
AIAA-94-1282-CP

SAVA III:
A Testbed for Integration and Control of Visual Processes

James L. Crowley Henrik Christensen

LIFIA - IMAG Laboratory of Image Analysis, Aalborg University
46 Ave Fdlix Viallet Fr. Bajers Vej 7 D

38031 Grenoble, France DK-9220 Aalborg, Denmark

724

1 Introduction

During the last few years, there has been a growing
interest in the use of active control of image formation

to simplify and accelerate scene understanding. Basic

ideas which were suggested by [Bajcsy 88] and

[Aloimonos et al. 88] has been extended by several

groups including [Ballard 91], and [Eklundh 92]. This

trend has grown from several observations. For
example, Aloimonos and others observed that vision

cannot be performed in isolation. Vision should serve a

purpose, and in particular should permit an agent to
perceive its environment. This leads to a view of a

vision system which operates continuously ,'rod which

must furnish results within a fixed delay. Rather than
obtain a maximum of information from any one

image, the camera is an active sensor giving signals
which provide only limited information about the
scene.

Bajcsy observed that many traditional vision problems,
such as stereo matching, could be solved with low

complexity algorithms by using controlled sensor

motion. Examples of such processes were presented by

Krotkov [Krotkov 90]. Ballard and Brown [Brown 90]

demonstrated this principle for the case of stereo

matching by restricting matching to a short range of
disparities close to zero, and then varying the camera

vergence angles. The development of robotic ca,ncra

heads has lead to the possibility of exploiting

controlled sensor motion and control of processing to

construct continuously operating real time vision
systems.

At the same time, research in applying artificial
intelligence techniques to machine vision led to an

emphasis on the use of declarative knowledge to

control the perceptual process. Systems such as the

Schema System [Draper et. al. 89] developed a black-

board architecture in which multiple independent

knowledge sources attempted to segment and interpret

an image. A major problem in such systems is control

of perception. Such systems emphasise explicit

representation of goals and goal directed processing

which direct the focus of attention to accomplish
system tasks. It has not been obvious how such a

knowledge based approach to control of attention could

be married to a real time continuously operating
system.

In July 1989, the Europcan Commission funded a

consortium of six laboratories to investigate control of

perception in a continuously operating vision system 1.

The consortium partners set out to build a test-bed

vision system for experiments in control and

integration. An experimental test-bed system was

constructed which integrates a 12 axis robotic stereo

camera head mounted on a mobile robot, dedicated

computer boards for real-time image acquisition and

processing, and a distributed system for image

description. The distributed system includes

independent modules for 2-D tracking and description,

3-D reconstruction, object recognition, and control. On

March 18 1992, a fully integrated continuously
operating vision system was demonstrated to the

European Commission using this test-bed. This paper
reports on the development of this system and the

research which the system makes possible in control of

a real-time vision system. A more complete description

of the results of the project may be found in the book
[Crowley-Christensen 93].

1.1 The Project Vision as Process

The starting point for the project "Vision as Process"

was the demonstration of an integrated vision system

capable of continuous real-time operation. It was
quickly realised that such an ambition raises two

problems:

1) The technical problem of integrating processes
which model the environment in terms of

descriptions which are qualitatively different.

2) The problem of controlling the "attention" and

processing of a continuously operating system.

Concerning the first problem, different robotic tasks

require different kinds of descriptions of a scene. Such

descriptions can include 2D image description, 3D

scene descriptions and symbolic labelling of the

components of a scene. Such processes are

complementary and mutually supportive. A framework

is required which would permit the integration of
multiple vision processes. This can be considered an

"engineering" problem.

1The Partners in project ESPRIT "Vision as Process"

are Aalborg University (DK), University of Surrey

(UK), KTH, The Royal Institute of Technology (S),

University of Linkoping (S), University of Genoa (I),
LTIRF-INPG (F) and LIFIA-INPG (F).

Copyright© 1993 by James L. Crowley and Hcnrik I. Christensen. Published by the American Institute of Aeronautics
and Astronautics, Inc. with permission.

https://ntrs.nasa.gov/search.jsp?R=19950005125 2020-06-16T09:58:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42784642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thesecondproblemisbothsubtleandfundanmntal.
Mostof the algorithmsusedin visionhave
...... tat;nn,_l COSTSwhich ,ton,-n_ ,,n ,h,_ quantity ,,r
data. In the best cases the relation is linear, but in

many cases it is quadratic, cubic, or even exponential.

Real time response requires that the processing time for

any part of the system is limited. This requires that the
amount of data considered during each processing cycle

be bounded which raises the problem of which subset

of the available data the system should attend during

each cycle. This is part of the larger problem of

controlling perception. General purpose real time

vision system requires a solution to this proble,n.

These observations let the consortium to develop a

long term work plan with both an engineering and a

scientific goal. These are:

Engineerin_ Goal:Develop techniques for integrating

cyclic real time processes for description of a

scene in terms of 2D images, 3D structure and

labelled objects using active control of a camera
head.

Goal: Develop methods (and a thcory) of

control of attention in perceptual processes.

With these twin goals, the consortium has developed a

long term plan leading to the demonstration of methods

for the construction of integrated continuously

operating vision systems, and the elaboration of a

theory for the control of such systems.

1.2 System Integration and Control

When the VAP project was conceived in 1988, only a

small number of vision systems were capable of

performing symbolic interpretation, and they were

designed for interpretation of single (static) images.

The well known examples included VISIONS [Hanson-

Riseman 78], ACRONYM [Brooks 81], and 3DPO

[Bolles-Homud 84].

