@ https://ntrs.nasa.gov/search.jsp?R=19950005115 2020-06-16T09:58:13+00:00Z

AlAA-94-1262-CP

THE PROBLEM WITH MULTIPLE ROBOTS

Marcus J. Huber and Patrick G. Kenny
Artificial Intelligence Laboratory
The University of Michigan
Ann Arbor, Michigan 48109-2110
marcush@engin.umich.edu, pkenny@eecs.umich.edu

Abstract

Research in multiple, robotic agents is gaining the
interest of an ever increasing number of researchers.
Many of these researchers have previously worked in
simulation or with single robots, or both. Making the
transition from a simulator to the real world can be
very trying and frustrating to someone with no expe-
rience with such a project. The same goes for making
the transition from a single robot to multiple robots.
There are a number of issues that arise, mostly of the
practical and pragmatic variety, that escape consider-
ation by researchers making these transitions for the
first time. We hope to highlight the most important
of these issues — discovered primarily through expe-
rience with working on multi-robot projects, two of
which are discussed in the paper — so that other re-
searchers can give them full consideration when work-
ing on their own projects. In addition, we give some
suggestions as to how to eliminate or minimize the
negative impact these issues might have upon the de-
velopment of a multiple robot project.

Introduction

A time will come when it will be common to see
autonomous robots working together in teams or in-
teracting as individuals. Each of these robots will be
performing its specific role in achieving whatever it
has been given as tasks. Individual robots, regardless
of whether it is working in a team or not, will dy-
namically interact with each other, the environment,
and with humans. They will communicate necessary
information in noisy environments, fill in for fallen
comrades, and adapt to the temporary loss of sensor
subsystems. This scenario is still a long way in the fu-
ture. What will it take to make this a reality? While
research in Robotics and in Distributed Al is always
pushing toward this future, research is still in its in-
fancy compared to what is necessary before robots
can function as described above.

Quite a bit of research has been done regarding

This research was sponsored by DARPA under con-
tract DAAE-07-92-C-R012.

issues related to multiple agents,® "% and some has

been done specifically for multiple robots.!*!* How-
ever, none of this work has really looked at what a
researcher faces when trying to implement his or her
ideas on real robots for the first time. In this paper
we present a number of issues that arise when mak-
ing the transfer from simulated, theoretical, or single—
robot research to working with more than one real,
autonomous, robot situated in a real world. We dis-
cuss each of these issues in some detail and give sug-
gestions, based on experience, for dealing with them.
In the first two sections we discuss the issues related
to working with more than a single robot and those
inherent to working with robots situated in the real
world, respectively. We then describe concrete exam-
ples of the problems faced when working on multibot
projects. Throughout the paper we give suggestions
on what can be done to eliminate or reduce these
kinds of problems.

Multibot Issues

A number of issues arise when working with mul-
tiple robots. We divide these roughly into the issues
that arise when looking at the collection of robots
as a whole, and those issues that arise when looking
at the individual robots that make up the collection.
Many of the “collective” issues (such as those that
deal with communication, organization, cooperation
strategies, etc.) have been addressed in Distributed
Al (DAI) research and tend to be fairly abstract in
their nature. We talk briefly about these issues but we
do give pointers to where more in-depth discussions
can be found. Issues that arise from the collection
of “individuals”, primarily due to the heterogeneity
between the agents, seems to be a topic of rescarch of
interest to a great number of fields of study (robotics,
DAI, artificial life, etc.) but to no one field in par-
ticular. In this section we discuss the issues that we
see are the most significant to researchers working
with collections of these physically embodied agents
(robots).

Copyright © 1994 by the American Institute of Aeronautics

620 and Astronautics, Inc. All rights reserved.




Heterogeneity

Heterogeneous het.er.o.ge.ne.ous , adj. Consisting
of or involving parts that are unlike or without in-
terrelation; having dissimilar elements; not homo-
geneous. [< GETERO- + Gk genos, kind, sex.]
~het’er*o*ge*ne’i*ty n.

Heterogeneity among a collection, group, or team
of robots is a BIG issue. In fact, it may be the sin-
gle most important issue for researchers making the
transition from simulation or theoretical work to con-
sider. Research performed in simulation seldom lacks
the completeness required to fully model the differ-
ences between robot platforms that will serve as the
real-world implementation. Very small differences be-
tween simulated robots, which appear insignificant to
the uninitiated, can become overwhelming when real
robots are pressed into service. We identify a number
of factors to especially watch out for (with respect to
differences in the robotic platforms) in order to make
the transition to real robots easier, and to reduce the
potential impact upon various aspects of the multiple
robot system if the differences are not eliminated or
reduced.

Robots come in an incredible variety of sizes,
shapes, and capabilities. Robots can be arms, mobile
bases, gantries, snakes, or any of a number of other
alternatives. This richness of design makes for a wide
range of applicability of robots to different domains,
environments, and applications. It is also a major
source of grief for anyone wishing to do research with
more than one of these robots. There are a great num-
ber of places where heterogeneity can cause problems.
We divide these into innate and non-innate charac-
teristics, discussed below.

