
AIAA-94-1262-CP

THE PROBLEM WITH MULTIPLE ROBOTS

Marcus J. Huber and Patrick G. Kenny

Artificial Intelligence Laboratory

The University of Michigan

Ann Arbor, Michigan 48109-2110

marcush@engin.umich.edu, pkenny@eecs.umich.edu

Abstract

Research in multiple, robotic agents is gaining the
interest of an ever increasing number of researchers.
Many of these researchers have previously worked in
simulation or with single robots, or both. Making the
transition from a simulator to the real world can be

very trying and frustrating to someone with no expe-
rience with such a project. The same goes for making
the transition from a single robot to multiple robots.
There are a number of issues that arise, mostly of the
practical and pragmatic variety, that escape consider-
ation by researchers making these transitions for the
first time. We hope to highlight the most important
of these issues - discovered primarily through expe-
rience with working on multi-robot projects, two of
which are discussed in the paper - so that other re-
searchers can give them full consideration when work-
ing on their own projects. In addition, we give some
suggestions as to how to eliminate or minimize the
negative impact these issues might have upon the de-
velopment of a multiple robot project.

Introduction

A time will come when it will be common to see

autonomous robots working together in teams or in-
teracting as individuals. Each of these robots will be

performing its specific role in achieving whatever it
has been given as tasks. Individual robots, regardless
of whether it is working in a team or not, will dy-
namically interact with each other, the environment,
and with humans. They will communicate necessary
information in noisy environments, fill in for fallen
comrades, and adapt to the temporary loss of sensor
subsystems. This scenario is still a long way in the fu-
ture. What will it take to make this a reality? While
research in Robotics and in Distributed AI is always

pushing toward this future, research is still in its in-
fancy compared to what is necessary before robots
can function as described above.

Quite a bit of research has been done regarding
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issues related to multiple agents, 6,7,9 and some has
been done specifically for multiple robots. 1,11 How-
ever, none of this work has really looked at what a
researcher faces when trying to implement his or her
ideas on real robots for the first time. In this paper
we present a number of issues that arise when mak-

ing the transfer from simulated, theoretical, or single-
robot research to working with more _han one real,
autonomous, robot situated in a real world. We dis-
cuss each of these issues in some detail and give sug-
gestions, based on experience, for dealing with them.
In the first two sections we discuss the issues related

to working with more than a single robot and those

inherent to working with robots situated in the real
world, respectively. We then describe concrete exam-
ples of the problems faced when working on multibot
projects. Throughout the paper we give suggestions
on what can be done to eliminate or reduce these

kinds of problems.

Multibot Issues

A number of issues arise when working with mul-
tiple robots. We divide these roughly into the issues
that arise when looking at the collection of robots
as a whole, and those issues that arise when looking
at the individual robots that make up the collection.

Many of the "collective" issues (such as those that
deal with communication, organization, cooperation

strategies, etc.) have been addressed in Distributed
AI (DAI) research and tend to be fairly abstract in
their nature. We talk briefly about these issues but we

do give pointers to where more in-depth discussions
can be found. Issues that arise from the collection

of "individuals", primarily due to the heterogeneity
between the agents, seems to be a topic of research of
interest to a great number of fields of study (robotics,
DAI, artificial life, etc.) but to no one field in par-
ticular. In this section we discuss the issues that we

see are the most significant to researchers working
with collections of these physically embodied agents
(robots).
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Heterogeneity

Heterogeneous het.er.o.ge.ne.ous , adj. Consisting
of or involving parts "_" .... '".... :'_ .... "_lia_ are Ull,i*xe or Yvl_lluuu In-

terrelation; having dissimilar elements; not homo-

geneous. [< GETERO- + Gk genos, kind, sex.]
-het'er*o*ge*ne'i*ty n.

Heterogeneity among a collection, group, or team
of robots is a BIG issue. In fact, it may be the sin-

gle most important issue for researchers making the
transition from simulation or theoretical work to con-

sider. Research performed in simulation seldom lacks
the completeness required to fully model the differ-
ences between robot platforms that will serve as the
real-world implementation. Very small differences be-
tween simulated robots, which appear insignificant to

the uninitiated, can become overwhelming when real
robots are pressed into service. We identify a number
of factors to especially watch out for (with respect to
differences in the robotic platforms) in order to make
the transition to real robots easier, and to reduce the

potential impact upon various aspects of the multiple
robot system if the differences are not eliminated or
reduced.

Robots come in an incredible variety of sizes,

shapes, and capabilities. Robots can be arms, mobile
bases, gantries, snakes, or any of a number of other
alternatives. This richness of design makes for a wide
range of applicability of robots to different domains,
environments, and applications. It is also a major
source of grief for anyone wishing to do research with
more than one of these robots. There are a great num-
ber of places where heterogeneity can cause problems.
We divide these into innate and non-innate charac-

teristics, discussed below.

