L

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by NASA Technical Reports Server

SAVA II:

A Testbed for Integration and Control of Visual Processes

724

James L. Crowley
LIFIA - IMAG
46 Ave Félix Viallet
38031 Grenoble, France

1 Introduction

During the last few years, there has been a growing
interest in the use of active control of image formation
to simplify and accelerate scenc understanding. Basic
ideas which were suggested by [Bajcsy 88] and
[Aloimonos ¢t al. 88] has been extended by several
groups including [Ballard 91], and [Eklundh 92). This
trend has grown from scveral obscrvations. For
cxample, Aloimonos and others observed that vision
cannot be performed in isolation. Vision should scrve a
purpose, and in particular should permit an agent (o
perceive its environment. This lcads to a view of a
vision system which operates continuously and which
must furnish results within a fixed delay. Rather than
obtain a maximum of information from any onc
image, the camera is an active scnsor giving signals
which provide only limited information about the
scene.

Bajcsy obscrved that many traditional vision problems,
such as sterco matching, could be solved with low
complexity algorithms by using controlled sensor
motion. Examples of such processes werc presented by
Krotkov [Krotkov 90]. Ballard and Brown [Brown 90)
demonstrated this principle for the casc of sterco
matching by restricting matching 1o a short range of
disparitics close to zero, and then varying the camera
vergence angles. The development of robotic camera
heads has lcad to thc possibility of cxploiting
conuolled sensor motion and control of processing o
construct continuously operating real time vision
systems.

At the same time, rescarch in applying artificial
intelligence techniques to machine vision led to an
emphasis on the use of declarative knowledge to
control the perceptual process. Systems such as the
Schema System [Draper ct. al. 89] devcloped a black-
board architecturc in which multiple independent
knowledge sources attempted 1o segment and interpret
an image. A major problem in such systems is control
of perception. Such systems cmphasise explicit
representation of goals and goal dirccted processing
which dircct the focus of attention 1o accomplish
system tasks. It has not been obvious how such a
knowledge based approach o control of atiention could
be married to a rcal time continuously operating
system.

Henrik Christensen

Luboratory of Image Analysis, Aalborg University
Fr. Bajers Vej 7D
DK-9220 Aalborg, Denmark

In July 1989, the Europcan Commission funded a
consortium of six laboratories to investigate control of
perception in a continuously operating vision system!.
The consortium partners set out to build a test-bed
vision system for experiments in control and
integration. An expcrimental test-bed system was
constructed which integrates a 12 axis robotic sterco
camcra hcad mounted on a mobile robot, dedicated
computer boards for rcal-time image acquisition and
processing, and a distributed system for image
dcscription. The distributed system includes
indcpendent modules for 2-D wacking and description,
3-D reconstruction, object recognition, and control. On
March 18 1992, a fully integrated continuously
operaling vision system was demonstrated to the
European Commission using this test-bed. This paper
reports on the development of this sysiem and the
rescarch which the system makes possible in control of
a real-lime vision system. A more complete description
of the results of the project may be found in the book
{Crowley~Christensen 93).

1.1 The Project Vision as Process

The starting point for the project “Vision as Process”
was the demonstration of an integrated vision system
capable of continuous rcal-time operation. It was
quickly realiscd that such an ambition raises two
problems:

1) The technical problem of integrating processcs
which model the environment in terms of
descriptions which are qualitatively differcnt.

2) The problem of controlling the “attention” and
processing of a continuously operating system.

Concerning the first problem, different robotic tasks
require different kinds of descriptions of a scene. Such
descriptions can include 2D image description, 3D
scene descriptions and symbolic labelling of the
componecnts of a scene. Such processcs are
complementary and mutually supportive. A framework
is required which would permit the integration of
multiple vision processes. This can be considered an
“cngincering” problem,

IThe Partners in project ESPRIT "Vlsion as Process”
are Aalborg University (DK), University of Surrey
(UK), KTH, The Royal Institute of Technology (8),
University of Linkoping (S), University of Genoa (1),
LTIRF-INPG (F) and LIFIA-INPG (F).

Copyright© 1993 by James L. Crowley and Henrik I. Christensen. Published by the American Institute of Aeronautics

and Astronautics, Inc. with pcrmission.

https://core.ac.uk/display/42784642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The second problem is both subtle and {undamental.
Most of the algorithms used in vision have
computational costs which depend on the quantity of
data. In the best cases the relation is linear, but in
many cascs it is quadratic, cubic, or cven cxponential.
Real time response requires that the processing time for
any part of the system is limited. This requires that the
amount of data considered during cach processing cycle
be bounded which raises the problem of which subsct
of the available data the systcm should attend during
each cycle. This is part of the larger problem of
controlling perception. General purposc real time
vision system requircs a solution to this problem.

These observations Ict the consortium to develop a
long term work plan with both an engincering and a
scicntific goal. Thesc arc:

Engincering Goal:Develop techniques for integrating
cyclic real time processes for description of a
scene in terms of 2D images, 3D structure and
labelled objects using active control of a camcra
head.

Scientific Goal: Develop methods (and a theory) of
control of attention in perceptual processes.

With these twin goals, the consortium has developed a
long term plan leading to the demonstration of mcthods
for the construction of integrated continuously
operating vision systems, and the elaboration of a
theory for the control of such systeins.

1.2 System Integration and Control

When the VAP project was conceived in 1988, only a
small number of vision systems were capable of
performing symbolic intcrpretation, and they were
designed for interpretation of single (static) imagcs.
The well known examples included VISIONS {Hanson-
Riseman 78], ACRONYM [Brooks 81], and 3DPO
{Bolles-Horaud 84).