Innate

We consider innate characteristics of a robot to be
those features that a robot is “born” possessing, those
which are inherent to a robot’s basic design and is
generally determined by the manufacturer. These in-
clude: physical characteristics such as weight, size,
and shape; precision and/or accuracy of such things
as odometry, positioning (e.g. robot body, camera,
etc.); modality and number of sensors; characteristics
of the low-level control such as dynamics, function-
ality, interfacing; design limitations and characteris-
tics such as holonomic characterization, the number
of degrees of freedom, bounds on speed, acceleration,
reach, etc., and carrying capacity; and the number
and type of actuators and/or manipulators.

Many of these features are either impossible, or
very difficult, to change, remove, or replace, and are
a major boon and bane of robotics researchers. A
robot that comes with a powerful, flexible, and com-
plete set of innate “features® can be greatly advan-
tageous. And conversely, a poorly designed robot, or
one that may be designed well but ill suited to the
task to which is applied, can be a nightmare.

Non-innate
We call the features and characteristics of a robot

which are in the control of the roboticist the non-
innate features of the robot, those which are a re-

sult of work done on the robot to add to or change
the functionality of the robot after it arrives from the
manufacturer. This includes such things as: the num-
ber, modality, precision, etc. of sensors; the number
and type of actuators and manipulators; the number,
power, memory, connectivity, etc. of processors; the
programming language; the high-level control scheme
(if any, which would then include the high-level con-
trol interface to the low-level controller); the inter-
agent communications modality and characteristics;
and “sugar” features like speech synthesis and recog-
nition capabilities, graphics displays, etc. It might
also include those innate characteristics that can be
modified, as there may be some fuzziness to the dis-
tinction. There is generally a greater variation in the
non-innate features of a robot than in the innate fea-
tures, due to the wide range of add-on and upgrade
possibilities, including “homemade” designs.

The problems

Heterogeneity is an inherently multi-agent issue,
as it is defined as the existence of differences between
two objects, in this case robots. Heterogeneity arises
from both the innate and non—innate features of the
robots, and may be looked upon as an advantage in
situations where the heterogeneity can be exploited.
However, the differences between robots can, and usu-
ally does, eventually cause problems. The problems
associated with innate and non-innate feature can be
very similar, but may possibly have very different so-
lutions (as discussed below). As mentioned earlier,
heterogeneity between the robots might very well be
the most important issue to be faced by researchers
working with multiple robots. Our empirical intuition
is that the difficulty of implementing and maintain-
ing a collection of multiple robots is a function of both
the heterogeneity and the number of robots. We be-
lieve that the relationship is something like that of
Figure 1. As you can see, we believe that the diffi-
culties associated with increased numbers of agents
increases at a higher than linear rate. We believe
the same follows for heterogeneity. Of course this is
totally unsubstantiated, and is based solely on past
experience with multibot implementations.

The problems caused by heterogeneity usually man-
ifest themselves not in the actual experiments con-
ducted by the researcher, but in the development
stage of the research, where the robots are being read-
ied for the experiments. The development period usu-
ally serves the purpose of dealing with the differences,
either to avoid them or to take advantage of them, so
that when the robots are ready to run experiments the
issues have already been considered and addressed.
While designing and implementing the robots’ sen-
sors, control systems, processing hardware, coordina-
tion scheme, etc., a researcher may face problems in
any of a number of areas, which we have divided into
three broad categories: software, hardware, and func-
tionality. For each category we describe the source
of problems that can occur and their effect upon the
development of a multibot system.

e Software - Software on the various robots in the

621



622

Figure 1: The relationship of difficulty of imple-
mentation and maintenance to hetero-
geneity and the number of robots.

“collection” may be affected by differences between
any of a number of robotic characteristics, includ-
ing the processors, compilers, programming lan-
guages, sensors, speed, development environments,
and third-party software libraries of the various
robots. Any difference in these, or any other of the
innate or non-innate features, may create the ne-
cessity to modify software to suit a particular robot,
which will make the robot all the more heteroge-
neous. Research agendas themselves may force dif-
ferences in the software systems utilized by different
robots, such as requiring different control architec-
tures or obstacle avoidance algorithms, in order to
study the tradeoffs associated with them. Differ-
ences in software may range from changed param-
eters, to modified code, to different software mod-
ules, to completely different software systems. Re-
gardless of the source and extent of the heterogene-
ity, once the differences occur it can be a nightmare
to make changes across all of the involved robots to
account for each robot’s idiosyncrasies.

Hardware - Robot hardware may differ in sensors,
mechanics, physical dimensions, dynamics, CPU’s,
equipment storage volume, etc. This may be a
result of having purchased the robots at differ-
ent times, implementing different sensor system de-
signs, replacement of broken equipment with non-
original parts, etc. Robots that are dissimilar in
hardware may or may not create problems; If the
hardware on different robots is not equivalent, in
that there are enough differences in functional-
ity, modality, speed, etc. to not be transparently
switchable, software problems like those discussed
above will most likely be created. And other dif-
ficulties may also arise, such as having to gain ex-
pertise on more and more varied equipment and
maintaining the various robots’ different hardware.

Functionality - The capabilities that a robot has
depends upon the combination of hardware and
software that it has. Given a robot with a par-
ticular hardware configuration, the robot can have
a range of functionality, depending upon the soft-

ware written to use the hardware. Likewise, given
control software and sensing algorithms, the robot
can have varied functionality dependent upon the
characteristics of the actual sensors, manipulators,
drive motors, and other hardware that the robot is
fitted with. Heterogeneity in any aspect of a robot,
be it sensing, control, motion, manipulation, or
some other aspect, creates a situation where the re-
searcher must make a decision about the function-
ality that he/she wants the robots to actually pos-
sess. Emphasis may be on having all robots possess
the same functionality, or it might be desired that
the robots possess the maximal functionality pos-
sible. Choosing the latter, while understandable,
causes more heterogeneity than the former*, and
hence possibly exacerbates future problems similar
those items discussed above.

