@ https://ntrs.nasa.gov/search.jsp?R=19950005099 2020-06-16T09:59:02+00:00Z

AIAA-94-1242-CP

INTEGRATION FOR NAVIGATION
ON THE UMASS MOBILE PERCEPTION LAB

Bruce Draper™”, Claude Fennema

T, Benny Rochwerger*

Edward Riseman®: Allen Hanson"*

Abstract

The Mobile Perception Laboratory (MPL) is an
autonomous vehicle designed for testing visually
guided behaviors, such as road following, passive
obstacle detection, landmark-based navigation and
model acquisition [Hanson, Riseman, & Weems
93]. The research is being conducted under the
sponsorship of the ARPA Unmanned Ground
Vehicle (UGV) Program in the Computer Vision
Laboratory at the University of Massachusetts.

The focus of this paper is on integrating multiple
behaviors into a single, coherent system. It
presents the ISR3, a new tool for interprocess
communication, the storage and retrieval of
transient, image-based data, and the long-term
management of 3D data. It also presents the script
monitor, a process control mechanism for
invoking, monitoring and destroying concurrent
sets of visual behaviors in response to dynamic
events and the systems stated goals.

1._The Mobile P tion Lab (MPL)
The experimental laboratory vehicle for this effort
is the UMass Mobile Perception Lab (MPL), a
heavily modified Army HMMWYV ambulance
(Figure 1) that is equipped with actuators and
encoders for the throttle, steering and brake. The
interface to the on-board computer system is
through a 68030-based controller board. Electrical
power is provided by an on-board 10kW diesel
generator feeding uninteruptable power supplies
and conditioners. The MPL closely matches

*Prof., Computer Science, Univ. of Massachusetts

**Sr. Postdoctoral Researcher, Computer Science,
Univ. of Massachusetts

tAsst. Prof., Computer Science, Mt. Holyoke College,
So. Hadley, MA

+Graduate student, Computer Science, Univ. of
Massachusetts

Copyright © 1993 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

CMU's NavLab II, with modifications and
component installation performed by RedZone,
Inc., a Pittsburgh-based firm specializing in
custom robotics.

Figure 1. The Mobile Perception Laboratory

The vehicle's sensor package includes a Staget,
which is a stabilized platform capable of rotating a

full 360°. The Staget is mounted at the center of
the cab roof and contains a CCD color camera and
a FLIR sensor in a weatherproof enclosure. Two
forward-looking stereo cameras and a forward
looking color CCD camera are mounted in a
rectangular enclosure at the front edge of the cab's
roof. The primary computing engine for vision
processing, goal-oriented reasoning and path
planning is a Silicon Graphics 340GX four-node
multiprocessor. The multiprocessor is interfaced
to the sensor suite through a Datacube
MaxVideo20 processor, which provides frame rate
image processing for certain types of operators.
Space and power has been provided for the
possible addition in the future of a 16K Image
Understanding Architecture (IUA) [Weems 1993],
a massively parallel heterogeneous processor.

473

474

The physical lay-out of equipment on the vehicle
is depicted in Figure 2. The first programmer
station is located in the HMMW V's passenger seat,
with a 17" color X-terminal fixed to the metal
platform between the passenger's and driver's
seats. The second programmer station is located
behind and slightly above the driver, and includes
a car seat, mounting brackets for both an SGI color
terminal and a small SONY monitor for viewing

those modules. At the same time, MPL's software
environment must be efficient enough to meet the
demands of real-time navigation research.

The need to balance between flexibility and
efficiency has led us to design a software
environment around the ISR3, an in-memory
database that allows users to define structures for
storing visual data, such as images, lines and
surfaces [Draper 93a,b]. ISR3 serves as a process

VME#1 VME#2 VME#3 VME#4
4 VEHICLE SGI4 NODE RESERVED VIDEO
PROGRAMMER CONTROLLER| PROCESSOR FOR iUA EQUIPMENT
DATACUBE
STATION MAXVIDEO 20
MONITO
MONITO
DRIVER
' PROGRAMMER UPS POWER 10 KW GENERATOR
_ STATION CONDITIONERS

Figure 2. Interior layout of the MPL.

