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Summary

This preliminary investigation introduces the use of

the Regier number as a flutter constraint criterion for
aeroelastic structural optimization. Artificial Neural

Network approximations are used to approximate the
flutter criterion requirements as a function of the design

Mach number and the parametric variables defining the

aspect-ratio, center-of-gravity, taper ratio, mass ratio

and pitch inertia of the wing. The presented approxi-

mations are simple enough to be used in the preliminary

design stage without a well defined structural model.

An example problem for a low-speed, high-aspect-ratio,

light-aircraft wing is presented. The example problem

is analyzed for the flutter Mach number using doublet
lattice aerodynamics and the PK solution method. The

use of the Regier number constraint criterion to opti-
mize the example problem for minimum structural mass

while maintaining a constant flutter Mach number is
demonstrated.

Introduction

The structural optimization of an airplane wing to

satisfy flutter constraints is often an expensive process

in terms of computer resource requirements. The typi-

cal iteration of the design through the optimization pro-

cess requires repeated determination of the unsteady

aerodynamic forces and subsequent flutter solutions.
While the solution of the flutter equations requires lit-

tle computer resources, the calculation of the unsteady
aerodynamic forces often requires significant computer

storage and central processor time. One means to re-
duce these costs, as discussed in references 1 and 2, is

to use a simplified model of the unsteady aerodynamics.

If the changes in the structure between adjacent itera-
tions are small then the unsteady aerodynamic forces

will be virtually unaffected and the aerodynamic model

need not be updated at every iteration. A complete up-

date might be made after, say, five iterations. Another

simplified model, used in reference 3, assumes that the

modal basis used to calculate the unsteady aerodynamic

forces is unaffected during the optimization. This re-

port presents an alternative approach to actually calcu-

lating the unsteady aerodynamic forces and explicitly

solving the flutter equations during the optimization.
The method uses a flutter criterion to evaluate the flut-

ter susceptibility of the wing. Certain properties of the

wing are compared with the criterion to assess whether

or not the wing has acceptable flutter characteristics.
The use of a flutter criterion is particularly attractive

during preliminary design when a variety of wings are

under study, and high accuracy is not required.

Although there are no flutter criteria that apply

to all wings, there are criteria available that apply to

many wings. For example, one flutter criterion is to

have the sectional center-of-gravity forward of the sec-

tional aerodynamic center-of-pressure. However when

this criterion is used for the design of a wing, the re-

sulting design has excessive weight. The criterion for

the flutter constraint used in this report is based on the

stiffness-altitude parameter, or Regier number, which

depends on the stiffness of the wing and characteristics

of the fluid in which the wing is operating, in partic-

ular, the density and speed of sound. As the name

stiffness-altitude implies, the value of the Regier num-
ber increases as either stiffness or altitude is increased.

This parameter has been used in reference 4 to corre-
late the flutter results obtained from several hundred

wind-tunnel, flutter-model tests.

The proposed criteria is "If the Regier number for

the wing being designed is greater than a reference

value, the wing is flutter free." The reference value is

a calculated Regier number based on experimental flut-

ter tests. If the Regier is substantially larger than the

reference value, the wing has excess stiffness. This sug-

gests that some material in the load bearing structure

could be reduced (i.e. reduce the stiffness) and thus
reduce the structural mass. If the Regier number is less

than the reference value, then the wing will flutter. An

advantage of the proposed criterion over other criterion

is that this proposed criterion is easy to calculate and

simple enough so that it may be used early in the design

process.
The purpose of this paper is to discuss how a flutter

constraint based on the Regier number can be used in

optimizing an airplane wing. First the Regier number,

including its background and meaning is introduced.

This discussion is followed by the development of an

artificial neural network (reference 5), or ANN, approx-

imation for the reference Regier number data obtained
from reference 4. Next, the procedure for using the

Regier number in structural optimization is presented.

Finally, the application of the Regier number criteria to
an illustrative example is presented.
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center of gravity, %_
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structural damping coefficient

height of aft or forward beam, Figure 8

input of ANN scaling function, (Equa-

tion 3)

objective function

reduced frequency

ANN approximation for the AR correc-
tion factor

ANN approximation for the cg correc-
tion factor

ANN approximation for the _ correction
factor

ANN approximation for the # correction
factor

ANN approximation for the r= correc-
tion factor

semispan of wing

Mach number

sectional wing mass

output of ANN scaling function, (Equa-

tion 7)

dummy argument of Equations 5 and 6

Regier number

Frueh's modified Regier number

Regier number approximation

radius of gyration, normalized by b

Nonlinear transfer function used in ANN

thickness of aft or forward beam wall,

Figure 8

vector of structural response variables

velocity

velocity index parameter

beam mass per unit length

width of aft or forward beam, Figure 8

weight parameter of neuron element

(Equation 4)

