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Abstract

This paper investigates the fault-tolerant control of

hyper-redundant spatial manipulators. The standard re-

solved rate control law using the pseudoinverse is modi-

fied to account for joint failures. To combat the problem
of extremely high joint velocity solutions generated near

singular configurations by the pseudoinverse, the singu-

larity robust inverse is employed. A method to com-

pute an optimal scale factor for the robust inverse is

derived. Simulation results of this approach applied to

an 11 DOF manipulator are presented which verify the

validity of this approach.

1 Introduction

Recent advances in the field of robotics has resulted

in redundant manipulators gaining increased attention

due to advantages over conventional manipulators such

as increased dexterity. Hyper-redundant manipula-

tors represent the next step in manipulator evolution.

These manipulators posses a large number of Degrees-

Of-Freedom (DOF). This paper investigates the kine-
matic control of hyper-redundant spatial manipulators

with particular emphasis on fault-tolerant control.

The redundant structure of such manipulators en-

dows them with many desirable properties, such as

fault-tolerant features. The redundancy can be ex-

ploited to seamlessly complete end-effector tasks in

the face of single or multiple joint motor failures. A

rate-inverse kinematic control algorithm utilizing the

pseudoinverse is presented that is insensitive to arbi-

trary joint motor failures. Another feature of redun-

dant manipulators is the possibility of optimal joint-

motion coordination. However, redundant manipula-

tors are plagued by the presence of singular configura-
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tions. In these configurations first order motion in a

certain end-effector direction is not possible, and are

associated with loss of manipulator Jacobian matrix

rank. Standard kinematic control algorithms fail at or

near singular configurations. The singularity problem

is also considered by implementing a singularity robust

kinematic control algorithm that is insensitive to joint

failures. The robustness is determined by a scaling fac-

tor. An optimal method to pick the scaling factor is
also derived such that end-effector tracking accuracy is

sacrificed in order to not violate joint velocity limits.

Simulation results of this approach applied to an 11

DOF spatial manipulators are presented which verify

the validity of the proposed methodology.

2 Manipulator Kinematics

In this section, a brief review of manipulator spatial

kinematics is presented. For an n-link, serial, open-

loop spatial manipulator, denote the space of joint co-

ordinates by q E Q = 7-". The corresponding end-

effector position and attitude is denoted by x E 2" =

7_3 x SO(3). For a redundant manipulator, n > 6. The
end-effector motion kinematics are given by:

x= --
Here, p denotes the end-effector position, w is the end-

effector angular velocity expressed in an inertial Carte-

sian reference frame, and J(q) is the 6 x n "constructed"
Jacobian transformation matrix.

All manipulators posses singular configurations in-

side their workspace. These configurations, q', are

manifest when the Jacobian matrix loses full rank,

i.e. rank(J) < dim(X). In terms of the Singular

Value Decomposition (SVD) of the Jacobian matrix,

J = UEV T, this corresponds to at least one singular

value _ri = 0. The corresponding singular direction Ui
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(the i-th columnof U) is the direction in which end-

effector motion to first order is instantaneously impos-

sible. At a singular configuration, a solution for the

joint rates cannot be constructed from the first order

approximation of the forward kinematics. Hence, kine-

matic control algorithms that rely on inversion of the

Jacobian matrix in one form or the other generate ex-

tremely large joint rate solutions near or at a singular

configuration.

3 Inverse Rate Kinematics

Manipulator tasks are described in end-effector

space, X, while actuator commands are in joint-space,

Q. For this reason, an inverse kinematic algorithm is re-

quired to generate joint-angle commands from the end-
effector commands. The inversion can be carried out

at different differential levels of the forward kinematics.

In this paper only first order inversion or Inverse Rate

Kinematics (IRK) will be considered. Kinematic con-
trol algorithms that use this approach are also known

as Resolved Rate Control (RRC) algorithms.

For inverse rate kinematics, the end-effector velocity

profile along the desired trajectory is specified. At each

increment, the joint rates are computed by "inverting"

the Jacobian matrix evaluated at the current configu-

ration. These joint rates are then integrated (usually

via Euler integration) to generate the next set of joint

angles. Assuming the current configuration is nonsin-

gular, the general form of the solution for joint rates
is,

qk = Jt(qk)zk + v

where the notation j? denotes a generalized inverse and

v is the instantaneous self motion (or null motion), i.e.
J(qk) v = 0taxi. For nonredundant manipulators jt =

j-1 and v = 0n×l.