Most work on analysis of image scquences had been
carried out on pre-recorded images and the level of
description was almost entircly parametric. i.c.,
systems could describe rcgions or fcatures with
independent motion in terms of their image or 3D-
velocity. A review of the state of the art is provided by
Huang [Huang 83]. Continuous and rcal-lime
obscrvation of a dynamically changing scenc involves
more than motion interpretation. A continuously
operating vision process must be able to limit
processing to a small subset of the data available from
visual sensors, and to adapt its processing mode
dynamically in response to events in the scene and
requirements of the task.

1.3 The VAP Hypotheses

From its carliest meetings, the VAP consortium agreed
that vision should be studied in the context of its
purpose, i.c. its use by other processes. Without
dedicating to any specific application, this implies that
visual processing can be controlled to concenlrate on

the subsct of visual information which is considered
relevant to the current goal as defined by a user process.

In addition, the consertium recognised the ability to

cxploit coherence in the dynamic evolution in a scene.
In a continuously operating systecm, temporal context
permits changes in the scene to be predicted and
computational resources to be dirccted to confirm
expectations. This implics that tracking is basic
operation within a continuously opcrating system.

The goal of the VAP project is to demonstrate that a
vision system must be designed as a continuously
operating “process”. To demonstrate this principle, the
consortium has designed a six-year rescarch program to
develop techniques to interpret a dynamically changing,
quasi-structurcd environment. These techniques exploit
goal directed focus of attention involving controlled
sensor motion and control of processing. Processing is
dirccted by goals which change dynamically in reaction
to the needs of the perceptual tasks and to cvents in the
scene.

The following section revicws some previous
approaches to intcgration and control. This previous
work cstablishes the set of concepts and “prior art”
from which the design of the VAP skelcton system
draws.

2 Systems Architectures for
Integration and Control

A suitable system architecture is required for
cexperiments in intcgration and control of a
continuously opcrating system. In this chapter, we
review previous approaches to architectures of vision
systems. From this rcview, we argue that flexible
intcgration may be achieved through use of a standard
module architecture, replicated at each of the levels in
the system. Such a standard modulc architecture is
described in more detail in chapter 3.

2.1 The Reconstruction Approach

A popular approach for structuring a vision system has
been proposed by Marr [Marr 82]. Marr argues for a
system defined around a hicrarchy of representations:
images, The primal sketch, the 2.5-D skeich (viewer
centred depth map), 3-D map and symbolic description.
In this model, processing is organised as sequential
processes in which information flows up through the
levels. Processing is data-driven, in the sense that
rccognition and description are bascd on descriptions
constructed at the lower levels in the system. This
modecl is computationally demanding and it has proven
difficult (if not impossible) to provide image
descriptors that arc sufficiently robust to allow
characterisation of all phcnomena in a natural
cnvironment,

The Marr processing model may be termed a
reconstruction approach as it aims at a full
rcconstruction of the environment, The processing
model is purely data driven, and thus poses a problem
in terms of computational resources. The Marr model

725

726

assumes all processing may bc carried out as a
sequential process. This implies that a module uscs the
representation(s) at the level just below as a basis for
its processing and the result is stored in the next higher
representational level. The interfaces are conscquently
well defined. A simplified model of the processing is
shown in figure 1.

add new modules to the system. The common
blackboard is a potential problem for a continuously
operating system. All information generated and used
by the system passcs through the blackboard. It might
thus pose a problem with respect to information band-
width. To indicate the amount of information, which
may be gencrated dircctly from images one may look at
the Image Understanding Architecture, described by

Comyp Comp.
of primal [™| of 25D
sketches sketch

Comp. Inter

> pre-
of 3D tation
model

Fig. 1 A processing modcl for the reconstruction approach.

In terms of reprcsentations, this proccssing model
implies that information needed to perform recognition
and interpretation of scutings must be availablc as part
of the 3D modcl. i.c., a diverse set of descriptors must
be tagged onto the 3-D mode! rcpresentation Lo
facilitate recognition and description. This duplication
of information up through the sysicm and the
unavailability of pixel level primitives can posc a
problem in terms of model sizc and maintenance over
time.

2.2 The Non-Committal Approach

In the VISIONS system [Hanson-Riscman 1978] data
are stored on a blackboard, or common storage arca and
processing is performed in paralle! by a number of
“knowledge sources”. All modules in the system can
access information at any of the representational levels.
This implies that information docs not have to be
replicated up through the system to be made available
for recognition procedures. A simplificd model of the
non-committal approach is illustrated in [ligure 2.

Blackboard

o
2
=
2
o]

—/

Module Nj-t—3m

Module 1
Module 2
Module 4

M

Fig. 2. Architecture for the non-committal approach.

In this archilecture, cach of the modules in the systcm
has control information that specify thc information
that must be available before the module may carry out
its task. In addition, it has control information that
specifies the information which may be provided by the
module. Through use of a control exccutive, it is
possible to perform both goal directed and data driven
processing through use of this control information.

This processing model imposcs few constraints on the
representations used in the sysicms and it is simple (o

Weems et al. [Weems 1989]. In that system, the
storage reserved for intermediate representations is 4
GB and the system is only aimed at analysis of single
images. Such an archilccture will require extensive use
of special purpose hardware, in particular when applied
in the tlecmporal context.

2.3 The Purposive Approach

Introduction of goal dirccled operation and use in a
limited and well defined domain of application allow
synthesis of a vision system which is composed of a
sct of specifically engineered modules. Such modules
may be designed to be computationally well behaved,
in the scnse that the computational complexity is
bounded and often robust representations can be
provided. This approach to construction of vision
system has been promoted by Bajcsy (Bajcsy 88],
Ballard (Ballard 91] and [Aloimonos et al. 88].
Although the approach exploits specific vision
modules, Bajcsy has tried to enumerate a sct of
modules that might form a gencral purposc system.
The use of dedicated modules is a way to provide robust
information and computationally tractable techniques.
Well known examples of dedicated modules used for
robot navigation are optical flow modules that can
compule the position of the focus of expansion for the
optical flow ficld, and modules which can compute the
time to contact from motion in an image sequence.