Innate

We consider innate characteristics of a robot to be

those features that a robot is "born" possessing, those
which are inherent to a robot's basic design and is
generally determined by the manufacturer. These in-
clude: physical characteristics such as weight, size,
and shape; precision and/or accuracy of such things

as odometry, positioning (e.g. robot body, camera,
etc.); modality and number of sensors; characteristics
of the low-level control such as dynamics, function-

ality, interfacing; design limitations and characteris-
tics such as holonomic characterization, the number

of degrees of freedom, bounds on speed, acceleration,
reach, etc., and carrying capacity; and the number
and type of actuators and/or manipulators.

Many of these features are either impossible, or

very difficult, to change, remove, or replace, and are
a major boon and bane of robotics researchers. A

robot that comes with a powerful, flexible, and com-
plete set of innate "features" can be greatly advan-

tageous. And conversely, a poorly designed robot, or
one that may be designed well but ill suited to the
task to which is applied, can be a nightmare.

Non-innate

We call the features and characteristics of a robot
which are in the control of the roboticist the non-

innate features of the robot, those which are a re-

sult of work done on the robot to add to or change
the functionality of the robot after it arrives from the
manufacturer. This includes such things as: the num-
ber, modality, precision, etc. of sensors; the number
and type of actuators and manipulators; the number,
power, memory, connectivity, etc. of processors; the
programming language; the high-level control scheme

(if any, which would then include the high-level con-
trol interface to the low-level controller); the inter-
agent communications modality and characteristics;
and "sugar" features like speech synthesis and recog-
nition capabilities, graphics displays, etc. It might
also include those innate characteristics that can be

modified, as there may be some fuzziness to the dis-

tinction. There is generally a greater variation in the
non-innate features of a robot than in the innate fea-

tures, due to the wide range of add-on and upgrade
possibilities, including "homemade" designs.

The problems

Heterogeneity is an inherently multi-agent issue,
as it is defined as the existence of differences between

two objects, in this case robots. Heterogeneity arises
from both the innate and non-innate features of the

robots, and may be looked upon as an advantage in
situations where the heterogeneity can be exploited.
However, the differences between robots can, and usu-
ally does, eventually cause problems. The problems
associated with innate and non-innate feature can be

very similar, but may possibly have very different so-
lutions (as discussed below). As mentioned earlier,
heterogeneity between the robots might very well be
the most important issue to be faced by researchers
working with multiple robots. Our empirical intuition
is that the difficulty of implementing and maintain-

ing a collection of multiple robots is a function of both
the heterogeneity and the number of robots. We be-
lieve that the relationship is something like that of

Figure 1. As you can see, we believe that the diffi-
culties associated with increased numbers of agents

increases at a higher than linear rate. We believe
tile same follows for heterogeneity. Of course this is
totally unsubstantiated, and is based solely on past
experience with multibot implementations.

The problems caused by heterogeneity usually man-
ifest themselves not in the actual experiments con-
ducted by the researcher, but in the development
stage of the research, where the robots are being read-
ied for the experiments. The development period usu-
ally serves the purpose of dealing with the differences,
either to avoid them or to take advantage of them, so
that when the robots are ready to run experiments the
issues have already been considered and addressed.
While designing and implementing the robots' sen-
sors, control systems, processing hardware, coordina-
tion scheme, etc., a researcher may face problems in
any of a number of areas, which we have divided into

three broad categories: software, hardware, and func-
tionality. For each category we describe the source
of problems that can occur and their effect upon the

development of a multibot system.

• Software - Software on the various robots in the
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Figure 1: The relationshipof difficultyof imple-
mentationandmaintenanceto hetero-
geneityandthe number of robots.

"collection" may be affected by differences between
any of a number of robotic characteristics, includ-
ing the processors, compilers, programming lan-
guages, sensors, speed, development environments,
and third-party software libraries of the various
robots. Any difference in these, or any other of the
innate or non-innate features, may create the ne-
cessity to modify software to suit a particular robot,

which will make the robot all the more heteroge-
neous. Research agendas themselves may force dif-
ferences in the software systems utilized by different

robots, such as requiring different control architec-
tures or obstacle avoidance algorithms, in order to
study the tradeoffs associated with them. Differ-
ences in software may range from changed param-
eters, to modified code, to different software mod-

ules, to completely different software systems. Re-
gardless of the source and extent of the heterogene-
ity, once the differences occur it can be a nightmare
to make changes across all of the involved robots to
account for each robot's idiosyncrasies.

Hardware - Robot hardware may differ in sensors,

mechanics, physical dimensions, dynamics, CPU's,
equipment storage volume, etc. This may be a
result of having purchased the robots at differ-
ent times, implementing different sensor system de-
signs, replacement of broken equipment with non-
original parts, etc. Robots that are dissimilar in
hardware may or may not create problems; If the
hardware on different robots is not equivalent, in

that there are enough differences in functional-
ity, modality, speed, etc. to not be transparently
switchable, software problems like those discussed

above will most likely be created. And other dif-
ficulties may also arise, such as having to gain ex-
pertise on more and more varied equipment and
maintaining the various robots' different hardware.