For a redundant manipulator jt = jT [j jT] -1,

known as the pseudoinverse of J, and v # 0nxl. The

pseudoinverse originates from a 2-norm joint rate min-

imization problem. Specifically it is obtained as the

solution to the following quadratic cost optimization

problem:

min 0.5 qTq (1)
4

subject to J(q)q =

In the redundant case, there are n-6 degrees of freedom
in the nullspace of the Jacobian matrix that can be

assigned arbitrarily. In both cases, the joint angles are
then obtained from:

qk+l = qk + qkAt

4 Resolved Rate Law For Failed Joints

The solution to the quadratic optimization problem

in the previous section assumed that all the joints were
active or had not failed. In this section a modified ver-

sion of the pseudoinverse which accounts for joint fail-

ures is derived. Assuming joint i fails, this implies that

qi -- 0. The incidence of a failed joint can be expressed
as an additional constraint of the form:

Aq = 0taxi

The m x n constraint matrix, A, is a zero matrix with

A(i,j) = 1 for the j-th failed joint with a total number

of failures equal to m. To illustrate this, for a 9-1ink ma-

nipulator with joints 4 and 7 failed, the corresponding
A matrix has the form:

A=[0 0 0 1 0 0 0 0 0]0 0 0 0 0 0 1 0 0

To derive the modified pseudoinverse to account for

failed joints, the quadratic optimization problem (2) is
reformulated as:

min 0.5 qar.q (2)
q

subject to J(q)q =

subject to Aq = 0taxi

The solution of this new optimization problem (2) is,

= BjT [ j B jT ]-1 _ (3)

where:

Comparing this solution with the one for all joints free,

it is seen that by setting A = 0m×n the pseudoinverse
solution is obtained.

5 Robust RRC For Failed Joints

The standard IRK solution utilizing the pseudoin-

verse fails at or near singular configurations due to ex-

tremely large joint rate solutions. It has been shown

[2] that the pseudoinverse does not generate singular-

ity free trajectories. Therefore, the pseudoinverse ap-

proach does not posses any singularity avoidance prop-

erties. Since solving (2) can drive the system to a singu-

lar configuration, one approach to alleviate this prob-

lem is to relax the equality trajectory constraint.

The Singularity Robust Inverse (SRI) (or damped

least squares) proposed in [6], and [8] as an alternative

to the pseudoinverse accomplishes a tradeoff between
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accuracyandfeasibilityof solution. Near a singular

configuration the joint rates remain finite and bounded

in exchange for a build-up in tracking error. The robust
resolved rate law is obtained from the solution to the

constrained minimization problem,

rain 0.5 eTw e (4)
4

where:

x- J(q)q ]
e _

q

W___[W1 06×n ]0.×6 W2

The weighting matrices, W1 (6 x 6) and W2 (n x n), are

arbitrary. Assuming W1 = 16×6 and W2 = tc ln×,, the

solution to (4) is given by [6]:

dl = j,z = [ jT j + _I ]-' jT z (5)

In the above, J* is the Singularity Robust Inverse

(SRI). An alternative but equivalent expression for J*

is [6]:

0 = S'z = jT [ S sT + _I ]-' z (6)

Setting the scaling factor _¢= 0 in (11), it is seen that
J* reduces to the standard pseudoinverse jr. The er-

ror vector e represents the tradeoff between accuracy
of solution (expressed by e(1)) and feasibility of solu-

tion (expressed by e(2)). The tradeoff parameter is the

scaling factor, t¢, which is the degree of freedom in the

formulation of the SRI control law. In the following

section, an optimal method to chose the scaling factor
is presented.

The standard formulation of the SRI assumes that

all joints are free. To derive the modified SRI to ac-

count for failed joints, the optimization problem (4) is
reformulated as:

min 0.5 eTw e (7)
4

subject to Aq = 0rex1

The solution to this new optimization problem (7) is
given by,

q=p-1 [ I_ AT [A p-1AT I-I A p-1 ] jTw1 x.

(s)
where:

P=jTw1 J + W2

It will be assumed that W1 = 16x6 and W2 = tc 1,x,.

It is noted that the first term in the right hand side of

(8) is just the standard SRI solution, while the second

term accounts for the effect of the failed joints.

5.1 Determining the Scaling Factor

The robustness properties or the SR-Inverse are de-

termined by the scaling factor _¢, which expresses the

tradeoff between the exactness and feasibility of solu-

tion. Depending on the particular emphasis of an ap-

plication, several methods for choosing the scaling fac-

tor have appeared in the literature [6], [8], [4]. These

methods adjust the scaling factor as a function of some

Jacobian based metric such as the minimum singular
value or the manipulability measure. Hence, the scal-

ing factor is adjusted based on the proximity of the

manipulator to a singular configuration.