This approach to system construclion is termed the
purposive or the animate approach. It is envisaged that
the construction and analysis of specific modules will
gradually providc insight that will allow definition of
modules applicable in general vision systems. The
convergence towards a standard sct of modules through
analysis of diverse application domains might provide
valuable insight, but it is not obvious that convergence
will be achicvable.

In the purposive approach, the exploitation of
information is task driven and may be very diffcrent
from onc task to the next. The basic system
architccture should thus be flexible and facilitate
dynamic change of the information flow. In practical
systems a number of modules may exploit the same
representation and once a system has been defined an

analysis of the representational requirements may point
to the definition of a set of standard represcntations.
Given present state of the art no such general
represcntations are known.

A purely purposive approach to vision rcjects most of
the established techniques. Modules arc 10 be built
from scratch whenever a new type of
information/representation is requircd. There is
consequently a concern that from this approach litlle
insight will be gained in terms the general vision
problem.

2.4 The Vision as Process Architecture

During the first year, thc consortium “Vision as
Process” addressed the problem of design of an
architecture which would meet the following criteria:

1) Continuously operating.

2) Integrating softwarc contributions from
geographically dispersed laboratories

3) Integrating description of the environment with
2D measurcments, 3D models and recognition of
objects.

4) Capable of supporting diverse experiments in
gaze control, visual servoing, navigation and
object surveillance.

5) Dynamically reconfigurable as the task changes.

The result was the design of a distributed test-bed
system composed of independent modules. Modules
may communicate by message passing over a central
message scrver, or by dedicated “high-band width”
channels. Systems can be composed from sub-sets of
the available modules for individual experiments.

The architecture adopted by the consortium is shown in
figure 3. The system has a data flow part, which is
similar to the Marr processing model. It should be
noted that the data flow is not only bottom-up but may
also be top-down. Top-down expectations (derived from
the present set of goals and contextual information) can
be used to direct/control processing al lower levels,
while detected event at the same time can drive a
reconstructive mode of processing. The VAP
architecture contains a common communication
channel that allow communication between any pair of
modules in the sysiem. This communication channcl
may be used both for investigation of a non-committal
processing model, and for investigation of purposive
sysiems, as the component processes in the system in
figure 3 may either general purpose or dedicated.

This architecture imposes few constraints on the design
of component modules and it provides flexibility for
the investigation of sysiem lcvel control issues.
Initially it was envisaged that the main flow of data
would exploit the communication links bctween
adjacent modules, while only control information
would be communicated through the common channcl,
During the cxecution of the project it was realiscd that

a more flexible processing model was nceded to make
computations both cfficient and robust.

y 1

<€—PtSUPERVISOR
o ke
Z [INTERPRE-
é 4_b TATION
O -
Sl o0
S MODELING
=
3 $
© ¢—p EXTROF
DEPTH
IMAGE
H}ACQ&DESCR

Fig. 3. The VAP system architecture

Having sclected a distributed architecture composed of
modules, the consortium turned its attention to the
design of a common component for each module. At
the very least, this standard module must provide the
communications interface. It was soon observed that
scheduling was a basic to continuous operation and a
cyclic scheduler was provided which calls the
proccdures which implement cach phase of
computation. The phases of operation included phases
for intcgration of new data and phases for control of
processing.

In order 1o obtain temporal context, the consortium
drew on previous results in image tracking. A tracking
architccture was defined composed of the phases predict-
malch-update [Crowley et al. 88], {Granum-Christensen
88] based on techniques used in the control community
since the early sixtics [Kalman 60]. The architecture is
shown in figurc 4.

The analysis block, in figure 4, is responsible for the
frame by frame analysis, which generated a set of
geometric primitives (or tokens). The correspondence
with information in the temporal context is performed
in thc match block. To simplify matching the
information in the temporal context is used in a
prediction of the cxpected content of the next {rame.
Once correspondence has been established the
information contained in the internal models must be
updated to reflect the new information contained in the
new frame. Once updating has been carried out the
cycle may start all over again.

727

728

N+1

ANALYZE —»{ MATCH

n—’

UPDATE

TRANS-

——— EXPECTATION

FORM

PREDICT

Figure 4. Basic Prcdict-Match-Updale cycle for the module architccture.

As a model at level N+1 is used for prediction of
primitives in the next [rame, the predictor may also be
given other types of input which can be uscd for
guidance of processing. Introduction of goal derived
information into the model at level N+1 will
consequently allow top-down/attention bascd control of
processing. A prediction may be transformed into a
representation that is compatible with the onc used the
level below, so that it may drive processing at the level
below. This flexibility [acilitates investigation of
different control strategics.

2.5 Control Issues

Construction of an operational systcm includes issucs
in control to cnsure satisfaction of user defined goals.
Goals are widely recogniscd as a fundamcnial
component of intelligent systems. The consortium
initially defincd a set of gencral goal commands :

scarch(X): Is X present in the scene?

find(X): Where is X, given X has been

identified carlicr?

relate(X,Y): What is the spatial relation between X
and Y?

describe(X,Y): Determine property Y for object X

watch(X): Allocate resources for notification of
changes for X
track(X): Maintain a dynamic description of

object X.

This sct of goals defines the uscr level interface 1o the
system. Based on the potential goals, the system must
be able 1o allocate its resources {or optimal satisfaction
of the concurrent goal(s).