raw TV signals. Behind this programmer station is
the diesel generator and power conditioning
systems. The passenger’s side rear hold four
enclosed, air conditioned 19" computer frames for
the on-board computer systems. The first frame
holds the vehicle controller, image digitizers and
frame stores, the MaxVideo20, and the Staget
controller and interface. The second computing
frame contains the Silicon Graphics
multiprocessor, disk drives, power supply and
(removable) tape drive. The third frame is
reserved for the Image Understanding Architecture
(IUA). The fourth frame contains video recorders
for collecting experimental data.

unmmw. C I: An O .
MPL is an experimental laboratory for testing and
integrating different approaches to problems in
autonomous navigation, including, but not limited
to, landmark-based navigation, obstacle detection
and avoidance, model acquisition and extension ,
road following, and path planning. It is therefore
important that MPL have a software environment
where multiple visual modules, addressing
different subtasks, can be easily integrated, and
where researchers can quickly experiment with
different combinations and parameterizations of

communication interface, so that, for example,
lines produced by one module can be used by
another, even if the second module is run later or
on a different processor than the first. ISR3 also
provides modules with efficient spatial access
routines for visual data, and protects data from
being simultaneously modified by two or more
concurrent processes. A graphical programming
interface allows programmers to easily sequence
modules and modify their parameters.

Our work on planning has concentrated on plan
execution rather than plan generation; thus, we
assume that plans are developed by the user (by
hand) or by an appropriate planning subsystem.
With this goal in mind, a control system, called the
Script Monitor, has been implemented to support
real-time execution of plans [Rochwerger et. al.

94]. The task of autonomous navigation, as with
many other complex tasks, can be decomposed
into specific subtasks like road following, obstacle
avoidance and landmark recognition. In order to
achieve a fully autonomous capability, the
solutions to all these subproblems must be
integrated into a coherent system. This paper
focuses on the preliminary work done on the
problem of integration for the UMass Mobile
Perception Laboratory (MPL). Since each of the

subproblems is still a field of active research in
which approaches and solutions may change
rapidly over time, the integrated system should be
flexible enough to allow testing different sub-
systems and different control strategies.

To achieve the desired flexibility we have
implemented the control system as a
“programmable” finite state machine (FSM), in
which the states represent the different modes of
operation of the system (behaviors) and the state
transitions correspond to the system's reactions to
events (either external or internal). The
composition of the states and the transitions is not
fixed, i.e., the FSM can be tailored to the
particular task the system is trying to achieve.

3. 1 i ia the ISR Datal
MPL's database is built around ISR3, an in-
memory database for computer vision.
Historically, ISR (an acronym for intermediate
symbolic representation) has been the name of a
series of symbolic databases for vision developed
at the University of Massachusetts [Brolio et. al.
89]. One version, ISR1.5, is now commercially
available as part of KBVision™ [Williams 90],
while the most recent version, ISR3, is used on-
board the MPL. The ISR databases reflect a belief
that computer vision requires more than image-
like arrays of numerical data; computer vision
depends on symbolic representations of abstract
image events such as regions, lines, and surfaces,
and on mechanisms for efficiently accessing data
objects by a model-based system under various
types of constraints (such as spatial proximity).
Although each version of ISR has been a
refinement of its predecessor, they all assume that
visual procedures operate on symbolic records,
called tokens, or on groups of tokens, and that
visual procedures manipulate tokens both for
internal computations and for exchanging data
with other procedures.

ISR3 is an in-memory database for C structures. It
reads a C header file of structure definitions when
it is first initialized, and records the size of the
structures (called tokens) and the data types and
offsets of their fields. ISR3 then establishes a
database for these structures, establishing queues
for allocating and freeing tokens, semaphores for
preventing simultaneous access, and functions for
storing and retrieving tokens. Once one process
has initialized ISR3, other processes can attach to
it (since all tokens are kept in shared memory),

making ISR3 a communication mechanism as well
as a data store.

31 ALVINN

In order to emphasize ISR3’s role as an integration
mechanism, its communication, synchronization,
and data storage capabilities will be described in
the context of specific MPL tasks. One of MPL's
most basic tasks is to drive down roads, using the
ALVINN neural-net road-following system
[Pomerleau 90, 92]. Developed at Camegie-
Mellon University, ALVINN is a neural network
with a single hidden layer that produces steering
vectors from reduced (32x30) and color-
compensated intensity images!. When run alone it
implements a simple road following behavior by
grabbing images from a forward-looking camera
and sending commands to the (low-level) vehicle
controller to correct for drift and tumns in the road
in order to keep the vehicle on course.