Another approach is to chose the scaling factor such

that an appropriate norm of the joint rates does not

exceed a predetermined threshold [3], [5]. Such an ap-
proach directly takes into account the maximum allow-

able joint velocity constraints while minimizing the end-

effector deviation from the desired trajectory. When-

ever the pseudoinverse (or modified pseudoinverse in

the case of failed joints) does not violate the joint ve-

locity threshold (i.e. the solution is feasible) scaling is
not required and t¢ = 0. In this case the SRI solution

is not required. When the pseudoinverse solution vio-

lates the velocity norm threshold (i.e. the solution is

infeasible) the SRI can be used to generate a feasible

solution which minimizes the deviation from the speci-

fied end-effector trajectory if the choice of scaling factor
satisfies:

II4 I1. = IIjT [ j jT + _ i] -1 x lira (9)

In (9), the notation I1" lira denotes the vector m-norm.

Hence, the problem of generating joint rates that do

not violate a rate limit is posed as follows:

if II J'x lira _ Ore.= _ = 0 else solve

II jT [ j jT + _ i] -1 d_ lira = area= (10)

Obtaining a closed form solution to (10) is not practi-
cally possible as it is a nonlinear problem. An iterative

approach to solve (10) for m = 2 has been presented

in [3] and [5]. However, an approximate closed form
solution can be obtained which is described in the fol-

lowing.

Using the singular value decomposition (SVD) of the
Jacobian matrix, J = UEV T, (10) can be written in

the form,

II4 lira = IIw u T x lira = (11)
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where:

Et =

0.1 0 ... 0
_+_

0.2 0
0 --,_ + _ ...

0- 6

0 0 -..

0 0 ... 0

To simplify (11), the joint velocity norm can be upper-

bounded using induced matrix norms [7]:

II4 lira _< IIy II,mIIr)I1,_ IIu T x I1_ (12)

In (12), the notation I1"I1,-_denotes the induced (m)
norm corresponding to the vector norm I1" I1_- Using
(12), a conservative relation involving the joint velocity
norm threshold is:

IIw II,mIIEt II,mIIu T a_I1_ _ 4_a_ (13)

Solving for E l from (13):

qma_ (14)IIE' I1,._-< IIv I1,_IIuT x I1_

The relation (14) is the key to solving for the scaling

factor in order to enforce the joint velocity norm lim-

its. Typically, joint velocity thresholds are specified as
either a 2-norm or m-norm constraint• For a 2-norm

rate limit, the induced 2-norm of E t is [7],

where:

A,_a_ (EtTE t ) = Maximum eigenvalue of EtTE t

For an co-norm rate limit, the induced co-norm of l_t

is [7]:

II _t I1,_ = m_Lx _ I_,_I
J

Due to the special structure of E t and the fact that

E_,j > 0, it is easy to show that in both cases its induced
norm reduces to:

0.i
IIEt 11,5= IIEt I1,_o= max

i 0._ +

In applications, usually the maximum absolute joint

velocity is limited instead of the quadratic velocity

norm. Assuming that maximum absolute velocity limit

is the same for all joints, (14) reduces to:

0: qmax
max _ < (15)

, 0.?+_- IIVII,_IIUTxlI_

For a fixed value of the scaling factor ,¢, as a singular

value 0., approaches zero, the expression 0.,/(0._ + ,¢)
increases until it reaches a maximum value when 0., =

and then decreases to zero. Therefore,

0., 1
<

max 0.?+_ _ 2v_

Hence, a conservative solution for the scaling factor that

will satisfy (15) is:

_ > [JJVJJi°°JJuTsell"_] 2-24m,_ (16)

In actual implementation, the equality is used in com-

puting the scaling factor. Similarly, if the joint velocity
threshold is expressed in terms of a 2-norm, the solution

for the scaling factor is given by:

2

_ > [ jI V IIi2 jI UT _ ''2 ]-2 (_rnax

6 Numerical Simulations

In this section, simulation results of the techniques

described in this paper applied to an 11 DOF spatial

manipulator are presented. This is a special modular

manipulator developed at NASA/JSC [1] with a 15 foot

reach. Its architecture is described by the joint se-

quence RPR-PR-PR-PR-RPR where R denotes a roll

joint and P denotes a pitch joint.
The first simulation example is used to illus-

trate the fault-tolerant resolved rate law using the

modified psendoinverse (3). The initial config-

uration of the manipulator is given by q6 =

[45, -60, 0, -45, 0, 45, 90, 45, 0, 0, 0, 0 ]. The ini-

tial configuration is shown in Figure 1. The end-effector

command is x = [ -5.5, -2.5, 1.5, 0, 0, 0 ] with units

of in/sec for the translational component and deg/sec

for the rotational component. In the following figures,

the end-effector position is displayed as, solid line for

x-axis, dashed line for y-axis, and dotted line for z-axis.