Most work on analysis of image sequences had been

carried out on pre-recorded images and the level of

description was almost entirely parametric, i.e.,

systems could describe regions or features with

independent motion in terms of their image or 3D-

velocity. A review of the state of the art is provided by
Huang [Huang 83]. Continuous and real-time

observation of a dynamically changing scene involves

more than motion interpretation. A continuously
operating vision process must be able to limit

processing to a small subset of the data available from

visual sensors, and to adapt its processing mode

dynamically in response to events in the scene and
requirements of the task.

1.3 The VAP Hypotheses

From its earliest meetings, the VAP consortium agreed
that vision should be studied in the context of its

purpose, i.e. its use by other processes. Without

dedicating to any specific application, this implies that

visual processing can be controlled to concentrate on

the subset of visual information which is considered

relevant to the current goal as defined by a user process.

In addition, the consortiu'.n recognised the ability to

exploit coherence in the dynamic evolution in a scene.
In a continuously operating system, temporal context

permits changes in the scene to be predicted and

computational resources to be directed to confirm

expectations. This implies that tracking is basic

operation within a continuously operating system.

The goal of the VAP project is to demonstrate that a

vision system must be designed as a continuously

operating "process". To demonstrate this principle, the

consortium has designed a six-year research program to

develop techniques to interpret a dynamically changing,

quasi-structured enviromnent. These techniques exploit

goal directed focus of attention involving controlled

sensor motion and control of processing. Processing is

directed by goals which change dynamically in reaction

to the needs of the perceptual tasks and to events in the
scene.

The following section reviews some previous

approaches to integration and control. This previous
work establishes the set of concepts and "prior art"

from which the design of the VAP skeleton system
draws.

2 Systems Architectures for

Integration and Control

A suitable system architecture is required for

experiments in integration and control of a

continuously operating system. In this chapter, we

review previous approaches to architectures of vision

systems. From this review, we argue that flexible

integration may be achieved through use of a standard

module architecture, replicated at each of the levels in

the system. Such a standard module architecture is

described in more detail in chapter 3.

2.1 The Reconstruction Approach

A popular approach for structuring a vision system has

been proposed by Mart [Marr 82]. Marr argues for a

system defined around a hierarchy of representations:

images, The primal sketch, the 2.5-D sketch (viewer

centred depth map), 3-D map and symbolic description.

In this model, processing is organised as sequential

processes in which information flows up through the
levels. Processing is data-driven, in the sense that

recognition and description are based on descriptions

constructed at the lower levels in the system. This

model is computationally demanding and it has proven

difficult (if not impossible) to provide image

descriptors that are sufficiently robust to allow

characterisation of all phenomena in a natural
environment.

The Mart processing model may be termed a

reconstruction approach as it aims at a full

reconstruction of the environment. The processing

model is purely data driven, and thus poses a problem
in terms of computational resources. The Marr model

725

assumesall processingmaybecarriedoutasa
sequentialprocess.Thisimpliesthatamoduleusesthe
representation(s)attheleveljustbelowasabasisfor
itsprocessingandtheresultisstoredinthenexthigher
representationallevel.Theinterfacesareconsequently
welldefined.A simplifiedmodeloftheprocessingis
showninfigure1.

addnewmodulesto thesystem.Thecommon
blackboardisapotentialproblemforacontinuously
operatingsystem.All informationgeneratedandused
bythesystempassesthroughtheblackboard.Itmight
thusposeaproblemwithrespecttoinformationband-
width.Toindicatetheamountofinformation,which
maybegenerateddirectlyfromimagesonemaylookat
thehnageUnderstandingArchitecture,describedby

Comp _ Comp. _ Comp. _im,,Iofprimal of 2.5D of 3D
sketches sketch model

Interpre-
tation

Fig.1A processingmodelforthereconstructionapproach.

In termsof representations,thisprocessingmodel
impliesthatinformationneededtoperformrecognition
andinterpretationofsettingsmustbeavailableaspart
ofthe3Dmodel,i.e.,adiversesetofdescriptorsmust
be taggedontothe3-Dmodelrepresentationto
facilitaterecognitionanddescription.Thisduplication
of informationup throughthesystemandthe
unavailabilityof pixellevelprimitivescanposea
problemintermsofmodelsizeandmaintenanceover
time.

2.2 The Non-Committal Approach

In the VISIONS system [Hanson-Riseman 1978] data

are stored on a blackboard, or common storage area and

processing is performed in parallel by a number of

"knowledge sources". All modules in the system can
access information at any of the representational levels.

This implies that information does not have to be

replicated up through the system to be made available
for recognition procedures. A simplified model of the

non-committal approach is illustrated in figure 2.

Blackboard

Fig. 2. Architecture for the non-committal approach.

In this architecture, each of the modules in tile system

has control information that specify the information

that must be available before the module may carry out
its task. In addition, it has control information that

specifies the information which may be provided by the

module. Through use of a control executive, it is

possible to perform both goal directed and data driven

processing through use of this control information.

This processing model imposes fcw constraints on the

representations used in thc systems and it is simple to

Weems et al. [Weems 1989]. In that system, the

storage reserved for intermediate representations is 4
GB and the system is only aimed at analysis of single

images. Such an architecture will require extensive use

of special purpose hardware, in particular when applied
in the temporal context.

2.3 The Purposive Approach

Introduction of goal directed operation and use in a
limited and well defined domain of application allow

synthesis of a vision system which is composed of a

set of specifically engineered modules. Such modules

may be designed to be computationally well behaved,
in the sense that the computational complexity is

bounded and often robust representations can be

provided. This approach to construction of vision

system has been promoted by Bajcsy [Bajcsy 88],
Ballard [Ballard 91] and [Aloimonos et al. 88].