Functionality - The capabilities that a robot has
depends upon the combination of hardware and
software that it has. Given a robot with a par-

ticular hardware configuration, the robot can have
a range of functionality, depending upon the soft-

ware written to use the hardware. Likewise, given
control software and sensing algorithms, the robot
can have varied functionality dependent upon the
characteristics of the actual sensors, manipulators,

drive motors, and other hardware that the robot is
fitted with. Heterogeneity in any aspect of a robot,
be it sensing, control, motion, manipulation, or
some other aspect, creates a situation where the re-
searcher must make a decision about the function-

ality that he/she wants the robots to actually pos-

sess. Emphasis may be on having all robots possess
the same functionality, or it might be desired that
the robots possess the maximal functionality pos-
sible. Choosing the latter, while understandable,

causes more heterogeneity than the former*, and
hence possibly exacerbates future problems similar
those items discussed above.

Suggestions

The single most important suggestion that we can
make to researchers is that they reduce the amount
of heterogeneity in the robots that they work with.

Heterogeneity between robots is probably the single
largest source of problems, effort, and grief encoun-
tered while working on research. Eliminating all dif-
ferences between robots would be ideal, of course, but
is not always possible. Robots from different manu-
facturers will certainly have differences in innate char-
acteristics, as will different models of robots from the
same manufacturer, as will even the same model robot
from different years. However, these differences can

be eliminated al some level of absiraclion, and it is
our suggestion that an effort should be made to ac-
complish this.

For example, if two robots differ in their low-level
motion control functions, a set of higher level func-
tions can be built on top of these commands that

removes the robot-dependent aspects. Code written
using this new set of functions can then be readily
ported between robots.

Of course, dealing with heterogeneity is an interest-
ing research topic, and is therefore necessary in some
situations. But it is our belief that it is much easier

to introduce differences in robots by disabling func-
tionality or changing parameters (as examples) than
it is to eliminate or reduce differences.

Communication

When we talk about communication among robots
we mean the intentional act of trying to convey infor-
mation. And, while communication may not explic-
itly be used by some researchers, 1'11'13,15 it is very
common. 5,s,12,14 Communication between robots is

most commonly accomplished using some form of ra-

dio frequency (RF) transmission, although it might

*Unless all the robots are exactly the same in all re-
spects, so that their maximal functionality is exactly iden-
tical and all the software and hardware required to reach
this functionality can also be identical. If the robots are
not exactly the same, the heterogeneity will show up in
the software, at least, in order to achieve the same func-
tionality, if this is even possible.



eventuallybecomepossibleto explicitlypassmean-
ingfulamountsofinformationbyvisualmeans.Teth-
ersorotherphysicallinkswill mostlikelynotwork
exceptforrobotsfirmlyfixedinplace,suchasrobotic
armsthat arenotonmobilebases.

Communicationcanbe accomplishedin a num-
ber of ways,includingsimplepoint-to-pointand
broadcasting(ie. to all robotswithinrange).Com-
plexmultibotcommunicationnetworkscanbecon-
structed,however,whererobotsmaynotonlyactas
recipientsandoriginatorsofmessages,but alsoasre-
lays,helpingpassmessagesbetweentwootherrobots.
As morerobotsinteract,communicationissuesbe-
comemoreandmoreofanimportantissue.

Communicationissuesareuniqueto multiplerobot
scenarios(if onlybecauseit generallydoesnotmake
toomuchsenseforarobottosendmessagesto itself);
problemsrelatedtocommunicationsarethereforealso
uniqueto multiplerobots,t Throughourendeavors
inmulti-robotresearch,wehaveidentifiedanumber
of theproblemsthatseemto plaguecommunication,
andwehaveidentifiedsomepracticalsuggestionsto
at leastreducetheseproblems.Someof the more
significantproblemsarelistedbelow:
* Missingmessages- messagesnevergetto theirdes-

tination.
• Wrongmessages- thewrongmessageis sent,an

agentinterceptsamessagemeantforanotheragent
andmistakenlytakesit tobeforitself,oramessage
headergetscorruptedin transmissionandissentto
thewrongagent.

• Garbagecontents- a messagesinformationis cor-
ruptedto thepointofuselessness.

• Communicationshardwarefailure- anagentsuffers
total lossof ability to communicate.

• Transmissiondelays- A message'sarrivalisdelayed
dueto lengthof travel,numberof relayingrobots,
etc.

All oftheseproblemsarecausedbyRFnoiseeither
corruptingoroverpoweringtheintendedcommunica-
tions.Themagnitudeof theproblemsonewill face
isdirectlyrelatedto hownoisytheRF environment
is in whichthe robotswill beused,howrobustthe
low-levelcommunicationshardwareandsoftwareisto
corruption(viaerrorcheckingandcorrection,hand-
shaking,etc.),andhowrobusttheabstractcoordina-
tionmechanismisthat therobotsareusingin order
to worktogether(higherlevelprotocols,negotiation
schemes,etc.,if usedat all).