mass of the support structure

vector of structural optimization design
variables
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output of a neuron element (Equation 4)

vertical displacement of the beam at the

typical wing section

frequency

mass ratio

mass density of fluid

mass density of the support structure

sweep angle

taper ratio

bias parameter of neuron element

(Equation 4)

subscripts:

pitch mode natural frequency

aft beam

conservative approximation

divergence condition

best estimate approximation

forward beam or flutter condition

jth neuron element

maximum value

minimum value

reference

reference condition

The Regier Number

The Regier number, or stiffness-Mtitude parameter,
is one of several nondimensional aeroelastic parameters

that have been used to insure dynamic similarity be-

tween models (reference 6). The stiffness-altitude pa-

rameter was first suggested for use in displaying flutter

data by Arthur A. Regier. Over time this parameter

has become known as the Regier number, or TO. The

expression for 7_ is

Tt - O3rb_/fi (1)
a

where O3r

length, #

sound. As is the case for the more familiar velocity

index parameter 1 VI, T_ can be derived by simplifying

is a reference frequency, b is the reference

is the mass ratio, and a is the speed of

1 The velocity index parameter V I is related to T_ by the

following relationship:

M
VI -_ --"

7_



the approximateempiricalflutter formulaexpression
givenby TheodorsenandGarrickin reference7. A
modifiedversionof7_ispresentedbyFruehin reference
8. Frueh'smodifiedRegiernumber7_isgivenby

7_
= --- (2)

whereCL,_ is the lift curve slope. This expression would
be attractive for use in correlating flutter data because
7_ has a smoother variation with Mach number than the

Regier number does. However, in many instances CL,_

information is not available, especially from research
flutter model tests, so it is often not possible to use

7_. It should be pointed out the Frueh's expression
can also be derived from Theodorsen and Garrick's

approximate empirical formula (reference 7) recognizing

that CL,_ is 27r in their formula. So, in effect, Regier's
formulation essentially assumes a constant lift curve

slope. Recent research reports since about 1970 have

not often used either T_ or VI because these reports tend

to be problem, or wing, specific. For a specific wing,

presenting the stability boundary using 7_ or VI is not as

useful as a plot of the stability boundary using dynamic

pressure. However, in aeroelastic research reports prior
to the 1970's the focus of the research was in parametric

studies and the presenting of the data using 7_ or VI is

very common.
7_ is also directly related to the parameters M and

# that arise from a non-dimensional considerations of
flutter. The term _ is the ratio of vibration velocity

a

to fluid speed of sound and may be though of as a

modified Mach number. The remaining term # is
the nondimensional ratio of mass of the body to the

apparent mass of the fluid surrounding it.

In reference 6 Regier describes 7_ as the square root
of the ratio between the structural inertia force and the

fluid force at Mach 1. Using the Regier number to define

the stability boundary stresses the importance of the
ratio between the inertial forces and fluid forces as a

primary factor in the governing equations of motion.

Two dynamically similar models that have the same

Regier number will have the same ratio of structural
force to fluid forces at Mach 1. If the two models are

also aerodynamically similar, then the flutter stability

boundary will be the same when plotted in the R vs M

plane. Figure 1 shows 7_ plotted against Mach number

for an typical wing. When constant dynamic pressure

lines are plotted against M, they appear as radial lines

through the origin as shown in Figure 1. The stable

no flutter region is above the boundary; the unstable

flutter region is below the boundary. Unlike VI, Tt has

the origin as an anchor point. The above properties
makes T_ an attractive parameter for correlating flutter

data from different wing configurations.
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Figure 1. Regier Number Stability Plane.

For these reasons Harris (reference 4) chose 7_ to cat-

alog flutter data from a variety of wing configurations.

Reference 4 is a summary of 341 experimental and the-

oretical flutter studies presented as a series of flutter

boundary plots of 7_ vs M and correction factors, such
as the correction factor for the aspect ratio, KAR vs AR.

Figure 2 is a typical plot of T_ vs M taken from refer-

ence 4 showing the flutter boundary and data points for

low sweep conventional planform wings.

_D

z
CD

C_

Stable
3.O

i.o

J'_7" U_lstable
°'°o o,5 1,o 1,5 2.0

Mach Number, M

Figure 2. Regier Number vs Mach Number.