Although the approach exploits specific vision
modules, Bajcsy has tried to enumerate a set of

modules that might form a general purpose system.
The use of dedicated modules is a way to provide robust

information and computationally tractable techniques.

Well known examples of dedicated modules used for

robot navigation are optical flow modules that can

compute the position of the focus of expansion for the

optical flow field, and modules which can compute the

time to contact from motion in an image sequence.

This approach to system construction is termed the

purposive or the animate approach. It is envisaged that

the construction and analysis of specific modules will

gradually provide insight that will allow definition of

modules applicable in general vision systems. The

convergence towards a standard set of modules through

analysis of diverse application domains might provide
valuable insight, but it is not obvious that convergence
will be achievable.

In the purposive approach, the exploitation of

information is task driven and may be very different

from one task to the next. The basic system
architecture should thus be flexible and facilitate

dynamic change of the information flow. In practical

systems a number of modules may exploit the same

representation and once a system has been defined an

726

analysisoftherepresentationalrequirementsmaypoint
tothedefinitionof asetofstandardrepresentations.
Givenpresentstateof theart no suchgeneral
representationsareknown.

Apurelypurposiveapproachtovisionrejectsmostof
theestablishedtechniques.Modulesaretobebuilt
from scratch whenevera new type of
information/representationis required.Thereis
consequentlyaconcernthatfromthisapproachlittle
insightwill begainedin termsthegeneralvision
problem.

2.4 The Vision as Process Architectu,'e

During the first year, the consortium "Vision as

Process" addressed the problem of design of an
architecture which would meet the following criteria:

1) Continuously operating.

2) Integrating software contributions from

geographically dispersed laboratories

3) Integrating description of the environment with

2D measurements, 3D models and recognition of

objects.

4) Capable of supporting diverse experiments in

gaze control, visual servoing, navigation and
object surveillance.

5) Dynamically reconfigurable as the task changes.

The result was the design of a distributed test-bed

system composed of independent modules. Modules

may communicate by message passing over a central

message server, or by dedicated "high-band width"

channels. Systems can be composed from sub-sets of

the available modules for individual experiments.

The architecture adopted by the consortium is shown in

figure 3. The system has a data flow part, which is

similar to the Marr processing model. It should be

noted that the data flow is not only bottom-up but may
also be top-down. Top-down expectations (derived from

the present set of goals and contextual information) can

be used to direct/control processing at lower levels,
while detected event at the same time can drive a

reconstructive mode of processing. The VAP
architecture contains a common communication

channel that allow communication between any pair of

modules in the system. This communication channel

may be used both for investigation of a non-committal

processing model, and for investigation of purposive

systems, as the component processes in the system in
figure 3 may either general purpose or dedicated.

This architecture imposes few constraints on the design

of component ,nodules and it provides flexibility for
the investigation of system level control issues.

Initially it was envisaged that the main flow of data
would exploit the communication links between

adjacent modules, while only control infor,nation

would be communicated through the common channel.

During the execution of the project it was realised that

a more flexible processing model was needed to make
computations both efficient and robust.

f..)

©
%)

4, t
_[-'--_SUPERVISOR]

I
I

E× oF
"1 I
d IMAGE

"] ACQ & DESCR

Fig. 3. The VAP system architecture

Having selected a distributed architecture composed of
modules, the consortium turned its attention to the

design of a common component for each module. At

the very least, this standard module must provide the
communications interface. It was soon observed that

scheduling was a basic to continuous operation and a

cyclic scheduler was provided which calls the

procedures which implement each phase of

computation. The phases of operation included phases

for integration of new data and phases for control of
processing.

In order to obtain temporal context, the consortium

drew on previous results in image tracking. A tracking

architecture was defined composed of the phases predict-

match-update [Crowley et al. 88], [Granum-Christensen

88] based on techniques used in the control community
since the early sixties [Kalman 60]. The architecture is

shown in figure 4.

The analysis block, in figure 4, is responsible for the

frame by frame analysis, which generated a set of

geometric primitives (or tokens). The correspondence

with information in the temporal context is performed

in the match block. To simplify matching the

information in the temporal context is used in a
prediction of the expected content of the next frame.

Once correspondence has been established the

information contained in the internal models must be

updated to reflect the new information contained in the

new frame. Once updating has been carried out the

cycle ,nay start all over again.

727

N

_ ANALYZE]==_

TRANS-FORM

MATCH

t

N+I

DATA

UPDATE

] _ EXPECTATION

[PREDICT _ L

Figure 4. Basic Predict-Match-Update cycle for file module architecture.

As a model at level N+I is used for prediction of

primitives in the next frame, the predictor may also be

given other types of input which can be used for
guidance of processing. Introduction of goal derived
information into the model at level N+I will

consequently allow top-down/attention based control of

processing. A prediction may be transformed into a

representation that is compatible with the one used the

level below, so that it may drive processing at the level
below. This flexibility facilitates investigation of

different control strategies.

2.5 Control Issues

Construction of an operational system includes issues

in control to ensure satisfaction of user defined goals.

Goals are widely recognised as a fundamental

component of intelligent systems. The consortium

initially defined a set of general goal commands :

search(X): Is X present in the scene?

find(X): Where is X, given X
identified earlier?

has bccn

mlate(X,Y): What is the spatial relation between X
and Y?

describe(X,Y): Detennine property Y for object X

watch(X): Allocate resources for notification of

changes for X

track(X): Maintain a dynamic description of

object X.

This sct of goals defines the user level interface to the

system. Based on the potential goals, the system must
be able to allocate its resources for optimal satisfaction

of the concurrent goal(s).

