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Abstract--The perceived quality of images reconstructed

from low bit rate compression is severely degraded by the
appearance of transform coding artifacts. This paper pro-

poses a method for producing higher quality reconstructed

images based on a stochastic model for the image data.

Quantization (scalar or vector) partitions the transform co-

efficient space and maps all points in a partition cell to a

representative reconstruction point, usually taken as the

centroid of the cell. The proposed image estimation tech-

nique selects the reconstruction point within the quantiza-

tion partition cell which results in a reconstructed image

which best fits a non-Gaussian Marker random field (MRF)
image model. This approach results in a convex constrained

optimization problem which can be solved iteratively. At

each iteration, the gradient projection method is used to

update the estimate based on the image model. In the

transform domain, the resulting coefficient reconstruction
points are projected to the particular quantization parti-

tion cells defined by the compressed image. Experimental

results will be shown for images compressed using scalar
quantization of block DCT and using vector quantization of

subband wavelet transform. The proposed image decom-

pression provides a reconstructed image with reduced visi-

bility of transform coding artifacts and superior perceived

quality.

I. INTRODUCTION

Source coding of image data has been a very active area

of research for many years. The goal is to reduce the num-
ber of bits needed to represent an image while making as

few as possible perceptible changes to the image. Many al-

gorithms have been developed which can successfully com-

press a grayscale image to around 0.8 bits per pixe] (bpp)
with almost no perceptible effects [1]. A problem arises,
however, as these compression techniques are pushed be-

yond this rate. For higher compression ratios (< 0.4 bpp

for grayscale) most algorithms start to generate artifacts

which severely degrade the perceived quality of the image.

The type of artifacts generated is dependent on the com-

pression technique and on the particular image. For block
encoded images, the most noticeable artifact is generally

the discontinuities present at the block boundaries. For

subband encoded images, it is the ringing at image edges

which is usually first perceived.
This paper proposes a technique which addresses this

issue through a postprocessing algorithm which greatly re-
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duces the artifacts introduced by the coding technique. It
is based on a stochastic framework in which probabilistic

models are used for both the noise introduced by the coding

and for a "good" image. The restored image is the maxi-
mum a posteriori (MAP) estimate based on these models

[2; 3]. Previous techniques which have tried to address

this issue have various problems which limit their ability

to produce high quality image estimates. Some techniques

propose changes in the way the image is coded[4; 5]; this
however reduces the efficiency of the source coder and thus

reduces the compression ratio. The proposed postprocess-

ing technique only requires modification of the image de-
coder. Linear based estimators [6], while removing some

artifacts, usually degrade edge information in the original

image. Several techniques try to overcome this smoothing

of the edges by first estimating the edge information in the

compressed image data [7; 8]. This however is a very diffi-

cult task for very high colnpression ratios, where the actual
edge inforlnation is somewhat scrambled.

This paper will first describe a generic model for im-

age compression. For the purpose of the reconstruction

algorithm, this model is descriptive enough to describe

many compression techniqnes. A decompression algorithm
is then described based on a previously proposed image

model [9; 10]. The computational algorithm is also de-

scribed. Experimental results are shown for two differ-

ent transform coding methods. The first method is the

Joint Photographic Experts Group (JPEG) image coin-
pression standard [11; 1]. The second method uses a sub-

band wavelet transform with a vector quantization (VQ)
proposed in [12]. It can be seen that images reconstructed

with this new postprocessing technique show a reduction
in many of the most noticeable artifacts and thus allow

higher compression ratios.

II. DECOMPRESSION ALGORITHM

To decompress the compressed image representation, a

MAP technique is proposed. Let the compressed image

data be represented by y while the decompressed full reso-
lution image is represented by z. For MAP estimation, the

decompressed image estimate Z is given by

Z = arg n_x L(z[y), (1)

where L(-) is the log likelihood function L(.) = logPr(.)
which in this case is a measure of how likely the decom-

pressed image z resulted in the compressed representation



y. UsingBayesrule

= argmzaXlog Pr(y) ' (2)

= arg mzaX {log Pr(ylz) + log Pr(z) - log Pr(y)}_3)

= argmzax{logPr(ylz ) + logPr(z)}, (4)

where the Pr(y) term is dropped because it is a constant
with respect to the optimization parameter z. The condi-

tional probability Pr(y[z) is based on the image compres-

sion method while the probability Pr(z) is based on prior

information about the image data.