Suggestions

The single most important suggestion that we can
make to researchers is that they reduce the amount
of heterogeneity in the robots that they work with.
Heterogeneity between robots is probably the single
largest source of problems, effort, and grief encoun-
tered while working on research. Eliminating all dif-
ferences between robots would be ideal, of course, but
is not always possible. Robots from different manu-
facturers will certainly have differences in innate char-
acteristics, as will different models of robots from the
same manufacturer, as will even the same model robot
from different years. However, these differences can
be eliminated al some level of abstraction, and it is
our suggestion that an effort should be made to ac-
complish this.

For example, if two robots differ in their low-level
motion control functions, a set of higher level func-
tions can be built on top of these commands that
removes the robot-dependent aspects. Code written
using this new set of functions can then be readily
ported between robots.

Of course, dealing with heterogeneity is an interest-
ing research topic, and is therefore necessary in some
situations. But it is our belief that it is much easier
to introduce differences in robots by disabling func-
tionality or changing parameters (as examples) than
it is to eliminate or reduce differences.

Communication

When we talk about communication among robots
we mean the intentional act of trying to convey infor-
mation. And, while communication may not explic-
itly be used by some researchers,!'11:13:15 it is very
common.® %1214 Communication between robots is
most commonly accomplished using some form of ra-
dio frequency (RF) transmission, although it might

*Unless all the robots are exactly the same in all re-
spects, so that their maximal functionality is exactly iden-
tical and all the software and hardware required to reach
this functionality can also be identical. If the robots are
not exactly the same, the heterogeneity will show up in
the software, at least, in order to achieve the same func-
tionality, if this is even possible.




eventually become possible to explicitly pass mean-
ingful amounts of information by visual means. Teth-
ers or other physical links will most likely not work
except for robots firmly fixed in place, such as robotic
arms that are not on mobile bases.

Communication can be accomplished in a num-
ber of ways, including simple point-to-point and
broadcasting (ie. to all robots within range). Com-
plex multibot communication networks can be con-
structed, however, where robots may not only act as
recipients and originators of messages, but also as re-
lays, helping pass messages between two other robots.
As more robots interact, communication issues be-
come more and more of an important issue.

Communication issues are unique to multiple robot
scenarios (if only because it generally does not make
too much sense for a robot to send messages to itself);
problems related to communications are therefore also
unique to multiple robots.! Through our endeavors
in multi-robot research, we have identified a number
of the problems that seem to plague communication,
and we have identified some practical suggestions to
at least reduce these problems. Some of the more
significant problems are listed below:

e Missing messages - messages never get to their des-
tination.

o Wrong messages - the wrong message is sent, an
agent intercepts a message meant for another agent
and mistakenly takes it to be for itself, or a message
header gets corrupted in transmission and is sent to
the wrong agent.

e Garbage contents - a messages information is cor-
rupted to the point of uselessness.

¢ Communications hardware failure - an agent suffers
total loss of ability to communicate.

¢ Transmission delays - A message’s arrival is delayed
due to length of travel, number of relaying robots,
etc.

All of these problems are caused by RF noise either
corrupting or overpowering the intended communica-
tions. The magnitude of the problems one will face
1s directly related to how noisy the RF environment
is in which the robots will be used, how robust the
low-level communications hardware and software is to
corruption (via error checking and correction, hand-
shaking, etc.), and how robust the abstract coordina-
tion mechanism is that the robots are using in order
to work together (higher level protocols, negotiation
schemes, etc., if used at all).

Some more abstract issues related to communica-
tion, many of which have been studied in Distributed
Al literate, include common knowledge, synchroniza-
tion, and coherence. Working with real robots means
that there is always a chance that a message will not
be received by the intended robot, or that if it is,

'Communication from a single robot to a base station
is pretty common these days, so those researchers that do
this will have some insight into multi-robot communica-
tion problems.

that it is corrupted. Halpern and Moses,!? prove

that the involved agents cannot be sure of achiev-
ing common knowledge about anything that requires
communication in such situations. Synchronization
of agents'is related to this in that, quite often, com-
munication is used by the agents to reach a common
point in time at which they know each other’s “state”
(and can then go on to perform coordinated activities,
guaranteed non-interfering actions, etc.)!®:17 Syn-
chronization is usually only possible, however, when
common knowledge of every involved agents’ state ex-
ists so that they can realize when synchronization has
been achieved. Coherence deals with coordinating
agents having compatible and non-contradictory in-
formation. Coherence can be achieved through com-
munication of the data itself, supporting or conflicting
evidence, etc. so that each agent eventually believes
compatible information.

Of course, if the interacting robots are unconcerned
with explicitly coordinating with other agents they
will most likely not communicate (as in!), and there-
fore not reason about these communications-related
issues.