A number of approach to goal directed processing have

been reported in the vision literature. Most of these

efforts include use of a cyclic process, in which data
received are matched against expectations. Depending

on success or failure in the matching process an

updating or event detection process is used to drive the

next cycle of processing. An example of such a cyclic

process is described by [Tsotsos 87] for the ALVEN

system.

When the VAP effort was initiated the use of

production systems and reasoning under uncertainty

appeared the most promising in terms of providing

insight into the problem of the cycle of planning,

sensing and interpretation. These tools have been

incorporated into the system. In system level control,

externally defined goal commands are translated into

actions by rule based planning. Planning generates the
sequence of state transitions (actions and their

parameters) expected to allow completion of a goal.

These actions are then executed by one or more system

modules. The internal handling of such actions is an
issue that is resolved for each of the modules. A

skeleton system constructed by the consortium

provides the framework for experiments in control and

coordination of visual processes.

3. The SAVA III Skeleton System

In order to perform experiments in control and

integration of a continuously operating vision system,

the VAP consortium constructed an empty "skeleton"

system. This skeleton was then provided to partners so

that they could "fill in" the functional parts needed for

their experiments 2. This system was named SAVA,

for the french acronym "Squelette d'Application pour la

Vision Active". The SAVA Skeleton system provides
a standard module with communic_ition and interface

components that permit an experimenter to construct
and run distributed real time vision system.

The structure of SAVA has evolved with our

understanding of the problems of integration and

control. The original SAVA system was released at

month 12 of VAP-I. Experiences during the second

year of VAP-I brought out a number of shortcomings

in the design. A team composed of people from AUC,

KTH and LIFIA designed a revised version, SAVA II,
which was released at the month 24 milestone. An

intense integration effort was performed in preparation

of the month 33 integrated demonstration, with
software and hardware contributions from all VAP

partners integrated into SAVA II. Modifications in

communications and interface design, as well as a large

number of small improvements, led to release of
SAVA 2.4 in March 1992.

Experience with SAVA II has shown the importance of

demons for combining purposive and event driven

control of perception. This led to the desire for an

interpreter for demon functions. In addition,

2The incompatibility of successive releases of MOTIF

have created problems for portability and have cost the

consortium considerable time and money.

728

programmingcontrolexperimentsinSAVAII wasa
somewhatdifficulttask.Controlknowledgewas
_ ,t..a._., : A,, t _ ,, ,,_ ,,n,,t,_,,,Sta_ dcmocoucu ,.v, oc,_m"a, ..ode.nd thus hard

or change. It was decided to design a control system

based on an interpreter for declarative expressions of the

control logic. From these two needs emerged the idea

of using the CLIPS 5.1 rule interpreter for the control

component and the demon interpreter within each

module. CLIPS 5.1 is written in C and is provided
with the full source code. As a result, it was extremely

easy to integrate the SAVA ,nodules into the CLIPS
environment.

A new version of the skeleton system, SAVA III, has

been created based on the principle of interpreting
control information. In SAVA III, most of the

procedures for processing and communication are

written as C procedures and explicitly declared to the

CLIPS 5.1 rule interpreter. Rules and functions are

then written using these procedures. The basic

processing cycle is built as a sequence of states with
transitions managed by rules. The processing performed

within a state can be easily changed based on either

perceptual events or external commands. Because the

control rules are interpreted, the control sequence for a

module may be changed dynamically, without re-

compiling a module. It is even possible for a module
to send another module function definitions as ASCII

messages, using the CLIPS deffunction facility. The

rule based scheduler is particularly useful for the

implementation of demons. Demons may be

programmed as rules which react to the contents of the

model as well as to external messages.

In addition to the changes in the control part, a major

effort has been made to add the possibility of

synchronised operation to the modules. SAVA is a soft

real-time system, distributed over a set of workstations

operating under UNIX. At some time in the future, we

intend to port SAVA onto dedicated hardware running

under a real time programming environment. However

such systems are relatively difficult to program and

debug. The use of UNIX and distributed processing

permits the VAP-II project to perform experiments
with a reasonable effort.

A synchronisation system has been built into SAVA

III in order to compensate for uncertainties in
communication and execution time for distributed

modules. A synchronisation module provides other

modules with a universal time reference. In this way,

all information that is processed or communicated is

time-stamped, permitting an estimate of dynamic
processes to be observed or controlled.

The following sections present a detailed description of

the components of the SAVA III system. It first gives

a brief overview of the components of the skeleton
system and its standard module. It then describes

processes for interpreting messages using a rule based

interpreter, and the design of "demon" processes that

perform pre-attentive detection of events. A description

of the rule based control of a module is presented,

followed by a description of the synchronisation of
modules.

3.1 Overview of the SAVA III
Software Skeleton

The SAVA skeleton system is composed of the

following components:

1) A launcher program that permits the user to

assign modules to processors and to initiate

operation.

2) A distributed mailbox system that is launched on

the different processors to establish a

communications system and to launch the

component processes.

3) A library of communication procedures for

modules. This library include procedures for

communication by message as well as procedures

for dedicated high band-width communication

between processes.

4) A skeleton module structure built around a

scheduler.

5) A set of graphical man-machine interfaces.

The SAVA system provides mailbox communication

for data, control and acknowledgements, as well as a

procedures for dedicated high-band-width channels

between ,nodules. Messages include formatting

information that permits the message passing system

to pack and unpack messages.

Visual perception is performed within processes

imbedded in copies of the SAVA "standard module".

The SAVA III standard module is shown in Figure 5.

The standard module is composed of a number of

procedures (shown as rectangles) that are called in

sequence by a scheduling process.

A SAVA ,nodule repeatedly executes a cycle in which
it:

1) Acquires new data.