A numbcr of approach to goal dirccted processing have
been reported in the vision litcrature. Most of these
cfforts include usc of a cyclic process, in which data
reccived are matched against expectations. Depending
on success or failurc in the matching process an
updating or cvent detection process is used (o drive the
next cycle of processing. An cxample of such a cyclic
process is described by [Tsotsos 87} for the ALVEN
system.

When the VAP cffort was initiated the usc of
production systems and rcasoning undcr uncerlainty

appeared the most promising in terms of providing
insight into the problem of the cycle of planning,
scnsing and interpretation. These tools have been
incorporated into the system. In system level control,
externally defined goal commands arc translated into
actions by rulc based planning. Planning generates the
sequence of state transitions (actions and their
paramecters) expected to allow completion of a goal.
Thesc actions arc then exccuted by onc or more system
modulcs. The internal handling of such actions is an
issuc that is rcsolved for each of the modules. A
skcleton system constructed by the consortium
provides the framework for experiments in control and
coordination of visual proccsses.

3. The SAVA III Skeleton System

In order to perform experiments in control and
intcgration of a continuously operating vision system,
the VAP consortium constructed an empty *“skeleton”
system, This skeleton was then provided to partners so
that they could “fill in” the functional parts needed for
their experiments2. This system was named SAVA,
for the french acronym "Squelctte d'Application pour la
Vision Active". The SAVA Skeleton system provides
a standard module with communication and interface
components that permit an experimenter Lo construct
and run distributed real time vision system.

The structurc of SAVA has evolved with our
undcrstanding of the problems of integration and
control. The original SAVA system was released at
month 12 of VAP-I. Experiences during the second
ycar of VAP-I brought out a number of shortcomings
in the design. A tcam composed of people from AUC,
KTH and LIFIA designed a revised version, SAVA 11,
which was relcased at the month 24 milestonc. An
intense integration cffort was performed in preparation
of the month 33 intecgrated demonstration, with
softwarc and hardware contributions from all VAP
partners integrated into SAVA 1II. Modifications in
communications and interfacc design, as well as a large
number of small improvements, led 1o relcase of
SAVA 2.4 in March 1992.

Expericnce with SAVA I has shown the importance of
demons for combining purposive and event driven
control of perception. This led to the desire for an
interpreter for demon functions. In addition,

2The incompatibility of successive releases of MOTIF
have created problems for portability and have cost the
consortium considerable time and money.

programming control cxperiments in SAVA II was a
somewhat difficult task. Control knowledge was
embedded in procedural code and thus hard to understand
or change. It was decided to design a control system
based on an interpreter for declarative expressions of the
control logic. From these two nceds emerged the idea
of using the CLIPS 5.1 rule interpreter for the control
component and the demon interpreter within cach
module. CLIPS 5.1 is written in C and is provided
with the full source code. As a result, it was extremely
easy to integrate the SAVA modules into the CLIPS
environment.

A ncw version of the skelcton system, SAVA 111, has
been crcated based on the principle of interpreting
control information. In SAVA III, most of the
procedures for processing and communication are
written as C procedures and explicitly declared to the
CLIPS 5.1 rule interpreter. Rules and functions are
then written using thesc procedurcs. The basic
processing cycle is built as a scquence of states with
transitions managed by rules. The processing performed
within a state can be casily changed based on cither
perceptual events or external commands. Because the
control rules are interpreted, the control sequence for a
module may be changed dynamically, without re-
compiling a module. It is even possible for a module
to send another module function dcfinitions as ASCII
messages, using the CLIPS deffunction facility. The
rule based scheduler is particularly useful for the
implementation of demons. Decmons may be
programmed as rules which react 1o the contents of the
model as well as to external messages.

In addition to the changes in the control part, a major
effort has been made to add the possibility of
synchronised opcration 1o the modules. SAVA is a soft
real-time system, distributed over a sct of workstations
operating under UNIX. At some time in the fulure, we
intend 1o port SAVA onto dedicated hardware running
under a real time programming cnvironment. However
such systems are relatively difficult to program and
debug. The use of UNIX and distributed processing
permits the VAP-II project to perform experiments
with a reasonable effort.

A synchronisation system has been built into SAVA
III in order to compensate for unceriainties in
communication and execution time for distributed
modules. A synchronisation module provides other
modules with a universal time reference. In this way,
all information that is processed or communicated is
time-stamped, permitting an estimate of dynamic
processes 1o be observed or controlled.

The following scctions present a detailed description of
the components of the SAVA III system. It first gives
a brief overvicw of the components of the skeleton
system and its standard module. It then describes
processes for interpreting messages using a rule bascd
interpreter, and the design of “demon” processes that
perform pre-attentive detection of events. A description
of the rule bascd contro! of a module is presented,
followed by a description of the synchronisation of
modules.

3.1 Overview of the SAVA III
Software Skeleton

The SAVA skeleton system is composed of the
following componcnls:

1) A launcher program that permits the user to
assign modules 1o proccssors and to initiate
operation,

2) A distributed mailbox system that is launched on
the differcnt processors to establish a
communications system and to launch the
component processcs.

3) A library of communication procedures for
modules. This library include procedures for
communication by message as well as procedures
for dedicated high band-width communication
between processcs.

4) A skcleton module structure built around a
scheduler.

5) A set of graphical man-machine interfaces.

The SAVA system provides mailbox communication
for data, control and acknowlcdgements, as well as a
procedurcs for dedicated high-band-width channels
between modules. Messages include formatting
information that permits the mcssage passing system
1o pack and unpack messages.

Visual perception is performed within processes
imbedded in copics of the SAVA “standard module”.
The SAVA III standard module is shown in Figure 5.
The standard module is composed of a number of
proccdurcs (shown as rectangles) that are called in
sequence by a scheduling process.

A SAVA module repeatedly executes a cycle in which
i

1) Acquires new data.

2) Transforms this data into an internal
represcntation.

3) Makes predictions from its internal model.