Conservative

Best Estimate

Other data plots in reference 4 are used for conven-

tional planform wing of moderate and high sweep, and

delta wing designs. The reference 4 designated "conser-
vative estimate" and "best estimate" curves are shown

in Figure 2 as solid and dashed lines, respectively. The

conservative estimate curve encompasses all the exper-
imental data whereas the best estimate curve is similar

to a mean fairing though the data. The data in Fig-

ure 2 were adjusted by Harris to a nominal wing design

for an average aspect ratio, center-of-gravity position,

taper ratio, mass ratio, sweep angle, and radius of gyra-

tion. In practice, the data from reference 4 is adjusted

for the particular AR, cg, A, #i A and r_ of the wing



designbyusingcorrectionfactors.Thecorrectionfac-
torsarenormallyafunctionof asingleparameterwith
theexceptionofthecorrectionfactorfor#. Thiswill be
explainedin the"TheRegierNumberApproximation"
sectionof thepaper.

To determineif a wingdesignhasan aeroelastic
problemusingreference4, theT¢ of the design calcu-

lated using Equation 1 is compared to the adjusted T¢

value calculated by using the methods and data of ref-

erence 4. A flutter condition is predicted if the 7_ calcu-

lated using Equation 1 is less than the T¢ generated by

using reference 4. If the T¢ of the design is greater than

the T¢ of reference 4, then addition weight savings can

be achieved by removing some of the structural mass

being used to generate "excess" this stiffness.

The Artificial Neural Network

Artificial neural networks (ANNs) are used in this
report to approximate a number of curves in reference

4. This section serves to give the uninformed reader
a brief introduction to the ANN. Further information

on ANNs can be found in reference 5. ANNs are not

unique to the work presented in this report and several

other functions could have been used to approximate
the data.

Input
Scaling

S = nonlinear transfer function

Figure 3. Artificial Neural Networks.
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ANNs derive their name from trying to mimic the
structure and functions of neural systems of living crea-

tures. In general the network is composed of a number

of signal processing elements, or artificial neurons. Fig-

ure 3 shows the form of the ANN using the McCulloch-

Pitts neuron model (reference 5). In the conventional
use of ANNs, the data is approximated by a single large

ANN with several inputs and outputs. Because the data

in reference 4 have been separated into several single

input/output functions the conventional ANN model is

not used. All of the ANNs developed in this report have

a single input and output variable. The input variables

are initially scaled before being passed to each neuron

elements as shown in Figure 3. The individual neuron
elements reside in what is commonly called the "hidden

layer." The number of elements in the hidden layer de-

termines the degree of accuracy of the approximation
function. The more elements in the hidden layer the

better the ANN is at approximating the original func-

tion. The output of each of the hidden layer elements

is passed to the "output layer" which is also a neuron

element. The output of the output layer is again scaled

before being used.

The equations used for calculating the approxima-
tion are:

The input scaling function is

(I- Imin) * 0.8 + 0.1 (3)

where Iscaled is the output of the scaling function, and

Imp= and Imi_ are the input scaling parameters.

The McCulloch-Pitts model for a single input neu-

ron is described by

yj = Si (WjIscaled -F ej) (4)

where yj is the output, wj is the weight, and ®j is the
bias of the neuron element. The function Si defines

the type of limiting or nonlinear transfer function used
in the neuron. The approximations generated in this

report use the following two types of nonlinear transfer
functions

1 - e -2p

Sl(p) = ]-_ e-2p (5)

1

s2(p) - 1 + (6)

where p is the input to the function. The same type
of nonlinear transfer function is used for all neuron

elements of a particular ANN approximation.

The output scaling function is

0 = (yj - Omin) * (Omax - Omin) "F Omin
0.8

(7)



where O is the output of the approximation, Omax and

Omi n are output scaling parameters, and yj is given by

equation 4. The parameters that define the ANN are
the minimum and maximum of the input and output

scaling functions plus the weights and biases of the
each of the neurons elements. Equations 3 - 7 are

used to approximate each of the individual functions

that are joined together to form the Regier number

approximation as described in the next section.

The Regier Number Approximation

This section describes the approximations that are

used to approximate the information contained in ref-

erence 4. Reference 4 presents the design estimates of

the flutter margins as a series of basic flutter boundary

plots in the form of T_ vs M for wing configurations of

specific values for AR, cg, _, #, A, and ra. Paramet-
ric adjustment factors are presented as additional plots

that are used to modify the basic boundary plots for

variations in AR, cg, _, #, A, and r_. These adjust-

ment factors are necessary to account for wing config-
urations that are different from the base configuration.

In Figure 4 the data and the ANN approximation func-
tion are shown for the aspect-ratio adjustment factor

KAR as a function of the wing aspect-ratio value AR.
There are different basic flutter boundary plots for dif-

ferent planform designs, such as high sweep or delta

platforms. The approximations calculated in this re-

port for the base flutter boundary are for subsonic, low
sweep, conventional-planform wing configurations.
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Figure 4. ANN Approximation of KAR.

The KAR ANN approximation function is calculated

using Equation 7. The KAR(AR) has a value of 1
for AR = 2, which represents the aspect-ratio value

of the base configuration wing. There are four other

adjustment factors, Kcg(cg) for the sectional wing cg

location, K_(A) for the taper ratio, Ku(p,A,M) for

mass ratio, and Kr_(ra) for the radius of gyration.