2) Transforms this data into an internal

representation.

3) Makes predictions from its internal model.

4) Matches the predictions with the transformed data.

5) Uses the match results to update the internal
model.

6) Executes demons to detect perceptual events
within the internal model.

This cyclic process is executed by a rule-interpreter.

Each phase corresponds to a state in which a particular
operation is performed. At each state transition new

messages which have arrived on the mail box channel

are read and processed. Such messages may change the

procedures that are used in the process, change the

parameters that are used by the procedures, or

interrogate the current contents of the description that
is being maintained.

729

M
A
I
L
B
0
X

InterpretationDemons
Access Primitives

(grouping) [. _I _.._-.---

CUPS 5.1 _'1 Match ?

Message J i_. l

Nandle_ _' Processing

..... _ Procedure Call

,,..--_ Messages

Data

¢
Predict

............................. Standard Module Architecture,-
Figure5 Architecture of a Standard Module in SAVA III

The cyclic process within a module is managed by a

control token placed on the working memory. This
control token is a simple list in which the first atom is

the word "phase" and the second is the name of one of

the phases: {get-data, transform, predict, match, update,

messages, demons}. The definition of theses phases is
as follows:

get-data Acquire a new observation

transform Transform the data to the

representation

internal

predict Predict the contents of the observation

match Match the prediction to the observation

update

demons

Update the model using the correspondence
of the prediction and the observation

Execute a set of automatic procedures for
event detection.

At the end of each cycle, the scheduler executes a set of

demons. Demons are responsible for event detection,

and play a critical role in the control of reasoning.

Some of the demon procedures, such as motion

detection, operate by default, and may be explicitly

disabled. Most of the demons, however, are specifically

designed for detecting certain types of structures. These

demons are armed or disarmed by recognition

procedures in the interpretation module according to the
current interpretation context.

In the SAVA III system, the procedures of a module

are made explicitly available to the CLIPS 5.1 rule

based interpreter. This includes the original SAVA II

scheduler, so that the system is upwards compatible. In

addition to acting as a scheduler, the rule interpreter is

also used to define the control part of demons and to

interpret messages from other modules.

3.2 Communications Between Modules

Modules communicate control, data requests, reply and

synchronisation information using message passing

based on Unix Sockets. The SavaSend0 function is

used to send mailbox messages to other modules. A
SavaSend command contains three fields:

Header: The destination and type of message.

Format: An ASCII description of the message format.

Body: Tile message including commands and

parameters.

The destination is a symbolic name for another

module. The types of message may be control,

acknowledge or data. All message exchanges are

initiated by a control message. The format string is
transmitted with the message and is used both to

encode and decode the message. In this way a change in
message protocol may be made with a minimum of

difficulty. This format string can contain conversion

directives like %d, %f, and %c, based on the C

language printf protocol. We have added conversion

730

directives for sending ,arrays, structures and images.

Many SAVA functions accept a variable number of
arguments. Furthermore, the type of these arguments is
unspecified. These functions accept a fixed number of
normal arguments, followed by an arbitrary number of
arguments of unknown type. The last normal ,argument
is a format string which describes the arguments
following it.

Large data structures may be communicated between
modules using dedicated sockets. Communication of
dedicated channels are perfor,ned by the functions
SavaRead and SavaWrite. As with mail-box,
messages, high band-width channel messages are
encoded with an ASCII format directive which is
transmitted with the message. High band-width
channels in SAVA are faster than message passing
because the channels provide a direct connection. No
intermediate routing is necessary.

Messages passed through the mail box communication
system are interpreted by the rule interpreter. New
messages are transformed into working memory
elements by the function "check,nessage".
Checkmessage creates a list in working memory
composed of the keyword "message" followed by the
name of the sender, a message keyword and and ASCII
string with the body of the message. Checkmessage
assures upwards compatibility with message types that
were defined in SAVA II which have not be
transformed to SAVA III.

The checkmessage function is executed at the end of
each phase of the standard module. For example, the
transition from match to update is performed by the
rule "update-phase" :

(defrule update-phase

(declare (salience -I00))

?p <- (phase match ?c)

=>

(check-message)

(retract ?p)

(assert (phase update ?c))

)

The result of check-message is a list of the form:

(message ?sender ?command ?body)

If ?command string is tested to determine how the
message should be interpreted. If command corresponds
to one of the CLIPS keywords "deffunction" or
"defrule", then ?body is interpreted by the CLIPS
function BUILD. This is permits external modules to
define functions and rules using the CLIPS deffunction
and defrule constructs.

If ?command corresponds to a previously defined
function, then ?body is executed using the clips "eval"
construct. If ?command is unknown, or the
interpretation is not successful, eval returns FALSE.
The result returned by eval is used by the function
"reply" to send a reply to the sender. If the message
evaluates to a "NIL", then reply does not send a

message.

The CLIPS function "build" will interpret a string as if
it has been typed to the interpreter. This may be used
to interpret defrule and deffunction messages from other
modules, as shown by the rule "interpret-def-
co,nmands". The command "my-append" is used to
compose a list with the desired commands.

(defrule interpret-def-commands

(declare (salience I00))

?m <- (message ?sender ?command ?body)

(test (member ?command

(my-append deffunction defrule)))

=>

(reply ?sender (build ?body))

(retract ?m)

Functions may be defined at initialisation or by
messages from other modules. A function, encoded in
an ASCII string, ,nay be executed using the CLIPS
"eval" command, as shown by the rule "interpret-
function-messages"

(defrule interpret-function-message

(declare (salience I00))

?m <- (message ?sender ?command ?body)

(test (member ?command

(mv-append list-deffunctions))

=>

(reply ?sender (eval ?body))

(remove ?m)

If the interpretation is not successful, eval returns
FALSE. Unless the result is NIL, it is sent to the
?sender in a reply message.