A. Image compression model

In a transform coding compression technique, a unitary
transformation H is applied to tile original image x. Tim

-- compressed representation y is obtained by applying a quan-

tization Q to the transform coefficients which can be writ-
ten as

-- y = Q[Hx]. (5)

Quantization partitions the transform coefficient space and

maps all points in a partition cell to a representative re-

- construction point, usually taken as the centroid of the
cell. The indices of these cells are usually entropy coded

and then transmitted as the compressed representation y.

In the standard linage decompression method, the recon-

structed image is given by

i = H-lV-l[y], (6)

where the inverse quantization maps the indices to the re-

construction points.
Since quantization is a many-to-one operation, many ira-

- ages map into the same compressed representation. The

operation of the quantizer is assumed to be noise free; that

is, a given image z will be compressed to the same corn-

- pressed representation y every time. Tile conditional prob-
ability for the noise free quantizer can be described by

1, y=Q[Hz], (7)Pr(YlZ) = 0, y # Q[Hz].

Since

-- logPr(ylz) = ( 0, y = Q[Hz], (8)-_, y # Q[Hz],

the MAP estimation in (4) can be written as the con-

strained optimization problem

i = arg min{- log Pr(z)}, (9)
ZEZ

where Z is the set of images which compress to y (i.e.

Z = {z: y = Q[Yz]}).

B. Image model

For a model of a "good" image (i.e. Pr(z)) a non-
Gaussian IVlarkov random field (MRF) model is used [9;

10]. This model has been shown to successfully model both
the smooth regions and discontinuities present in images.

A Gibbs distribution is used to explicitly write the distri-
bution of MRF's. A Gibbs distribution is any distribution

which can be expressed in the form

'{ }Pr(x) = _exp - _ V¢(x) (10)
cE¢

where Z is a normalizing constant, 9_(.) is any function of

a local group of points c and C is the set of all such local

groups. Note that the Gaussian model is a special case
of the MRF: To understand how to include discontinuities

into the statistical model, it is important to first under-

stand what the model represents and how to define the

model for a particular application. For a particular source

signal Zl, the value of the probability measure Pr(Zl) is
related to how closely Zl matches our prior information
about the source. So a zl which closely matches our prior

information should have a higher probability than one that
does not. For this to be true, the function _(-) should pro-

vide a measure of the consistency of a particular z, where

a z more consistent with the prior information will have

smaller values of !4(.). The situation which is important in

this work occurs when the prior information is mostly true
but a limited amount of inconsistency is allowable (e.g. a

piecewise smooth surface; that is, a surface which is mostly
smooth but a few discontinuities are allowable).

In this research a special form of the MRF is used which

has this very desirable property. This model is character-

ized by a special form of the Gibbs distribution

1 1
Pr(x) = _ exp{-_ Z pv(dt_x)} (11)

cEC

where k is a scalar constant that is greater than zero, d_.

is a collection of linear operators and the function PT(') is

given by

_ Inl _< T,u_;'+ 2T(lul- Z), lul > T;pv(U) (12)

see Figure 1. Since PT(') is convex, this particular form of
the MRF results in a convex optimization problem when

used in the MAP estimation formulation (4). Therefore,

such MAP estimates will be unique, stable, and can be

computed efficiently. The function PT(') is known as the

Huber minimax function [13] and for that reason this statis-
tical model is called the Huber-Markov random field model

(HMRF).
For this distribution, the linear operators, d_, provide

the mechanism for incorporating what is considered con-
sistent most of the time while the function PT(') is the

mechanism for allowing some inconsistency. The parame-

ter T controls the amount of inconsistency allowable. The

function PT(') allows some inconsistency by reducing the

importance of the consistency measure when the value of

the consistency me_ure exceeds some threshold, T.
For the measure of consistency, the fact that the dif-

ference between a pixel and its local neighbors should be

small is used; that is, there should be little local variation

-- 2
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Fig. 1, Huber minimax function PT() superimposed on quadratic func-

tion.

in the image. For this assumption, an appropriate set of

consistency measures is

{d'cz}¢ec = {zm,, - z_.l}k.te.V .... 1< .... ____v, (13)

where A/',_,,_ consists of the eight nearest neighbors of the

pixel located at (m, n) and N is tile dimension of the image.
Across discontinuities this measure is large, but the rela-

tive importance of the measure at such a point is reduced
because of the the use of the Huber function.