Somemoreabstractissuesrelatedto communica-
tion,manyof whichhavebeenstudiedin Distributed
AI literate,includecommonknowledge,synchroniza-
tion,andcoherence.Workingwith realrobotsmeans
that thereis always a chance that a message will not
be received by the intended robot, or that if it is,

t Communication from a single robot to a base station
is pretty common these days, so those researchers that do
this will have some insight into multi-robot communica-
tion problems.

that it is corrupted. Halpern and Moses, I° prove
that the involved agents cannot be sure of achiev-
ing common knowledge about anything that requires
communication in such situations. Synchronization
of agents'is related to this in that, quite often, com-
munication is used by the agents to reach a common
point in time at which they know each other's "state"

(and can then go on to perform coordinated activities,
guaranteed non-interfcring actions, etc.) 16,17 Syn-
chronization is usually only possible, however, when
common knowledge of every involved agents' state ex-
ists so that they can realize when synchronization has

been achieved. Coherence deals with coordinating
agents having compatible and non-contradictory in-
formation. Coherence can be achieved through com-
munication of the data itself, supporting or conflicting
evidence, etc. so that each agent eventually believes
compatible information.

Of course, if the interacting robots are unconcerned
with explicitly coordinating with other agents they

will most likely not communicate (as in1), and there-
fore not reason about these communications-related
issues.

Suggestions

Solutions to deal with communication problems are

pretty commonplace. Technical solutions for these
problems include retransmission of messages, seman-
tic message content checks, acknowledged messages,
periodic confirmation of activity ("I'm alive!") mes-
sages, addressed messages, and robust error detection
and correction protocols, among others. Different
techniques are necessary for variations of domain, ap-
plication, robot organization, environment, etc. For
instance, in extremely noisy environments it might be
necessary to employ error detection and correction
mechanisms, retransmission of messages, and hand-
shaking protocols. When the robots are prone to fail-
ure, but the environment is noise-free, using simple
communication protocols might suffice, but periodic
messages from agents indicating that they are func-
tioning might be useful. In general, design in com-
munication overkill. Buy high power, flexible, high
quality communication hardware. Determine what
will be the worst possible environmental noise that
the robots will face, and then employ techniques dis-
cussed above for environments twice as noisy.

Planning, Organization, and Task decomposition

Issues related to planning, organization, and task
decomposition, among other abstract multi-agent is-
sues, are beyond the scope of this paper, and much
research has been conducted on these topics in the
Distributed AI field. See "Readings In Distributed
Artificial Intelligence ''2 for a collection of papers deal-

ing in detail with these issues. What should be men-
tioned here, however, is that cach of these issues may,
in some manner, be affected by the issues discussed
in the rest of this paper. Some examples are given
below:

• Heterogeneity - Multiagent planning routines will
have to be modified to deal with heterogeneous

623



robotsin orderto modeleachof therobots'indi-
vidualcharacteristics.Astherobot'smightdiffer
inanyofanumberofways,thismightmeanadding
a largeamountofcomplexityto theplanner.0r-
ganization(s)ofrobotswillbelessflexiblethanfor
homogeneousrobots,aseachagentmaynotbeable
to fulfill theresponsibilitiesofeveryotheragentin
theorganization.Muchliketheplanningsystem,
taskdecompositionmightbemuchmorecomplex
inorderto accountforthedifferencesin therobots.
Communication- Communicationissuescanbeex-
pectedto workwith theequipmentandprotocols
that aregoingto beused,whattypeof taskde-
compositionmakesthemostsensegiventheenvi-
ronmentanddomain

Real World and Simulation Issues

Working with robots in the real world may, at first
glance, seem to be an easy extension of similar re-
search performed in simulation. And, while simu-
lators are good for testing theories, debugging de-
signs, or just running tests due to environmental con-
straints, a simulator may give the false impression
that the real world is simple and predictable. How-
ever, the world is not exact, and is much more com-

plex then any simulator can realistically model. How-
ever, they should not be considered satisfactory mod-
els in which to completely design and develop algo-
rithms and paradigms destined for real-world robotic
applications. Toward this end, some researchers have
totally foregone the use of simulators, and have opted
to use the world as its own model. 3 We should only

rely on simulators to help us prepare a robot for the
real world. Though we agree that simulators can be
a valuable tool to supplement research with physical
robots, is at some point in the development cycle it
will become necessary to make the transition to the
real world. This may not be such an easy task for
there are many issues that need to be considered. We
divide these issues into three categories. These are: is-
sues that deal with the robot hardware and platform,
issues that deal with robot sensors and actuators, and
issues that deal with robot software.

Hardware

The first issue, robot hardware and platform, is ar-
guably the area with the most substantial differences
between simulation and the real world. Most simula-
tors do not simulate real world events such as when

the battery gets low, when computers and sensors on
a physical robot fail or start to misbehave (usually
without one being aware of the fact), when motors
degrade or burn out, or when gears or wheels slip or
break. There is a great amount of hardware, all of
which, usually, has to work flawlessly. There is hard-
ware to control the motors, hardware to control the

sensors, and usually a central computer. There is also
minor hardware appliances such as batteries, power
converters, actuator circuitry, and monitors that may
need to be on board.