3.3 Automatic Interpretation by Demon
Processes

A demon is an automatic procedure which operates on
the internal model of each module to detect events.
Currently active demon procedures are executed after the
update phase of each cycle. Demons are responsible for
event detection, and play a critical role in the control of
reasoning. Some of the demon procedures, such as
motion detection, operate by default, and may be
explicitly disabled. Most of the demons, however, are
specifically designed for detecting certain types of
structures.

Demons may be invoked by other demons or by
commands received from other modules, including from
a human supervisor. A demon is instantiated by
entering a demon token in working memory. A demon
token is simply a list with three elements:

(demon <name> <id>)

where <name> is the name of the demon and <id> is a

unique identity deter,nined by the function "gensym".
Multiple copies of the same demon can be instantiated,
each having its own "id". Each demon can create its
own state in working memory, indexed by <id>. A
demon can be removed by removing the demon token

731

fromworkingmemory.

Thecontrolpartofademonisencodedasrules.As an
example consider a demon to find ellipses in the image:

(defrule ellipse-finder "The demon for an

ellipse finder"

(phase demons)

(demon ellipse-finder ?id)

(ellipse-demon-data (id ?id)

(parameters ?p))

=>

(assert (get-ellipses ?p)))

If we suppose that the function "get-ellipses" will
instantiate a structure of type ellipse for each ellipse
found, then a second rule can be written to treat each
ellipse.

(def frule hypothesize-cylinder "generate

cylinder hypotheses"

(phase demons)

(demon cylinder-finder)

(ellipse (id ?id) (cx ?x) (cy ?y)

(major ?ma) (minor ?mi)

(angle ?angle))

(test (< 5 (abs ?angle)))

=>

(assert (cylinder (cx ?x) (bottom ?y)

(radius ?ma) (ellipse ?id)))

(assert (cylinder (cx ?x) (top ?y)

(radius ?ma) (ellipse ?id))))

Other rules can be used to detect the existence of

cylinders with the same axis and to reduce cylinder
hypotheses to a minimum number, or to use the
hypothesis of a cylinder with several ellipses to
generate the hypothesis of a cup.

Goals for the module can be entered into working
memory as a three element list:

(goal <name> <priority>)

Goals can then have the effect of activating and dis-
activating demons. An example of a goal invoking a
demon is the rule "cup-demons".

(deffrule cup-demons

"invoke the cylinder finder"

(phase demons)

(goal find-cup ?p)

=>

(assert (demon cylinder-finder)))

An example of removal of demons is the rule "remove-
non-cup-demons".

(def frule remove-non-cup-demons

'_remove cup demons"

(phase demons)

(goal find-cup ?p)

?d <-(demon ?n ?id)

(not (?n cylinder-finder))

=>

(retract ?d))

Having a rule interpreter provides explicit control
knowledge for demons and their control logic. It also

permits the working memory to be used to create and
free working memory for representing demons state.
The result is a flexible, easy to use, tool for
experiments in control of perception. In the following
section we present an example of such control.

4 The Visual Navigation
Demonstrator

This section illustrates the use of SAVA III by
presenting an overview of the a visual navigation
system. This system was constructed for the milestone
1 demonstration of VAP-II presented in June 1993.
The structure of the demonstration system is shown in
figure 6. The system is composed of processes for

1) Fixation control of the binocular head.
2) Local navigation actions for a mobile robot.
3) hnage acquisition and processing.
4) Tracking and grouping a 2-D description of the

contents of the image.
5) Computing and maintaining a 3-D description

around a fixation point.
6) Recognition of landmarks and object.
7) System Supervisor for coordinating processing of

the other system modules.

Fix_[ion Control 1ni

The fixation control unit provides a standard interface
to the device controller for the VAP/SAVA binocular
stereo head. This module maintains a copy of the
current state of the fixation point and the component
axes for the binocular head. It receives commands in
the form of tasks expressed in either device or motor
coordinates. Commands are communicated to the
binocular head, the robot-arm (neck) or the mobile
platform using such device-level control.

The fixation control unit also contains facilities for

programming procedural style "perceptual actions".
Such perceptual actions are reflex procedures that
command the state of the binocular head at either the
device level or the motor level based on measurements
made from images. Examples of low level perceptual
actions include ocular reflexes for servoing aperture,
focus and vergence. Other examples include procedures
for tracking a moving object.

hn_lge Acqvi_i(i0n and Proces_in_

The image acquisition and processing module handles
all image processing requirements for the other
modules, thus minimizing the communication
requirements. This module is based on two computer
cards constructed by the consortium. The first of these,
the Pyramid card digitizes synchronised stereo images
and immediately computes a 12 level binomial pyramid
for the two images. Processing time for each pair of
images is 40 ms. The second card extracts edge
scg,nents using Gaussian derivatives.

732

Synch

a ,

a

i
I
b

0

X

Supervisor J ,,,.-"_ High Bandwidth Data

Messages

Object IRecognition _ Radio Modem

3D

Description

Right
Image

Left H ,f

Image

Description Description

Image Acquisition
and Processing

,f
, F,xat,onCameraIController

vehicleNavigation Controller

Figure 6 A Distributed Multi-process Vision System.

The edge extraction process begins by calculating the

horizontal and vertical derivatives within the region of

interest. These derivatives are then combined by table

look-up to compute the gradient magnitude and

orientation. Points which are extrema in magnitude are

marked as potential edge points and compared against
two thresholds. Hysteresis thresholding is applied so

that only regions of edge points containing at least one

point above the threshold are considered. Adjacent edge

points with a similar orientation are grouped to form

line segments. Edge segments are represented by a

vector of parameters that includes the mid-point,

orientation and half-length.