Suggestions

Solutions to deal with communication problems are
pretty commonplace. Technical solutions for these
problems include retransmission of messages, seman-
tic message content checks, acknowledged messages,
periodic confirmation of activity (“I'm alive!”) mes-
sages, addressed messages, and robust error detection
and correction protocols, among others. Different
techniques are necessary for variations of domain, ap-
plication, robot organization, environment, etc. For
instance, in extremely noisy environments it might be
necessary to employ error detection and correction
mechanisms, retransmission of messages, and hand-
shaking protocols. When the robots are prone to fail-
ure, but the environment is noise-free, using simple
communication protocols might suffice, but periodic
messages from agents indicating that they are func-
tioning might be useful. In general, design in com-
munication overkill. Buy high power, flexible, high
quality communication hardware. Determine what
will be the worst possible environmental noise that
the robots will face, and then employ techniques dis-
cussed above for environments twice as noisy.

Planning, Organization, and Task decomposition

Issues related to planning, organization, and task
decomposition, among other abstract multi-agent is-
sues, are beyond the scope of this paper, and much
research has been conducted on these topics in the
Distributed Al field. See “Readings In Distributed
Artificial Intelligence”? for a collection of papers deal-
ing in detail with these issues. What should be men-
tioned here, however, is that cach of these issues may,
in some manner, be affected by the issues discussed
in the rest of this paper. Some examples are given
below:

e Heterogeneity - Multiagent planning routines will
have to be modified to deal with heterogeneous

623



624

robots in order to model each of the robots’ indi-
vidual characteristics. As the robot’s might differ
in any of a number of ways, this might mean adding
a large amount of complexity to the planner. Or-
ganization(s) of robots will be less flexible than for
homogeneous robots, as each agent may not be able
to fulfill the responsibilities of every other agent in
the organization. Much like the planning system,
task decomposition might be much more complex
in order to account for the differences in the robots.

e Communication - Communication issues can be ex-
pected to work with the equipment and protocols
that are going to be used, what type of task de-
composition makes the most sense given the envi-
ronment and domain

Real World and Simulation Issues

Working with robots in the real world may, at first
glance, seem to be an easy extension of similar re-
scarch performed in simulation. And, while simu-
lators are good for testing theories, debugging de-
signs, or just running tests due to environmental con-
straints, a simulator may give the false impression
that the real world is simple and predictable. How-
ever, the world is not exact, and is much more com-
plex then any simulator can realistically model. How-
ever, they should not be considered satisfactory mod-
els in which to completely design and develop algo-
rithms and paradigms destined for real-world robotic
applications. Toward this end, some researchers have
totally foregone the use of simulators, and have opted
to use the world as its own model.> We should only
rely on simulators to help us prepare a robot for the
real world. Though we agree that simulators can be
a valuable tool to supplement research with physical
robots,!® at some point in the development cycle it
will become necessary to make the transition to the
real world. This may not be such an easy task for
there are many issues that need to be considered. We
divide these issues into three categories. These are: is-
sues that deal with the robot hardware and platform,
issues that deal with robot sensors and actuators, and
issues that deal with robot software.

Hardware

The first issue, robot hardware and platform, is ar-
guably the area with the most substantial differences
between simulation and the real world. Most simula-
tors do not simulate real world events such as when
the battery gets low, when computers and sensors on
a physical robot fail or start to misbehave (usually
without one being aware of the fact), when motors
degrade or burn out, or when gears or wheels slip or
break. There is a great amount of hardware, all of
which, usually, has to work flawlessly. There is hard-
ware to control the motors, hardware to control the
sensors, and usually a central computer. There is also
minor hardware appliances such as batteries, power
converters, actuator circuitry, and monitors that may
need to be on board.

An issue that may be overlooked quite often is the
actual space requirements of sensors and other hard-

ware on a robot. While a simulator may simulate
the functionality of each of the physical components,
it probably does not simulate how to place all these
components onto a robot base while keeping it sta-
ble, usable, and accessible. Robots in a simulator will
have an array of simulated sensors, perhaps covering
a gamut of modalities such as sonar, vision, range
imaging, structured light, and infrared. The robots
may have to communicate with each other. They may
have manipulators of various sorts. A simulator may
permit a all of these capabilities on a robot without
consideration to the practicality of doing so.

The type of robot platform or base that the robot
is built on will is another important issue to consider.
If a base is purchased from a manufacturer, one may
not need to worry about the base design, but one
does need to worry about the ability to add hard-
ware and software to the robot (i.e. change the non-
innate features). Consideration must also be given
to such details as the base drive design, which can
take a wide variety of forms, from differential drive
or synchro—drive, to a tricycle-like or car-like design.
The different drive systems may mandate some design
decisions on the type and use of sensors, the type of
robot control software used, the planning system, etc.

Power constraints are another serious issue often
overlooked when dealing with real robots. A great
deal of a robot’s life is spent charging its batteries,
the more so if it is heavily loaded with sensors, ac-
tuators, and other electrical equipment. Also, the
size and number of batteries restricts the amount of
power (current) available, strictly limiting the amount
of electrical equipment that may run concurrently on
the robot. Even when within this limit, the battery
life of a robot is determined by the load on its batter-
ies while running. A robot that must operate over a
long period of time must therefore have a light com-
plement of electrically driven sensors, actuators, and
other electrical equipment.