On the MPL ALVINN is almost never run in
isolation, however. At the very least it is run with
an obstacle detection program to ensure the safety
of the vehicle (otherwise ALVINN is more than
happy to run into obstacles). ALVINN is
integrated with the obstacle detection program by
interposing an arbiter between ALVINN and the
vehicle controller. The arbiter takes the steering
vectors produced by ALVINN and combines them
with the results of obstacle detection to make sure
the vehicle avoids obstructions.

ALVINN is integrated with the rest of MPL's
software by declaring its steering vectors to be
ISR3 tokens stored in shared memory. ALVINN
can then be tested in isolation from other systems
by having the controller read ALVINN's steering
tokens directly, and combined with other systems
by having the arbiter retriecve ALVINN's tokens
and produce its own (modified) steering tokens for
the controller. A similar principle can be applied
to image acquisition, with a data server producing
image tokens and storing them in shared memory
for ALVINN (or any other process) to retrieve.

3.2 Landmark Recognition and Positioning

Although ALVINN demonstrates how ISR3 can
help integrate software modules, including
modules developed at other sites, it does not
exercise all of the ISR3 capabilities. MPL's

1Properly speaking, an in-memory database is called a
data store.

475

476

landmark recognition system is a combination of
four software modules that together match 3D
landmark (or object) models to images and
determine the position and orientation of the
camera relative to the landmark. The first module
uses color and texture information to limit the
search for the landmark to a specific region of
interest (ROI), the second extracts straight (2D)
line segments from the ROI, the third projects the
3D landmark model according to the estimated
viewing point and determines which (3D) lines
should be visible, and the fourth matches (2D)
image lines to visible (3D) model lines and
determines the relative position of the vehicle to
the landmarks in the world coordinate system.

As with ALVINN and the arbiter, ISR3 is the
communication mechanism that allows the four
landmark recognition modules to exchange data,
this time by declaring ROIs, (2D) image lines,
(3D) model lines and (3D) faces to be ISR3
tokens. The landmark recognition modules are
more typical of vision applications than ALVINN,
however, in that they produce large numbers of
tokens which are typically accessed by name,
feature value or spatial location. Spatial access is
particularly important for the matching modules,
which must repeatedly access image lines near the
projections of model lines (according to the
current pose estimate).

Most landmark recognition tokens, particularly
ROIs and image lines, exist for only a short period
of time (in this case the time required to process
one image) and should then be deallocated.
Consequently, file I/O is not optimized; although
data is sometimes saved for later analysis in the
lab, most data can be kept in memory and then
erased without ever being saved to disk (ignoring
the effects of paged virtual memories). Token
allocation and deallocation, on the other hand, are
critical, which is why ISR3 maintains its own
token queues.

The landmark recognition processes are also
typical of many vision application programs in that
they both produce and consume sets of tokens
rather than single tokens. The matching module,
for example, finds (potentially many-to-many)
correspondences between sets of image lines and
sets of model lines. Therefore most storage and
retrieval commands in ISR3 are in the form of set
operations, such as a request to access “all long,
straight lines in the upper comer of an image”.

Synchronization is provided, not at the level of
individual tokens, but of sets of tokens, so that
processes may iterate over sets of tokens without
having to lock and unlock each token individually.
Special facilities for optimizing spatial retrieval
over individual or arbitrary sets of tokens are also
provided, as are macros for iterating over the
tokens in a set, and functions for taking the union,

intersection and differences of setsZ,

Although most tokens are temporary, ISR3 also
provides permanent storage for those few sets of
tokens (critical features, updated maps, etc.) that
correspond to significant results and should persist
over time. Model acquisition processes, such as
one described by Sawhney [Sawhney 93] produce
3D models of the type uscd for objcct recognition
(i.e. 3D points, lines and faces). These models,
once leamed, should be permanently stored, and
the landmark recognition processes should always
have access to the most recent version of any
model. With regard to these tokens, therefore,
ISR3 serves as a permanent data base system that
provides storage for, and structured access to,
long-term data.