Three classes of image processing procedures are

available in the image processing module

1) _ Segment Extraction. On command, the

module will transfer the pixels within a region of

interest to an edge extraction card produced by the

consortium. This card computes the gradient
magnitude and orientation and detects pixels

which are extrema in gradient magnitude. Detected

pixels are grouped in single raster scan to

construct edge segments. Gradient magnitudes are

compared to tw o thresholds to provide a

hysteresis based thresholding.

2) Edge Ch_lin Extraction: In place of edge

segments, another module may request edge

chains. Edge points are are computed by the same

algorithm as for edge segments. A one pass

raster-chaining algorithm is used to construct a

list of edge chains within the region of interest.

The edge chaining code is computed on a co-

processor card based on the Intel 680

3) for Ocular Reflexes. In order to avoid

communicating images, the measurements on
which ocular-motor reflexes are based have been

placed in this module. Measures include coarse to

fine computation of phase for convergence, and

gradient based measurements for aperture and
focus.

hna_e Trackin_ and Description

An image description is maintained by a tracking

process which uses a first order Kalman filter to track

edge segments. This tracking process improves the

stability of image primitives, permits the system to

maintain correspondence of image features over time,

and provides an estimate of the position and velocity of
image primitives as well as the uncertainty of these

733

estimates.It alsopermitsinformationaboutthe
movementof theheador vehicleto beusedto
compensateformovementsbytherobot.A vocabulary
of modelaccessandgroupingproceduresgive
associativeaccesstothe2Ddescriptionmodules.These
proceduresareusedbyalibraryof"demon"procedures
whichcanbeenabledinordertoprovidedatadriven
interpretationoftheimagedescription.

Separateimagedescriptionmodulesexistfortheright
andleft cameras.The2Dimagedescriptionsare
maintainedbyatrackingprocessthatusesafirstorder
Kalmanfilterto trackimagedescriptionprimitives.
Thistrackingprocessimprovesthestabilityofimage
primitives,permitsthe systemto maintain
correspondenceof imagefeaturesovertime,and
providesanestimateof thepositionandvelocityof
imageprimitivesaswellastheuncertaintyof these
estimates.

Modelaccessprimitivesusematchingandgroupingto
interrogatethecontentsofthetokenmodel.Asetof
demonsmaybe invokedby othermodulesto
interrogatethedescriptionaftereachupdateusingthe
modelaccessprimitives.Accesstothe2Dmodelis
providedbyalargevocabularyof modelaccessand
grouping procedures. It is also possible to compose

sequences of these grouping procedures, extracting, lot

example, all the junctions near an ideal line. These

procedures may be called by other modules within the

system, or they may be invoked by a set of

interpretation demons. These demons are placed on an
agenda by messages from other modules. After each

update cycle the demon agenda is executed.

3D Geometric Scene Description Module

In addition to a description of images, the skcleton

system maintains a geometric description of the scene.

This geometric description expresses the structure
within a region of interest of the scene in terms of 3D

parametric primitives. This module assumes that the

phase based convergence reflex maintains the cameras

converged on an object. Convergence maintains edge

segments from a region of interest in the scene in the

similar positions in the image. The image description
access primitive "FindPrototypeSegment" is used to

construct a list of possible matching segments in the

left and right image. This list is sorted based on

similarity of length, orientation and l)osition. The

most likely matches are selected for 3D reconstruction.

Reconstruction requires camera calibration. A novel

procedure for dynamic auto-calibration of cameras has

been developed. This procedure permits a reference

frame for a pair of stereo cameras to be constructed for

any scene objects. The projective transformation

matrices from object centered coordinates can be
obtained by direct observation (no matrix inversion)

and can be maintained by a very simply operation.

These matrices make it possible to reconstruct the 3D

form of objects in an object centered reference frame.

As with the image tracking and description module,
the geometric description is maintained by a tracking

process in order to provide stability and to maintain

correspondence over time.

Symbolic Scene lnteroretation

The symbolic scene interpretation maintains a

symbolic description of the scene in terms of known

object categories (or classes) and qualitative relation.

This description is built up and maintained by

interrogating the contents of the image and scene

description modules. The SAVA III symbolic

description process was implemented using the CLIPS

rule interpreter system. Rules implement a

hypothesize and test process which is triggered by

demons. Working memory of the production system

serves as a blackboard into which recognition

procedures can poste their results.

Process Supervisor

The process supervisor maintained a list of places and
routes which the system is to travel, as well as a data

base of "landmarks" which the system is to find during

mission execution. The supervisor plans a navigation

which it then executes by sending commands to the

other ,nodules. An interesting aspect of the supervisors

operation was coordinating between the competing

tasks of watching in front of the robot for obstacles and
searching for landmarks for position correction.

Obstacles must be searched at least once every 50 cm,
while landmark detection is required whenever the

uncertainty of the estimated position passes a certain

threshold. Both operations require command of the

camcra head. This balancing act was performed by a

finite state automata programmed as a set of rules.

Navigation Control

The navigation module controls vehicle actions by

sending commands to an on-board vehicle control

program. The on-board program, known as the

"standard vehicle controller", provides asynchronous

independent control of forward translation and rotation.

The on-board controller acts like auto-pilot, stabilizing

the vehicle and estimating its position. The controller

accepts both velocity and displacement commands, and

can support a diverse variety of navigation techniques.

The controller is capable of responding to commands at

any time using a simple serial line protocol. New

commands for displacement immediately replace

previous commands. This permits visual servoing to

be used to pilot the vehicle.