4) Malches the predictions with the transformed data.

5) Uses the match results to update the internal
model.

6) Exccutcs demons o detcct perceptual events
within the internal model.

This cyclic process is excculed by a rule-interpreter.
Each phase corresponds to a state in which a particular
operation is performed. At cach state transition new
messages which have arrived on the mail box channel
arc rcad and processed. Such messages may change the
procedures that are used in the process, change the
paramcters that are used by the procedures, or
interrogate the current contents of the description that
is being maintained.

729

730

- ====3 Procedure Call

— Messages
——————>» Data

LR S S R N T T T T T T T S G G Sy

E Interpretation :
. Demons X
E Access Primitives w ;
LY (grouping) ,L :
' A :
e A T T ey Predict |
VL D Update X
. |B CLIPS 5.1 \
' 10 - Match <——

X X Message :;________1

' [Handier Y Y

: Process

\ Parameters

\
[}
\
[}
[}
[}
L)
1}
[}
5 H]
Processing \
\
\
\
[}
]
\
]
\
]
)
]

Standard Module Architecture: -

Figure 5 Architccturc of a Standard Module in SAVA 111

The cyclic process within a module is managed by a
control token placed on the working memory. This
control token is a simple list in which the first atom is
the word “phase” and the sccond is the name of onc of
the phascs: (get-data, transform, predict, match, update,
messages, demons}. The definition of theses phascs is
as follows:

get-data Acquire a new observation

transform Transform thc data to the internal

representation
predict Predict the contents of the obscrvation
maich Maich the prediction (o the observation
update Update the model using the correspondence
of the prediction and the obscrvation
demons Excculc a set of automatic procedures for

event detection.

At the end of cach cycle, the scheduler exccules a sct of
demons. Demons are responsible for event detection,
and play a critical role in the control of rcasoning.
Some of the demon procedures, such as motion
detection, operate by default, and may be explicitly
disabled. Most of the demons, however, are specifically
designed for detecting certain types of structurcs. These
demons arc armed or disarmed by rccognition
procedures in the interpretation module according to the
current interpretation context.

In the SAVA III system, the procedures of a module
arc madec cxplicitly available to the CLIPS 5.1 rule
bascd interpreter. This includes the original SAVA 11
scheduler, so that the system is upwards compatible. In
addition 1o acting as a scheduler, the rule interpreter is
also used to define the control part of demons and to
interpret messages from other modules.

3.2 Communications Between Modules

Modules communicate control, data requests, reply and

synchronisation information using message passing
bascd on Unix Sockets. The SavaSend() function is

used to scnd mailbox messages to other modules. A

SavaSend command contains three fields:

Headcer: The destination and type of message.
Format: An ASCII description of the message format.
Body:

The message including commands and
parameters.

The destination is a symbolic name for another
modulc. The types of message may ‘be control,
acknowledge or data. All message exchanges are
initialed by a control message. The format string is
transmitted with the message and is used both to
encode and decode the message. In this way a change in
message protocol may be made with a minimum of
difficulty. This format string can contain conversion
dircctives like %d, %f, and %c, based on the C
language printf protocol. We have added conversion

directives for sending arrays, structurcs and images.

Many SAVA functions accept a variable number of
arguments. Furthermore, the type of these arguments is
unspecified. These functions accept a fixed number of
normal arguments, followed by an arbitrary numbcr of
arguments of unknown type. The last normal argument
is a format string which describes the arguments
following it.

Large data structures may be communicated between
modules using dedicated sockels. Communication of
dedicated channels are performed by the functions
SavaRead and SavaWrite. As with mail-box,
messages, high band-width channel messages are
encoded with an ASCII format directive which is
transmitted with the message. High band-width
channels in SAVA are faster than message passing
because the channels provide a direct connection. No
intermediate routing is nccessary.

Messages passed through the mail box communication
system are interpreted by the rule interpreter. New
messages are transformed into working memory
elements by the function “checkmessage”.
Checkmessage creates a list in working memory
composed of the keyword “message” followed by the
name of the sender, a message keyword and and ASCII
string with the body of the message. Checkmessage
assures upwards compatibility with mcssage types that
were defined in SAVA II which have not be
transformed to SAVA IIL

The checkmessage function is executed at the cnd of
each phase of the standard module. For example, the
transition from match to update is performed by the
rule “update-phase” :

(defrule update-phase
{(declare (salience -100))
?p <~ {(phase match ?c)

(check-message)

(retract ?p)

(assert (phase update ?c))
)

The result of check-message is a list of the form:
(message ?sender ?command ?body)

If 7command string is tested to determine how the
message should be interpreted. If command corresponds
to one of the CLIPS keywords “deffunction” or
“defrule”, then ?body is interpreted by the CLIPS
function BUILD. This is permits external modules o
define functions and rules using the CLIPS deffunction
and defrule constructs.

If 2command corresponds 10 a previously defincd
function, then ?body is exccuted using the clips “eval”
construct. If ?command is unknown, or the
interpretation is not successful, eval returns FALSE.
The result returned by eval is used by the function
“reply” to send a reply to the sender. If the message
evaluates to a “NIL”, then reply docs not scnd a

message.

The CLIPS function “build” will interpret a string as if
it has been typed to the interpreter. This may be used
to interpret defrule and deffunction messages from other
modules, as shown by the rule “interpret-def-
commands”. The command “mv-append” is used to
composc a list with the desired commands.