Sensors

The second issue to consider are the sensors that
a robot might use in the real world. One must con-
sider the kinds of sensors that will be necessary for the
robot to perform its task and how many sensors the
robot is going to need. A simulator can only approx-
imate the data returned from a sensor based upon
its internal sensor model. The more accurate or com-
plex the sensor , the more sophisticated the model will
have to be. As an extreme point of view, it may not be
possible to realistically simulate real sensors (except
perhaps extremely simple sensors like limit switches)
in a simulator due to the complexity and uncertainty
of the real world. No one can can anticipate all of
the possible ways that a sensor may fail and/or err.
Problems that can (and do) occur include cameras
that are not calibrated to specifications, lenses that
are dirty or misaligned, sonars with shorted circuitry,
incorrect sensor values due to low input voltage, and
motor decoders that perform differently than speci-
fied or degrade in performance over time.

Another issue to consider is whether the sensors




modeled in simulation return realistic data. For ex-
ample, a simulated robot may have a sensor that can
return the identity of a nearby human. But, one must
ask, is there a sensor in the real world that can do
that? Perhaps, but probably only at the cost of a
great deal of design and implementation effort, and
probably one that is quite fallible.

Software

It may be quite a formidable task to track down
a software error on a real robot. In a simulator, the
only place an error would normally arise would be in
the user developed code. In the real world, one also
has to consider that an error that might cause the
robot to fail or perform differently from the simulator
may be the result of a sensor failure, low battery, com-
puter failure, cable problem, or some other seemingly
unrelated cause.

Depending upon how carefully the software was de-
signed with the real world in mind, the software run
in simulation will most likely run in the real world.
When tested in the real world, however, one may find
that algorithms need to be changed, libraries modified
or rewritten, parameters changed, etc. When making
the transition to real robots, one must also consider
the size of the software and speed of the robot’s pro-
cessor. Porting code to a minirobot will require great
creativity if the software was developed on a Cray su-
percomputer and requires 128 megabytes of memory.
Due to the increased complexity of the real world with
respect to that in a simulated model, robot tasks will
always be harder than that faced in a simulator. It
may require more subtlety or complexity in the plan-
ning and control software, more sensors and compu-
tational resources, or integration of software not in-
cluded in the simulator model, to accomplish even a
simple task.

Suggestions

To ease the transition of a robot design from a sim-
ulator to the real world we offer several suggestions.

o Expect that some additional code will be needed
on the physical robot. Some helpful test programs
that will test each component to assure that it is
working properly, whether it is a sensor or a sub-
routine, will be useful. After three weeks of running
a camera, for example, it may have been bumped
out of alignment or had its aperture closed so that
it is causing strange and unexpected results in the
robots behavior. Hardware problems can have very
misleading symptoms and it is good to have test
programs that can easily rule out simple causes.
And always check connectors, as they are apt to
become disconnected. This is a very common prob-
lem, as everything on the robot uses cables (cam-
eras, disk drives, monitors, keyboards, etc.) and
simply the vibration caused by the robot moving
around is enough to loosen cables.

e A useful place to look when a problem arises is
the battery. A low battery may cause errors that
did not previously exist and be of a type that has
never been encountered before. A robot may work

correctly for months and then develop unexpected
errors because the battery is running low.

e It ailways helps to work in stages. Test eagch compo-
nent and routine as it is moved from the simulator
to the real robot(s).

e Document the errors that are encountered. One
does not want the next person working on the
robot(s) to repeat the same mistakes.

o Last of all, always have a remote emergency robot
stop button handy, especially for large robots.
Some robots can move very fast and weigh several
hundred pounds, and may unexpectedly go out of
control.

It may seem that the task of transitioning a robot
design from a simulator to the real world will be quite
simple and straightforward. There are many issues
that need to be considered. There will always be un-
expected problems to deal with, but a user that is
prepared and considers the issues mentioned above
might ease the transition.

Examples

We recently worked on a couple of projects that
involved the cooperative interaction of two heteroge-
neous indoor mobile robots. One project, involving
exploration and navigation of an office-like environ-
ment, was implemented with some care and consid-
eration to the issues described in this paper, but was
so beset by problems that it failed to be completed
within a hard time deadline and was never fully im-
plemented. Another project, where the robots had to
push boxes across an obstacle strewn floor, was im-
plemented extremely quickly and serves as an excel-
lent example of where failure to implement according
to the suggestions above resulted in a very brittle,
failure—prone, and frustrating multibot system but
which, with some effort to resolve the problems us-
ing the suggestions in this paper, can become much
more robust and successful.

Dynamic Duo

One of the two robots involved in these projects is
CARMEL, a mobile robot based upon a Cybermo-
tion K2A mobile platform. BORIS, the other robot
used in the projects, is based upon a TRC Labmate
platform. These robots are shown in Figure 2. The
major innate difference between the platforms lies pri-
marily in the motion characteristics - CARMEL is
essentially holonomic, being able to move in any di-
rection at any time without first having to turn its
body, while BORIS must first turn to face the direc-
tion of travel before moving. Hardware differences
other than those of the platform itself consisted of
substantially different sonar rings (CARMEL has a
circular ring of sonars, BORIS only has sonars facing
in the forward direction), different CPUs (not only do
they have IBM 80486 compatibles with differing char-
acteristics, but CARMEL had an IBM XT compatible
running the sonar system that BORIS does not have),
and differing vision systems (CARMEL has a camera
mounted on an independently rotating table, while

625



626

Figure 2: CARMEL (left) and BORIS (right),
robots used in several multibot projects.