3.3, _ISR3 Protection and Memory
1

Although ISR3 acts as a general database system,
it has been optimized for real-time vision research
by reducing overhead wherever possible while still
supporting those functions most often used in
computer vision. For example, one task of a
database in a multiprocess environment is to stop
processes from accidentally overwriting or
destroying each other's data. In a typical computer
vision application, hundreds or thousands of
tokens may be in memory at one time. If multiple
processes have uncontrolled access to these tokens
and modify them, unpredictable interactions will
cause elusive and non-repeatable bugs. On the
other hand, it is not uncommon for a process such
as the model matcher to access hundreds of tokens
at a time. If it had to lock and unlock a token each
time it reads a feature value, protection would
become unacceptably expensive, especially given
the relatively slow speed of semaphores under
UNIX.

A compromise used in ISR3, therefore, was to
associate semaphores with sets of tokens. When a

2The complement of a set is not well defined, since
there is an infinite universe of possible tokens.

set of related tokens is created, for example the set
of lines extracted from a ROI, a semaphore is
allocated to protect those tokens. Any ISR3
function that accesses that set of tokens will first
check the semaphore; ISR3 access functions that
create subsets of a defined set of tokens assign the
same semaphore to the subset that is used for the
parent set. If users access tokens surreptitiously
through C pointers3, they are expected to lock the
semaphore before accessing the first token and to
unlock it after the last token access. As a result, as
long as users do not circumvent its safeguards,
ISR3 is able to provide process synchronization
with very little overhead.

Similarly, ISR3 provides a level of memory
management on top of the UNIX operating
system. For non-real-time, file-based systems,
memory management is not a critical issue; for
continuous, real-time systems, however, it is
crucial. ISR3 applications operate in real-time
loops, allocating new tokens on each iteration.
Memory allocation must be rapid, and must avoid
fragmenting memory (as repeated calls to malloc
would). Memory must be recycled, with space
allocated to old tokens being reassigned to new
ones once the old data is no longer needed. ISR3
satisfies these requirements by providing token
buffers (at a level hidden from the user). Calls to
create a token actually allocate one from the buffer
for that token type, and freed tokens are returned
to the appropriate buffer. For users who store
tokens in hierarchies, ISR3 also provides functions
for tracing through a hierarchy and freeing all the
tokens in it, so that, for example, one can free all
the memory associated with an image once the
image is no longer current.

t_E ting Reactive Behavi . Seri
{ the Script Monit
The term behavior has generally been used in the
literature to describe processes that connect
perception to action, i.e., a behavior senses the
environment and takes an appropriate action based
on what was perceived. A combination of
behaviors is also called a behavior; thus, a
complex behavior can be achieved by combining
simpler behaviors. In Brooks' subsumption
architecture [Brooks 86), the task of robot control

3Since ISR3 stores arbitrary C Structures, there is no
way to prevent users from accessing tokens without
using ISR3 functions, once the user has obtained one
pointer into the database.

is decomposed into levels of competence; each
level, in combination with lower levels, defines a
behavior. In their Distributed Architecture for
Mobile Navigation system (DAMN), Payton,
Rosenblatt and Keirsey [Payton 86; Payton et. al.
87] refer to behaviors as very low level decision-
making processes which are guided by high level
plans and combined through arbitration. In their
DEDS work, Ramadge and Wonham [Ramadge
89], as well as Rivlin [Rivlin], events are

considered the alphabet, X, of a formal language.
A behavior is then a sequence of events, oOr a string

over X*. Note that in this terminology every
prefix of a string is also a behavior, i.e., the
sequential combination of behaviors is a behavior.

These definitions, although consistent, can be
confusing - the same term is used for individual
processes and for the composition of these
processes. We have chosen to think of a behavior
as a mode of operation [Payton et. al. 90], in which
several perception-action processes [Draper 94]
are executed concurrently. Each process converts
sensory data into some kind of action (either
physical or cognitive), and at any time may
generate an event - a signal to let the system know
that “something” significant has occurred. All
inter-process communication is achieved through a
global blackboard -a section of shared memory
accessible to all processes. The blackboard is built
on top of the ISR3 which, as described earlier,
provides a very efficient memory management
mechanism (on top of UNIX) and a set of
primitives necessary for shared memory based
communication.

for Behaviors

An autonomous system must react to events by
changing its behavior; hence the sequence of
behaviors actually executed depends upon the
sequence of events. Since the latter is
unpredictable, so is the former. To program such a
system, one must specify which processes
constitute a behavior and for each possible event
describe the system's reaction. In order to specify
such a system, a finite state machine (FSM)
formalism has been chosen, in which the states
represent behaviors and the transitions reactions to
events.