Each of the adjustment factors are calculated using

Equation 7. The mass ratio adjustment factor appears

to be a function of #, A, and M but it is actually only

a function of #. The parameters A and M determine

which one of 6 different functions of p is used. The

complete ANN approximation for the flutter boundaries
are:

T_c (M)

T_ = KAR(AR)Ifcg(cg)If A(,_)Ku(# ' A, M)Kr_,(ra)

(s)

(M)
= KAR(AR)Kcg(cg)I( (A)K (p, A,M)Kr (ra)

(9)
where T/c and T_E, each calculated using Equation 7.

The functions T_, equation 8, and T_, equation 9, are
best and conservative estimate ANN approximations

as a function of M, AR, cg, A, #, ra. The T_

approximation is based on the envelope of T_ whereas

T_ is based on the average value of T_.

Table 1 list the number elements in the hidden layer

and the type of nonlinear transfer function (equations

5 or 6) used for each function. The value of zero for

the Kr_ entry of Table 1 denotes no hidden layer.
Table 2 lists the function coefficients for the ANN

approximations. Note that the coefficients for K_ entry

of Table 1 is a single line in the table and is dependent
on the value of A and M to determine which set of

coefficients are used. As noted above and in Figure

3 each ANN has input and output scaling functions.

Table 3 lists the scaling coefficients used in equations 3
and 7.

Equations 8 and 9 describe simple approximations
that can be used with a minimum of computational

effort to develop a constraint function for use in a

complex structural optimization procedure or to check

a design for its flutter margin.

Table 1. Regier ANN Configuration.

ANN Number of Elements Nonlinear Transfer

function in Hidden Layer Function

n_ 2 Sl

2
K AR 2 $2

Kca 2 $2
K ;_ 2 $2

Kt_ 1 $2

I<__ 0 $2

5



Table2. RegierANNCoefficients.

Function
liAR

Kc9

Hidden Layer Output Layer

wj Oj wj 8j
-10.1802 6.4287 -2.8981 -0.2088

11.3170 -1.6769 2.5877

-8.8731 4.6806 1.8229 -2.1408

-12.3446 0.9841 5.6267

13.5425 -1.5790 -4.8732 2.6204

-9.4929 4.8397 1.7489

K#:

M < .9
A < 20 ° 5.6802

20 °<A<52 ° -6.1022

A > 52 ° 6.0479

M > .9

A < 20 ° -6.2028

20 ° < A < 52 ° 6.3106

A > 52 ° 5.3574

KT,

_ -1.3377
1.4409

_ 1.3996
1.3784

-2.1022 -1.4161 0.6581

1.4173 2.7400 -1.0061

-1.1682 -3.4544 2.3473

1.0579 2.7628 -0.8023

-0.8072 -5.0643 3.8784
0.6696 7.5510 -2.0054

5.6931 -2.8362

-1.1461 -0.3777 0.6175

-1.2542 0.4905

-0.5984 0.3697 0.7787

-1.0410 0.1003

Table 3. Regier ANN Scale factors.

Input Output
Function Max Min Max Min

liAR 2 .2 1.5000 0.8993

K_ 60 35 1.7877 0.8098
K_ 1 0 2.2616 0.9048

K u 90 10 1.2390 0.7512
Iir_ 0.7 0.3 1.2630 0.7321

T¢_ 1.8226 0 6 -6

7_ 2.6731 0 6 -6

Structural Optimization Using the

Regier Number Constraint

This section describes the use of the ANN approx-

imation of the Regier number 7_* in a structural opti-

mization procedure for the design of flutter free wing

while minimizing

J = Wt (10)

where J is the objective function and Wt is the mass

of the support structure. Figure 5 shows the design

optimization procedure used in this report. The proce-

dure consists of two major independent computer pro-

grams. These are a MSC/NASTRAN ®2 finite-element

and sensitivity analysis program (reference 9) and, a

second program denoted as Optimizer in Figure 5.

The MSC/NASTRAN ® analysis, denoted as (Sensi-

tivity & FEM Analysis), uses a finite-element model

(FEM) to generate the coefficients of the sensitivity
equations. The Optimizer program calculates the ob-

jective function J, the gradient of the objective function

oJ and the constraint function g, for the optimization

program CONMIN (reference 10). The CONMIN pro-

gram is only used to solve the linear optimization prob-
lem. The design variable equations that are generated

by MSC/NASTRAN ® have the form

Ov

v = vo+ - (11)

where v is a vector of structural design responses, v0 is

the value of the design responses at the start of the opti-
Ov is a matrix of sensitivity coefficients,mization step,

z0 is a vector of the value of the design variables at the

start of the CONMIN optimization, and x is a vector of

design variables used in CONMIN. The structural re-
sponse vector v are functions that are computed within

the MSC/NASTRAN ® program. These responses can

include weight, displacements due to specified load con-

ditions, stress, and modal frequencies, etc. The el-

ements of the design variable x are problem depen-

dent and may include plate thickness, beam height,
and flange width, etc. The matrix ov is computed

by MSC/NASTRAN ® using a finite-difference scheme.