(defrule interpret-def-commands
{declare (salience 100))
?m <~ (message ?sender Z?command Z?body)
(test (member ?command
{mv~-append deffunction defrule)))

(reply ?sender (build ?body))
(retract ?m)

)

Functions may be defined at initialisation or by
messages (rom other modules. A function, encoded in
an ASCII string, may be exccuted using the CLIPS
“cval” command, as shown by the rule “interpret-
function-mcssages”

(defrule interpret-function-message
(declare (salience 100))
?m <- (message ?sender ?command Z?body)
(test (member ?command
(mv-append list-deffunctions))

(reply ?sender (eval ?body))
(remove ?m)
)

If the interpretation is not successful, eval returns
FALSE. Unless the result is NIL, it is sent to the
?scnder in a reply message.

3.3 Automatic Interpretation by Demon
Processes

A demon is an automatic procedure which operates on
the internal model of each module to detect events.
Currently active demon procedures are executed after the
update phase of each cycle. Demons are responsible for
event detection, and play a critical role in the control of
rcasoning. Some of the demon procedures, such as
motion detection, operate by default, and may be
explicitly disabled. Most of the demons, however, are
specifically designed for detecting certain types of
structures.

Dcmons may be invoked by other demons or by
commands reccived from other modulcs, including from
a human supervisor. A demon is instantiated by
cntering a demon token in working memory. A demon
token is simply a list with three elements:

(demon <name> <id>)

where <name> is the name of the demon and <id> is a
unique identity determined by the function “gensym”,
Multiple copies of the same demon can be instantiated,
cach having its own “id”. Each demon can create ils
own state in working memory, indexed by <id>. A
demon can be removed by removing the demon token

731

732

from working memory,

The control part of a demon is encoded as rules. As an
example consider a demon 1o find ellipses in the image:

(defrule ellipse-finder
ellipse finder”
(phase demons)
(demon ellipse-finder 2id)
(ellipse-demon-data (id ?id)
(parameters ?p))

“The demon for an

=>
(assert (get-ellipses ?p)))

If we suppose that the function “get-ellipscs” will
instantiate a structure of type ellipse for each cllipse
found, then a second rule can be written to treat each
ellipse.

(deffrule hypothesize-cylinder “generate
cylinder hypotheses”
(phase demons)
(demon cylinder~finder)
(ellipse (id ?id) (ex ?x) (cy ?y)
(major ?ma) (minor ?mi)
(angle Zangle)})

(test (< 5 (abs ?angle)))
=>
(assert (cylinder (cx ?x) (bottom 2?y)
(radius ?ma) (ellipse ?id})))
(assert (cylinder (cx ?x) (top ?y)

(radius ?ma) (ellipse ?id))))
Other rules can be used to detect the existence of
cylinders with the same axis and 10 rcduce cylinder
hypotheses to a minimum number, or (o usc the
hypothesis of a cylinder with several cllipses (o
generate the hypothesis of a cup.

Goals for the module can be entered into working
memory as a three element list:
(goal <name> <priority>)
Goals can then have the effect of activating and dis-
activating demons. An example of a goal invoking a
demon is the rule “cup-demons”,

(deffrule cup-demons
“invoke the cylinder finder”
{phase demons)
(goal find-cup ?p)

(assert (demon cylinder-finder)))

An example of removal of demons is the rule “remove-
non-cup-demons”.

(deffrule remove-non-cup~-demons
“remove cup demons”
{phase demons)
(goal find-cup ?p)
?d <~(demon ?n ?id)
(not (?n cylinder-finder))
=>
(retract 2d))

Having a rule interpreter provides explicit control
knowledge for demons and their control logic. It also

permits the working memory to be used to create and
free working memory [or representing demons state.
The result is a flexible, easy to use, tool for
experiments in control of perception. In the following
scction we present an example of such control.

4 The Visual Navigation
Demonstrator

This section illustrates the use of SAVA III by
presenting an overview of the a visual navigation
system. This system was constructed for the milestone
1 demonstration of VAP-II presented in June 1993,
The structure of the demonstration system is shown in
figure 6. The system is composed of processes for

1) Fixation control of the binocular head.

2) Local navigation actions for a mobile robot.

3) Image acquisition and processing.

4) Tracking and grouping a 2-D description of the
contents of the image.

5) Computing and maintaining a 3-D description
around a fixation point.

6) Recognition of landmarks and object.

7) System Supervisor for coordinating processing of
the other system modules.

Fixation Control Unit

The fixation control unit provides a standard interface
to the device controller for the VAP/SAVA binocular
sterco head. This module maintains a copy of the
current state of the fixation point and the component
axes [or the binocular head. It receives commands in
the form of tasks expressed in either device or motor
coordinates. Commands are communicated to the
binocular head, the robot-arm (neck) or the mobile
platform using such device-level control.

The fixation control unit also contains facilities for
programming procedural style “perceptual actions”.
Such pereeptual actions are reflex procedures that
command the slate of the binocular head at either the
device level or the motor level based on measurements
made from images. Examples of low level perceptual
aclions include ocular reflexes for servoing aperture,
focus and vergence. Other examples include procedures
for tracking a moving object.

Image Acquisition and Processing

The image acquisition and processing module handles
all image processing requirements for the other
modules, thus minimizing the communication
requirements. This module is based on two computer
cards constructed by the consortium. The first of these,
the Pyramid card digitizes synchronised stereo images
and immediately computes a 12 level binomial pyramid
for the two images. Processing time for each pair of
images is 40 ms. The second card extracts edge
scgments using Gaussian derivatives.

Supervisor

——>» High Bandwidth Data

Messages

Object

Recognition

Radio Modem

/M

A

Synch

A

3D

Description

A

A

Left
Image
Description

Right
Image
Description

A

A

X 0T ——moZ

Image Acquisition
and Processing

Y

- Camera
Fixation /V Controller

. Vehicle
Navigation N Controiler

Figure 6 A Distributed Multi-process Vision System.