An issue that may be overlooked quite often is the
actual space requirements of sensors and other hard-

ware on a robot. While a simulator may simulate

the functionality of each of the physical components,
it probably does not simulate how to place all these
components onto a robot base while keeping it sta-
ble, usable, and accessible. Robots in a simulator will
have an array of simulated sensors, perhaps covering
a gamut of modalities such as sonar, vision, range
imaging, structured light, and infrared. The robots
may have to communicate with each other. They may
have manipulators of various sorts. A simulator may
permit a all of these capabilities on a robot without
consideration to the practicality of doing so.

The type of robot platform or base that the robot
is built on will is another important issue to consider.
If a base is purchased from a manufacturer, one may
not need to worry about the base design, but one
does need to worry about the ability to add hard-

ware and software to the robot (i.e. change the non-
innate features). Consideration must also be given
to such details as the base drive design, which can
take a wide variety of forms, from differential drive

or synchro-drive, to a tricycle-like or car-like design.
The different drive systems may mandate some design
decisions on the type and use of sensors, the type of
robot control software used, the planning system, etc.

Power constraints are another serious issue often

overlooked when dealing with real robots. A great
deal of a robot's life is spent charging its batteries,
the more so if it is heavily loaded with sensors, ac-
tuators, and other electrical equipment. Also, the
size and number of batteries restricts the amount of

power (current) available, strictly limiting the amount
of electrical equipment that may run concurrently on
the robot. Even when within this limit, the battery
life of a robot is determined by the load on its batter-
ies while running. A robot that must operate over a
long period of time must therefore have a light com-
plement of electrically driven sensors, actuators, and
other electrical equipment.

Sensors

The second issue to consider are the sensors that

a robot might use in the real world. One must con-
sider the kinds of sensors that will be necessary for the

robot to perform its task and how many sensors the
robot is going to need. A simulator can only approx-
imate the data returned from a sensor based upon
its internal sensor model. The more accurate or com-

plex the sensor, the more sophisticated the model will
have to be. As an extreme point of view, it may not be

possible to realistically simulate real sensors (except
perhaps extremely simple sensors like limit switches)
in a simulator due to the complexity and uncertainty

of the real world. No one can can anticipate all of
the possible ways that a sensor may fail and/or err.
Problems that can (and do) occur include cameras
that are not calibrated to specifications, lenses that
are dirty or misaligned, sonars with shorted circuitry,
incorrect sensor values due to low input voltage, and
motor decoders that perform differently than speci-
fied or degrade in performance over time.

Another issue to consider is whether the sensors
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modeledin simulationreturnrealisticdata.Forex-
ample,asimulatedrobotmayhaveasensorthat can
returntheidentityofanearbyhuman.But,onemust
ask,is therea sensorin therealworldthat cando
that? Perhaps,but probablyonlyat thecostof a
greatdealof designandimplementationeffort,and
probablyonethatisquitefallible.
Software

It maybequitea formidabletaskto trackdown
a softwareerrorona realrobot. In asimulator,the
onlyplaceanerrorwouldnormallyarisewouldbein
theuserdevelopedcode.In therealworld,onealso
hasto considerthat anerror that mightcausethe
robottofail orperformdifferentlyfromthesimulator
maybetheresultofasensorfailure,lowbattery,com-
puterfailure,cableproblem,orsomeotherseemingly
unrelatedcause.

Dependinguponhowcarefullythesoftwarewasde-
signedwith therealworldin mind,thesoftwarerun
in simulationwill mostlikelyrun in therealworld.
Whentestedin therealworld,however,onemayfind
thatalgorithmsneedtobechanged,librariesmodified
orrewritten,parameterschanged,etc.Whenmaking
thetransitior/to realrobots,onemustalsoconsider
thesizeofthesoftwareandspeedof therobot'spro-
cessor.Portingcodeto aminirobotwill requiregreat
creativityif thesoftwarewasdevelopedonaCraysu-
percomputerandrequires128megabytesofmemory.
Duetotheincreasedcomplexityoftherealworldwith
respectto thatin asimulatedmodel,robottaskswill
alwaysbeharderthanthat facedin a simulator.It
mayrequiremoresubtletyorcomplexityin theplan-
ningandcontrolsoftware,moresensorsandcompu-
tationalresources,or integrationof softwarenot in-
cludedin thesimulatormodel,to accomplishevena
simpletask.

Suggestions

To ease the transition of a robot design from a sim-

ulator to the real world we offer several suggestions.

• Expect that some additional code will be needed

on the physical robot. Some helpful test programs
that will test each component to assure that it is
working properly, whether it is a sensor or a sub-

routine, will be useful. After three weeks of running
a camera, for example, it may have been bumped
out of alignment or had its aperture closed so that
it is causing strange and unexpected results in the
robots behavior, tIardware problems can have very
misleading symptoms and it is good to have test
programs that can easily rule out simple causes.
And always check connectors, as they are apt to
become disconnected. This is a very common prob-
lem, as everything on the robot uses cables (cam-
eras, disk drives, monitors, keyboards, etc.) and
simply the vibration caused by the robot moving
around is enough to loosen cables.