The sensitivities are transferred to the structural opti-

mization program Optimizer as shown in Figure 5 and
in more detail in Figure 6. Figure 6 shows the Opti-

mizer's internal flow as it cycles in the design space

requiring the calculation of the objective function and

constraint, or gradients of the objective function and

constraint. As shown in Figure 6, the Optimizer pro-

gram supplies the CONMIN program with the value

of the objective function J, the constraint g, or the

gradients of the objective function OJ The CONMIN77_'
program calculates the gradient of g by using a finite-
difference scheme.

The Optimizer finds the value of the design vari-

able x that minimizes the linear cost function of Equa-

tion 10 subject to a non-linear inequality constraint

TO* -7_ < 0 (12)

where T¢ is Regier number calculated using Equation 1,

and TO* is the required Regier number calculated from

2 MSC/is a registered trademark of The MacNeal-Schwendler

Corporation. NASTRAN is a registered trademark of the Na-

tional Aeronautics and Space Administration.
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subject to the non-linear constraint

g(v,x) = - a < o

nverge

Figure 5. Design Optimization Iteration Procedure.

either Equation 8 or 9. Hereafter Equation 12 will

be referred to as the Regier design constraint. 7_ is

calculated using Equation 1 from the modal frequency

wr, the wing mass m, constants dependent on the flight

condition p and a, and if the shape optimization is

being done, grid point locations of the FEM. The

approximation T_* is calculated using either Equations 8

or 9, and is a function of the independent variables AR,
cg, A, A, p, r_ and M. With the exception ofp and M,

all of the independent variables for calculating 7_ and
T_* must be calculated from the vectors v and z. The

calculation of the Regier constraint from the vectors v

and x is illustrated in the sample problem discussed

in the next section. The values of p and M must

be specified by the user. The CONMIN optimization

program finds the value of x which will minimize the
cost function, usually structural weight, subject to the

Regier constraint defined by Equation 12.

A complete design iteration is a single pass around

the path shown in Figure 5, executing the Sensitiv-

ity &: FEM Analysis and Optimizer programs once.
At the end of the CONMIN optimization program, the

design responses calculated with Equation 12 will not

agree with the value calculated with the FEM analysis

unless the two systems have converged. The design opti-

mization procedure, Figure 5, must iterate between the

Sensitivity & FEM Analysis program and the Opti-

mizer program until the design responses agree, or con-

verge. A converged design is defined when the objective
function and the design variables do not change dur-

ing a design iteration. The reason for the disagreement

between the CONMIN and MSC/NASTRAN ® design

responses is that the Sensitivity &: FEM Analysis

program is calculating the responses using a nonlinear
FEM of the structure and the Optimizer program is

using a model of the structure linearized about the ini-
tial value of the design variables. At the end of the

CONMIN optimization step the new values of the de-

sign responses of the linear model may not agree with

the responses of the nonlinear model at the optimized

value of the design variables. This behavior can be seen
in the results of the sample problem in the next section.

If the design has not converged, a MSC/NASTRAN ®

analysis is done using a new FEM based on the new

7



valueof x and the optimization of the linear structural

model is repeated. The design optimization procedure

is repeated until the design responses of the sensitiv-

ity analysis agree with the value of the design response

calculated with MSC/NASTRAN ®, as shown in Figure
5.

CONMIN Optimization Program |

g--R*

NO _,

i
,,o

Figure 6. CONMIN Optimization Program.

Example Problem Definition, Analysis,

and Optimization Results

This section describes an example problem for

demonstrating the use of the Kegier number constraint

in the optimal design of a wing subject to a flutter

requirement. The example was chosen to be complex
enough to represent an actual aircraft wing. The fol-

lowing model specifications were selected a priori:

1. Shape optimization will not be done.

2. The wing will have a high AR, AR > 5.

3. The wing will be untapered, A = 1.

4. The flow regime will be subsonic, and A = 0. The

optimization will be for sea level flight condition.

5. The support structure will be two simple beams.

6. The dimensions and mass balance of the wing will

be that of a typical light airplane wing that is in

agreement with items 2 - 5 and designed to flutter
at a subsonic M.

As a result of the above specifications TO* is a

function of M, #, r_ and cg. The optimization problem

will be to design a minimum mass structure. The design

Mach number is the flutter Mach number of the initial

wing design.