The MAP estimate can now be written as

= argminE_(z ) (14)
ZEZ

cEC

= argmin E Z PT(Zm'n -- Zk,i).(15)
ZEZ

l_m,n_N k,lEN'm._

As a result of the choice of image model [9; 10], this results

in a convex (but not quadratic) constrained optimization

which can be solved using iterative techniques.

III. RECONSTRUCTION ALGORITHM

An iterative approach is used to find z in the constrained
minimization of (15). An initial estimate z (°) is improved

by successive iterations until the difference between a (k)

and z (k+l) is below a given threshold e. The rate of con-

vergence of the iteration is affected by the choice of the ini-
tial estimate. A better initial estimate will result in faster

convergence. The initial estimate used here is formed by
the standard decompression

z/°!= (16)

Given the estimate at the k-th iteration, zIk), the gra-

dient descent method is used to find the estimate at the

next iteration, z (_+_). The gradient of _ pm(dtcz) is used

hfi-l]
I I
t i

, V I

i A ;

l[i-l] l[i]

hill h[i+l]

I" A"
g P- m

l[i+l]

Fig. 2, Illustration of projection operator for scalar quantization.

to find the steepest direction g(k) towards the minimum

) v-" ,,., (k),.,g(k)= V pT(dtcz ('_)) = 2.._pT(cilcZ )oc, (17)
\cEC / cEC

where p'T(U) is the first derivative of the Huber function.
The size of the step a (k) is chosen as

a(k = g(k)tg(_)
,, t k) t (18)

g(k)t(_cE c PT(dcz( )d_d_)g (k)"

This choice of step size is based on selecting the opti-

mal step size for a quadratic approximation to the non-

quadratic function in (15). Since this is an approximation,

the value of the objective function may increase if the step

size is too large. To avoid this potential problem, the value
of a (k) is divided by 2 until the step size is small enough

that the value of the objective function is decreased. Since

the updated estimate w (k+_),

W (k+l) = Z (k) --}- a(k)g (k), (19)

may fall outside the constraint space Z, w (k+l) is projected

onto Z to give the image estimate at the (k+ 1)-th iteration

Z (k+l) _--- 'pz(Wlk'FII). (20)

In projecting the image w (k+l) onto the constraint space

Z, we are finding the point z (k+l) E Z for which IIz (k+l) -
w(k+l)ll is a minimum. If w (k+l) E Z, then z (k+l) =

w ok+l) and IIz (k+l)- w(k+l)ll = 0. Since H is unitary,

IlHz(k+ _) - HwCk+_)l[ = I1_(TM) - w(k+_)ll (21)

and the projection can be carried out in the transform do-
main.

The form of Pz is dependent on the quantizer Q. The

projection operators T'z for scalar and vector quantization

are described in the following subsections.

A. Scalar quantization

The scaler quantizer is a partition of the real number line
7_ and is defined by its breakpoints. The breakpoints are

determined by the amount of compression desired. The

boundaries or breakpoints of cell i are l[i] and hill, see

Figure 2. If a coefficient _0 falls in cell i,

l[i] _< ,_ < h[i], (22)

then index i is transmitted. The compressed representation

y is the set of indices for all the transform coefficients.

- 3



Projectionto theconstraintspaceis rathersimplefor
scalarquantization.Tofindthetransformcoefficients# in
Hz (k+l), find the corresponding coefficient a in Hw (k+l).

From the compressed representation y, find in which cell

p should fall. Assume/_ should fall in cell i. The standard

decompression method would use p = r where r is the
centroid of the cell. The coefficient /_ which falls in cell i

can be determined by

/[i], co<l[i],
_, t[i] _<_ < h[i],

#= h[i], h[i]<__.
(23)

This wilt minimize [[Hz/k+t) - Hwlk+l)[[ while assuring

that y = Q[Hz(k+l)]. The image estimate z (k+ll is ob-
tained by performing the inverse transformation on Hz Ik+t).

B. Vector quantzzatton

The vector quantizer is a partition of _n and is defined

by its codebook vectors r[i]. The size of the codebook is

determined by the desired bit rate for that subband.
A coefficient vector wis considered in cell i if it is closer

_ to codevector r[i] than to any other codevector

I1_ - _'[i]11< [l_ - r[J]ll, j :¢ i. (24)

-- The distance metric used here is the squared Euclidean

distance. Although the illustrations in Figure 3 represent

a 2-D quantizer, the method described below for finding

_ directly generalizes to higher dimensional spaces.
Projection to the constraint space is more complicated

for VQ than for the scalar case. Tile standard decompres-
sion method would use t_ = r[i] for the reconstruction

-- point. To project the vector w to cell i, it is necessary to

find the point in cell i which is closest to w . The easy case
occurs when w itself is in cell i since t* = w. In the more

_ difficult case where w is closer to some other codevector,

the projection point _ will be on the boundary of cell i.
The first step in projecting w to lZ is to move from w to

the boundary of cell i. The next step is to move along the

boundary to/z .