• A useful place to look when a problem arises is
the battery. A low battery may cause errors that
did not previously exist and be of a type that has
never been encountered before. A robot may work

correctly for months and then develop unexpected
errors because the battery is running low.

• IL always helps to work in stages. "-xes_"eal:h compo-
nent and routine as it is moved from the simulator

to the real robot(s).

• Document the errors that are encountered. One

does not want the next person working on the
robot(s) to repeat the same mistakes.

• Last of all, always have a remote emergency robot
stop button handy, especially for large robots.
Some robots can move very fast and weigh several
hundred pounds, and may unexpectedly go out of
control.

It may seem that the task of transitioning a robot
design from a simulator to the real world will be quite
simple and straightforward. There are many issues
that need to be considered. There will always be un-
expected problems to deal with, but a user that is
prepared and considers the issues mentioned above

might ease the transition.

Examples

We recently worked on a couple of projects that
involved the cooperative interaction of two heteroge-
neous indoor mobile robots. One project, involving
exploration and navigation of an office-like environ-
ment, was implemented with some care and consid-
eration to the issues described in this paper, but was
so beset by problems that it failed to be completed
within a hard time deadline and was never fully im-
plemented. Another project, where the robots had to
push boxes across an obstacle strewn floor, was im-
plemented extremely quickly and serves as an excel-

lent example of where failure to implement according
to the suggestions above resulted in a very brittle,
failure-prone, and frustrating multibot system but

which, with some effort to resolve the problems us-
ing the suggestions in this paper, can become much
more robust and successful.

Dynamic Duo

One of the two robots involved in these projects is
CARMEL, a mobile robot based upon a Cybermo-
tion K2A mobile platform. BORIS, the other robot
used in the projects, is based upon a TRC Labmate
platform. These robots are shown in Figure 2. The
major innate difference between the platforms lies pri-
marily in the motion characteristics - CARMEL is

essentially holonomic, being able to move in any di-
rection at any time without first having to turn its
body, while BORIS must first turn to face the direc-
tion of travel before moving. Hardware differences
other than those of the platform itself consisted of
substantially different sonar rings (CARMEL has a
circular ring of sonars, BORIS only has sonars facing

in the forward direction), different CPUs (not only do
they have IBM 80486 compatibles with differing char-
acteristics, but CARMEL had an IBM XT compatible

running the sonar system that BORIS does not have),
and differing vision systems (CARMEL has a camera
mounted on an independently rotating table, while
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Figure 2: CARMEL (left) and BORIS (right), 
robots used in several multibot projects. 

BORIS’S camera is fixed to BORIS’S top facing di- 
rectly ahead of BORIS.) Low level functionality, was 
similar, but the robots had different implementations 
of some basic functions, such as obstacle avoidance. 

ExDloration 
One of the events in the National Conference of 

Artificial Intelligence’s ’93 robot compctition was to  
autonomously explore an “office” environment look- 
ing for a visually tagged object, which was then to be 
delivered to a predetermined room in the office com- 
plex. Wa!!s in the “effice” were three foot high panels 
of sonar-reflecting plastic and arranged to form rooms 
and halls. Each entry’s robot was placed within the 
office without knowing where within the office it was 
or in which direction it faced. However, the robot(s) 
were told in which quadrant of the office environment 
they started. And each robot was given mostly ac- 
curate knowledge of the office layout with respect to 
wall placement and metric measurements; the actual 
office layout could differ from the map in that some 
doors could appear where not indicated on the map, 
and some doors on the map could disappear. 

While most entries were single robot approaches, 
which we also tried with CARMEL, we attempted a 
multibot approach (both BORIS and CARMEL) as 
we saw a distinct advantage in exploring the office 
in parallel with two cooperating robots. However, 
while CARMEL was already a fully autonomous mo- 
bile robot, w i t h  obstacle avoidance and vision systems 
and a great deal of experience in research and robot 
 competition^,^ BORIS was initially only a bare TRC 
Labmate robot base upon which a small amount of 
obstacle avoidance research had been performed. We 
realized from the onset that we should attempt to de- 
sign BORIS to  be as funci ional ly  similar to CARMEL 
as possible. 