As a simple illustrative example, the following set
of statements describe a system that will drive on

477

478

the road while obeying traffic lights, until a given
distance is traveled:

While driving down the road
if the traffic light turns red, wait.
if goal is reached, stop.

While waiting at the traffic light,
if it turns green, start driving.

These statements correspond to the simple FSM in
Figure 3a; note that a state represents a behavior or
mode of operation, i.e, a set of concurrent
perception-action processes. This example can be
implemented with four perception-action
processes: follow the road (rf), check for traffic
lights (¢/), monitor the distance traveled (dm), and
stop the vehicle (vs). Listed below the state name
are the perception-action processes that should be
run and killed (marked with a ~) in that state.

Based on the notion of behaviors represented as
states of a finite state machine, a Behavior
Description Language (BDL) was designed and
implemented. Behaviors are described as two sets
of perception-action processes, and a transition
table. The run set specifies the minimum set of
processes that form the behavior; the kill set
specifies those processes that should not be
running for the correct execution of the behavior.
The choice of two sets implies that processes that
were running when the behavior started will
continue to run unless explicitly killed. The
transition table specifies what to do for each of the
valid events (events not specified in the state
description are not valid). The representation of
our simple example expressed in the BDL is
shown in Figure 3b. First, the perception-action
processes available are listed. Then the set of
states (or behaviors) and the set of events are
declared. Finally, a description of each state is
provided; parameters required for the perception-
action processes associated with each state are
fetched from the blackboard prior to their
initiation. For a more complete example, see
Section 4.4.

Drive
{rf, t1, dm]

(@
PROCS = {
f "DriveOnRoad"
tl "CheckTrafficLight"
vs "VehicleStop"
dm "DistanceMonitor"}

STATES = {drive, wait, stop}
EVENTS = {red, green, done}

WHILE drive(d) {
SET distance = d;
RUN rf, tl, dm;
EVENT red GOTO wait;
EVENT done GOTO stop;}

WHILE wait () {
KILL rf;
RUN vs, tl;
EVENT green GOTO drive;

(b)
Figure 3. Script of a simple driving
system. (a) Finite state machine (FSM)
representation. (b) Behaviour Description
Language (BDL) representation.

machines

The simple FSM model discussed in the previous
section has been augmented in two ways. First, a
fetch-goal state was added to the set of states as a
mechanism for compacting the representation.
The system starts in the fetch-goal state where it
reads goals (in terms of behaviours) from a
precompiled plan. When a goal is retrieved, the
script monitor writes relevant blackboard
messages into the blackboard before creating the
perception-action processes associated with the
state. Once a perception-process is running, it
looks for its parameters in the blackboard, which is
implemented within the ISR structure described
earlier. The fetch-goal state differs from all other
states in two ways: (1) transitions out of the state
are unlabelled since the next state is explicitly
specified in the goal retrieved from the script; (2)
Unless the plan is empty, the kill and run sets are
ignored.

With these change, a script S is formally defined
as the eight-tuple (P,Q.EM,8 x,p,G), where:

» P is the set of available perception-action
processes.

* Q is the set of states (Q = B U fetch-goal,
where B is the set of behaviors).

* E is the set of possible discrete events
(transitions in the FSM).

* M is the set of valid blackboard messages.

« §is the transition table, § : BX E — Q.
» xis the kill table, x: Bx P — {0, 1}.

s pisthe runtable,p: Bx P — (0, 1}.
* G is the plan expressed in terms of subgoals.
Each subgoal is of the form <bg,Mp>, forbg

€ BandMggM.

Scripts can be generated by an automated planner,
or by hand (using BDL).

(3 The Script Monit
The script monitor is in charge of “high level”
control4: reading, interpreting, and executing BDL
scripts. Essentially, the script monitor is a plan
execution system [Georgeff 90] similar to PRS
[Ingrand et. al. 92; Lee et. al. 93] in some aspects.
The monitor does not perform any direct action on
the vehicle controller by itself; rather, it controls
the set of running processes which do take direct
action.