The points _ on the boundary of cell i all satisfy

II_- r[i]ll = II_- r[j]ll (25)

for some j # i. For a particular value of j, (25) defines

a hyperplane of points equally distant from the i-th and

j-th codevectors. Since w is outside cell i, the line segment

from w to r[i] described by

= t_o + (1 - t)_-[i], 0 < t < 1 (26)

will intersect the boundary of cell i. For each codevector

r[j], j ¢ i, it is easy to determine if the intersection of

the hyperplane (25) with the line segment (26) exists. The
value of t in (26) which defines the point of intersection is

given by

t = (r[i] - r[j]). (r[i] - r[j]) (27)
2(viii - w). (r[i] - r[j])

X /

/

(t) /"

[\ " X

,'_2\.....
.i.. --..

..-"'_" g T.[i]

X /

i
/

(O /"
O

t \ / [i]
I \ \ _ q:

\ t b_
k /_/

Fig. 3 Illustration of projection operator for vector quantization

where t E [0, 1] if the intersection exists. Among all j :fl i,

the smallest positive value of t will define the point (t on

the cell boundary. (1 will be equally distant from r[i] and

The next step involves traveling along the boundary of

the cell to _ . The idea is to move towards w but not leave

the cell boundary. Let (2 be the perpendicular projection
of ¢o onto the k-th hyperplane (11( - r[i]ll = [l_ - fiX:Ill).

(2 is the point in this hyperplane which is closest to w and
can also be found as the intersection of a line

= w + t('r[i] - r[k]) (28)

with a hyperplane. Both (1 and (2 will be in this hyper-

plane. Next, move along the line segment from _1 towards

_2, stopping at the first intersecting hyperplane. The in-

tersection point becomes the new (1 and this hyperplane
becomes the new k-th hyperplane. (_ now becomes the

projection of ¢o onto this new hyperplane and the process

is repeated until one of the stopping conditions is met. This

process is stopped if

• _1 travels all the way to _, without being intercepted

by another hyperplane

• or if (1 would leave the cell boundary by moving to-
wards _,

• or if _1 does not make progress towards _o .

When this process is completed, _ = (I.

-- 4



IV. EXPERIMENTALRESULTS

In thissection,theresultsof usingtheproposedpost-
processingmethodareshownforimagescompressedusing
scalarquantizationofblockDCTandusingvectorquanti-
zationofsubbandwavelettransform.
A. Scalar quantizalion

The standard "Lenna" image shown in Figures 4(a) and

5(a) was compressed to 0.264 bpp by the JPEG algorithm

[11; 1]. The result of standard decompression of this image
is shown in Figure 4(b) and enlarged to show detail in Fig-

ure 5(b). At this compression ratio, the coding artifacts are

very noticeable. Most noticeable are the blocking effects of

the coding algorithm, but aliasing artifacts along large con-

trast edges are also noticeable. Tile result of postprocess-
ing this image is shown in Figure 4(c) and enlarged to show

-- detail in Figure 5(c). The number of iterations needed to

sufficiently reduce the artifacts is dependent on tile severity

of the degradation. More iterations are required for con-

- vergence with more severe degradation. Notice that the

blocking effects have been removed ill the postprocessed

image. This can be most easily seen in the shoulder and
_ background regions. Notice that while the discontinuities

due to the blocking effects have been smoothed, the sharp

discontinuities in tile original image, such as along tile hat

brim, have been preserved.
-- For comparison, the method for reducing blocking arti-

facts proposed in the .]PEG standard [1] is shown in Fig-

ures 4(d) and 5(d). For a given block, the five lowest

- frequency AC coefficients are predicted from the DC coef-

ficients of the given block and the 8 nearest blocks. The

image is modeled as a 2-D second order polynomial over
these 9 blocks. This polynomial is defined by requiring that

the mean of the polynomial over each block must match
the DC value for that block. To reduce the blocking, the

estimated AC coefficients corresponding to a DCT of this

-- polynomial are used if they do not contradict the transmit-
ted information. See [1] for details. Note that while tile

blocking artifacts are reduced by this approach, they are
still visible. The overall improvement in the reconstructed

image is much less significaut than the improvement seen

in Figures 4(c) and 5(c).
While the blocking artifact dominated the standard re-

construction of the "Lenna" image, ringing artifacts are

dominant in document images such as text or graphics [14],

see Figure 6. While JPEG may not be the most appropri-

-- ate compression method for document images it can be
seen from the example shown in Figure 6 that ringing arti-

facts are suppressed by the postprocessing algorithm. The

postprocessing algorithm removes ringing artifacts as well

as blocking artifacts.