BORIS’s camera is fixed to BORIS’s top facing di-
rectly ahead of BORIS.) Low level functionality, was
similar, but the robots had different implementations
of some basic functions, such as obstacle avoidance.

Exploration

One of the events in the National Conference of
Artificial Intelligence’s 93 robot competition was to
autonomously explore an “office” environment look-
ing for a visually tagged object, which was then to be
delivered to a predetermined room in the office com-
plex. Walls in the “office” were three foot high panels
of sonar-reflecting plastic and arranged to form rooms
and halls. Each entry’s robot was placed within the
office without knowing where within the office it was
or in which direction it faced. However, the robot(s)
were told in which quadrant of the office environment
they started. And each robot was given mostly ac-
curate knowledge of the office layout with respect to
wall placement and metric measurements; the actual
office layout could differ from the map in that some
doors could appear where not indicated on the map,
and some doors on the map could disappear.

While most entries were single robot approaches,
which we also tried with CARMEL, we attempted a
multibot approach (both BORIS and CARMEL) as
we saw a distinct advantage in exploring the office
in parallel with two cooperating robots. However,
while CARMEL was already a fully autonomous mo-
bile robot, with obstacle avoidance and vision systems
and a great deal of experience in research and robot
competitions,* BORIS was initially only a bare TRC
Labmate robot base upon which a small amount of
obstacle avoidance research had been performed. We
realized from the onset that we should attempt to de-
sign BORIS to be as functionally similar to CARMEL
as possible.

A great number of engineering changes had to be
made both in hardware and software to accommodate

the many differences in the two robots. An exam-
ple is the feature detection algorithms used to detect
the various configurations of “office” halls and open-
ings. The same basic sonar—based obstacle avoidance
system was pre-existent in the robots before devel-
opment started, so that including algorithms to per-
form feature detection seemed straightforward. The
two robots had very different implementations of the
sonar system, however, which made porting of the al-
gorithms developed on one robot to the other robot
extremely time consuming and is perhaps the single
most important factor in the difficulty we had im-
plementing the multibot approach. In addition, the
sonar hardware differences (complete vs. partial rings
of sonars) require BORIS to rotate in certain situ-
ations when CARMEL does not have to, requiring
modifications to some low-level functions as well as
the planner. Parameters in the sonar system also had
to be fine-tuned to each robot to account for differ-
ences in the robot’s size, sonar filtering system imple-
mentation, and other factors, and we were never able
to perfectly match the results of the two robots.}

Box pushing

The box pushing task at the AAAI '93 robot com-
petition involved locating boxes (marked with distinc-
tive visual tags) and moving them into a predefined
pattern while avoiding obstacles (boxes that were not
to be moved). Because a robot pushing a box cannot
“see” with its sonars and therefore cannot perform
obstacle avoidance, this meant that one robot either
scout out a clear path beforehand and then go back
and get the box, or that two robots help each other,
with one robot acting as the navigator and one robot
pushing the boxes. We chose to implement the multi-
bot design, which made the design more challenging,
difficult and, as we found out, frustrating.

Our approach to the task was to use CARMEL
as the “Boss”, or navigator, and BORIS as the
“Worker”, or box pusher. This task assignment was
made because BORIS is built upon a square base,
making it more conducive to pushing boxes than
CARMEL, which has a cylindrical base. It was im-
portant that each robot have some shared knowledge
of the world to properly navigate around the arena;
for CARMEL to act as the navigator and tell BORIS
where to push boxes, it was necessary that each robot
initially knew where the other one was located in a
global coordinate system. Each robot also had an in-
ternal map of the arena indicating the boundaries and
the single interior wall. Obstacle and object locations
were not known beforehand.

The interaction of the robots in this task was de-
fined as follows:

The robots first job was to synchronize themselves
using a sequence of handshaking messages. Once syn-
chronized, BORIS would drive to one of a number

‘Further ramifications of the difficulty experienced
with implementing the multibot approach was that devel-
opment of the single robot technology was slowed a great
deal due to the “thinned” person-power of trying to bring
two robots up to competition speed instead of only one.




of predetermined viewing positions in the arena and
look for boxes. If it found one (or more) it would ap-
proach it, stop just before the box, and communicate
its location and orientation to CARMEL. Meanwhile,
CARMEL would be waiting at its initial location until
it received this message. CARMEL would travel to a
location in line with the goal point where the box was
to be dropped off and a few meters in front of BORIS’s
position. CARMEL would then travel in three me-
ter segments to the goal point while avoiding obsta-
cles. At each of these via—points, CARMEL would
send its current position to BORIS as an obstacle~
safe position. BORIS would attempt to move between
these points in such a way as to keep the box securely
in front of it (using relatively slow, wide turns) and
would “follow the leader” to the point that the box
would be placed. Because CARMEL moved in such
small increments, the hope was that BORIS’s path
between via-points would keep it away from obsta-
cles. Once CARMEL reached the box dropoff loca-
tion, it would then move a safe distance away and
wait for BORIS to find another box. BORIS would
continue to push the box until the final location was
reached. Free of the hindrance of the box, BORIS
could then use its own obstacle avoidance system to
move to the next viewing position and search for the
next box.