A great number of engineering changes had to be 
made both in hardware and software to accommodate 

the many differences in the two robots. An exam- 
ple is the feature detection algorithms used to detect 
the various configurations of “office” halls and open- 
ings. The same basic sonar-based obstacle avoidance 
system was pre-existent in the robots before devel- 
opment started, so that including algorithms to per- 
form feature detection seemed straightforward. The 
two robots had very different implementations of the 
sonar system, however, which made porting of the al- 
gorithms developed on one robot to the other robot 
extremely time consuming and is perhaps the single 
most important factor in the difficulty wc had im- 
plementing the multibot approach. In addition, the 
sonar hardware differences (complete vs. partial rings 
of sonars) require BORIS to rotate in certain situ- 
ations when CARMEL does not have to, requiring 
modifications to some low-level functions as well as 
the planner. Parameters in the sonar system also had 
to be fine-tuned to each robot to account for differ- 
ences in the robot’s size, sonar filtering system imple- 
mentation, and other factors, and we were never able 
to perfectly match the results of the two robots.$ 

Box pushing 
The box pushing task at the AAAI ’93 robot com- 

petition involved locating boxes (marked with distinc- 
tive visual tags) and moving them into a predefined 
pattern while avoiding obstacles (boxes that were not 
to be moved). Because a robot pushing a box cannot 
“see” with its sonars and therefore cannot perform 
obstacle avoidance, this meant that one robot either 
scout out a clear path beforehand and then go back 
and get the box, or that two robots help each other, 
with one robot acting as the na.vigat,or and one robot, 
pushing the boxes. We chose to implement the multi- 
’out design, which made the design iiiore chalkiiging, 
difficult and, as we found out, frustrating. 

Our approach to the task was to use CARMEL 
as the “BOSS”, or navigator, and BORIS as the 
“Worker”, or box pusher. This task assignment was 
made because BORIS is built upon a square base, 
making it more conducive to pushing boxes than 
CARMEL, which has a cylindrical base. I t  was im- 
portant that each robot have some shared knowledge 
of the world to properly navigate around the arena; 
for CARMEL to act as the navigator and tell BORIS 
where to push boxes, it was necessary that each robot 
initially knew where the other one was located in a 
global coordinate system. Each robot also had an in- 
ternal map of the arena indicating the bounda.ries and 
the single interior wall. Obstacle and object locations 
were not known beforehand. 

The interaction of the robots in this task was de- 
fined as follows: 

The robots first job was to synchronize themselves 
using a sequence of handshaking messages. Once syn- 
chronized, BORIS would drive to one of a number 

Further ramifications of the difficulty experienced 
with implementing the multibot approach was that devel- 
opment of the single robot technology was slowed a great 
deal due to the “thinned” person-power of trying to bring 
two robots up to competition speed instead of only one. 
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of predeterminedviewingpositionsin thearenaand
lookforboxes.If it foundone(ormore)it wouldap-
..... h _ _,,,, j,,_t,h_f_rethehox_andcommunicate
its locationandorientationto CARMEL.Meanwhile,
CARMELwouldbewaitingatitsinitiallocationuntil
it receivedthismessage.CARMELwouldtravelto a
locationin linewiththegoalpointwheretheboxwas
tobedroppedoffandafewmetersinfrontofBORIS's
position.CARMELwouldthentravelin threeme-
ter segmentsto thegoalpointwhileavoidingobsta-
cles.At eachof thesevia-points,CARMELwould
sendits currentpositionto BORISasanobstacle-
safeposition.BORISwouldattempttomovebetween
thesepointsinsuchawayasto keeptheboxsecurely
in frontof it (usingrelativelyslow,wideturns)and
would"followtheleader"to thepointthat thebox
wouldbeplaced.BecauseCARMELmovedin such
smallincrements,thehopewasthat BORIS'spath
betweenvia-pointswouldkeepit awayfromobsta-
cles.OnceCARMELreachedtheboxdropoffloca-
tion, it wouldthenmovea safedistanceawayand
waitfor BORISto findanotherbox. BORISwould
continueto pushtheboxuntil thefinallocationwas
reached.Freeof thehindranceof the box,BORIS
couldthenuseits ownobstacleavoidancesystemto
moveto thenextviewingpositionandsearchfor the
nextbox.

As expectedall did not workout thewayit was
planned. Thereweresomeproblemsencountered,
somewith BORIS,somewith CARMEL,andsome
with thecooperativeaspectsof thetask. BORIS's
problemsbeganwith itsvisionsystem.Ontheinitial
attempt,thecameraBORISwasusingtolocateboxes
waspointedtoolow.Asit turnedout,theboxeswe
usedfor testingtherobotswereupside-downcom-
paredto theonesactuallyusedin thearena,causing
the tagson the boxesto behigherthan the cam-
eracouldsee.BORISmovedfromboxto box,not
recognizinganything,whileCARMELsatmotionless
waitingfor a messagefromBORIS.After approxi-
matelyfive visualscans,BORISsufferedan unex-
plainedlockupandwehadto restart.Wefixedthe
cameraangleonBORISandtriedagain.

On thesecondrun, BORISlocatedthe boxcor-
rectly, approachedit and transmitteda message
to CARMELcommunicatinghewasreadyfor the
'bosses'orders. CARMEL'smaphadbeeninitial-
izedimproperly,soCARMELthoughtthat it wason
theoppositesideof thearena.It movedto thecor-
rectlocationin its ownmapwhereit thoughtBORIS
was,not to whereBORISactuallywas,andplotted
out a pathto thegoalposition.Tile maperrorre-
sultedin a largediscrepancyin positions,however,
andtheresultingpathwasuseless.Unawareof this,
CARMELthensentthecommandto BORIStelling
it to proceed.CARMELproceededto movealong
its plannedpath towardthephantomgoaldestina-
tion, sendingpositionmessagesthat wereuncorre-
latedwith BORIS'smap. BORIS,alsounawareof
theproblem,startedto executethenavigationpath
transmittedfromCARMEL,butstartedto drivein
thewrongdirectionandwehadto startoveragain.