B. Vector quanttzatzon

The "Lenna" image was decomposed in the manner of

Mallat [15] by a three level separable snbband structure

using 2-D separable filters based on I-D Daubechies' 12-th

order wavelet filters [16]. Each of the subbands is vector
quantized quantized independently with the transform co-

efficients grouped into 4 by 4 blocks (or 8 by 8) which are
treated as 16 (or 64) dimensional vectors. The bit rate

for each subband is determined by the method given in

[12] based on the desired overall bit rate and human vi-

sual system considerations. The bit rate is higher for lower

frequency subbands. The highest frequency subbands are
allocated zero bpp and are dropped altogether. For each of

the remaining subbands, a locally optimal VQ codebook is

designed for that subband signal. See [17] for general in-
formation on VQ and [12] for details on the VQ approach
which is used here. The point here is to demonstrate the

postprocessing technique is sufficiently flexible to be ap-
plied to any transform coding method.

Figure 7 shows the results for moderate compression

(0.444 bpp) and postprocessing for 9 iterations. The results

of postprocessing for 20 iterations are shown in Figure 8 for

the case of heavy compression (0.155 bpp). The greatest

improvement comes in the first few iterations. Further it-

erations of postprocessing continne to improve the image,
but tile amount of improvement in each iteration decreases

as the image gets better.

The primary artifacts of this coding technique are alias-

ing at edges and loss of high frequency information. As ex-

pected, these artifacts are more severe in the case of heavy
compression. Most aliasing artifacts disappear after only
a few iterations in the case of moderate coxnpression. Al-

though the aliasing artifacts are more persistent for heavy

compression, the first few iterations still reduce the alias-

ing a great deal. Even for heavy compression, the aliasing
artifacts are eventually no longer perceptible.

Information contained in high frequency subbands, such

as the details in the hat of the original image, is completely

lost when those subbands are dropped. The postprocess-

ing cannot reinvent this information which is completely
absent from the compressed representation. However, for

structures such _s edges which have information content

spread across low frequencies as well as high frequencies,

the postprocessor is able to restore some high frequency
information based on the low frequency components in the

compressed representation. This allows crisper edges which

contain high frequencies to appear in the restored image.
See for example the hat brim and along the edge of the

shoulder. As in the scalar quantization case, the struc-

tures supported by the compressed representation and by

the image model are restored while artifacts of the trans-

form coding process are suppressed.

V. CONCLUSION

The problem of image decompression has been cast as

an ill-posed inverse problem, and a stochastic regulariza-

tion technique has been used to form a well-posed recon-

struction algorithm. A statistical model for the image was

produced which incorporated the convex Huber minimax
function. The use of the Huber minimax function PT(')

helps to maintain the discontinuities from the original im-

age which produces high resolution edge boundaries. Since

PT() is convex, the resulting multidimensional ininimiza-
tion problem is a constrained convex optimization problem.

5



(a)

(c)

(b)

(d)

Fig 4, Scalar quantre.at.m I)(:T ,-Oml,r,.ss,,,I mlag-s ({) 2_;.I bpp) (hi origin,hi inlag.. (b) standard d_comprt.ssion (c) After 9-th iteration of postpro-
cessing algorithm, 7" = 1 0 t,-I) t'++cop.sl:-tJ,'t,,I ;vltt_ A(' coctFtci,..nl t>r+:dict a)n

Efficient computational algorithms can t)e used in the min-

imization. The propos_<l imag(_ decompression algorithm

produces reconstructed images which gr,mtly reduced the

noticeable artifacts which exist using standard (lecompr,_s-
sion techniques.
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Fig. 7
enlarged.
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VQ subband itqtages (l) 4-t-t bl:,pI (a) standard ,t,_compression (b) enlarged {c) after 9-th iteration of postprocessing algorithm, T = 10 (d)
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