As expected all did not work out the way it was
planned. There were some problems encountered,
some with BORIS, some with CARMEL, and some
with the cooperative aspects of the task. BORIS’s
problems began with its vision system. On the initial
attempt, the camera BORIS was using to locate boxes
was pointed too low. As it turned out, the boxes we
used for testing the robots were upside-down com-
pared to the ones actually used in the arena, causing
the tags on the boxes to be higher than the cam-
era could see. BORIS moved from box to box, not
recognizing anything, while CARMEL sat motionless
waiting for a message from BORIS. After approxi-
mately five visual scans, BORIS suffered an unex-
plained lockup and we had to restart. We fixed the
camera angle on BORIS and tried again.

On the second run, BORIS located the box cor-
rectly, approached it and transmitted a message
to CARMEL communicating he was ready for the
‘bosses’ orders. CARMEL’s map had been initial-
ized improperly, so CARMEL thought that it was on
the opposite side of the arena. It moved to the cor-
rect location in its own map where it thought BORIS
was, not to where BORIS actually was, and plotted
out a path to the goal position. The map error re-
sulted in a large discrepancy in positions, however,
and the resulting path was useless. Unaware of this,
CARMEL then sent the command to BORIS telling
it to proceed. CARMEL proceeded to move along
its planned path toward the phantom goal destina-
tion, sending position messages that were uncorre-
lated with BORIS’s map. BORIS, also unaware of
the problem, started to execute the navigation path
transmitted from CARMEL, but started to drive in
the wrong direction and we had to start over again.

On the third and final run, the situation improved
slightly. The robots synchronized, BORIS immedi-
ately found a box, CARMEL acknowledged the com-
munications, moved in front of BORIS and the box,
and traversed an obstacle—free path for BORIS to
travel. CARMEL moved a safe distance away from
the box drop off position and waited for BORIS to
complete its pushing. However, at some point in
the transmission of the initial path via-point from
CARMEL to BORIS the message was corrupted and
values for parameters were radically in error. This
caused BORIS’s control program to crash and hang,
leaving both robots hanging.

While implementing the design for this project we
ran into a number of issues discussed in this paper.
Because we were able to actually implement and per-
form this task, we encountered both issues like those
encountered during the exploration task as well as
run—time and coordination issues that we did not have
an opportunity to discover in the abortive attempt
at the exploration task. Communication related is-
sues figured quite prominently among those we ran
into. Both during development and actual competi-
tion runs we experienced delays, losses, and corrup-
tion of messages sent between the robots. Because of
the short time period in which we implemented our
design (approximately 24 hours), we were unable to
build in many of the safeguards recommended above.
We successfully synchronized the robots using a set
sequence of messages between the robots. We did
not, for example, implement any form of semantic
contents checking to detect invalid messages. Nor did
we implement high—level retransmissions of messages
if an expected response from the other robot never
arrived. Heterogeneity in hardware did not surface
as a significant issue for this task, primarily because
we used the robot’s heterogeneity to best advantage,
we were not trying to achieve equivalent functional-
ity, and the robots were to work have different task
responsibilities. Software was more of an issue for the
exact same reasons; we had to develop entirely dif-
ferent control software for each robot and could not
develop software on one robot and port it to the other.

Future Work

The examples above give vivid accounts of the
problems likely to be faced by researchers working
with multiple real robots. We continue to be inter-
ested in multibot systems and applications, despite
the extra effort that such work entails. The next
major project is to develop a team of cooperating
outdoor robotic vehicles (new military jeeps called
HMWMMV’s, or “Hummers”) that can perform a
task such as forward reconnaissance. We have de-
signed and built one prototype vehicle (MAVERIC)
based upon an electric utility cart, with which we can
do development and experimentation without requir-
ing access to the large and costly Hummers. When
building another vehicle — to develop the multiple
robot coordination technology necessary for this type
of task — we will pay great attention to the issues
raised in this paper. First and foremost, we will

627



try to make the two vehicles as identical as possi-
ble. This will most likely entail outfitting the second
vehicle in exactly the same manner as MAVERIC in
many aspects. It will also probably require upgrad-
ing MAVERIC with improvements, based upon our
experience with MAVERIC and discovery of short-
coming in its design or implementation, that will be
implemented from the onset on the new vehicle.

We would also like to explore using minimal re-
sources on multiple minirobots to perform coopera-
tive tasks. The robots that we are using are based
on the MIT miniboard and use an MC6811 micro-
controller. While computing power and controlling
software are the same for each of the robots, there
may be some small variations in the bases and sen-
sors. The general idea is to use the ideas we have
discussed here to help design robust multiple robots
and apply them in the real world.

Conclusilons

A great deal of research has been performed re-
garding how we can get multiple agents cooperating
together in wondrous harmony. Much of this research
has not, as yet, involved working with the agents that
will actually end up doing the work, robots. A re-
searcher who has not already attempted this technol-
ogy transfer is in for a lot of headaches unless he or she
has some insight to the issues that are associated with
such a process. We have introduced and discussed
the most significant issues and their causes, and have
given many suggestions on how to deal successfully
with them. A great deal of work and aggravation can
be avoided by paying attention to these issues before
implementation of a system on real robots. We have
described the problems and solution faced when im-
plementing two multibot projects in particular in or-
der to fully illustrate what might occur during imple-
mentation, and accentuate the importance of paying
heed to the issues raised in this paper.