The end-effector attitude is given as a Pitch, Yaw, Roll

(PYR) Euler angle sequence, with solid line for pitch,
dashed line for yaw, dotted line for roll. For all joints

free throughout the simulation, the results for the stan-

dard pseudoinverse are shown in Figures 2 and 3. Fig-

ure 2 shows the end-effector position and attitude while
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Figure3showsthejoint angletrajectory.Nowconsider
thecasewhenjoints1,6,and7havefailedthroughout
thesimulation.Theresultsfor themodifiedpseudoin-
verse(3)areshownin Figures4 and5. Figure4shows
theend-effectortrajectorywhichis identicalto theall
jointsfreecase.Figure5 showsthejoint angletrajec-
tory. It is seenthatjoints 1,6,and7 donot moveas
wouldbeexpected.

To illustratethe SPAwith joint velocitythresh-
olds,considera maneuverof movingtheend-effector
in the x-direction. The initial configuration is q0 =

[0, -50, 0, -30, 0, 70, 0, 30, 0, 0, 0]. The end-

effector command is 5: = [-5, 0, 0, 0, 0, 0]. First

consider the case when all joints are free throughout

the simulation. The results of using the standard pseu-

doinverse are shown in Figures 6 and 7. Figure 6 shows

the position and attitude history of the end-effector,

while Figure 7 shows the joint rate profile. It is seen

that the maximum joint rate is less than 6 deg/sec.
Now consider the case when joints 2,4, and 7 have

failed throughout the simulation. The results of using

the modified pseudoinverse, (3), are shown in Figures 8

and 9. The end-effector trajectory shown in Figure 8 is

seen to deviate somewhat from the desired trajectory.

This is due to the very high joint rate solution (up to

400 deg/sec) generated by (3) shown in Figure 9, and

the particular integration approach used to generate

the end-effector trajectory. The results of using the SPA

with a maximum absolute joint rate limit of 50 deg/sec,
i.e. II q Ilio_ < 50 deg/sec, are shown in Figures 10 to

12. The end-effector trajectory is shown in Figure 10

where the deviation from the desired trajectory appears
in the x and z-axes and pitch angle. The main effect

of using the SRI is the reduction in system response in

the commanded direction. From Figure 10 it is seen

that at the end of the simulation the manipulator has

only moved halfway in the x-direction. The joint angle

trajectory is shown in Figure 11 from which it is seen

that the joint rate limit is not exceeded. Finally, Figure
12 shows the history of the SPA scale factor. It is seen

that the SRI solution is activated at approximately 2
seconds.

7 Conclusion

This paper has addressed the fault tolerant kine-

matic control of hyper-redundant manipulators. The

standard resolved rate control law utilizing the pseu-

doinverse was modified to account for joint failures.

However, pseudoinverse based control laws fail at or

near singular configurations due to extremely high joint

rate solutions. To generate feasible joint motions near

singular configurations, the Singularity Robust Inverse

(SRI) instead of the pseudoinverse was employed. The

standard formulation of the SPA was modified so as to

account for the possibility of failed joints. As the ro-

bustness properties of the SPA are determined by the

choice of scaling factor, an optimal method to pick the

scaling factor was presented. Numerical simulations
were presented utilizing an 11 DOF spatial manipulator

to illustrate the proposed solution methodologies. The

simulation results verified the validity of the proposed
methods.
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Figure 1: Modular manipulator in initial configuration 
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Figure 2: 
End-effector position and attitude 

Pseudoinverse solution for all joints free: 
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Figure 3: 
Joint angles 

Pseudoinverse solution for all joints free: 

Figure 4: Pseudoinverse solution for all joints free: 
End-effector position and attitude 
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Figure 5 :  Pseudoinverse solution for all joints free: 
Joint angles 

Figure 6: Pseudoinverse solution for all joints free: 
End-effector position and attitude 

835 
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Figure 7: Pseudoinverse solution for all joints free:
Joint rates
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Figure 10: SR-Inverse solution for 3 failed joints:
End-effector position and attitude
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Figure 8: Pseudoinverse solution for 3 failed joints:

End-effector position and attitude
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Figure 11: SR-Inverse solution for 3 failed joints: Joint
rates
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Figure 9: Pseudoinverse solution for 3 failed joints:
Joint rates

Figure 12: SR-Inverse solution for 3 failed joints: Scale
Factor
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