The script monitor consists of two modules, an
interpreter and an execution system. The
interpreter takes a BDL script S and builds the
transition (d), kill (x) and run (p) tables. After
this, the subgoals in S's plan are stacked into the
execution stack G. The execution system simulates
a finite state machine as shown in Table 1.

Clearly, for the system to complete the task in G,
the following must hold:

Vbe Q3sp e E* st 61(b,sp) =fetch-goal

where &7 is the transition function applied to a
sequence of events [Hopcroft and Ullman 79].

4 In this context, ““high level” control is used to
differentiate the control of processes from the “low
level” control of the vehicle actuators.

44. A More Complete Example and an
Experiment

A set of perception-action processes have been

implemented for the MPL. These include:

* Vehicle pose determination based on
landmark model matching [Beveridge 93;
Draper 93b; Kumar 92,93].

» Neural-network road following (ALVINN)
[Pomerleau 90].

» Servo-based steering [Fennema and Hanson
90; Fennema 91].

» Obstacle detection via stereo [Badal et. al.
94].

» Reflexive obstacle avoidance [Ravela et. al.
94].

* A distance monitor.

« Turning via dead reckoning.

* Servo to compass heading.

» Harmonic function path planner [Connolly et.
al. 92,93]

In the future, additional processes will be added,
including landmark tracking, recognition and
modeling of natural landmarks, automatic
landmark extension, etc.

Using a subset of these processes, an experiment
was designed in order to demonstrate the
capabilities of the vehicle and the performance of
the independent perception-action processes. The
following script was successfully tested on the
vehicle at the UMass test site:

(1) Drive on the road, while avoiding
obstacles, for x meters.

(2) Estimate vehicle position using
landmarks.

(3) Drive on the road, while avoiding
obstacles, for y meters.

(4) Estimate vehicle position using
landmarks.

(5) Tum left (at the experimental site this
command is a transition to off-road
navigation).

(6) Drive off road (by servoing on a
compass heading), while avoiding
obstacles, for z meters.

479

480

1. bg— fetch-goal ~ (Start at the fetching state)
2. if (bg =fetch-goal) then
(a) if G isempty then Vpe P
i. kill(p)

iii. stop
(b) <bg, Mg> pop(G)
(c) blackboard «- Mg
3. Vpe Pif x(bg, p) =1) then kill(p)
4. Vp e Pif (p(bg, p) =1) then run(p)
5. Wait foranevente e E
6

ii. if (p(bg, p) = 1) then run(p)

(Terminate ALL processes)

(Run cleanup processes)
(S was successfully executed)

(Fetch next goal)

(Write blackboard messages)
Terminate processes)

(Create processes)

(Wait)

(React to event - follow transition table)

(Repeat until all goals are achieved)

Table 1. Script Monitor Execution Subsystem

The perception-action processes involved in this
example include pose estimation (pe), road
following (rf), obstacle detection (od), obstacle
avoidance (oa), servoing to a compass heading
(se), distance monitor (dm) and dead reckoning
turning (dr). The full BDL script for this
coordinated action, with x = 100, y = 150 and z =
50, is:

PROCS = {
pe "PoscEstimate”
f "RoadFollow"
od "ObstacleDetect”
oa "Obstacle Avoid"
se "Servo”
dm "DistanceMonitor"
dt "DeadReckoningTurn”
\ "VehicleStop"}

STATES={drive-onroad, drive-offroad, tumrn,
compute-pose, avoid-obstacles}

EVENTS = {success, obstacles, clear}

WHILE drive-onroad (dist) {
SET distance = dist;
RUN rf, od, dm;
EVENT success GOTO compute-pose;
EVENT obstacle GOTO avoid-obstacles; }

WHILE drive-offroad (dist) {
SET distance = dist;
RUN se, od, dm;
EVENT success GOTO compute-pose;
EVENT obstacle GOTO avoid-obstacles; }

WHILE turn (dir, dist) {
SET direction = dir;
SET distance = dist;
RUN dt, dm;
EVENT success GOTO fetch; }

WHILE avoid-obstacles () {

KILL rf, se;
RUN o0a od-

iy Uiy Uy

EVENT clear GOTO BACK;}

WHILE compute-pose () {
KILL rf, se;
RUN pe;
EVENT success GOTO fetch; }

GOALS {
drive-onroad (100);
drive-onroad (150);
turn (left, 10);
drive-offroad (50);}