8O

ALL DIMI[NSlON IN INCHI{!

Figure 7. Example Problem: Wing Planform.

Structural Model

The planform of the example wing is presented in

Figure 7. The wing is rectangular in shape with a
semispan and chord of 200 and 80 in., respectively.

The structure of the wing is modeled as two uniform
cantilever beams. The forward and aft beam locations

are placed at 0.15_ and 0.55_ to represent a typical wing
box structure.

Each beam is modeled with 10 beam elements. The

wing is constrained so that the aft beam is connect

to the forward beam by rigid links. The forward
beam is free to displace vertically and twist about its

long axis. Each beam is carrying an amount of non-

structural distributed mass that is proportional to the

cross-sectional area from the the point midway between

the beams to the leading or trailing edge of the wing.

The forward beam has 0.16 lbm/in., and the aft beam

has 0.44 lbm/in, of non-structural mass. To simulate

the landing gear, concentrated masses of 16 and 23 lbm
are located respectively on each beam at 20 and 40 in.

span stations. To simulate fuel, concentrated masses of

35 and 15 lbm are located respectively on each beam

at 120 and 140 in. span locations. In Figure 7, these

concentrated masses are represented by small circles on
each beam. Initial mass and balance information for

the example wing are given in Table 4.

The design variables for the forward and aft beams

are height h I and ha, width w/ and Wa, and wall

thickness t/ and ta of the rectangular beam section
as shown in Figure 8. Table 5 summarizes the lower
bound, initial, and upper bound values of the design
variables.



Table4. ExampleProblem:WingWeightsandBal-
ances.

StructuralNon-structural Total
Element Mass(Ibm) Mass(Ibm) Mass(Ibm)
Forward Beam 23.2 32 55.2

Aft Beam 23.2 88 111.2
Fuel 100 100

Landing Gear 78 78
Total 46.4 298 344.4

Air Flow

Aft beam Forward beam

Figure 8. Example Problem: Wing Cross Section.

Table 5. Example Problem: Wing Design Parameter
Values.

Lower Bound Initial Value Upper Bound

Parameter (in.) (in.) (in.)

w/ 1 2 3

h I 2 4 5

t/ 0.05 0.1 0.2
wa 1 2 3

ha 2 4 5

ta 0.05 0.1 0.2

Flutter Analysis

To determine the flutter Mach number design value,

and to check the accuracy of the Regier constraint

criterion, a separate flutter analysis is conducted at

each optimization iteration. The flutter analysis is in

no way a required step in the optimization procedure.

The flutter Mach number Mf for the initial wing will
define the M for the design calculations. This section

gives the details of how the flutter speed is calculated

using the MSC/NASTRAN ® computer program.
The first four vibration modes are used for the

aeroelastic equations of motion. The vibration analysis

results for these modes are presented in Table 6 and

Figure 9. The first mode, 17 Hz, is the first bending

mode. The second mode, 21 Hz, is the first torsion

mode. The third mode, 46 Hz, is the second bending

mode. The fourth mode, 58 Hz, is the second torsion

mode. Both bending modes have significant amounts of

torsion due to coupling between the plunge and pitch

motion of the wing.

Table 6. Example Problem: Wing Vibration Analysis.

Frequency Generalized Generalized

Mode (Hz) Mass Stiffness

1 st bending 17 2.829 × 101 3.271 × 105
I st torsion 21 1.769 x 10 -1 3.090 × 103

2nd bending 46 1.350 × 101 1.121 x 106
2nd torsion 58 6.760 × 10-2 8.980 × 103

The unsteady aerodynamics are calculated using the

doublet lattice method (reference 12). The aerodynam-
ics planform, Figure 7, is divided into 10 spanwise and

5 chordwise aerodynamic boxes for the double lattice

procedure. Beam spline (reference 11) interpolation is

used to calculate the aerodynamic grid deflection from

the motion of the forward beam. Unsteady generalized
aerodynamics forces, GAFs, are calculated for the val-

ues of reduced frequency k = [.001, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 1, 5] and M = [0 0.3 0.6]. Linear inter-

polation is used to calculate the GAFs at intervening
values of k and M. The PK solution method, refer-

ence 11, is used to solve the dynamic equations of mo-

tion at V = 600 to 12000 in./sec in increments of 600

in./sec and M = [0, 0.2, 0.3, 0.4, 0.5, 0.6]. Figure 10
presents a typical results of a PK analysis for M = 0.4

for the above structural model with the design variables

at their initial values. The data in Figure 10 indicates
the 1 st wing torsion mode going unstable at V -- 5000

in./sec (M=0.37), w = 19.5 Hz and 1st wing bending

mode diverging at V = 9100 in./sec, (M=0.67). Note,
that the predicated M for the data in Figure 10 is less

that the specified M for the calculated GAF data. The

true instability point, often referred to as the "match

point", is found by interpolating the data in Figure 10

with other results from the PK solution method (M =



o

MODE 1,17 Hz.