Position and orientation are modelled in the vehicle

controlled using Kahnan filter to maintain an estimated

position and covariance. The control protocol includes

a command to correct the estimated position and

orientation and their uncertainty from external
perception using Kahnan filter update. This command

has been used to update the estimated position by
observing the angle to known objects. The LIFIA

standard vehicle controller is described in greater detail

in [Crowley-Reignier 93]. The navigation module

contains procedures to detect and avoid obstacles, and to

locate and use landmarks for updating the vehicle's

estimated position.

734

5. Conclusions

According to the principle, of"n " ,-,,,, " • "........... t.HI"pOSIV SS a vision

system operates in order to furnish an observation
function for some task. In order to enrich our task

domain, we have adapted the VAP Skeleton system to

serve as the visual component for a mobile robot
navigating in an indoor environment. We stress that

the visual navigation is not, in itself, the goal of the
project. Visual navigation is a task which is

sufficiently rich in events to explore the problems of

integration and control of an active perception system.

During the last four years, the VAP consortium has
constructed a number of demonstrations of

continuously operating vision systems. In each of

these systems explicit control of sensor motion and

processing has permitted the system to operate in real

time, with increasingly degrees of robustness. The

consortium experience has verified the VAP hypothesis

that control of continuously operating process is basic
to the design of a general purpose real time vision

system.

Bibliography

[Aloimonos et. al. 88] Aloimonos, J. Y., 1. Weiss, and

A. Bandyopadhyay, "Active Vision", International

Journal of Computer Vision, Vol. 1, No. 4, Jan. 1988.

[Bajcsy 88] R. Bajcsy, "Active Perception", IEEE

Proceedings, Vol 76, No 8, pp. 996-1006, August
1988.

[Ballard 91] D. Ballard, "Animate Vision", Artificial

Intelligence, Vol 48, No. 1, pp. 1-27, February 1991.

[Bolles-Horaud 84] Bolles, R. C. and Horaud, P.,

"Configuration Understanding in Range Data", Second
ISRR, August, 1984.

[Brooks 81] R.A. Brooks, "Symbolic Reasoning
among 3-D models and 2-D images", Artificial

Intelligence, Vol. 17, pp. 285-348, 1981.

[Brown 90] C. Brown, Prediction and Co-operation in
Gaze Control, Biological Cybernetics 63, 1990.

[Crowley 87] Crowley, J. L., "Coordination of Action

and Perception in a Surveillance Robot", IEEE Expcrw,,

Vol 2(4), pp 32-43 Winter 1987. (Also in the 10th
I.J.C.A.I., Milan 1987).

[Crowley et. al. 88] J. L. Crowley, P. Stehnaszyk and

C. Discours, "Measuring Image Flow by Tracking

Edge Lines", Second I.C.C.V., Tarbon Springs, Fla,
Dec. 1988.

[Crowley 91] Crowley, J. L. "Towards Continuously

Operating Integrated Vision Systems for Robotics
Applications", SCIA-91, Seventh Scandinavian

Conference on hnage Analysis, Aalborg, August 91.

[Crowley-Reignier 93] J. L. Crowley et Patrick
Reignier, "Asynchronous Control of Rotation and

Translation for a Robot Vehicle", Robotics and

Autonmous Systems, Vol 10, No. 1, January 1993.

[Crowley-Christensen 93] J. L. Crowley and H. I.

Christensen, Vision as PrQ_e_s, Springer-Verlag Basic

Research Series, To appear, 1993.

[Draper et al. 89] B.A. Draper, R. T. Collins,

J.Brolio, A. R. Hansen, and E. M. Riseman, "The

Schema System", International Journal of Computer
Vision, Kluwer, 2(3), Jan 1989.

[Eklundh 92] Eklundh, J. O. and K.Pahlavan, Head,

"Eye and Head-Eye System", SPIE Applications of AI

X: Machine Vision and Robotics, Orlando, April 92.

[Granum-Christensen 1990] E. Granum& H.I.

Christensen, Dynamic Robot Vision, In: Traditional
and Non-traditional Robotics Sensors, T. Henderson

(Ed.), NATO ASI Series in Computer Science,
Springer Verlag, 1990.

[Hanson-Riseman 1978] Hanson, A.R. & Riseman,

E.M., VISIONS: A Computer Vision System for

Interpreting Scenes, in Computer Vision Systems,

A.R. Hanson & E.M. Riseman, Academic Press, New

York, N.Y., pp. 303-334, 1978.

[Huang 83] Huang T. H., Image Sequence Processing

_and Dynamic Scene Analysis, Springer Verlag, Berlin,
1983.

[Kahnan 60] Kahnan, R. E. "A New Approach to

Linear Filtering and Prediction Problems",

Transactions of the ASME, Series D. J. Basic Eng.,
Vol 82, 1960.

[Krotkov 90] Krotkow, E., Henriksen, K. and

Kories, R., "Stereo Ranging from Verging Cameras",

IEEE Trans on PAMI, Vol 12, No. 12, pp. 1200-
1205, December 1990.

[Mart 82] Marr, D., Vision, W. H. Freeman, San
Francisco, 1982.

[Tsotsos 87] Tsotsos, J. "hnage Understanding", The

Encyclopedia of Artificial Intelligence, S. C. Shapiro

(Ed), Wiley, New York, 1987.

[Tsotsos 88] Tsotsos, J. "A Complexity Level

Analysis of Computer Vision", International Journal of
Computer Vision, 1(4), Jun 1988.

[Weems 89] C. Weems, "The Image Understanding
Architecture", International Journal of Computer
Vision, Kluwer, 2(3), Jan 1989.

735