The augmented finite state machine for this script
is shown in Figure 4. Note that the figure shows
the addition of the fetch-goal state discussed
earlier. The FSM also shows a potential link to the
high level planning system (not yet implemented)
which is activated (in this example) by failure of
the pose estimation state to localize the vehicle. In
this case, the vehicle is considered to be lost - it
then stops and initiates planning to resolve its
location. Since planning may result in
modifications of the goal stack, the addition of the

planning state may theoretically' change the
model to a push-down automata (PDA).

GO
ot Primitve~"" Fail (}Last)
UCCe S8 I
{pe, ~rf, ~se] A

drive-onroad
Obsatacle
Clear
drive-offroad € Ptivoid-obstacled
[se, od, dm] 0a, od, ~rf, ~se]

mpule.p

N
N
N
N
N

Figure 4. An augmented FSM for on/off road
navigation.

One of the requirements for MPL’s software
environment was that it should support the
integration of real-time visual procedures with as
little overhead as possible. This meant that the
focus of the system design had to be on the two
critical areas of data storage/exchange and process
control. Data storage and exchange is supported by
the ISR3 real-time database/datastore system,
which provides a central data repository and
communication mechanism for all the perception-
action processes running on the MPL. Behaviors
are collections of concurrent perception-action
processes whose interaction and execution are
controlled through a script; MPL’s script monitor
is a low-overhead control system that switches
from one behavior to the next in response to
external conditions.

Although limited, the script monitor system in its
current form has given us an idea of the
complexity involved in building intelligent
controllers, particularly in a real-time application
domain where safety must be ensured. Encoding
system reactions as a finite state machine seems a
reasonable approach, but it is not clear how to
optimally construct the individual states, i.e. which
perception-action processes constitute each state,
and how these processes interact with one another.

30r any state that can write to the goal stack.

In the current implementation, all communication
between processes is done through the blackboard.
In this particular domain, where potentially large
amounts of data are shared (images, maps, etc.),
the shared memory paradigm seems the most
efficient method of communication for processes
running on the same machine. But if perception-
action processes were to run in a distributed
architecture, other means of communication will
be necessary (UNIX sockets or a system such as
TCX [Fedor 93]). In the current implementation,
it was assumed that scarcity of resources was not
an issue. However, independently executing
concurrent processes which access sensors and
send commands to actuators, or otherwise affect
other scarce system resources, will inevitably
cause problems if resource allocation is not
handled correctly.

Resource scheduling and sharing, inter-process
communication and real-time control are difficult
problems, particularly in a real-time dynamic
environment, and efficient solutions to them are
essential if robust autonomous systems are to be
constructed.

Acknowledgments
This work has been supported in part by Advanced
Defense Research Projects Agency (via TACOM),
under contract number DAAEQ7-91-C-R0O35, and
by the National Science Foundation under grant
number CDA-8922572.

References
Badal, S. and B. Draper, “Stereo Obstacle

Avoidance on the MPL”, forthcoming Computer
Science Technical Report, 1994,

Beveridge, J.R., “Local Search Algorithms for
Geometric Object Recognition: Optimal
Correspondence and Pose”, Ph.D. Dissertation,
University of Massachusetts at Ambherst,
Computer Science Department Technical Report
TR93-71, 1993.

Brolio, J., B. Draper, R. Beveridge, and A.
Hanson, “The ISR: An Intermediate System
Representation for Computer Vision:, IEEE
Computer, 22(12), 1989, pp. 22-30.

Brooks, R. A., “A Layered Robust Control
Systems for a Mobile Robot,” 2(1), 1986, pp. 14-
25.

Connolly, C., and Grupen, R., “Harmonic
Control”, Proc. of the International Symposium on

481

482

Intelligent Control, Glasgow, Scotland, August,
1992, pp. 503-506.

Connolly, C., and Grupen, R., “On the
Applications of Harmonic Functions to Robotics”,
Journal of Robotic Systems, Vol.10, No.7,
October, 1993, pp. 931-946.

Draper, B., Hanson, A., and Riseman, E., “ISR3:
A Token Database for Integration of Visual
Modules”, Proc. ARPA Image Understanding
Workshop, Washington, D.C., April 1993a, pp.
1155-1161.

