39)

We then have, as R --+ 0

Poo -+ R½(AaoR Inl + A40R-Inl), Po, --+ R½(A3,R I"1 + A4,R-I"I). (40)

Since the solution must be bounded as R --_ 0, we have A40 = A41 = 0. In the limit

as R _ o0, we find

8 * --8
Poo _ R½(AloR + A2oR ), Pol _ R½(A_,R* + A_,R-'), (41)

4a_'_ 2 \ l_where = I 1(1-
_o (0)

This solution must be matched to a layer described by f = r]n]½ = 0(1), for which
the following solution can be written

P = r½ __l*,,(['_r/q2M2in]_2_4 ) + C2Kt,( q2M2 Inlr2_ ))exp(_ f ]rtl2q2_'M2df), (42)

1 Note that u (and also s) iswhere Iv and Kv are modified Bessel functions with u = _s.
imaginary. A relationship between C] and C2 is determined from a consideration of the

r = O(1) region, which is inviscid in nature, and leads to a WKB-type solution, giving the
result

C] = -2i_rC2 exp//°

_ro

(43)

where ro is determined from

 o (ro) _
4ro2 (44)

Matching asymptotically, and taking the limit In] _ 0% leads to the conclusion (on account
of (43))

A* A* 011 .... (45)



Equation (34) may be solved using hypergeometric functions (Stott K: Duck 1994), and this

leads to

2n2q(1 + q6)

c,0 = - [¢0 + 1)'
(46)

where _ l+ + == ½[In s] N, N 0, 1, 2, 3... Alternatively a WKB solution would also appear

to be in order here, although this is not straightforward due to the multitude of critical

points. Since the system (35) depends on a largely numerical approach, we chose to adopt a

numerical approach for the problem overall, including (34), treating n as a finite (but large)

numerical parameter, using a fourth order Runge-Kutta scheme.

This analysis differs somewhat from that of Stewartson & Brown (1985), who looked

at near neutral centre modes. In their work s was real (and so too, consequently was c10),

and it was necessary to seek higher order terms in order to obtain the imaginary part of cl.

In the following section, we consider some numerical results arising from the analysis of this

and the previous section.

4. Conclusions

In the work described in the previous two sections we find that as in the corresponding

inviscid analysis, the Mach number proves to be crucially dependent on the order of the

wavenumber and we are able to develop the analysis in a similar way to the previous inviscid

study. Note that for all results referred to in this section the swirl parameter q is taken to

be 0.8.

Khorrami (1992) noted that modes evaluated above Reynolds number as low as 10000,

attain their maximum growth rates and beyond this point appear to be largely independent

of the Reynolds number. Figure 1 shows a plot of growth rate against Reynolds number

for n = -15 with a = 7.5 with M = Inl½ (for the first mode i.e. that corresponding to

m -- 0 in (24)). We observe from these results that stabilisation occurs for sufficiently low

Reynolds number; this is a generic feature of this problem (and indeed also occurs in the

incompressible case, generally).

Figure 2 shows the neutral curve (a against Reynolds number) for the case n = -15

with M = O(Inl½) (again for the first mode), and confirms the remarks regarding the effects

of stabilisation above.

Figure 3 shows the variation of the growth rates with Mach number for the most

unstable mode for varying Reynolds numbers and n = -15, with M = O(Inl½). In this

figure it can be seen that for all Reynolds numbers considered the effect of increasing Mach

number is generally stabilising and for sufficiently large M modes are completely stabilised.

Also as the Reynolds number is increased the value of the Mach number at which the modes

become stable decreases.

We now turn to consider the effects of viscosity on centre modes. Figures 4a-4c show

growth rate variations for the case M = 15, n = -15, q = 0.8, a = 1, for Re = oo (fig.

4a), Re = 2.5 x 106 (fig. 4b) and Re = 106 (fig. 4c). These figures show the first three

modes, with the first mode (N = 0) shown as a solidus, the second mode (N = 1) shown

as the larger dashed line, and the third mode (N = 2) shown as the smaller dashed line.
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The first of these figures, namely fig. 4a corresponds with the inviscid linlit, as considered

by Stott & Duck (1994), and agrees very favourably with these previous results, obtained

by (46). These results also show the trend observed by Stott & Duck (1994), namely that

near the lower neutral point (ot ---, 2 in this case), that the higher modes do have slightly

larger growth rates than corresponding lower modes. Figures 4b, 4c do generally indicate

that viscosity plays a stabilising effect on all three modes considered. Indeed, these observed

trends are, again, quite generic, and are observed in general calculations of this problem.
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Figure 1: Variation of growth rates against Reynolds number for M -- Irt[½, rt -- -15,

a = 7.5.
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Figure 2: Neutral Curves for M = ]hi½, n = -15.
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Figure 3: Variation of growth rate with Mach number for n = -15, a = 7.5 with Re =

100000 (--), Re = 10000(-- -), and Re = 1500(---).
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Figure 4a: Variation of growth rate with o_ for centre modes n = -15, M = 15, q = 0.8
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Figure 4b: Variation of growth rate with c_ for centre modes n = -15, M = 15, q = 0.8
Re = 2.5 x l0 s .
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Figure 4c: Variation of growth rate with a for centre modes n = -15, M = 15, q = 0.8
Re = 10 6.
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