References

[1] Ronald C. Arkin. Cooperation without commu-
nication: Multiagent schema-based robot nav-
igation. Journal of Robotic Systems, 3(9):351-
364, 1992.

[2] Alan H. Bond and Les Gasser. Readings in Dis-
tributed Artificial Intelligence. Morgan Kauf-
mann Publishers, San Mateo, CA, 1988.

(3] Rodney A. Brooks. A robust layered control
system for a mobile robot. [IEEE Journal on
Robotics and Automation, RA-2(1):14-22, March
1986.

[4] Clare Congdon, Marcus Huber, David Ko-
rtenkamp, Kurt Konolige, Karen Myers, Alessan-
dro Saffiotti, and Enrique Ruspini. CARMEL vs.
flakey: A comparison of two winners. Al Maga-
zine, 14(1):49-57, Spring 1993.

[5] Gregory Dudek, Michael Jenkin, Evangelos Mil-
ios, and David Wilkes. On the utility of multi-
agent autonomous robot systems. In Working
Notes: Workshop on Dynamically Interacling

628

(7]

[10]

1)

1]

[14]

Robots, pages 101-108, Chambery, France, Au-
gust 1993. Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence.

Edmund H. Durfee and Victor R. Lesser. Us-
ing partial global plans to coordinate distributed
problem solvers. In Proceedings of the Tenth
International Joint Conference on Arlificial In-
telligence, pages 875-883, Milan, Italy, August
1987. (Also published in Readings in Distributed
Artificial Intelligence, Alan H. Bond and Les
Gasser, editors, pages 285-293, Morgan Kauf-
mann, 1988.).

Eithan Ephrati and Jeffrey S. Rosenschein. Con-
strained intelligent action: Planning under the
influence of a master agent. In Proceedings of the
National Conference on Arlificial Intelligence,
July 1992.

Michael Georgeff. Communication and inter-
action in multi-agent planning. In Proceedings
of the National Conference on Artificial Intell:-
gence, pages 125-129, Washington, D.C., August
1983. (Also published in Readings in Distributed
Artificial Intelligence, Alan H. Bond and Les
Gasser, editors, pages 200-204, Morgan Kauf-
mann, 1988.).

Michael Georgeff. A theory of action for multi-
agent planning. In Proceedings of the National
Conference on Artificial Intelligence, pages 121~
125, Austin, Texas, August 1984. (Also pub-
lished in Readings in Distributed Artificial Intel-
ligence, Alan H. Bond and Les Gasser, editors,
pages 205-209, Morgan Kaufmann, 1988.).

Joseph Y. Halpern and Yoram Moses. Knowl-
edge and common knowledge in a distributed en-
vironment. In Third ACM Conference on Prin-
ciples of Distributed Computing, 1984.

Marcus J. Huber and Edmund H. Durfee. Plan
recognition for real-world autonomous agents:
Work in progress. In Working Notes: Applica-
lions of Artificial Intelligence to Real-World Au-
tonomous Mobile Robots, AAAI Fall Symposium,
pages 68-75, Boston, MA, October 1992. Amer-
ican Association for Artificial Intelligence.

Kouji Ishioka, Kazuo Hiraki, and Yuichiro An-
zai. Cooperative map generation by hetero-
geneous autonomous mobile robots. In Work-
ing Notes: Workshop on Dynamically Interact-
ing Robots, pages 58-67, Chambery, I'rance, Au-
gust 1993. Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence.

Maja Mataric. Synthesizing group behaviors. In
Working Notes: Workshop on Dynamically In-
teracting Robots, pages 1-10, Chambery, France,
August 1993. Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelli-
gence.

Ei-Ichi Osawa. A scheme for agent collaboration
in open multiagent environments. In Proceed-
ings of the Thirteenth International Joint Con-
ference on Artificial Intelligence, pages 352-359,




[15)

(16)

(17]

[18]

Chambery, France, August 1993. Proceedings of
the Thirteenth International Joint Conference on
Artificial Intelligence,

Claa 1113Ciil

Lynne Parker. Learning in cooperative robot
teams. In Working Notes: Workshop on Dynam-
ically Interacting Robots, pages 11-23, Cham-
bery, France, August 1993. Proceedings of the
Thirteenth International Joint Conference on Ar-
tificial Intelligence.

Jeffery S. Rosenschein. Synchronization of multi-
agent plans. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 115-119,
Pittsburgh, Pennsylvania, August 1982. (Also
published in Readings in Distributed Artificial
Intelligence, Alan H. Bond and Les Gasser, edi-
tors, pages 187-191, Morgan Kaufmann, 1988.).

Christopher J. Stuart. An implemenation of
a multi-agent plan synchronizer. In Proceed-
ings of the Ninth International Joint Conference
on Artificial Intelligence, pages 1031-1033, Los
Angeles, California, August 1985. (Also pub-
lished in Readings in Distributed Artificial Intel-
ligence, Alan H. Bond and Les Gasser, editors,
pages 216-219, Morgan Kaufmann, 1988.).

Mark C. Torrance. The case for a realistic mo-
bile robot simulator. In Working Notes: Ap-
plications of Artificial Intelligence to Real- World
Autonomous Mobile Robots, AAAI Fall Sympo-
sium Series, pages 181-184, Cambridge, Mas-
sachusetts, October 1992. American Association
for Artificial Intelligence.

629