Draper, B., S. Buluswar, A. Hanson, E. Riseman,
“Information Acquisition and Fusion in the Mobile
Perception Laboratory,” Proc. of Sensor Fusion
VI, Boston, MA, Sept. 1993b, pp. 175-187.

Draper, B., A. Hanson, and E. Riseman,
“Integrating Visual Procedures for Mobile
Perception,” in Experimental Environments (H.
Christensen, Ed.), World Scientific Press, to
appear; also to appear in CGVIP:IU, March 1994.

Fedor, C., “TCX Task Communications (Version
7.7)”, Robotics Institute, Carnegie Mellon
University, January 1993.

Fennema, C., “Interweaving Reason, Action, and
Perception,” Ph.D. Dissertation, University of
Massachusetts at Amherst, Computer Science
Department Technical Report TR91-56, 1991.

Fennema, C. and A. Hanson, “Experiments in
Autonomous Navigation”, Proc. 10th International
Conference on Pattern Recognition, 1990, pp. 24-
31.

Georgeff, M. P. Planning. In Readings In
Planning, Morgan Kaufmann, 1990, pp. 5-25.

Hanson, A., and Riseman, E., and Weems, C.,
“Progress in Computer Vision at the University of
Massachusetts”, Proc. ARPA Image
Understanding Workshop, Washington, D.C.,
April 1993, pp. 39-47.

Hopcroft, J. E. and J. U. Ullman. Introduction to
Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

Ingrand, F. F., M. P. Georgeff, and A. S. Rao, “An
Architecture for Real-Time Reasoning and System
Control, IEEE Expert, 1992, pp.

Kumar, R., and Hanson, A., “Robust Methods for
Estimating Pose and a Sensitivity Analysis”,
CGVIP:1U to appear.

Kumar, R., “Model Dependent Inference of 3D

Information from a Sequence of 2D Images”,
Ph.D. Dissertation, University of Massachusetts at

Ambherst, Computer Science Technical Report 92-
04, February 1992,

Lee, J., M. J. Huber, E. H. Durfee, and P. G.
Kenny, “UM-PRS: An Implementation of the
Procedural Reasoning Systems,” Artificial
Intelligence Laboratory, Univ. of Michigan, 1993.

Payton, D.W., “An Architecture for Reflexive
Autonomous Vehicle Control”, Proc. IEEE
Robotics and Automation Conference, 1986, pp.
1838-1845. :

Payton, D. W., K. Rosenblatt, and D. M. Keirsey,
“Plan Guided Reaction”, IEEE Trans. on Systems,
Man, and Cybemetics, 1990, pp. 1370-1382.

Pomerleau, D. A., “Neural Network-Based
Autonomous Navigation,” in Vision and
Navigation: The CMU NavLab (C. Thorpe, ed.),
Kluwer Academic Publishers, 1990.

Ramadge, P. J. and W. M. Wonham, “The Control
of Discrete Event Systems”, Proc. of the IEEE,
77(1), January 1989, pp. 81-98.

Ravela, S., and Draper, B., “Reflexive Obstacle
Avoidance on the MPL”, forthcoming Computer
Science Technical Report.

Rochwerger, B., C. Fennema, B. Draper, A.
Hanson, and E. Riseman, “Executing Reactive
Behavior for Autonomous Navigation,”
forthcoming technical report, Computer Science
Department, University of Massachusetts at
Ambherst, 199%4.

Rivlin, E., “The DEDS Formalism for Systems
with Vision,” University of Maryland.

Sawhney, H., “Spatial and Temporal Grouping in
the Interpretation of Image Motion”, Ph.D.
Dissertation, University of Massachusetts at
Ambherst, Computer Science Technical Report 92-
05, February 1992.

Weems, C. Herbordt, M., Dutta, R., Daumueller,
K., Weaver, G., and Dropsho, S., “Status and
Current Research in the Image Understanding
Architecture Program”, Proc. ARPA Image
Understanding Workshop, Washington, D.C.,
April 1993, pp. 1133-1140.

Williams, T., “Image Understanding Tools,” 10th
International Conference on Pattermn Recognition,
Atlantic City, NJ, June 1990, pp. 606-610.