The edge extraction process begins by calculating the
horizontal and vertical derivatives within the region of
intcrest. These derivatives are then combined by table
look-up to compute the gradient magnitude and
orientation, Points which are extrema in magnitudc arc
marked as potential edge points and compared against
two thresholds. Hysteresis thresholding is applied so
that only regions of edge points containing at least onc
point above the threshold are considered. Adjacent edge
points with a similar oricntation arc grouped o form
line segments. Edge segments arc represcnted by a
vector of paramelters that includes the mid-point,
orientation and half-length.

Three classes of image processing procedures arc
available in the image processing modulc

1) Edge Segment Extraction. On command, the
module will transfer the pixcls within a region of
interest to an edge extraction card produced by the
consortium, This card computes the gradient
magnitude and orientation and detects pixels
which are extrema in gradient magnitude. Detected
pixels arc grouped in single raster scan to
construct cdge segments. Gradient magnitudes arc
compared to two thresholds to provide a
hysteresis based thresholding.

2) Edge Chain Extraction: In place of edge
scgments, another module may request edge
chains. Edge points are are computed by the same
algorithm as for edge segments. A one pass
raster-chaining algorithm is used to construct a
list of edge chains within the region of interest.
The cdge chaining code is computed on a co-
processor card based on the Intel 680

3) Mecasures for Ocular Reflexes. In order to avoid
communicating images, the measurcments on
which ocular-motor reflexes are based have been
placed in this module. Measures include coarse to
finc computation of phase for convergence, and
gradicnt based measurements for aperture and
focus.

Image Tracking and Description

An image description is maintained by a tracking
process which uscs a first order Kalman filter to track
cdge segments. This tracking process improves the
stability of image primitives, permits the system to
maintain correspondence of image [caturcs over time,
and provides an estimate of the position and velocity of
image primitives as well as the uncertainty of these

733

estimates. It also permits information about the
movement of the head or vchicle Lo be used o
compensate for movements by the robot. A vocabulary
of modcl access and grouping proccdures give
associative access to the 2D description modulcs. These
procedurcs are uscd by a library of "demon" procedures
which can be cnabled in order 1o provide data driven
interpretation of the image description.

Separate image description modules cexist [or the right
and left cameras. The 2D image descriplions are
maintaincd by a tracking process that uscs a first order
Kalman filter to track image description primitives.
This tracking process improves the stability of image
primitives, permits the system 1o maintain
correspondence of image featurcs over time, and
provides an estimate of the position and vclocity of
image primitives as well as the unccrtainty of these
estimatcs.

Model access primitives use matching and grouping 1o
interrogate the contents of the token model. A sct of
demons may be invoked by other modules to
interrogate the description afier cach update using the
model access primitives. Access Lo the 2D model is
provided by a large vocabulary ol model access and
grouping procedures. It is also possible to compose
sequences of these grouping procedures, extracting, for
example, all the junctions near an idcal linc. These
procedures may be called by other modules within the
system, or thcy may be invoked by a scL of
interpretation demons. These demons are placed on an
agenda by messages from other modules. After cach
update cycle the demon agenda is exccuted.
D Geometri n scription Modul

In addition to a description of images, the skcleton
system maintains a geometric description of the scenc.
This gcometric description expresses the structure
within a region of interest of the scenc in terms of 3D
parametric primitives. This modulc assumes that the
phase based convergence reflex maintains the cameras
converged on an object. Convergence maintains edge
segments from a region of interest in the scene in the
similar positions in the image. The image description
access primitive "FindPrototypeSegment” is uscd Lo
construct a list of possible matching scgments in the
left and right image. This list is sorted bascd on
similarity of length, orientation and position. The
most likely matches arc selected for 3D reconstruction.

Reconstruction requires camera calibration. A novel
proccdure for dynamic auto-calibration of camcras has
been developed. This procedure permits a refercnce
frame for a pair of sterco cameras to be constructed for
any scenc objects. The projective transformation
matrices from object centered coordinates can be
obtained by direct observation (no matrix inversion)
and can bc maintained by a very simply operation.
Thesc matrices make it possible Lo reconstruct the 3D
form of objects in an object centered reference frame,
As with the image tracking and description modulc,
the geometric description is maintained by a tracking
process in order 10 provide stability and 1o maintain
correspondcence over time.

Symbolic Scene Interpretation

The symbolic scenc interpretation maintains a
symbolic description of the scene in terms of known
object categorics (or classcs) and qualitative relation,
This description is built up and maintained by
intcrrogating the contents of the image and scene
description modules. The SAVA III symbolic
description process was implemented using the CLIPS
rulc interpreter system. Rules implement a
hypothesize and test process which is triggered by
demons. Working mcmory of the production system
scrves as a blackboard into which recognition
proccdures can poste their results.

Proces: rvisor

The process supervisor maintained a list of places and
roulcs which the system is (o travel, as well as a data
basc of “landmarks” which the system is to find during
mission cxccution. The supervisor plans a navigation
which it then cxecutes by sending commands to the
other modules. An interesting aspect of the supervisors
operation was coordinating between the competing
tasks of watching in front of the robot for obstacles and
scarching for landmarks for position correction.
Obstacles must be searched at least once every 50 cm,
whilc landmark detection is required whenever the
uncertainty of the estimated position passes a certain
threshold. Both operations require command of the
camcra head. This balancing act was performed by a
finite state automata programmed as a set of rules.

Navigation Control

The navigation modulc controls vehicle actions by
sending commands to an on-board vchicle control
program. The on-board program, known as the
“standard vchicle controller”, provides asynchronous
independent control of forward translation and rotation.
The on-board controller acts like auto-pilot, stabilizing
the vehicle and estimating its position. The controller
accepts both velocity and displacement commands, and
can support a diverse variely of navigation techniques.
The controller is capable of responding to commands at
any time using a simple serial line protocol. New
commands for displaccment immcdiately replace
previous commands. This permits visual scrvoing to
be used to pilot the vehicle.