MODE 3, 46 Hz.

o

MODE 2, 21 Hz.

MODE 4, 58 Hz.

z

Air Flow

Figure 9. Example Problem: Vibration Modes.

0.3). The interpolated match point, or stability condi-
tion where p, M, and V are in agreement for a standard

atmosphere, is V] = 5030 in./sec (M] = 0.37), at w/=
19.5 Hz and Vd = 8590 in./sec (M d = 0.63).

ttegier Constraint Calculation

The Regier constraint for use in the Optimizer,

(Figures 5 and 6), is developed in this section. The

elements of the vector v in Equation 11 for this example

are the variables Wt, wa, Za and z/. The required
parameters in Equations 8 or 9 for the calculation of

the TO* are M, #, ra, and cg. The purpose of this
section is show how the these variables are calculated

from the vector v. During the CONMIN optimization

calculations, the design responses are approximated

using Equation 11. For example, the deflection of the

aft beam Za is approximated by

_Z a .

z, = + -8-;(x - =o) (13)

where za0 is the value of the aft beam at the start of

the CONMIN program.
The Regier database in reference 4 is based on the

sectional wing characteristics at the 75 percent span

location. For this example problem the nearest grid

locations occur at the 80 percent span location and

these grid locations are used to calculate #, ra, and cg.

The 80 percent span was used because for this problem

the parameters #, ra, and cg do not change between
the 75 percent and 80 percent span locations.

The mass ratio for the example wing is

Wt + 0.6/

# -- _rlb2p (14)

where Wt is the mass of the support structure, l is the

semispan of the wing, b is the wing semichord, and p is

the density of the fluid. Note that this expression for/_
contains the mass of the beams and the nonstructural

mass, but does not contain the mass of the landing gear

or fuel. For the values of l=200 in., b=40 in. and p =

1.39 × 10 -4 lbm/in. 3 Equation 14 becomes

Wt + 120
(15)P - 44.59

For the initial wing design # = 3.69.

10



Thecenter-of-gravitycg is calculated by using

0.0_(wo+ o.44)- 0.35(wI + 0.16)_= o.5+ =w_7_;--07 ) ×100
(16)

where the sectional mass of the beams Wa and W/ are

calculated by using

Wx=ps(2tx(hx+w_)-4t_) (17)

where Ps is the mass density of the support structure,

and the subscript x is either a or f to denote the aft or

forward beam. For the initial wing design cg = 41.8.

The radius of gyration ra parameter is calculated

by using

ra = _(Wa + 0.44)(0.1 - ea) 2 + (W$ + 0.16) (0.7 - ea) 2Wa + W/ -'1-0.6

(18)
where ea is calculated by using the displacements z]
and Za due to a torque applied to the wing tip. That

is,

ea = 0.1 -- 0.8 z a (19)
za + z f

For the initial wing design ra = 0.4.

Figure 11 shows T_ and 7_ as a function of M
and the flutter analysis result (solid circle symbol) for

the initial wing design. The data in Figure 11 indicate

that the 7_ is a sufficiently accurate to be used in
Equation 12 for T_. That is, the approximation of "best
estimate" stability boundary is essentially the same

as the doublet lattice calculated stability boundary.

Substituting Equations 1 for 7_ and 9 for 7_* into

Equation 12, with KAR(5) = 0.9029, KA(1) = 0.9028,

and a = 13587 in./sec yields the Regier constraint for
an unswept wing with AR=5 and A=I as a function M,

cg, #, and ra:

1.227n}(M) wax/_

Kt,(tt)Kca(ce)Kr_(r_) 340
< o (20)

where Kit(# ) represents the Kv adjustment factor ap-
proximation for M < .9 and A < 20 °.
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Figure 10. Example Problem: Aeroelastic Analysis.
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Figure 11. Example Problem: Regier Constraint Func-
tion.

Structural Optimization Results

The doublet lattice analysis predicts the initial ex-

ample wing to flutter at M = 0.37. The objective of the

optimization is to design a minimum mass wing (i.e.

minimize Wt) that will be flutter free at M --- 0.37. For

11



M = 0.37 and T¢_ = 0.621 Equation 20 becomes

0.763 wo_v/-p

K_(g)Kcg(cg)Kr.(ra) 340
< 0 (21)

The design variable vector x in Equation 11 consists of

the six variables wa, w], ha, hi, ta, and t]. CONMIN's
solution to the problem is to set all of the design

variables, except hi, to the lower design variable bounds
and to find the value of hi that satisfies the constraint
function defined by Equation 21. Figure 12 is the

optimization history for the design variable hi and
Table 7 lists the values of the design variables for the

converged design. Figure 13 shows the optimization
history of Wt. The final value of Wt is 16.6 lbm, a
reduction of 29.8 lbm.