Onthethirdandfinalrun,thesituationimproved
slightly. Therobotssynchronized,BORISimmedi-
at.elyfoundabox,CARMELacknowledgedthecom-
munications,movedin frontof BORISandthebox,
andtraversedan obstacle-freepath for BORISto
travel.CARMELmoveda safedistanceawayfrom
theboxdropoff positionandwaitedfor BORISto
completeits pushing. However,at somepoint in
the transmissionof the initial path via-pointfrom
CARMELto BORISthemessagewascorruptedand
valuesfor parameterswereradicallyin error. This
causedBORIS'scontrolprogramto crashandhang,
leavingbothrobotshanging.

Whileimplementingthedesignfor thisprojectwe
ran intoa numberof issuesdiscussedin thispaper.
Becausewewereableto actuallyimplementandper-
formthis task,weencounteredbothissueslikethose
encounteredduringtheexplorationtaskaswellas
run-timeandcoordinationissuesthatwedidnothave
anopportunityto discoverin the abortiveattempt
at theexplorationtask. Communicationrelatedis-
suesfiguredquiteprominentlyamongthoseweran
into. Bothduringdevelopmentandactualcompeti-
tion runsweexperienceddelays,losses,andcorrup-
tionof messagessentbetweentherobots.Becauseof
theshorttimeperiodin whichweimplementedour
design(approximately24hours),wewereunableto
buildinmanyofthesafeguardsrecommendedabove.
Wesuccessfullysynchronizedtherobotsusinga set
sequenceof messagesbetweenthe robots. Wedid
not, for example,implementany formof semantic
contentschcckingto detectinvalidmessages.Nordid
weimplementhigh-levelretransmissionsofmessages
if anexpectedresponsefromthe otherrobotnever
arrived.Heterogeneityin hardwaredid notsurface
asasignificantissuefor this task,primarilybecause
weusedtherobot'sheterogeneityto bestadvantage,
wewerenot trying to achieveequivalentfunctional-
ity, andtherobotswereto workhavedifferenttask
responsibilities.Softwarewasmoreofanissueforthe
exactsamereasons;wehadto developentirelydif-
ferentcontrolsoftwarefor eachrobotandcouldnot
developsoftwareononerobotandportit totheother.

Future Work

The examples above give vivid accounts of the
problems likely to be faced by researchers working
with multiple real robots. We continue to be inter-
ested in multibot systems and applications, despite
the extra effort that such work entails. The next

major project is to develop a team of cooperating

outdoor robotic vehicles (new military jeeps called
HMWMMV's, or "Hummers") that can perform a
task such as forward reconnaissance. We have de-

signed and built one prototype vehicle (MAVERIC)
based upon an electric utility cart, with which we can
do development and experimentation without requir-
ing access to the large and costly Hummers. When
building another vehicle - to develop the multiple
robot coordination technology necessary for this type
of task - we will pay great attention to the issues
raised in this paper. First and foremost, we will

627



try to makethetwovehiclesasidenticalaspossi-
ble.Thiswill mostlikelyentailoutfittingthesecond
vehiclein exactlythesamemannerasMAVERICin
manyaspects.It will alsoprobablyrequireupgrad-
ing MAVERICwith improvements,baseduponour
experiencewith MAVERICanddiscoveryof short-
comingin its designor implementation,that will be
implementedfromtheonsetonthenewvehicle.

Wewouldalsoliketo exploreusingminimalre-
sourcesonmultipleminirobotsto performcoopera-
tivetasks.Therobotsthat weareusingarebased
on the MIT miniboardanduseanMC6811micro-
controller.Whilecomputingpowerandcontrolling
softwarearethesamefor eachof therobots,there
maybesomesmallvariationsin thebasesandsen-
sors. Thegeneralideais to usethe ideaswehave
discussedhereto helpdesignrobustmultiplerobots
andapplythemintherealworld.

Conclusions

A great deal of research has been performed re-
garding how we can get multiple agents cooperating
together in wondrous harmony. Much of this research
has not, as yet, involved working with the agents that
will actually end up doing the work, robots. A re-
searcher who has not already attempted this technol-
ogy transfer is in for a lot of headaches unless he or she
has some insight to the issues that are associated with
such a process. We have introduced and discussed
the most significant issues and their causes, and have
given many suggestions on how to deal successfully
with them. A great deal of work and aggravation can

be avoided by paying attention to these issues before
implementation of a system on real robots. We have
described the problems and solution faced when im-
plementing two multibot projects in particular in or-
der to fully illustrate what might occur during imple-
mentation, and accentuate the importance of paying
heed to the issues raised in this paper.
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