Position and oricntation are modclicd in the vehicle
controlled using Kalman filter to maintain an cstimated
position and covariance. The control protocol includes
a command to corrcct the estimated position and
oricntation and their uncertainty from external
perception using Kalman filter update. This command
has been uscd 1o update the estimated position by
observing the angle to known objects. The LIFIA
standard vchicle controller is described in greater detail
in [Crowley-Reignier 93]. The navigation module
contins procedures 1o detect and avoid obstacles, and to
locale and usc landmarks for updating the vehicle’s
cstimated position.

5. Conclusions

According to the principle of “purposivencss” a vision
system operates in order to furnish an observation
function for some task. In order to cnrich our task
domain, wc have adapted the VAP Skeleton system to
serve as the visual component for a mobile robot
navigating in an indoor environment. We stress that
the visual navigation is not, in itsclf, the goal of the
project. Visual navigation is a task which is
sufficiently rich in events to explore the problems of
integration and control of an active perception system,

During the last four years, thc VAP consortium has
constructed a number of demonstrations of
continuously operating vision systems. In cach of
these systems explicit control of sensor motion and
processing has permitled the system to operate in real
time, with increasingly degrces of robustness. The
consortium experience has verificd the VAP hypothcsis
that control of continuously opcrating process is basic
to the design of a gencral purpose rcal time vision
system,

Bibliography

[Aloimonos ct. al. 88] Aloimonos, J. Y., I. Wciss, and
A. Bandyopadhyay, "Active Vision", Intcrnational
Journal of Computer Vision, Vol. 1, No. 4, Jan. 1988.

[Bajcsy 88] R. Bajcsy, "Active Perception”, IEEE
Proceedings, Vol 76, No 8, pp. 996-1006, Augusl
1988.

{Ballard 91] D. Ballard, “Animatc Vision”, Artificial
Intelligence, Vol 48, No. 1, pp. 1-27, February 1991,

[Bolles-Horaud 84) Bollcs, R. C. and Horaud, P.,
"Configuration Understanding in Rangc Data", Sccond
ISRR, August, 1984.

(Brooks 81] R.A. Brooks, “Symbolic Rcasoning
among 3-D models and 2-D images”, Artificial
Intelligence, Vol. 17, pp. 285-348, 1981.

{Brown 90] C. Brown, Prediction and Co-operation in
Gaze Control, Biological Cybernctics 63, 1990.

[Crowley 87) Crowley, J. L., "Coordination of Action
and Perception in a Surveillance Robot", IEEE Expert,
Vol 2(4), pp 32-43 Winter 1987. (Also in the 10th
LJ.C.A.L, Milan 1987).

(Crowley et. al. 88] J. L. Crowley, P. Stclmaszyk and
C. Discours, "Mcasuring Image Flow by Tracking
Edge Lines", Sccond L.C.C.V., Tarbon Springs, Fla,
Dec. 1988.

[Crowley 91] Crowley, J. L. "Towards Continuously
Operating Integrated Vision Systems for Robotics
Applications", SCIA-91, Scventh Scandinavian
Conference on Image Analysis, Aalborg, August 91.

[Crowley-Rcignicr 93] J. L. Crowley et Patrick
Reignier, “Asynchronous Control of Rotation and
Translation for a Robot Vchicle”, Roboti n

Autonmous Systems, Vol 10, No. 1, January 1993.

(Crowley-Christensen 93] J. L. Crowley and H. 1.
Christensen, Vision as Process, Springer-Verlag Basic
Research Scries, To appear, 1993,

[Draper ct al. 89] B. A. Draper, R. T. Collins,
J.Brolio, A. R. Hansen, and E. M. Riseman, "The
Schema System”, International Journal of Computer
Vision, Kluwer, 2(3), Jan 1989.

{Eklundh 92} Eklundh, J. O. and K.Pahlavan, Head,
"Eyc and Head-Eye System", SPIE Applications of Al
X: Machine Vision and Robotics, Orlando, April 92.

[Granum-Christensen 19901 E. Granum & H.IL
Christensen, Dynamic Robol Vision, In: Traditional
and Non-traditional Robotics Sensors, T. Henderson
(Ed.), NATO ASI Scries in Computer Science,
Springer Verlag, 1990.

{Hanson-Riscman 1978) Hanson, A.R. & Riseman,
E.M., VISIONS: A Computer Vision System for
Interpreting Scencs, in Computer Vision Systems,
A.R. Hanson & E.M. Riscman, Academic Press, New
York, N.Y., pp. 303-334, 1978.

{Huang 83] Huang T. H., Image Sequence Processing
and Dynamic Scene Analysis, Springer Verlag, Berlin,
1983.

(Kalman 60} Kalman, R. E. "A New Approach to
Lincar Filtering and Predictipn Problems”,
Transactions of the ASME, Serics D. J. Basic Eng.,
Vol 82, 1960.

[Krotkov 901 Krotkow, E., Henriksen, K. and
Korics, R., "Sterco Ranging from Verging Cameras”,
IEEE Trans on PAMI, Vol 12, No. 12, pp. 1200-
1205, December 1990.

[Marr 82} Marr, D., Vision, W. H. Frecman, San
Francisco, 1982.

[Tsotsos 87] Tsotsos, J. "Image Understanding”, The
Encyclopedia of Artificial Intelligence, S. C. Shapiro
(Ed), Wilcy, New York, 1987.

[Tsotsos 88] Tsotsos, J. "A Complexity Level
Analysis of Computer Vision", International Journal of
Computer Vision, 1(4), Jun 1988,

[Weems 89] C. Weems, “The Image Understanding
Architecture”, International Journal of Computer
Vision, Kluwer, 2(3), Jan 1989.

735