5.0

4.5 _ ------

_ 4.0

"_ 3.5

_D
• _ 3.0
©

2.5

2.0 I I I
1 2 3

ITERATION

Figure 12. Optimization Results: hi vs Iteration.

Table 7. Example Problem: Final Wing Design Vari-
ables Values.

Design Variable Final Value

(in.)
w] 1

h I 4.474

t] .05
Wa 1

ha 2

ta .05

For the first and second optimization iterations in

Figure 13 the discontinuous nature of the structural

optimization results is quite noticeable. The first and
second optimization iterations are bounded by the []

and A symbols. Convergence at the end of iteration 2

between the linear optimization equations and the fi-

nite element analysis equations is indicated in Figure

13 by the symbol V, designating the third CONMIN

12

optimization step, combining with the symbol A, des-

ignating the second CONMIN optimization step, to give

the appearance of the symbol _.

30

N

r_

10

0 i i
1 2

ITEF:IATION

Figure 13. Optimization Results:
Iteration.

I

3

Structure Mass vs

Figure 14 presents the history of the 7_ and 7¢_
terms of the constraint function during the optimiza-

tion. The solid line in Figure 14 is T¢ and the dot-

ted line is T¢_. Equation 20 is satisfied in Figure 14
whenever the solid line is above the dotted line. At the

beginning of the first iteration, denoted as iteration 0

in Figure 14, the data indicates that the the structure

has excess stiffness because 7¢ > T¢_. During the first

CONMIN optimization step, i.e. between iterations 0

and 1 in Figures 12 - 14, the smallest hi is found that
satisfies the nonlinear constraint described by Equation

20. The reduction structural mass is indicated in Fig-

ure 13. At the end of the CONMIN optimization step,

the MSC/NASTRAN ® analysis results are shown at it-

eration 1 in Figures 12 - 14. The new constraint func-
tion indicates that a further mass savings can be made

by reducing the stiffness still further during the second

CONMIN optimization step. The convergence of the

optimization program in two iterations is confirmed by

the third segment of the results being nearly flat in Fig-
ures 12- 14.

In Figure 15 the flutter Mach number M] predicted

by the MSC/NASTRAN ® flutter analysis is plotted

against iteration number. The variation of M] is
considered to be within the accuracy of the calculation

and the optimal design is considered to meet the design

specifications. However, there is no guarantee that

the optimal design will have the desired aeroelastic

properties because the optimization only guarantees
that 7¢ > TO*.
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Figure 14. Optimization Results: T_ and 7_* vs Itera-
tion.
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Optimization Results: MSC/NASTRAN ®

Only a single initial value case is done in this paper

because the objective of the paper is the examination of

the Regier number criterion and not the optimization
problem. If the structural optimization problem is of

interest, several different initial conditions would have
to be tested determine the existence of other minimum

of the objective function in the design space.

Table 8 lists the execution times of the Sensitivity

& FEM Analysis, Optimizer programs, and flut-

ter analysis. The execution times listed in Table 8 are

divided by the execution time of the flutter analysis

program. Based on the data in Table 8, the Regier
constraint is an efficient means for calculating an op-
timal structure with flutter constraint. The execution

time for the structural optimization using the Regier

constraint will be less that the procedure described in
reference 3 since the method in reference 3 requires a

calculations of the GAF at each iteration of the opti-

mization.

Table 8. Example Problem: Program Execution Times.

Program Relative Execution Time

Sensitivity Analysis 0.23

Optimizer 0.01

Aeroelastic Analysis 1.00

Concluding Remarks

A flutter constraint criterion based on the Regier

number for aeroelastic structural optimization is intro-
duced. The use of a constraint criterion makes it unnec-

essary to calculate generalized unsteady aerodynamic

forces between optimization cycles as do other methods

used in aeroelastic design for flutter.

The application of the method proceeds in the fol-

lowing manner. Existing experimental flutter data in

Regier number format are approximated by using Ar-
tificial Neural Networks. This approximation is then

used to develop the flutter constraint criterion. Next,

the optimal flutter acceptable wing design is achieved

by adjusting the design parameters to achieve the min-

imum of the objective function, say structural weight,

while satisfying the Regier constraint criterion.

The procedure is illustrated by the application to

an example problem. A simple, rectangular wing is op-

timized for weight at a specified Mach number while

achieving a desired minimum flutter condition. The

data for developing the Regier number constraint are
obtained from existing experimental results of similar

configurations. The solution for the illustrative problem
converged in two design cycles. Because of the simplic-

ity of the Regier number approximation, little computer

resources are required.
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